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ABSTRACT: Error growth is investigated based on convection-allowing ensemble forecasts starting from 0000UTC for 13

active convection events over central to eastern U.S. regions from spring 2018. The analysis domain is divided into the

northwest (NW), northeast (NE), southeast (SE), and southwest (SW) quadrants (subregions). Total difference energy and

its decompositions are used to measure and analyze error growth at and across scales. Special attention is paid to the

dominant types of convection with respect to their forcing mechanisms in the four subregions and the associated difference

in precipitation diurnal cycles. The discussions on the average behaviors of error growth in each region are supplemented by

four representative cases. Results show that the meso-g-scale error growth is directly linked to precipitation diurnal cycle

while meso-a-scale error growth has a strong link to large-scale forcing. Upscale error growth is evident in all regions/cases

but up-amplitude growth within its own scale plays different roles in different regions/cases. When large-scale flow is

important (as in the NE region), precipitation is strongly modulated by the large-scale forcing and becomes more organized

with time, and upscale transfer of forecast error is stronger. On the other hand, when local instability plays more dominant

roles (as in the SE region), precipitation is overall less organized and has the weakest diurnal variations. Its associated errors

at the g and b scale can reach their peaks sooner and meso-a-scale error tends to rely more on growth of error with its own

scale. Small-scale forecast errors are directly impacted by convective activities and have a short response time to convection

while increasingly larger-scale errors have longer response times and delayed phase within the diurnal cycle.
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1. Introduction

Convective events frequently occur over central United

States in the spring season and the associated flooding can

produce significant threats to life and properties (Ashley and

Ashley 2008). Recent studies revealed that convection-allowing

numerical prediction models have advantages over coarser-

resolution models in representing convective modes and diur-

nal cycle of precipitation (e.g., Clark et al. 2007), but the forecast

skill does not always improve as model resolution increases

(Lean et al. 2008; Mass et al. 2002; Walser et al. 2004). On the

other hand, forecast skill often decreases fast with forecast range

due to rapid forecast error growth (Kain et al. 2010; Surcel et al.

2016). These issues speak to the need for better understanding

the predictability of convective events, and associated error

growth across scales (Sun and Zhang 2016; Zhuang et al. 2020).

Understanding forecast error growth is a fundamental issue

within the realm of predictability (Fritsch and Carbone 2004;

Hohenegger and Schär 2007b; Johnson et al. 2013; Kong et al.

2006), and related research issues include the growth of errors

at different scales and their interactions (Bachmann et al. 2019;

Bierdel et al. 2017), and the predictability limitation estimation

(Judt et al. 2016;Walser et al. 2004). Through the study of error

growth dynamics within a highly idealized model, Lorenz

(1969) revealed important scale interactions pertaining to at-

mospheric predictability. Studies inmore realistic settings have

shown that very small amplitude and small-scale initial errors

can grow upscale and contaminate mesoscale and large-scale

processes (Hohenegger et al. 2006; Tan et al. 2004; Zhang et al.

2003). Zhang et al. (2007) proposed a three-stage error growth

conceptual model using an idealized baroclinic wave model.

This conceptual model suggests that the intrinsic predictability

at larger scales is limited by upscale transfer of smaller scale

errors: Stage 1 encompasses fast increase and an early satura-

tion of small-scale errors that are confined to precipitation

regions in presence of convective instability and latent heat

release; Stage 2 corresponds to the transition stage when small-

scale errors begin to spread from the precipitation regions and

project to balanced motions through geostrophic adjustment

processes (Bierdel et al. 2017). After that, errors continue to

grow through background baroclinic instability at a slower rate

in Stage 3. The model has been subsequently applied to inves-

tigating and explaining error growth dynamics in both idealized

and more realistic modeling studies (Selz and Craig 2015; Sun

and Zhang 2016; Zhang 2019). On the contrary, initial errors at

larger scales have been reported by other authors to account for

much of the error growth and for controlling forecast accuracyCorresponding author: Ming Xue, mxue@ou.edu
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regardless of the presence of small scale errors (Durran and

Gingrich 2014; Durran and Weyn 2015; Weyn and Durran

2017, 2018, 2019).

Another important question concerning error growth is

what mechanism determines the diurnal aspect of error growth

(Keil et al. 2014; Klasa et al. 2019; Nielsen and Schumacher

2016; Wu et al. 2020; Zhang et al. 2007). In general, the baro-

clinic instability associated with horizontal temperature gra-

dients and the convective instability associated with unstable

vertical profiles for moist convection are considered as the two

main driving mechanisms for forecast error growth at the large

and small scales, respectively (Bei and Zhang 2014; Nielsen

and Schumacher 2016; Zhang et al. 2007). Zhang et al. (2007)

found that moist convection is not only important in initiating

error, but also in maintaining subsequent error growth at small

scales. Weyn and Durran (2017) showed that the forecast error

also exhibits up-amplitude growth in addition to upscale

growth. Nielsen and Schumacher (2016) concluded that the

forecast error evolution can be decomposed into a steadily

growing mode that determines the amplitude increase, and a

superimposed mode dominated by strong moist convection

activities (e.g., those associated with solar-forced diurnal pre-

cipitation peak) that determine the ‘‘shape’’ of error growth

curve. However, since convective events are inherently scale

sensitive, it is important to understand characteristics of error

growth across scales.

Previous studies also reported that the predictability of

convective events depends on the impact of large-scale forcing

on convection, and the convective events are often categorized

into different regimes, namely, those that are strongly forced

and weakly forced. As reported by Keil et al. (2014), in case of

strongly forced convection, large-scale flow dominates error

growth, while for weakly forced convection controlled by local

instabilities the contributions from both sources are approxi-

mately equal. Nielsen and Schumacher (2016) also found that

in a case with strong convective to synoptic-scale interactions

the forecast error can continuously increase. By investigating

error evolution under different convective regimes, Klasa et al.

(2019) also indicated through case studies that large-scale flow

and diurnal solar forcing together determine the overall evo-

lution of error growth.

During the spring of the central U.S. regions, convective

systems are often active with multiscale interactions (Carbone

and Tuttle 2008; Carbone et al. 2002b; Dai et al. 1999; Knievel

et al. 2004; Surcel et al. 2010; Trier et al. 2006); it is common for

initially more isolated storm cells to organize into mesoscale

convective systems (MCSs) in the region. In this study, we in-

vestigate scale-dependent error growth for 13 convective

events during May 2018 with convection-allowing model

(CAM) ensemble forecasts at 3-km grid spacing covering the

contiguous United States (CONUS). The large convection-

allowing grid allows for the representation of scales frommeso-

g through meso-a scales. We will focus on the forecast error

analyses in a domain that covers the Central Plains east of

the Rockies through the Midwest and much of the southeast

regions, sampling convection of different types. The study

period spans early spring (when large-scale forcing is more

prevalent) to late spring (when locally forced convection is

more prevalent) (Surcel et al. 2016, 2017), allowing for a

diverse collection of different convection types and forcing

mechanisms that regulate error growth dynamics within

CAM forecasts. We use the total difference energy within

the forecast ensemble and the scale decompositions of the

difference energy as the proxy to measure error growth at

and across scales. So far, studies examining growth of errors

across scales and within their scales with large continent-

sized CAM models, and how the error growth depends on

the type of convection and the degree of synoptic scale

forcing are few and limited (e.g., Surcel et al. 2016, 2017),

and some of the existing studies are based on individual case

studies (e.g., Flack et al. 2017; Wapler et al. 2015). More

studies on these issues are needed.

As the main goals, this study is to answer the following

questions: 1) What are the general characteristics of precipi-

tation and associated error growth with respect to different

convection types and forcing mechanisms; 2) What are the

characteristics of error growth in terms of different spatial

scales and in regions dominated by different convection types;

3) What mechanisms dominate the diurnal evolution of fore-

cast error. These goals provide insights into the predictability

of convective events across the central U.S. regions within

CAM forecasts, and potentially aid the optimal design of

CAM ensemble forecast systems and provide guidance to en-

semble data assimilation and forecast model improvement. For

example, a better understanding of the relative impact of initial

condition perturbations at different scales on ensemble vari-

ances across the scales within the forecasts of different ranges,

and how the impact depends on weather regimes can provide

guidance on where attention should be focused when creating

initial condition perturbations for CAM ensemble forecasting

systems of limited size and the best method to use for creating

such perturbations

The rest of this study is organized as follows. The datasets

employed in this study are introduced in section 2. Section 3 to

section 5 discuss the general characteristics of precipitation

systems and error growth, and the error growth mechanisms,

and section 6 discusses four specific cases in more detail.

Conclusions and further discussions are given in section 7.

2. Data and methods

a. Forecasts from the CAPS HWT Spring Forecast

Experiment ensemble

The Spring Forecast Experiments have been organized

by the NOAA Hazardous Weather Testbed (HWT, http://

hwt.nssl.noaa.gov/spring_experiment) every spring since 2007,

and the Center for the Analysis and Prediction of Storms

(CAPS) has been contributing the largest number of CAM en-

semble forecasts every year until recently (e.g., Clark et al. 2009,

2018; Xue et al. 2007). In 2018, most ensemble forecasts pro-

duced by CAPS used the Advanced version of the Weather

Research and Forecasting (WRF-ARW) Model (Skamarock

et al. 2008). Similar to experiments described in Clark et al.

(2018) for 2016 forecast experiments, the CAPSCAMensemble

forecasts of 2018 included several sets, one included initial
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condition (IC)/lateral boundary condition (LBC) perturba-

tions as well as different physics parameterizations, and one

included IC and LBC perturbations only (i.e., all members

used the same physics). The third set used stochastic pertur-

bations based on a single suite of physics instead of multiple

physics. In this study, the set using the same physics is used

given our focus on IC error growth. The physics package in-

cludes the Thompson microphysics (Thompson et al. 2008),

Noah land surface model (Mitchell 2005), and MYJ planetary

boundary layer (Janić 2001) scheme. The Stage-IV precipita-

tion product (Lin and Mitchell 2005) is employed as the ob-

served precipitation data for verification purpose and we focus

on the first 24 h of the forecast.

The IC of the control member of ensemble was produced by

assimilating radar (reflectivity and velocity) and conventional

(surface observations and radiosondes) data using the ARPS

3DVar data assimilation system (Xue et al. 2003) together with

its cloud analysis package (Hu et al. 2006a,b), using the

0000 UTC 12-km North American Mesoscale Forecast System

(NAM) model analysis at the background. The 3-hourly NAM

forecasts are used as the LBCs. The perturbed ICs and LBCs

for other ensemble members are generated by adding pertur-

bations derived from the 2100 UTC cycle forecasts of the op-

erational short-range ensemble forecast (SREF) system of

NCEP (Du et al. 2009) to the IC and LBC of the control

member. All forecasts are initialized at 0000 UTC (1800 CST)

on weekdays with a forecast range to 60 h, on the 3-km grid

spacing CONUS grid (see Fig. 1). Previous studies on similarly

configured forecasts produced by CAPS have reported that

diurnal cycles of precipitation over central U.S. regions can be

reasonably reproduced by the forecasts (Berenguer et al. 2012;

Surcel et al. 2010, 2016, 2017). The radar data assimilation

significantly alleviates the precipitation spinup problem (Kain

et al. 2010). The 24-h forecasts from 13 days of the CAPS en-

semble forecasts from May 2018 that have active convection

starting at the initial condition time (0000 UTC) are chosen to

analyze IC error growth in this study.

b. Representation of forecast error

Following Nielsen and Schumacher (2016), the root mean

difference total energy (RMDTE) is used to represent forecast

error, in which the horizontal DTE (Zhang et al. 2003) as a

function of the grid point and time can be defined as
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where u0, y0, and T 0 are, respectively, the differences of zonal

wind, meridional wind, and temperature from the ensemble

mean. The term Cp 5 1004.9 J kg21 K21 is the heat capacity of

dry air at constant pressure and Tr 5 270K is a reference tem-

perature. The variable N is the number of ensemble members,

and the subscripts i, j, k, t, n, and l represent the grid indices in x,

y, and vertical directions, forecast time level, ensemble member,

and spatial scale, respectively. The k index covers vertical layers

from 925 to 500 hPa where most precipitation systems occur;

p denotes the pressure of each vertical layer.

Since RMDTE values vary significantly across the convec-

tive events, we use the normalized RMDTE (NRMDTE) to

reduce variations across convective events following Nielsen

and Schumacher (2016). The NRMDTE is defined as the ratio

of RMDTE to total mean kinetic energy (TMKE), and TMKE

is given as
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where the overbar denotes the ensemblemean. ThenNRMDTE

can be computed
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InEq. (2), the temperature term is excluded fromEq. (1) to allow

the TMKE to dominantly vary with the convective situation in

question rather than with latitudinal variation in temperature

(Nielsen and Schumacher 2016). Based on the above, the evo-

lution of forecast error (as measured in a form of ensemble

perturbations) can be quantitatively assessed by calculating

NRMDTE over time, which can also be used to measure prac-

tical predictability. In general, the predictability within ensemble

forecasts for a convective case is destroyed when there is large

increase in NRMDTE (Judt et al. 2016). In summary, RMDTE

provides a measure of the magnitude of forecast errors and is

applicable to individual caseswhile NRMDTEdoes notmeasure

the absolute magnitude but assesses the mean behaviors of

forecast error growth for a group of cases and informs predict-

ability. In section 3, we employ NRMDTE to understand the

mean error growth dynamics over all 13 cases, while in sections 5

and 6, RMDTE is used for correlation analysis and case studies.

c. Analysis domain and case selection

The analyses of the CAM forecasts and observations are

carried out over the central U.S. region with four subregions as

illustrated in Fig. 1. The overall analysis region is between the

Rocky Mountains and Appalachian Mountains, which is

FIG. 1. The forecast model domain with terrain height in shading.

The red rectangle corresponds to the analysis domain that is divided

into four equal-sized quadrants or subregions used in our analyses.
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further divided into four quadrants with equal size to allow for

examination of precipitation diversity in the northwest (NW),

northeast (NE), southeast (SE), and southwest (SW) regions.

The 24-h forecasts from 13 days of May 2018 that have active

convection at the IC time are chosen from the CAPS ensemble

forecasts to analyze IC error growth in this study (see Fig. 2

for a list of dates). All forecasts start at 0000 UTC. With radar

data assimilated into the ICs containing active convection,

errors at all scales are expected to grow from the beginning.

3. The general characteristics of precipitation systems in
the forecasts

a. Mean synoptic overview

Figure 2 gives the temporal evolution of convective avail-

able potential energy (CAPE) computed from the control

forecast averaged over the entire analysis domain for each of

the 13 cases. The CAPE values show clear diurnal cycles with

steep increases after 12 h (0600 CST) due to daytime solar

heating and they reach maximum at around 20 h (1400 LST).

Specifically, cases during late May show more pronounced

diurnal variations and higher CAPE values than early May

cases. This is consistent with previous studies (Dai et al. 1999;

Surcel et al. 2016), in which early spring CAPE is affectedmore

by large scale circulations while late spring CAPE is more

controlled by diurnal cycle due to solar heating. In the hori-

zontal plane view (Fig. 3), the CAPE averaged over all cases is

mainly concentrated in the southern part of the analysis do-

main that is associated with a strong mean 925-hPa low-level

jet (LLJ) originated from the Gulf coast. Diurnal characteris-

tics consistent with the boundary layer LLJs predicted by the

inertial oscillation theory of Blackadar (1957) are found with

the LLJ; it strengthens during the nocturnal time (Figs. 3a–d)

and weakens during the day with the development of boundary

layer vertical mixing (Figs. 3e–h). The enhanced nocturnal LLJ

transports more moisture into the central Great Plains and also

produces low-level convergence at its northern terminus that

promotes organized convection (Carbone and Tuttle 2008;

Trier et al. 2017).

b. Classification of precipitation types

Figure 4 displays the spatial distributions of total frequency

(number of times across the 13days) of 1-hprecipitation exceeding

0.5mmh21 with different ending times. In general, there are four

primary modes of precipitation that are linked to different forcing

mechanisms over the analysis domain. The main precipitation in

theNWquadrant is foundnear thewestern boundary of the region

at 0300 and 0600 UTC (Figs. 4a,b), which is mostly from convec-

tive systems that originated in the afternoon over the Rocky

Range in central Colorado and moved eastward into the region

(Carbone et al. 2002a; Sun et al. 2016; Surcel et al. 2010). By 0900

and 1200 UTC (Figs. 4c,d), the precipitation is mainly found in

central and eastern Nebraska, along a zone that extends eastward

into the NE quadrant. This zone is associated with a quasi-

stationary front that forms between the generally southerly flows

from the Gulf and the higher latitude air mass (see Fig. 3). The

zone is also the northern terminus of the boundary layer LLJ

where low level convergence is strong and prone to trigger night

time convection when the LLJ jet is enhanced (Savijärvi 1991;
Trier et al. 2017). The precipitation in Nebraska between 0600

and 1200 UTC should be the combined result of eastward

propagation of afternoon convection from the Rockies and

those that develop at the northern terminus of the nocturnal

LLJ. The convection in the northern part of the NE quadrant is

mainly found at the quasi-stationary front, and it weakens by

1500UTC (Fig. 4e) andmostly disappears by 1800UTC or close

to noon local time. The latter should be related to the weakening

of the southerly flows associated with the boundary layer LLJ as

daytime boundary layermixing slows down the flows (Blackadar

1957; Xue et al. 2018). The quasi-stationary front is in a sense

analogous to the mei-yu front found over eastern Asia in late

spring to early summer (Chen et al. 2018).

In the southern quadrants, the direct effects of the diurnal

changes in solar heating are strong, and convection tends to be

strongest in the afternoon into early evening. In the SWquadrant

(Fig. 4e), precipitation is most prominent in theTexas panhandle

region in a north–south zone that is associated with a quasi-

stationary dryline that frequently triggers convection in the late

afternoon in the spring (Liu and Xue 2008; Schaefer 1986; Xue

and Martin 2006). The convective storms initiated along the

dryline often move eastward across the southern Great Plains

and organize into quasi-linear convective systems or squall lines

in the process. In the SE quadrant, we observemostly small-scale

and scattered popcorn-type convection in the daytime, especially

in the afternoon and early evening (Figs. 4a,g,h), some along the

Gulf Coast. These cells form due to solar heating and associated

land/see-breeze circulations (Berenguer et al. 2012; Surcel et al.

2010). Given that the precipitation in the four quadrants or sub-

regions appears to be dominated by convective systems of mostly

different origins and forcingmechanisms,many of our subsequent

discussions will be focused on the four subregions, and we will

investigate and contrast the precipitation diurnal cycles and as-

sociated characteristics of error growth for the respective regions.

c. Mean diurnal cycles of precipitation

Figure 5 shows the subdomain-averaged hourly precipita-

tion over 24 h for the 13 forecasts and their mean, and the

FIG. 2. The convective available potential energy (CAPE) av-

eraged over the entire analysis domain with rainfall higher than

0.5mmh21 as a function of forecast lead time for each case indi-

cated in the legend.
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corresponding observations. The observed precipitation rates

show different diurnal features for different subregions. As

discussed earlier, in the NW region that is mainly affected by

propagating convective systems coming from the Rockies and

somewhat by convection forced by the nocturnal LLJ, the peak

precipitation is found around 0000 UTC (1800 CST, Fig. 5a).

The rate decreases steadily into the evening and reaches min-

imumat around 1600UTC (1000CST). The precipitation starts

FIG. 3. Ensemble mean CAPE (shaded) and 925-hPa horizontal wind vectors, from (a) 0000 UTC to (h) 2100 UTC, every 3 h averaged

over all 13 cases.

FIG. 4. Spatial distribution of 3-h accumulated precipitation frequency maps with precipitation rate exceeding 0.5mmh21 at different

ending times: (a) 0300, (b) 0600, (c) 0900, (d) 1200, (e) 1500, (f) 1800, (g) 2100, and (h) 2400 UTC.
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to pick up significantly in early afternoon (;2000 UTC or 1400

CST) and increase to the second day peak at 0000 UTC. In the

NE region (Fig. 5b), the precipitation peaks at 0600 UTC or

around midnight, consistent with the fact that the nocturnal

LLJ forcing plays the largest role in that region in this season

(Dai et al. 1999). The minimum is around 1700 UTC. For the

SW region, precipitation mostly occurs in the local afternoon

after 1700 UTC (1200 EST) and before 0200 UTC, and the

maximum occurs at around 2100 UTC, due to the predominant

effect of solar heating (Fig. 5d). For the SW region, precipi-

tation peaks around 0000 UTC or 1800 CST, due to frequent

initiation of convection along the dryline in western Texas in

late afternoon, and subsequent eastward propagation. These

observed diurnal characteristics are reasonably well repro-

duced by the model (cf. black dashed and solid lines in Fig. 5)

although there are magnitude errors. For the individual cases,

several of them had rather weak precipitation throughout the

24 h. For those that have significant amount of precipitation,

the general diurnal trends mostly match the mean observation.

The cases with more precipitation are often associated with

favorable synoptic scale flow patterns and related forcing.

Overall, the northern regions tend to be more affected by

synoptic scale circulations (cyclones) inMay (especially for the

NE region), and at the low levels by convergence induced by

nighttime LLJ. For the southern regions, synoptic scale forcing

tends to be weaker, and boundary layer thermal forcing dom-

inates, especially in the SE region. In the SW region, dryline

dynamics play additional roles. The fact that the mean pre-

cipitation diurnal cycles are reproduced reasonably well in

the model suggest that the forecasts can be used to investi-

gate diurnal cycle-dependent forecast error growth. It is noted

that the time-averaged forecast precipitation rates in the

FIG. 5. Time evolution of region-averaged forecast and observed precipitation for the (a) NW, (b) NE, (c) SW,

and (d) SE subregions. The color solid lines are for the individual cases for each subregion (with the color legend

shown in Fig. 2), the black dashed line for the average of all cases, and the solid line is for observation.
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subdomains all show significant precipitation (NW: 0.23, NE:

0.25, SW: 0.15, SE: 0.21mmh21).

4. Characteristics of error growth in forecasts

a. Spatiotemporal characteristics of total error growth

Previous studies have revealed a strong relationship be-

tween error (energy) growth and precipitation (Flack et al.

2017; Johnson et al. 2013; Nielsen and Schumacher 2016; Wu

et al. 2020). Given the strong zonal propagation of convection

(Surcel et al. 2010 and Fig. 4), we first analyze the mean error

growth and associated precipitation rate in time–longitude

coordinates in terms of Hovmöller diagrams (for the northern

and southern half of the domain with averaging over the lat-

itudinal range of the half domains). Figure 6 shows the time–

longitude Hovmöller diagrams of the total NRMDTE and

corresponding precipitation rates averaged over all 13 cases,

plotted for the northern (Fig. 6a) and southern half of the

overall domain (Fig. 6b).

In the northern half domain (combination of NW and NE

subdomains), the total NRMDTE corresponds well with the

two progressive precipitation systems (Fig. 6a): the oro-

graphically forced precipitation systems coming out the

Rockies in the afternoon propagating through the NW region

(indicated by the long gray arrow labeled NW) and the noc-

turnally forced precipitation systems forming in the north-

central part along the quasi-stationary front that propagate

eastward and dissipate in the morning hours in the NE sub-

domain (the gray arrow labeled NE, and see also Figs. 4a–d).

West of 1008W, theNRMDTE grows quickly, reaching over 0.3

after ;3 h (Fig. 6a), the region of large NRMDTE spreads

downstream in a fan pattern, with the largest values more

or less tracking the maximum precipitation ‘‘ridge’’ in the

Hovmöller diagramwhile lagging in time in terms of the ‘‘ridge

line’’ by a couple of hours. Corresponding to the precipitation

initiated along the quasi-stationary front near and east of 968W
and sustaining through the night while propagating eastward

(along the arrow labeled NE), errors develop more or less

following the precipitation track in theHovmöller diagram and

expand in east–west extent. The two regions of NRMDTE .
0.31 (red shadings) merge together after 10 h, and occupy the

zone between 888 and 1048W through 24 h, with the expanding

region of high NRMDTE (gray color) being mostly associated

with western propagating band of precipitation. These results

clearly show that the NRMDTE growth is strongly tied to the

development and decay, and propagation of convective sys-

tems which exhibit clear diurnal cycles. For the eastern band,

NRMDTE decreases after 16 h when the precipitation inten-

sity decreases in the late morning hours. The western band has

larger NRMDTE values, indicating greater uncertainties and

lower predictability with these precipitation systems in the

NW domain.

For the southern part of the overall domain (Fig. 6b), there

are clearly two branches of larger NRMDTE values, corre-

sponding to the eastward propagating dryline-initiated pre-

cipitation systems in the SW region and the local thermally

forced precipitation systems in the SE region. The NRMDTE

associated with the thermally forced convection in SE clearly

develops much faster and the gray color fills much of the do-

main after 10 h, indicating low predictability with such often-

disorganized thermal convection that is mainly active in the

afternoon through midnight hours. The error remains larger in

the morning hours though, indicating the effects of widespread

afternoon convection that also cause upscale error growth

(Hohenegger et al. 2006). In comparison, errors associated

with the convection in the SW region grow much slower and

gain lower values; this may be partly because the dryline-

initiated convection tends to become organized when they

propagate through the southern Great Plains, where the

boundary layer tends to be capped by an inversion layer to

prevent widespread convection. The decay of convection from

late morning also limited further error growth (Fig. 6b).

The above results indicate that forecast error growth

within a CAM ensemble often closely follows the precipita-

tion systems and the errors tend to grow upscale from the

FIG. 6. Hovmöller diagrams (latitudinal averaged, time–longitude) for NRMDTE (shaded) and precipitation

(contours) for (a) the northern subdomains and (b) southern subdomains, averaged over all 13 cases.
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precipitation regions, and the behaviors of error growth are

highly dependent on the characteristics of the precipitation

systems, including their primary forcing mechanism, propaga-

tion and organization.

Figure 7a shows the temporal evolution of total NRMDTE

averaged over all 13 cases for the entire analysis domain and

each of the subdomains, respectively. Diurnal variations in the

NRMDTEover the entire domain (black dashed curve) similar

to that found in Nielsen and Schumacher (2016) are observed,

with growth mainly found in the first;12 h and last;5 h of the

24-h forecasts, corresponding to the evening through early

morning hours, and the afternoon hours. NRMDTE remains

level after sunrise through noon due to suppression of much of

the convection. The total NRMDTEs for different subregions

exhibit different magnitudes and trends. The NRMDTE for

the SE region is the largest from the beginning (indicating

larger uncertainties in its IC) and continues to grow throughout

the 24 h, and grows the fastest in the afternoon and early

evening, not surprisingly. The NRMDTE in the NW region is

the second largest, and goes through growth, decay and growth

cycles, with the decay between 1000 and 1400 CST being the

most evident. Given the faster error growth, the predictability

of convection in these two regions is lower (Judt et al. 2016;

Nielsen and Schumacher 2016). In comparison, convective

systems in the SW and NE regions have lower errors and

generally similar diurnal variations. These systems have higher

predictability due to stronger control of synoptic and meso-

scale environments that are associated with dryline and quasi-

stationary frontal circulations, respectively.

b. Spatiotemporal characteristics of error growth at

different scales

To further understand the error growth dynamics, the

NRMDTEs at and across different scales are assessed. The

FIG. 7. Time evolution of NRMDTE at different scales: (a) total, (b) meso g, (c) meso b, and (d) meso a, for the

entire (black) and four subregions (color lines).
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discrete cosine transform (DCT) (Denis et al. 2002; Surcel et al.

2014; Zhuang et al. 2020) is employed to decompose the dy-

namic variables into three scales, i.e., the meso-g, meso-b,

meso-a scales (the longest resolved wavelength for the analysis

domain is 3720 km or twice the east–west width of the domain),

with the dividing wavelengths being 20 and 200 km between

them. In this paper, we refer to these scales as convective

scale, mesoscale and, synoptic or large-scale, or as g, b, and

a scales for brevity. NRMDTEs are then calculated for these

three scales.

As shown in Figs. 7b–d, the scale-dependent error growth

for each subregion exhibits a ‘‘stepwise’’ feature, i.e., the

NRMDTEs increase with increasing spatial scales at lagging

times, reaching their peaks at successively later hours as the

scale increases, indicative of upscale transfer of errors (Selz

andCraig 2015; Zhang et al. 2007). At the first stage, the g-scale

NRMDTEs rapidly increase in the precipitation regions and

reach peak between 2 (SE) and 5 h (NW) (Figs. 7b and 8a,d).

The g-scale errors at the initial time are very low because

convection was introduced into the IC using the deterministic

cloud analysis of radar observations (without convective scale

perturbations) while the SREF-derived IC perturbations span

only mesoscales and up (Johnson et al. 2013).

The errors at the b-scale increase rapidly in the first ;3 h,

then continue to grow through ;8 h and spread beyond the

precipitation regions (Figs. 7c and 8b,e); this may be partly

attributed to the slower error growth at longer wavelengths

(Lorenz 1969) and partly to the upscale transfer of errors from

g scale (Selz and Craig 2015; Sun and Zhang 2016). After the

peak error is reached, the error decreases noticeably in most of

the subregions (Fig. 7c), and such decreases correspond closely

to the weakening of precipitation as shown in the Hovmöller
diagrams (Figs. 8b,e). The growth picks up again (Fig. 7c) when

precipitation redevelops after 18 h (Figs. 8b,e), indicating the

direct contribution of moist convection to mesoscale error

growth, as emphasized by Zhang et al. (2007).

At the a scale, the NRMDTE starts at relatively high levels,

which comes from the initial perturbations derived from SREF

3-h forecasts. The NRMDTE at initial time is the highest in the

SE subdomain mainly because the ensemblemean total energy

used to do normalization is lower in this weakly forced region

(see Fig. 14a later for an individual case for the region).

Compared to other regions, the diurnal variations of precipi-

tation in SE region are weaker and there is much less east–west

propagation (Fig. 8f), and its NRMDTE is able to grow

monotonically throughout the 24 h (green curve in Fig. 7d).

The a-scale NRMDTE in other three subregions grows

slowly in the first 3–4 h (Fig. 7d), then goes into a stage of fast

growth before levelling off at 10–12 h. The NRMDTE de-

creases somewhat afterward then starts to grow again at 20 h

(Fig. 7d) when precipitation redevelops again in the afternoon

(Fig. 8f). The apparent connection of a-scale NRMDTE to the

diurnal cycles of precipitation, and the delayed phase of error

growth compared to those at g and b scales clearly indicates

significant upscale error growth feeding off moist convection in

these regions.

FIG. 8. Hovmöller diagrams (latitudinal averaged, time–longitude) for the case-averaged NRMDTE (color) at different scales and

precipitation (contours), (a),(d) meso g; (b),(e) meso b; (c),(f) meso a for the (top) northern and (bottom) southern regions. The ordinate

indicates the forecast hour starting from 0000 UTC.
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Overall, similar to the precipitation rate (Fig. 5), errors in

the g scales (Fig. 7b) exhibit pronounced diurnal cycles given

their direct link and fast response to convective activities. The

errors at these scales usually decay when convection die out.

For errors at the b and a scales, the diurnal responses are

weaker and the peaks are delayed, due to their slower growth.

Given the clear importance of precipitation or moist convec-

tion, and based on the sequence of error growth in terms of the

timing of peak error, as well as the time evolution of the spatial

scales of errors in the Hovmöller diagrams, we think there is

clearly upscale error growth from the convective (g) scale

through the mesoscale (b scale) and synoptic (a) scale. At the

same time, because of the presence of significant large scale

errors in the IC, effects of large scale errors on the smaller

scales are also at work (Durran and Gingrich 2014; Weyn and

Durran 2019); in fact, the storms initialized from radar data are

the same within the ICs of all ensemble members (cf. curves in

Fig. 7b). Therefore, the error growth model in our situation

appears to be: IC errors at the mesoscale and synoptic scale

grow in the ensemble and create errors at the convective scale

that grow the fastest. The fast-growing convective scale errors

then propagate upscale. The precipitation activities strongly

modulate error growth at all scales, resulting in significant di-

urnal cycles of error dynamics, which are also affected by the

precipitation regimes (Durran and Gingrich 2014; Weyn and

Durran 2019). The upscale error propagation is the weakest in

weakly forced situations. These are discussed further in the

next section.

5. Effects of convection intensity and large-scale forcing
on forecast error

Since error growth within CAM forecasts depends on the

type of convective system or precipitation type (Keil et al.

2014; Klasa et al. 2019; Nielsen and Schumacher 2016), in this

section, we evaluate the impact of precipitation type on error

growth with respect to the spatial scale and forecast range via a

correlation analysis.

a. Relation between moist convection intensity and

forecast error

The intensity of moist convection has been reported to

dominate error growth at small scales during first few forecast

hours in precipitation regions (Figs. 7b and 8a,d) (Hohenegger

et al. 2006; Selz and Craig 2015; Zhang et al. 2007; Zhang 2019).

However, the impact of moist convection intensity on error

growth at longer forecast ranges, especially with different

precipitation diurnal cycles, is less clear. In this subsection, the

area-average precipitation rate exceeding 0.5mmh21 is used

as an indicator of the intensity of moist convection, RMDTE is

used to represent error growth, and their relationship is eval-

uated with a linear regression method.

Figure 9 shows the scatterplots between RMDTE and moist

convection intensity (both variables are normalized prior to

calculating the regression coefficient (Reynolds et al. 2002)) at

different scales and over different subregions. Different colors

are used to represent different forecast periods based on con-

sideration of the stages of error growth and the diurnal vari-

ability of precipitation and errors at different scales: 1) the black

dots represent period 1 (0–9 h, 1800–0300 LST), encompassing

the fast increase of g-scale errors and their associated satu-

ration; 2) the cold color dots indicate period 2 (10–15 h, 0400–

0900 LST), containing the increase and saturation of b-scale

and a-scale errors; and 3) the warm color dots indicate period

3 (16–24 h, 1000–1800 LST) in which secondary error growth

occurs in the second day. Different cases are characterized by

different markers. Lines in different colors represent the fit-

ting lines for different periods using linear regression.

Overall, the correlation between forecast error magnitude

and moist convection intensity increases with decreasing

FIG. 9. Scatterplots of the normalized RMDTE at different scales (a) meso g, (b) meso b, and (c) meso a vs normalized precipitation

(.0.5 mmh21) at different lead times (see legend for corresponding colors).
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scales, strong positive correlations between them can be found

at the g scale in all three periods (Figs. 9a1–a4). In some re-

gions (e.g., SW), the positive relationship is even stronger in

period 3 (Figs. 9a4) when afternoon thermal convection is ac-

tive (cf. Fig. 7b and 8d). In comparison, weak positive corre-

lations or even negative correlations are observed at the b scale

(Figs. 9b1–b4) and a scale at shorter forecast ranges (Figs. 9c1–

c4). The correlation coefficients are generally larger during

periods 2 and 3 than that of period 1, even for the g scale. This

result implies that the impact of moist convection on error

growth increases with forecast time, apparently due to the

accumulative effects of moist convection on forecast error.

Specifically, for the NW, NE, and SW regions where meso-

scale to large-scale forcing linked to the nocturnally strength-

ened LLJ during period 1 plays significant roles, the RMDTEs

can be negatively correlated to the strength of moist convec-

tion at the larger scales (Figs. 9b1–b3, c1–c3), and the negative

trend is stronger for the a scale. Weaker negative correlations

are also found for the SE region (Figs. 9b4, c4). Such negative

correlation appears to be due to the delayed response of larger

scale errors to moist convection so that the error growth is out

of phase with the convection intensity time evolution. If we

consider the g-scale error shown in Fig. 7b as a proxy of moist

convection intensity (because of the fast response to g-scale

error to moist convection), we can see that the b-scale (Fig. 7c)

and a-scale (Fig. 7d) errors are increasing throughout period 1

while the g-scale errors are decreasing after 2–4 h (Fig. 7b).

Such out-of-phase evolution is also evident in Fig. 8 when

comparing the precipitation intensity and error growth in the

first 9 h for the two larger scales.

In summary, moist convection impacts forecast error growth

during the whole 24-h forecast range. The correlation between

error growth and moist convection decreases with increasing

spatial scale because of the increasing error response time to

convection. The correlation increases with forecast hours due,

we believe, to the accumulative effects of convection. For the

initial 8 h of forecast, the correlation is actually negative for

forecast errors at the b and a scales; this is believed to be re-

lated to the phase difference between the errors at these scales

and smaller scale convection.

b. Relationship between large-scale forcing and

forecast error

The impact of large-scale forcing on convection is often

objectively assessed by the rate at which instability is removed

by convection (Keil et al. 2014). Following Done et al. (2012,

2006) and Surcel et al. (2016), the convective adjustment time

scale tc is introduced

t
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where Cp is the specific heat capacity of air at constant pres-

sure, r0 and T0 are the reference density and temperature,Ly is

the latent heat of vaporization, g is the acceleration of gravity,

and prate is the precipitation rate. Prior to calculation, both

CAPE and prate are spatially smoothed using a Gaussian

method with a radius of 20 km and masked with a threshold of

0.5mmh21 to avoid dry events. Lower tc indicates a stronger

degree of large-scale forcing and vice versa. In general, a

threshold at the lower bounds of the 3–12-h range for tc could

be used to distinguish strongly forced events and weakly forced

events (Zimmer et al. 2011), and in this study a threshold of 3 h

is chosen (Keil et al. 2014). In reality, as discussed in Surcel

et al. (2017), there can be events in which large areas of in-

stability are consumed by convection that was initialized at the

small scale and the errors grow upscale through e.g., organi-

zation of small storms into larger mesoscale systems. The

readers should be aware of such caveats.

As shown in Fig. 10, tc has a similar diurnal cycle as CAPE

with lower nighttime value (stronger large-scale forcing) and

higher daytime value (weaker large-scale forcing). Despite the

typical use of tc to distinguish precipitation situations, Keil

et al. (2014) also suggested that tc could be an indicator of

forecast uncertainty. However, the relationship between tc and

forecast error across and at different spatial scales is still

not clear.

Figure 11 shows the scatterplots between RMDTE and tc at

different scales and different subregions during different

forecast periods. In general, the correlation coefficient is

clearly dependent on the forecast period. For all regions, with

the initial weakening of large-scale forcing (Fig. 10) with time

(from nighttime to daytime), the correlation decreases corre-

spondingly. Specifically, during period 1 which is from early

evening through early morning, CAPE is relatively low, so

that convection is more of forced type or large-scale forcing is

relatively strong, we see clear negative correlation between

error and tc, especially at the two larger scales (Figs. 11b1–b4,

c1–c4). The correlation at the g scale is much weaker though

still negative (Figs. 11a1–4). These results indicate that the

presence of larger-scale forcing is favorable for the organiza-

tion of convective cells into larger MCSs and for growth of

errors at the two larger scales. They also suggest that the large-

scale flows have more control on error growth at larger scales,

consistent with expectation.

For the longer forecast ranges in periods 2 and 3, the rela-

tionship between forecast error and forcing is less clear. For

the two smaller scales, the correlation for period 2 is mostly

FIG. 10. The convective adjustment time scale tc averaged over

the entire analysis domain with rainfall higher than 0.5mmh21 as a

function of forecast lead time for each case indicated in the legend.
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negative or close to zero (for SW region), but is positive for the

a scale for all except NW region. This is the morning period

when precipitation is weakest. In period 3 when convection

becomes active again, the correlation becomes negative again

for the two larger scales in all four regions (Figs. 11b1–4, c1–4).

Therefore, the relationship between large-scale forcing and

forecast error growth has diurnal variations, with connection to

the precipitation diurnal cycle.

6. Case studies

In this section, four representative convective cases (A–D)

primarily from the four subregions with different dominant

types are selected to present the forecast error growth in a

more intuitivemanner. To simplify the description, the division

of forecast range in section 5 is retained in this section.

a. Case A: 18 May 2018

In the afternoon of 17 May 2018, convective storms formed

over the RockyMountains in central Colorado and propagated

eastward into western Nebraska and South Dakota by early

evening (0200 UTC 18 May, Fig. 12a) and moved into central

Nebraska by early morning (Fig. 12c). The associated area-

averaged precipitation in the NW region (black stars in Fig. 13)

presents persistent decrease after 4 h (2200 CST) until 17 h

(1100 CST) and a subsequent daytime increase due to solar

heating (Fig. 12d), conforming to the mean diurnal cycle in the

NW region presented in Fig. 5. These features indicate that

CaseA is under the influence of multiscale system interactions.

The corresponding total RMDTE exhibits a clear diurnal

cycle with a maximum occurring at ;7 h (0100 CST) and a

minimum at 21 h (1500 CST). At the g scale, with the influ-

ence of strong moist convection, the RMDTE depicts pro-

nounced up-amplitude growth during the first 1 h and a slower

but still significant growth until 3 h. The rapid growth in the

first hour is partly due to the essential absence of g-scale

perturbations in the ensemble ICs as mentioned earlier; the

ensemble dispersion increases rapidly in response to initial

mesoscale and synoptic-scale perturbations derived from

SREF. The RMDTE remains flat between 3 and 5 h then

decreases with weakening moist convection continually until

18 h (1200 CST) when the error starts to increase rapidly

again with the development of thermally forced afternoon

convection within a weak forcing environment. The b- and

a-scale RMDTEs depict similar diurnal cycles but with phase

lag, with the peaks being reached about 4 and 9 h later, re-

spectively, due to delayed response of larger-scale errors to

convection. The results also indicate significant upscale

transfer of convective scale error.

b. Case B: 4 May 2018

CaseB is a synoptically forced convective event with a surface

low pressure center moving toward northeastern United States,

producing intense precipitation in the NE subregion (black

stars in Figs. 12e–h). Strong southerly low-level flows in the

form of synoptic LLJ coming from the Gulf of Mexico exist

around the western peripheral of the westward extending

subtropical high, bringing rich moisture and energy into the

Midwest region to support and maintain convection. The

southerly low-level flows are further enhanced at night due to

boundary layer inertial oscillation (Blackadar 1957) (Fig. 12f).

It is clear that Case B is characterized by strong large-scale

forcing with a pronounced lower tc (Fig. 13). Different from

CaseA in theNW region, the total RMDTE in Case B does not

have the typical diurnal feature of decreased values in the

morning, but shows instead double peaks at 8 h (0300 EST) and

18 h (1300 EST) (Fig. 13a); this is mostly due to the large

contribution of a-scale error during the day time, which peaks

at around 18 h (1300 EST). Specifically, being more of a forced

type, the g-scale RMDTE (Fig. 14b) of Case B has a slower

growth rate than that of Case A and reaches peak at 5 h.

Interestingly, the b-scale RMDTE reaches peak at a similar

FIG. 11. As in Fig. 9, but for normalized RMDTE vs normalized convective adjustment time scale tc.
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time (Fig. 13c), suggesting that organized convection domi-

nates. During period 3, there is no secondary peak in the g- or

b-scale RMDTE; this is so even though there is a significant

increase in precipitation in this period. The large increase in

RMDTE at thea scale in period 3 is linked to the strengthening

of the low pressure system and the corresponding increase in

organized frontal precipitation (Fig. 12h). As a short summary,

both precipitation and error growth are dominated by evident

large scale forcing in Case B, and the forecast error fits more

closely to the three-stage error growth model (Zhang et al.

2007), indicative of much more prominent upscale growth of

forecast error.

c. Case C: 15 May 2018

In Case C the ensemble mean fields show an eastward

propagating shallow trough at 500 hPa (not shown) through

Texas as the convective event unfolds in the SW region

(Figs. 14a–d). There are moderately strong southerly to

southeasterly low-level flows from the Gulf into south-central

and western Texas, which together with a jet aloft form strong

deep-layer shear. Discrete supercells form along a north–south

dryline located in eastern Texas panhandle into western

Oklahoma (Fig. 14a) and move eastward (Figs. 14b,c) under

the influence of large scale upper-level flows. The precipitation

diurnal cycle is broadly similar to that of Case A, in that daily

precipitation maximum occurs around 0000 UTC (1800 CST),

and the precipitation minimum occurs at around 1700 UTC

(1100 CST). The main difference is that Case C precipitation

has a secondary maximum in the early morning (0900 UTC),

and the precipitation throughout the morning is larger than

Case A. Such early morning maximum should be related to

enhancement of the nocturnal LLJ due to boundary layer in-

ertial oscillations, which also cause clockwise rotation of

boundary layer winds (Figs. 14a,b) (Blackadar 1957; Xue et al.

2018). By the afternoon of the second day, the low-level flow is

restored to the southeasterly toward the panhandle areas

(Fig. 14d), producing new convection along the dryline (near

the western edge of subregion SW, Fig. 14d).

The total RMDTE in Case C (red curve in Fig. 13a) has

similar, strong diurnal evolution as in CaseA, although its peak

is reached at around 9 h, 2–3 h later than in Case A (Fig. 13a).

This delay is mainly due to the delay in a-scale RMDTE

(Fig. 13d) while the peaks of g- and b-scale RMDTE are

reached at essentially the same times as in Case A (Figs. 13b,c).

This is consistent with the fact that the secondary precipitation

peak at 0900 UTC is mainly due to forced convection at night

(by nocturnal LLJ-induced convergence), which have large

scales and act to mainly cause growth of larger-scale error that

reaches its peak at;1100 UTC. After reaching their minimum

at ;1800 and ;2000 UTC, respectively, the smaller-scale

RMDTEs increase rapidly again as new convection develops

in the afternoon (Figs. 13b,c) but the b-scale RMDTE does not

start to grow until 2200 UTC, and at a slower rate. In Case C,

large-scale forcing is weak in the afternoon and early evening

hours (marked by red circles in Fig. 13), so that the precipita-

tion is of convective nature. The phase relations between

precipitation intensity and RMDTEs at different scales again

show significant roles of upscale error propagation.

d. Case D: 16 May 2018

In CaseD, the precipitation is mainly in the SE region, which

is located in a zone of weak convergent flows between north-

erly flows from the north, and southwesterly flows on the north

side of a high pressure system over the Gulf (Figs. 14e–h).

Precipitation is from scattered convective cells that are heavier

in the afternoon (16–24 h) and evening hours (0–6 h) when

CAPE is higher (Figs. 14e,h); the precipitation diurnal cycle is

weaker than Cases A–C mainly because the morning precipi-

tationminimum is at a higher level. Clearly, the precipitation in

the SE region in this case is mainly associated with local

FIG. 12. Ensemble mean most unstable CAPE (MUCAPE; shaded), 925-hPa horizontal wind vectors, and precipitation rate (dotted

shading) for (top) Case A and (bottom) Case B at different valid times: (a),(e) 0200; (b),(f) 0600; (c),(e) 1200; and (d),(h) 2000 UTC.
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thermal instability under generally favorable thermodynamic

conditions with weak large-scale forcing (high tc; Fig. 13).

Like the average NRMDTEs for all cases in the SE region

(Figs. 7a,d), the total RMDTE and that for the a scale of

Case D show almost monotonic increase throughout the

24 h (Figs. 13a,d), mainly due to the monotonic increase of

the a scale RMDTE. The RMDTEs for the g and b scales

show similar diurnal variations as those for Cases C and B,

except that the maximum and minimum are reached faster

(Figs. 13b,c), suggesting less organization of scattered

convective cells into mesoscale convective systems that

can sustain smaller scale error growth for longer; this is

consistent with the weaker large-scale forcing in this region. This

behavior leads to earlier saturation of smaller scale errors and

smaller amplitudes reached. The more persistent precipitation

throughout the 24 h and the weaker large-scale forcing appear to

work together to produce relatively slow, but steady and

monotonic growth in large-scale error in Case D (Fig. 13d).

Among the four cases, Cases B and D can be considered

two extremes; Case B has the strongest large-scale forcing

(having the least number of circles in Fig. 13), and the error

growth in second half of the 24 h is mainly dominated by

large-scale flow dynamics, while Case D is dominated by

disorganized thermal convection with the weakest large

scale forcing (most number of green circles in Fig. 13). In

Case B, the total RMDTE continues to increase through

18 h of forecast, in the first half mainly through rapid growth

of small-scale errors and upscale transfer, and in the second

half as a result of both upscale transfer and large-scale error

growth in association with the large-scale dynamic system.

For Case D, because of the general lack of organization of

scattered convective cells into larger mesoscale convective

systems, the upscale transfer of g- and b-scale errors to

a scale is less, not enough to create a significant peak in the

early morning as in other cases; the a-scale error increases

mainly as a result of steady and generic growth of a-scale

FIG. 13. Time evolution of RMDTEs (solid curves) for four selected cases averaged in the corresponding regions

at different scales: (a) total, (b) meso g, (c) meso b, and (d) meso a; the stars indicate area-averaged precipitation

exceeding 0.5mmh21, and the circles are indicators of weakly forcing (defined in section 5b) at certain times. The

cases are color coded.

972 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by UNIVERSITY OF OKLAHOMA LIBRARY | Unauthenticated | Downloaded 12/08/21 09:03 PM UTC



error itself, resulting in a monotonic curve that is less de-

pendent on the precipitation diurnal cycle as in other cases.

7. Summary and conclusions

This study investigates the error growth dynamics of con-

vective events over the central U.S. regions using 3-km grid

spacing CAM ensemble forecasts for 13 active convection days

of May 2018. The ensemble uses the same forecast model

configuration among its members, and the ensemble dispersion

arises purely from the IC (at 0000 UTC or 1800 CST and 1900

EST) and LBC perturbations derived from a mesoscale en-

semble forecasting system. Given that the model domain

covers the full CONUS, and our analysis domain is east of the

Rocky Mountains and only forecasts in the first 24 h are eval-

uated; since it takes some time for the upstream bound-

ary condition to influence forecasts in the analysis domain,

the IC perturbations play the primary role in ensemble

dispersion (e.g., Johnson et al. 2011). In the ensemble

ICs, convective-scale or g-scale information is introduced

through radar data assimilation without any perturbation.

The forecast error is quantitatively characterized in terms

of the (normalized) root mean difference total energy (N)

RMDTE, which is used as a proxy of forecast error fol-

lowing earlier studies (e.g., Klasa et al. 2019; Nielsen and

Schumacher 2016).

The analysis domain between theRockies and theAppalachian

Mountains is equally divided into the NW, NE, SE and SW

subregions, and during May each subregion has its own dom-

inant precipitation type with respect to the initiation and

forcing mechanisms of convection, and hence different pre-

cipitation diurnal cycles. The discussions on the average be-

haviors over the 13 cases in each region are supplemented by

four cases representative of precipitation in each region.

It is shown that when large-scale flow (synoptic scale sys-

tem) is important (e.g., in the NE region), the region-average

precipitation is strongly modulated by the large-scale forcing,

while in the SE region, local thermal instability dominates

and precipitation arises mostly from less organized convection.

Within the 24h, the total forecast error growth approximately

follows the precipitation systems within Hovmöller diagrams,

revealing a strong relationship between forecast error growth

and precipitation. Specifically, the temporal evolutions of total

NRMTE for each subregion are clearly linked to the precipita-

tion diurnal cycles and convective system propagation.

Analyses on scale-dependent error growth show evident

upscale error growth (Hohenegger and Schär 2007a; Selz and
Craig 2015; Zhang et al. 2007) in all four regions/cases while

up-amplitude growth within own scale plays different roles in

different regions/cases. The meso-g-scale error growth is most

directly linked to precipitation diurnal cycles while meso-

a-scale error growth has strong link to large scale forcing. With

the specific setup of the ensemble, g-scale errors grow very

rapidly in the first few hours as a result of IC perturbations at

b and a scales and the presence of moist convection in the IC,

and the first peak of g-scale NRMDTE is reached in 2 (in the

SE region) to 5 (in the NE region) h. The b-scale NRMDTE

grows slower and reaches the first peak in 6–9 h. The

NRMDTE at both scales decreases significantly after the first

peak through early afternoon due to decay/suppression of

precipitation but increases rapidly again in the afternoon

after the onset of new afternoon convection. The a-scale

NRMDTE generally follows a similar trend, but the first peak

is reached much later in 11–18 h, clearly an indication of

successively upscale transfer of errors from smaller scales. In

the specific example of NE precipitation case, the a-scale

NRMDTE continues to amplify until 18 h to a much higher

level than in other cases due to the presence of an evolving

low pressure system and the associated differences in strong

synoptic-scale forcing. In a specific case in the SE region when

large systems are much less dynamic, the precipitation is least

organized and has weaker diurnal variations. As such, the g- and

FIG. 14. Ensemble mean most unstable CAPE (MUCAPE, shaded), 925-hPa horizontal wind vectors, and precipitation rate (dotted

shading) for (top) Case C and (bottom) Case D at different valid times: (a),(e) 0200; (b),(f) 0600; (c),(e) 1200; and (d),(h) 2000 UTC.
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b-scale NRMDTE peaks are reached sooner, and the a-scale

NRMDTE continues monotonic increase throughout the 24 h.

These results suggest that for regions where large-scale forcing

is weak and when convection is mostly disorganized, upscale

transfer of forecast error tends to be more limited and up-

amplitude growth of the large-scale error can be as important.

For the two cases producing precipitationmainly in the SWand

NW regions, the convective cells tend to undergo organization

into MCSs while moving eastward and experiencing nighttime

boundary layer convergence forcing, the NRMDTEs of all

three scales experience growth, decay and growth cycles within

the 24-h forecasts, with successive delay in the phase of error

evolution, indicating clear upscale error growth feeding off

diurnally varying convection.

The relationships between RMDTE and intensity of moist

convection or large-scale forcing are investigated based on

correlation analyses for different scales and regions for dif-

ferent forecast periods. In particular, the correlation between

forecast error magnitude and moist convection intensity in-

creases with forecast hours with the forecast range due to ac-

cumulative effects of convection but decreases with increasing

spatial scale. At the convective scales, the correlation is posi-

tive throughout the forecast period while for the b and a scales

the correlation is often negative during the initial period of

forecast due to the delayed response of larger-scale errors to

small-scale convection and the resulting phase differences.

The effect of large-scale forcing on forecast error is also

examined in terms of the correlation between RMDTE and

convective adjustment time scale tc; the forcing is considered

stronger for smaller tc. The correlation is strong and negative

(positive correlation with forcing) during first 9 h at the b and

a scales and but much weaker at the g scale. This implies that

at a short forecast range, large-scale forcing has direct positive

impact on larger-scale forecast errors, while convective-scale

errors are controlled much less by forcing but more by ther-

modynamic instability. During the forecast periods between 10

and 15 h, and beyond 16 h, the correlation between forecast

error and forcing strength is much weaker, and fluctuates

around zero. This may be partly due to the specific definition of

the forcing degree used because convective adjustment time is

usually no more than several hours. For the specific case in the

NE region (Case B), strong synoptic scale forcing in the second

day afternoon does cause large increase in large scale error.

Overall, the error growth dynamics on CAM forecasts in the

presence of significant moist convection are strongly depen-

dent on the intensity, type and organization of precipitation,

the forecast period with respect to the time of day and forecast

range, and the spatial scale of the error. Small-scale forecast

errors are directly impacted by convective activities and have

short response time to convection while increasingly larger

scale errors have longer response times and delayed phase.

Within the 24-h forecasts, forecast errors generally experience

growth, decay, and growth cycles following the precipitation

diurnal cycle. Upscale transfer of forecast error is stronger

when convective cells can become more organized with time

which usually occur under stronger large scale forcing.

The results of this study shed light on the predictability of

spring time convective weather in different regions of the

United States andmay be applicable to other parts of the world

with similar flow and precipitation regimes. The understanding

of error growth dynamics can help guide the optimal design of

CAM ensemble forecasting systems. In future studies, the in-

clusion of meso-g-scale perturbations in the IC should also be

considered and their impacts examined.
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