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Abstract During 19–21 July 2021, an extreme rainfall event occurred in Henan Province, China, during which a record-
breaking maximum hourly rainfall of 201.9 mmwas recorded in Zhengzhou at 09 UTC July 20. In this study, the predictability of
this extreme rainfall event is investigated using two convection-permitting ensemble forecast systems (CEFSs): one initialized
from NCEP GEFS (named CEFS_GEFS) and the other initialized from time-lagged ERA5 data (named CEFS_ERA). Both are
able to reproduce the daily heavy rainfall along the TaihangMountains, but most members have significant position biases for the
extreme rainfall in Zhengzhou. For the hourly rainfall, a few members are able to capture the evolution and propagation of
extreme rainfall. However, all ensemble members underestimate the extreme hourly rainfall and have position errors of a few
tens to a few hundreds of kilometers. Such results suggest that the predictability of the extreme hourly rainfall at the accuracy of
city scale in Zhengzhou is low, especially by deterministic forecasting models, and the occurrence of the extreme requires many
favorable conditions to happen simultaneously. In terms of the Brier score, CEFS_GEFS performs better than CEFS_ERA. The
latter lacks spread, especially in regions with scarce rain, resulting in less dispersion in precipitation distributions and larger
probability forecast error. When a neighborhood is applied, the probability of precipitation (POP) is significantly increased over
Zhengzhou. While the traditional POP shows almost no skill for hourly rainfall ≥ 25 mm h−1, the neighborhood POP sig-
nificantly improves the forecast skill score, for both daily and hourly rainfall, suggesting higher predictability when spatial error
among the ensemble members is allowed.
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1. Introduction

During 19–21 July 2021, a once-in-a-millennium rainfall
event occurred in Henan Province, China. The daily rainfall
reached as much as 680 mm from 12 UTC 19 to 12 UTC 20
July 2021. As a comparison, the average annual rainfall

amount in Zhengzhou, the capital city of Henan Province, is
640.8 mm. The downpour was the heaviest on an hourly
basis over Chinese mainland since records began in 1951.
Zhengzhou received 201.9 mm h−1 at 09 UTC 20 July 2021
(Yin et al., 2021). The total number of people recorded as
dead or missing was 398, including 14 passengers trapped in
a flooded subway (Su et al., 2021), and the economic losses
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reached nearly twenty billion dollars. Ahead of this event,
the ZhengzhouMeteorological Bureau issued a red rainstorm
warning on the night of 19 July 2021, which is the highest
level. However, the actual amount of extreme hourly rainfall
was not expected by forecasters.
Operational global NWP models predicted the general rain

pattern well, but its rainfall center was located to the north-
west of the observed position and its intensity was greatly
underestimated (Shi et al., 2021). The maximum daily rain-
fall predicted by ECMWF and NCEP GFS was 317 and
161 mm, respectively. Convection-permitting resolution
(CPR) models greatly improve intensity forecasts. The op-
erational Precision Weather Analysis and Forecasting Sys-
tem running at Jiangsu Meteorological Bureau predicted
daily maximum rainfall of 518 mm. The maximum hourly
rainfall reached as much as 140 mm h−1 (Shi et al., 2021). In
Yin et al. (2021), after much tuning, the maximum hourly
rainfall simulated by the 1 km resolution WRF model
reached as much as 233 mm h−1, which was even greater than
the observed maximum. Moreover, the predicted rainfall
center was close to Zhengzhou, with a position error of only
a few tens of kilometers. Also, the time of the simulated
hourly rainfall peak was only one hour earlier than observed
—a much better performance than the operational global and
CPR forecasts. The frustration is that their model settings
cannot be fulfilled in real-time; NCEP-FNL data were used
for the initial and boundary conditions (ICBCs). Also, in
order to reduce the large-scale forecast error, Four-Dimen-
sion Data Assimilation was used to assimilate the analysis
field throughout the integration. In general, CPR modeling
strengthens confidence in successfully predicting extreme
rainfall of this type, albeit with large amounts and position of
uncertainty.
Convection-permitting/convection-resolving forecast sys-

tems (CEFS), which are based on CPR modeling, provide an
effective way to estimate the uncertainty for a given forecast
and deliver probabilistic guidance for the desired forecast
element. Forecasters can identify a ‘most likely’ forecast
from an ensemble forecast and quantify the uncertainty as-
sociated with that forecast (Evans et al., 2014). With the
rapid growth in computing power, the CEFS approach has
gained popularity and has been used for forecast guidance in
real-time and operational setting (Clark et al., 2012). Center
for Analysis and Prediction of Storms (CAPS) developed the
first real-time, large-domain, multi-physics CEFS as part of
the NOAA Hazardous Weather Testbed Spring Forecast
Experiment in 2007 (Xue et al., 2007; Kong et al., 2008).
Some examples for operational CEFSs are the 2.8 km
COSMO-DE-EPS at Deutscher Wetterdienst (Peralta et al.,
2012), the 2.2 km MOGR-EPS at the UK Met Office
(Golding et al., 2016), the 2.5 km AROME-EPS at Météo-
France (Nuissier et al., 2016), and the 4 km time-lagged
NCASE at NCEP (Du et al., 2014). The progress in opera-

tional CEFSs and their model perturbation methods were
well summarized in Wang and Shen (2019).
Many studies have already shown that a CEFS can provide

superior forecast guidance for predicting severe weather
events, as compared with deterministic forecasts, over the
continental U.S. (Clark et al., 2009; Schumacher et al., 2013;
Loken et al., 2017; Schwartz et al., 2017). Over China, the
horizontal resolution of real-time regional ensemble fore-
casts is ~10 km (Wang et al., 2021), and studies using CEFSs
are relatively fewer in number. Of those studies that have
been conducted, Zhu and Xue (2016) used CEFSs to study
the predictability of an extreme rainfall event that took place
on 21 July 2012 in Beijing. With a high probability of pre-
cipitation (POP) over the Beijing area, CEFSs have greatly
enhanced forecasters’ confidence in predicting the occur-
rence of very heavy rainfall in Beijing. Some good members
can reproduce the warm-sector heavy rainfall, which has
tended to be missed by most operational deterministic fore-
casts (Zhang et al., 2013). Wu et al. (2020) used a CEFS to
investigate the predictability of a warm-sector heavy rainfall
event over southern China, and demonstrated an intrinsic
predictability limit for this type of rainfall. Accurate pre-
diction of small-scale convection that leads to heavy rainfall
remains a great challenge (Fritsch and Carbone 2004). In this
study, the predictability of the so-called “21·7” Henan ex-
treme rainfall event is investigated using CEFSs. We pay
particular attention to whether the CEFS members can cap-
ture the location and timing of the precipitation system as-
sociated with the historical hourly rainfall of this event.
Insufficient ensemble dispersion might be one of the rea-

sons for the limited predictability of some extreme rainfall
events by CEFSs (Novak et al., 2008). Many methods have
been developed to address this under-dispersion in CEFSs,
including perturbing the ICBCs (Stensrud et al., 1999;
Gebhardt et al., 2011) and using different combinations of
multi-physics schemes (Gallus and Bresch, 2006; Clark et
al., 2010) or even multiple parameters (Yussouf and Stens-
rud, 2011). An important aspect is to understand how the
ensemble spread grows within CEFSs (Romine et al., 2014;
Schwartz et al., 2014; Loken et al., 2019). Previous studies
have investigated the ensemble spread in CEFSs using a
large domain (covering the main precipitation area and also a
large area without precipitation), which is helpful for un-
derstanding the uncertainty in the prediction of synoptic
precipitation systems. However, it may not help when it
comes to an understanding the variation in small-scale pre-
cipitation systems that lead to extreme rainfall. How the
spread grows within the region of high-impact weather, and
the roles of different ICBC perturbation methods, remain
unclear. In this study, we compare two commonly used initial
perturbation methods—namely, downscaled and time-lagged
ICBCs. Also, to understand the role of physics schemes in
the growth of ensemble spread, two small regions are se-
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lected: one that covers the main precipitation region of this
extreme rainfall event, and another that was less affected by
the precipitation. The spread in those two regions is in-
vestigated and compared.
Additionally, to improve the predictability of CEFSs, we

introduce a neighborhood POP method. This is because, for
this extreme rainfall event, most of the CEFS members show
large biases in the location and timing of maximum hourly
rainfall. The traditional POP product, which is based on a
point-to-point algorithm, shows a very low probability of
hourly heavy rainfall in Zhengzhou, resulting in almost no
forecast skill. For current CPR models, spatial and temporal
errors are inevitable. Therefore, a neighborhood method,
which has been used in the prediction of tornado occurrence
(Sobash et al., 2011), is applied to the precipitation field. The
practical predictability and skill of such a neighborhood
approach is documented and evaluated.

2. Case overview

Figure 1 shows the synoptic weather charts from 00 UTC 20
July to 12 UTC 21 July with 12 hour intervals. The location
of Henan Province is indicated by the blue rectangle labeled
“L” in Figure 1a, and its capital, Zhengzhou, is marked by
the black circle. The Taihang Mountains run along the
boundary of Henan and Shanxi provinces. Zhengzhou is
located about a hundred kilometers southeast of the Taihang
Mountains.
During the period of extreme rainfall, the center of the

western Pacific subtropical high was located around 35°N,
which is north of its climatological position (usually between
25°N and 30°N in July). Meanwhile, typhoon In-Fa was
located over the East China Sea, and typhoon Cempaka was
making landfall in Guangdong Province in southern China. It
can be seen that two channels of water vapor transportation
into Zhengzhou were established (Figure 1b): one associated
with the southeasterly flows and strengthened by typhoon In-
fa as it moved landward, which brought water vapor from the
East China Sea; and the other associated with the southerly
flows that enhanced as typhoon Cempaka made landfall in
Guangdong Province, which transported water vapor
through southern China from the South China Sea. A similar
water transportation pattern was found in association with
the Beijing “7·21” extreme rainfall event of the year 2012
(Zhu and Xue, 2016). The synoptic weather pattern and
Taihang Mountains created favorable conditions for the
formation of extreme rainfall in Zhengzhou. One can see that
water vapor was flowing to Zhengzhou during 20 July, re-
sulting in this record-breaking extreme rainfall event. The
next day, as typhoon In-Fa moved slowly northwest, the
water vapor concentrated at the foot of the Taihang Moun-
tains (Figure 1c, 1d), and so did the rainfall center.

3. Experimental design and verification meth-
ods

3.1 CEFS configurations

The CEFSs were designed by employing WRF version 3.9.1
(Skamarock et al., 2005). The forecast domain had
1150×800×50 grid points with 4 km grid spacing, covering
typhoon In-Fa in the East China Sea and Cempaka in the
South China Sea. The center of the simulation domain was
set to Zhengzhou.
Two CEFS experiments were conducted. The first was

downscaled from the coarser-resolution NCEP Global En-
semble Forecast System (GEFS, Wei et al., 2008; Zhu et al.,
2018), which has 30 members and a gridded horizontal re-
solution of 0.5° and 31 vertical levels. For more detailed
information and the settings of GEFS, readers are referred to
https://www.emc.ncep.noaa.gov/emc/pages/numerical_for-
ecast_systems/gefs.php. We refer to this experiment as
CEFS_GEFS. The use of ICBC uncertainty alone may not be
able to produce sufficient spread for CEFSs (Romine et al.,
2014; Schwartz et al., 2014). Given this, representations of
uncertainty in model physical processes were considered
using multi-physics schemes. Table 1 lists the physics con-
figurations of CEFS_GEFS, which followed those of CAPS
CEFS (Kong et al., 2007; Xue et al., 2007) and the config-
urations used for the Beijing “7·21” extreme rainfall event
(Zhu and Xue, 2016), but with some differences. Here, we
tried to make the physics configurations as diverse as pos-
sible. For this experiment, all the ensemble members started
from 1200 UTC 19 July 2021 and were integrated for 48
hours.
The other set of CEFS experiments was performed using

ERA5 data as the ICBCs. The primary purpose was to see
whether the forecast would be improved by using more ac-
curate ICBCs. ERA5 is the successor to ERA-Interim
(Hersbach et al., 2020). It has been used in many studies as
the observational reference to evaluate the atmospheric cir-
culation simulated by CPR models (Li et al., 2020; Cai et al.,
2021). The horizontal grid resolution of upper-air variables is
0.25°, while it is 0.125° for the surface variables. There are
37 vertical levels. ERA5 is produced at hourly intervals and
is available at https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5. The expectation is that the CEF-
S_ERA experiment receives better ICBC from ERA5,
whereas the CEFS_GEFS experiment uses only the GEFS
forecast but not the analysis for its ICBC. However, unified
ICBCs may cause under-dispersion in CEFSs. Therefore, we
used a time-lagged method together with multi-physics
configurations to increase the ensemble spread. An extended
goal of this experiment was to see whether the time-lagged
method could help increase the ensemble dispersion. We
refer to this experiment as CEFS_ERA, and the details of the
settings are presented in Table 2. CEFS_ERA has 20 en-
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semble members. We have also tested 30 ensemble members.
In terms of the Brier score, the current setting with 20
members is slightly better than that with 30 members. The
experiment of CEFS_ERA could be divided into three
groups. For the first group (members 1 to 10), the forecasts
started at 1200 UTC 19 July as CEFS_GEFS. To increase the
ensemble spread, we used as many different physics schemes
as possible. Then, the latter two groups used time-lagged
initials. The forecasts of the second group (members 11 to
15) started 3 hours earlier (that is, at 0900 UTC 19 July),
while the forecasts of the third group (members 16 to 20)
started 3 hours later (that is, at 1500 UTC 19 July). All the
forecasts ended at 1200 UTC 21 July 2021. The physics
configurations of the two groups were set to the same as for
members 1 to 5 of the first group. Similar to the study of Zhu
and Xue (2016), we do not claim that the current config-
urations of the above experiments are optimal—an important
purpose is to evaluate the performance of the CEFS as
configured.

3.2 Temporal- and spatial-neighborhood POP

For the observed extreme rainfall amount, as presented later,
the overall predictability is low, especially in Zhengzhou. In
this study, a neighborhood POPmethod, which has been used
previously for tornado probability forecasting, is suggested
and compared with the traditional POP approach. The new
algorithm is described as follows. For a given threshold P0,
the traditional POP of a grid point (i, j) is computed as

( )p x P N= where , 1, 0 / . (1)i j
l

l N

l i j,
=1

=

, , 0

Here, the function “where” represents if the condition is true,
the value is set to 1, and otherwise it is set to 0; l represents
the lth member; and N is the total number of ensemble
members.
For the spatial-neighborhood method, the POP is redefined

within a neighborhood square box with radius Rg in terms of
the number of grid points. In practical, Rg could be inter-

Figure 1 Synoptic weather chart of ERA5 reanalysis for the 500 hPa geopotential height (brown contours), 850 hPa winds (barbs) and horizontal water
vapor flux (colored shading) at (a) 0000 UTC 20 July, (b) 1200 UTC 20 July, (c) 0000 UTC 21 July, and (d) 1200 UTC 21 July 2012. The black circle
indicates the location of Zhengzhou; typhoon In-Fa is located over the East China Sea; and typhoon Cempaka is making landfall in South China. Here, “L” in
(a) is the verification domain over land which covers the main precipitation in Henan. “O” is the verification domain over ocean with the same area as “L”,
but has scarce rainfall.
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preted as the maximum tolerance for the position error. An
extra fraction threshold is needed for determining a “Yes” or
“No” event (nl,i,j) for a given point in the defined neighbor-
hood square box. Considering the small size for heavy rain,
we used a fixed number of grid points Fg as the fraction
threshold:

( )n x P= where , 1, 0 , (2)l i j
k R

k R

k R

k R

l i k j k, ,
=

=

=

=

, , 0
g

g

g

g

( )p n F N= where , 1, 0 / . (3)i j
l

l N

l i j g,
=1

=

, ,

In this study, Rg was set to 12 grid points, corresponding to a
48 km position bias. Fg is related to the area of precipitation.
Generally speaking, the area of accumulated rainfall should

be larger than at of hourly rainfall. Here, Fgwas set to 20 grid
points for the hourly rainfall and 50 grid points for the
24 hour accumulated rainfall. For example, a forecasted
“Yes” event within a radius of 12 grid points in the square
box requires at least 20 grid points with a hourly precipita-
tion amount larger than P0. As soon as the “Yes” event is
calculated for the lth member, the POP is calculated as per
eq. (3). There is room for further refinement on the choice of
the parameters, but it is left for future work.
For the temporal- and spatial-neighborhood method,

forecast biases are allowed not only in space but also in time–
space. The POP is calculated as follows:

( )n x P= where , 1, 0 , (4)t l i j
k R

k R

k R

k R

t l i k j k, , ,
=

=

=

=

, , , 0
g

g

g

g

Table 1 Parameter settings of CEFS_GEFSa)

Case name ICs and BCs Microphysics PBL Surface layer Radiation scheme (long) Radiation scheme (short)

mem01 GEFS01 8, Thompson 1, YSU 1, Revised MM5 1, rrtm 1, Dudhia

mem02 GEFS02 8, Thompson 2, MYJ 2, Janjic Eta 4, rrtmg 4, rrtmg

mem03 GEFS03 10, Morrison 7, ACM2 1, MM5 3, CAM 3, CAM

mem04 GEFS04 8, Thompson 2, MYJ 2, Janjic Eta 5, Goddard 5, Goddard

mem05 GEFS05 10, Morrison 1, YSU 1, Revised MM5 1, rrtm 1, Dudhia

mem06 GEFS06 10, Morrison 1, YSU 1, Revised MM5 5, Goddard 5, Goddard

mem07 GEFS07 10, Morrison 7, ACM2 1, Revised MM5 1, rrtm 1, Dudhia

mem08 GEFS08 10, Morrison 1, YSU 1, Revised MM5 4, rrtmg 4, rrtmg

mem09 GEFS09 10, Morrison 5, MYNN2 1, Revised MM5 1, rrtm 1, Dudhia

mem10 GEFS10 10, Morrison 1, YSU 1, Revised MM5 4, rrtmg 4, rrtmg

mem11 GEFS11 10, Morrison 4, QNSE-MF 4, QNSE 1, rrtm 1, Dudhia

mem12 GEFS12 10, Morrison 1, YSU 1, Revised MM5 3, CAM 3, CAM

mem13 GEFS13 9, Milbrandt-Yau 1, YSU 1, Revised MM5 1, rrtm 1, Dudhia

mem14 GEFS14 10, Morrison 1, YSU 1, Revised MM5 5, Goddard 5, Goddard

mem15 GEFS15 10, Morrison 5, MYNN2 1, Revised MM5 1, rrtm 1, Dudhia

mem16 GEFS16 8, Thompson 1, YSU 1, Revised MM5 1, rrtm 2, Goddard(old)

mem17 GEFS17 8, Thompson 1, YSU 1, Revised MM5 1, rrtm 1, Dudhia

mem18 GEFS18 10, Morrison 7, ACM2 1, MM5 3, CAM 3, CAM

mem19 GEFS19 8, Thompson 2, MYJ 2, Janjic Eta 5, Goddard 5, Goddard

mem20 GEFS20 10, Morrison 1, YSU 1, Revised MM5 1, rrtm 1, Dudhia

mem21 GEFS21 10, Morrison 1, YSU 1, Revised MM5 5, Goddard 5, Goddard

mem22 GEFS22 10, Morrison 7, ACM2 1, Revised MM5 1, rrtm 1, Dudhia

mem23 GEFS23 10, Morrison 1, YSU 1, Revised MM5 4, rrtmg 4, rrtmg

mem24 GEFS24 10, Morrison 5, MYNN2 1, Revised MM5 1, rrtm 1, Dudhia

mem25 GEFS25 10, Morrison 1, YSU 1, Revised MM5 4, rrtmg 4, rrtmg

mem26 GEFS26 10, Morrison 4, QNSE-MF 4, QNSE 1, rrtm 1, Dudhia

mem27 GEFS27 10, Morrison 1, YSU 1, Revised MM5 3, CAM 3, CAM

mem28 GEFS28 8, Thompson 1, YSU 1, Revised MM5 1, rrtm 2, Goddard(old)

mem29 GEFS29 8, Thompson 1, YSU 1, Revised MM5 1, rrtm 1, Dudhia

mem30 GEFS30 10, Morrison 5, MYNN2 1, Revised MM5 1, rrtm 1, Dudhia

a) Each member uses different ICs and lateral BCs from GEFS and different WRF physics combinations.
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( )n FFY = where , 1, 0 , (5)l i j
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A forecasted “Yes” event of the lth member (FYl,i,j) is cal-
culated within an extra temporal neighborhood width tw.
Similarly, tw could be interpreted as the maximum tolerance
for the time phase error. Here, tw is set to 1, that is extra
±1 hour forecast of current time are also used for the cal-
culation of POP. As long as one moment within time win-
dows met the condition of a “Yes” event, the forecast of that
grid point was computed as “Yes”. In general, the smaller Fg,
the larger Rg and tw, the higher of POP.

3.3 Verification metrics

In this study, the ensemble forecasts were verified against
hourly gridded precipitation (Shen et al., 2014; Pan et al.,
2015), which is a 0.01°×0.01° merged precipitation analysis
product (over 70°–140°E and 15°–60°N). This dataset has
been widely used for the evaluation of CPR model perfor-
mance in China (Wu et al., 2018; Zhao et al., 2020; Cai et al.,
2021; Li et al., 2021). For the verification, we employed the
Model Evaluation Tools software (Brown et al., 2009),
which contains a comprehensive suite of verification metrics

for ensemble-based probabilistic forecasts. Verification
scores, such as the rank histogram (Hamill 2001), Brier score
(Murphy, 1973; Wilks, 2010), relative position (RELP) and
receiver operating characteristic (ROC, Marzban 2004),
were used to evaluate the ensemble probabilistic forecasting
skill. Two domains were chosen for our ensemble forecast
verification: one covering Henan Province (31°–37°N, 110°–
117°E), labeled as box “L” in Figure 1a; and the other a small
domain just covering Zhengzhou (34°–35°N, 112.5°–114.5°E).
The former is used to evaluate the overall performance of the
ensemble forecast for the main precipitation system over
Henan Province and its surrounding area, while the latter is
used more for the predictability of the CEFS with respect to
the extreme rainfall over Zhengzhou. Additionally, to ex-
amine the sensitivity of the spread to the ICBCs and physics
schemes, a verification domain labeled “O” in Figure 1a over
the ocean (31°–37°N, 122°–129°E), which was less affected
by precipitation, was chosen.

4. Ensemble forecast results

4.1 Predictability of 24 hour accumulated rainfall
forecasts

Figure 2 shows postage stamp plots for the ensemble forecast
of experiment CEFS_GEFS. In general, most ensemble

Table 2 Parameter settings of CEFS_ERAa)

Case name ICs and BCs Microphysics PBL Surface layer Radiation scheme (long) Radiation scheme (short)

mem01 ERA5 8, Thompson 1, YSU 1, Revised MM5 4, rrtmg 4, rrtmg

mem02 ERA5 8, Thompson 5, MYNN 5, MYNN 4, rrtmg 4, rrtmg

mem03 ERA5 10, Morrison 5, MYNN 5, MYNN 4, rrtmg 4, rrtmg

mem04 ERA5 19, NSSL 1-moment 5, MYNN 5, MYNN 4, rrtmg 4, rrtmg

mem05 ERA5 7, Goddard 1, YSU 1, Revised MM5 5, Goddard 5, Goddard

mem06 ERA5 9, Milbrandt-Yau 5, MYNN 5, MYNN 4, rrtmg 4, rrtmg

mem07 ERA5 16, WDM 6-class 5, MYNN 5, MYNN 5, Goddard 5, Goddard

mem08 ERA5 8, Thompson 2, MYJ 2, Janjic Eta 4, rrtmg 4, rrtmg

mem09 ERA5 10, Morrison 7, ACM2 1, Revised MM5 3, CAM 3, CAM

mem10 ERA5 10, Morrison 1, YSU 1, Revised MM5 5, Goddard 5, Goddard

mem11 ERA5-3h 8, Thompson 1, YSU 1, Revised MM5 4, rrtmg 4, rrtmg

mem12 ERA5-3h 8, Thompson 5, MYNN 5, MYNN 4, rrtmg 4, rrtmg

mem13 ERA5-3h 10, Morrison 5, MYNN 5, MYNN 4, rrtmg 4, rrtmg

mem14 ERA5-3h 19, NSSL1-moment 5, MYNN 5, MYNN 4, rrtmg 4, rrtmg

mem15 ERA5-3h 7, Goddard 1, YSU 1, Revised MM5 5, Goddard 5, Goddard

mem16 ERA5+3h 8, Thompson 1, YSU 1, Revised MM5 4, rrtmg 4, rrtmg

mem17 ERA5+3h 8, Thompson 5, MYNN 5, MYNN 4, rrtmg 4, rrtmg

mem18 ERA5+3h 10, Morrison 5, MYNN 5, MYNN 4, rrtmg 4, rrtmg

mem19 ERA5+3h 19, NSSL1-moment 5, MYNN 5, MYNN 4, rrtmg 4, rrtmg

mem20 ERA5+3h 7, Goddard 1, YSU 1, Revised MM5 5, Goddard 5, Goddard

a) Each member uses different WRF physics combinations. The time-lagged method is applied to members 11–20.
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members have no difficulty in predicting the heavy rainfall in
Henan Province. The predicted rainfall centers (see the white
“X” symbols in each plot) are distributed in all directions of
Zhengzhou, but mostly along the Taihang Mountains—that

is, northwest and west of the observed center. Only a few
members (such as members 3, 5, 11 and 15) are able to
reproduce the extreme rainfall center in Zhengzhou.
The overall performance of CEFS_ERA is similar to ex-

Figure 2 Postage stamp plots of 24 hour accumulated rainfall (unit: mm) from 1200 UTC 20 July to 1200 UTC 21 July 2021 of the 4 km CEFS members
initialized from GEFS (see Table 1 for the definition of members) and observation. In this figure, and some subsequent figures, Zhengzhou is indicated by the
bold-black border. The white “Χ” symbol represents the location of maximum rainfall.
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periment CEFS_GEFS (see Figure 3). It has no difficulty in
predicting the heavy rainfall along the Taihang Mountains.
The predicted rainfall centers are mostly distributed to the
west of Zhengzhou, resulting in higher POP values. This is
because time-lagged CEFS_ERA uses almost the same
ICBCs, which leads to almost consistent westward location
bias of precipitation forecast among most members.
The position bias of each member is much better reflected

in the ensemble mean forecast. With extreme points dis-
tributed in all directions, the ensemble mean of CEFS_GEFS
is able to predict the center of heavy rainfall in Zhengzhou
(see Figure 4b). In comparison, the predicted center of the
CEFS_ERA ensemble mean is located to the southwest of
Zhengzhou (see Figure 4c). For the precipitation amount,
CEFS_ERA, with less variability for the precipitation dis-
tribution, obtains a higher maximum ensemble mean value
than CEFS_GEFS. Unsurprisingly, both CEFSs greatly un-
derestimate the precipitation amount simply in terms of the
ensemble mean. The observed maximum is 680 mm, com-
pared to a maximum of 323 mm in the two experiments. The
probability-matched (PM; (Kong et al., 2008; Clark et al.,
2009) rain was therefore calculated. The PM rain is a de-
terministic product that can improve the underestimation of

rainfall amounts that are typically associated with using a
simple ensemble mean. Details of the calculation formula are
given in Zhu and Xue (2016). As expected, both CEFSs
demonstrate significant improvement in the forecast pre-
cipitation amount. The maximum PM rain amounts are 513
and 746 mm for CEFS_GEFS and CEFS_ERA, respectively
(see Figure 4d, 4e). For the extreme rainfall event, the use of
PM rain is practical.
Figure 4f and 4g shows POP values exceeding 150 mm.

For this extreme event, the maximum POP is 50% for
CEFS_GEFS, and 100% for CEFS_ERA. The higher POP of
CEFS_ERA, as explained previously, is due to its lower
variability in terms of the precipitation distribution (see also
Figure 3). This will lead to a poorer verification skill score.
For both experiments, the highest POP values are along the
Taihang Mountains and to the west of Zhengzhou, suggest-
ing low predictability of extreme rainfall in Zhengzhou.
To gain some understanding as to why the CEFSs have

difficulty in predicting the extreme rainfall in Zhengzhou,
the ensemble forecast products for the next day are shown in
Figure 5. There are two observed heavy rainfall centers: one
near the Taihang Mountains (“A” in Figure 5a), and another
to the southeast of Zhengzhou (“B” in Figure 5a). Both ex-

Figure 3 As in Figure 2 but for experiment CEFS_ERA (see Table 2 for the definition of members).
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Figure 4 The 24 hour accumulated rainfall (unit: mm) from 1200 UTC 19 July to 1200 UTC 20 July 2021 for the (a) observation, (b) ensemble mean, (d)
PM mean, and (f) POP for the threshold of larger than 150 mm. Panels ((b), (d), (f)) are calculated from CEFS_GEFS, while ((c), (e), (g)) are calculated from
CEFS_ERA.
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Figure 5 As in Figure 4 but for the period from 1200 UTC 20 July to 1200 UTC 21 July 2021.
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periments have no difficulty in predicting heavy rain center
A, but show low predictability for B. This is because B is
propagated from the previous day precipitation at Zheng-
zhou. In general, the CPR model is able to simulate synoptic
weather systems and external forcings due to terrain block-
ing and lifting. Therefore, for the precipitation system A
along the Taihang Mountains, the CEFS has a greater chance
to make a successful forecast. However, the precipitation at
Zhengzhou as well as precipitation center B in the next day
are due to the low-level convergence of a mesoscale barrier
jet and a meso-β-scale vortex (to be discussed in Section
4.2). Predicting the exact timing and location of such me-
soscale convergence is challenging for CPR models, hence
the low predictability of precipitation at Zhengzhou and B.
Forecast biases in time and space, as suggested in Section 5,
should be expected in POP.

4.2 Predictability of the extreme hourly rainfall fore-
casts

As mentioned above, the observed maximum hourly rainfall
amount reached 201.9 mm h−1 at 0900 UTC 20 July 2021,
which created a new record for hourly rainfall over Chinese
mainland. For the extreme hourly rainfall of this event, most
CEFS members failed to reproduce its location and amount
(not shown). However, to see whether some members could
capture the extreme rainfall event, RELP was used to select
the best member (see Figure 6). The RELP value represents
the member obtaining N grid points with the lowest RMSE of
all members. The larger the RELP value, the closer the
member forecast is to the observation when compared to the
rest of the members. The best members of CEFS_GEFS and
CEFS_ERA are mem003 and mem004, respectively, using
the RELP calculated from the 3 h accumulated rainfall at
0900 UTC 20 July 2021 within Zhengzhou.
Figure 7 shows the hourly rainfall of each best member of

CEFS_GEFS and CEFS_ERA. Note that, due to the inter-
polation (originally from rain gauge stations (201.9 mm) to
1 km hourly gridded observations (169.3 mm), and also from
the 1 km grid to a 4 km model grid (133.4 mm)), the max-
imum hourly gridded observation is lower than the rain
gauge station mentioned above. Nonetheless, these intensity
biases of a few extreme points do not affect the general
conclusions, including the verification results in the fol-
lowing section. The observed extreme rainfall stayed in
Zhengzhou from 0800 UTC to 1000 UTC. The best member
of CEFS_GEFS is able to predict the extreme rainfall in
Zhengzhou, but it is located to the west of the observed
extreme point and its intensity is clearly underestimated. The
intensity of the best member from CEFS_ERA is improved,
but the location of the extreme point is relatively far away
from the observed point. Both observations and forecasts
show the extreme rainfall to have been formed at the

southwest edge of the main precipitation, where the south-
east and northeast flow converged. The northeast flow was
originated from a mesoscale barrier jet on the eastern slope
of the Taihang Mountain due to terrain blocking of large-
scale easterly flows. The southeast flow is in association with
a low-level meso-β-scale vortex located to the west of
Zhengzhou and the large-scale easterly inflows caused by the
typhoon In-Fa over the East China Sea (Wei et al., 2022). We
also compared the forecasts with observations throughout the
two forecasted days. In general, the best members were able
to reproduce the general spatial patterns and the evolution of
the event (not shown). However, the exact amount and the
location of extreme precipitation are still hard to predict, due
to the difficulty in the forecasting the location of meso-scale
low-level convergence, as well uncertainties in the simulated
microphysical processes.
Figure 8 shows the time series of hourly rainfall for do-

mains from the large-scale area to the point of extreme
rainfall. For the large domain covering Henan Province (see
domain “L” in Figure 1a), most ensemble members are able
to reproduce the diurnal variation of precipitation (Figure 8a,
8b), indicating the synodical pattern of precipitation and its
evolution are captured well by the ensemble forecasts. The
biggest issue is the amount. Most members from CEFS_-
GEFS underestimate the mean precipitation over domain “L”
(Figure 8a), while it is overestimated by most members from
CEFS_ERA (Figure 8b). Compared to ERA5, the initials
from GEFS underestimate the water vapor content trans-
ported to that region (not shown). For the small domain
covering Zhengzhou, due to the position biases, the mean
rainfall amounts are greatly underestimated during the period
of extreme rainfall (18–24 hour forecasts in Figure 8c, d) for
both CEFSs. For the point of extreme rainfall, all ensemble
forecasts fail to reach the observed maximum
(201.9 mm h−1) (Figure 8e, 8f). The predicted hourly max-
imum of the two CEFSs’ members is around 180 mm h−1.

Figure 6 RELP of each ensemble member for the 3 hour accumulated
rainfall (from 0700 UTC to 0900 UTC 20 July 2021) for the domain
surrounding Zhengzhou. The numbers are the best member in terms of
RELP for each CEFS.
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The timing of the maximum is either advanced or delayed
from the observed peak time. Figure 8g and 8h show the
corresponding accumulated rainfall for the extreme point.
The general evolutionary trend is well captured. Most
members are able to reach the observed maximum accu-
mulated rainfall amount during the two days of the forecast,
if neglecting the timing and position biases. Overall, the
CEFSs are able to reproduce the variation in precipitation in
the large domain, but have limited forecast skill for the
variation and amount in Zhengzhou and at the point of ex-
treme rainfall.
To see whether the ensemble forecast products can provide

some useful information, the ensemble mean and POP values
at the time of the observed maximum are shown in Figure 9.
Unsurprisingly, the simple ensemble mean greatly under-
estimates the precipitation amount (Figure 9b, 9c). The PM
rain improves the forecast precipitation amount, but the

heavy rain clusters (≥40 mm h−1) are scattered mostly out-
side Zhengzhou (Figure 9b, 9c), indicating great uncertainty
in the location of heavy rain. The POP values are almost zero
in Zhengzhou for a threshold larger than 25 mm h−1. Without
consideration of position biases, the traditional ensemble
forecast products fail to provide useful information for the
extreme rainfall in Zhengzhou at the time of the observed
maximum. Therefore, timing and position biases need to be
considered for this extreme rainfall event. In this respect, the
neighborhood products are presented and discussed in sec-
tion 5.

4.3 Skill scores of the CEFSs

In this subsection, the skill scores of the two CEFSs are
compared. Figure 10 shows the Brier score of the two
CEFSs. The Brier score is the mean-squared probability er-

Figure 7 Hourly rainfall (unit: mm) for (a) 0800 UTC, (d) 0900 UTC, and (g) 1000 UTC 21 July 2021. The observed maximum hourly rainfall is at 0900
UTC. The second and third columns are the corresponding forecasts from the best member of CEFS_GEFS (member 003) and CEFS_ERA (member 004),
respectively. The observations are interpolated to the 4 km WRF model grid. Therefore, the maximum is not the same as the site observations in Figure 8.
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Figure 8 ((a), (b)) Time series of average hourly rainfall in a domain surrounding Henan Province (see domain “L” in Figure 1a for the observation and
ensemble members. ((c), (d)) Similar to ((a), (b)) but for a small domain in Zhengzhou. ((e), (f)) Similar to ((a), (b)) but for the point of extreme rainfall within
domain “L”. ((g), (h)) Time series of observed and predicted accumulated rainfall at the grid point of the largest 24 hour accumulated rainfall (from forecast
hours 12–36). The left-hand column is from CEFS_GEFS, while the right-hand column is from CEFS_ERA.
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Figure 9 Similar to Figure 4 but for the hourly rainfall at the time of observed maximum hourly rainfall. Here, the threshold for POP is set to 25 mm h−1.
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ror. The smaller the Brier score, the better the ensemble
forecast. For the verification domain of Henan Province
(left-hand column of Figure 10), CEFS_GEFS performs
better than CEFS_ERA for both thresholds of ≥50 and
≥150 mm. The precipitation pattern and its location are
largely determined by the initials (Zhu and Xue, 2016). As
shown later, CEFS_ERA, which uses the time-lagged ap-
proach, lacks sufficient spread in ICBCs and hence produced
less variation in the precipitation location and thus relatively
poorer skill scores. For the smaller verification domain, the
Brier score increases twofold, indicating increased un-
certainty of the probability forecast within Zhengzhou. Pre-
dicting the exact location of the extreme rainfall is still a
great challenge for CEFSs.
The rank histogram, which measures the ensemble forecast

distribution as compared to that of observations, is in-
vestigated in Figure 11. For this verification score, the uni-
form distribution is the best. Both CEFSs show U-shaped
distributions in the verification domain of Henan, indicating
overestimation of low precipitation values and under-
estimation of high precipitation values (Zhu and Xue, 2016).
The current CEFSs are seriously under-dispersive for rain-
fall. The underestimation of high values is more obvious

when the verification domain is limited to Zhengzhou. It can
be seen that both CEFSs show a J-shaped distribution (see
Figure 11b) for the first 24 hours of accumulated rainfall.
This is consistent with the previous objective evaluation in
which the CEFSs greatly underestimated the precipitation
values in Zhengzhou (see Figure 4). As the heavy rainfall
center moves out of Zhengzhou during the second 24 hours
of the forecast, the rank distributions of the two CEFSs im-
prove.
Overall, for the large verification domain of Henan, which

covers the main rain band, CEFS_GEFS initialized from the
GEFS forecast is generally better than CEFS_ERA in-
itialized from the time-lagged ERA5 forecast in terms of
Brier score and rank histogram. However, for the small
verification domain of Zhengzhou, due to the low predict-
ability for the extreme rainfall, it is hard to tell subjectively
from the verification scores which method is better.

4.4 Spread of the CEFSs

The current CEFSs are still under-dispersive in terms of rank
histogram. Note that the larger spread does not mean better
ensemble forecast if the forecast error is large. The conclu-

Figure 10 Brier score for the 24 hour accumulated rainfall from different CEFS experiments in a domain covering Henan (left column) and Zhengzhou
(right column). The top and bottom rows represent result with 50 and 150 mm rainfall thresholds, respectively.
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sion of the relatively insufficient spread of atmospheric
variables of CEFS_ERA in this subsection is based on the
evaluation of the precipitation forecasts, where CEFS_ERA
clearly exhibits less dispersion of rainfall distribution than
CEFS_GEFS. To gain some understandings of how the
spread grows as well as the role of multiple ICBCs, multi-
physics schemes and the time-lagged method, the spreads of
the two CEFSs are calculated. Here, the sensitivity of dif-
ferent numbers of ensemble members is used to examine the
role of multiple ICBCs (to make the same ensemble numbers
for the two CEFSs) and the time-lagged method (to see the
difference with and without the time-lagged method). Also,
two verification domains (labeled “L” and “O” in Figure 1a)
were selected to compare the role of multi-physics schemes
in the regions of heavy rainfall and scarce rainfall. The
spreads using different ensemble members are referred to as
“GN30”, “GN20”, “GN10”, “GN05”, “EN20”, “EN10” and
”EN05”, in which the letter “G” represents the CEFS in-
itialized from GEFS and the letter “E” the CEFS initialized
from ERA5. The number that follows represents the total
number of ensemble members used for the calculation of the
spread from the corresponding CEFS. For example, “GN20”
is the spread calculated from the first 20 members of
CEFS_GEFS. Thus, “GN30” is an experiment of CEFS_-
GEFS while EN20 is CEFS_ERA.
Figure 12 shows the spread of the U (zonal) and V (mer-

idional) wind components, temperature, and water vapor at
different upper levels and at the surface for the verification
domain “L”, which is the location of extreme rainfall in
Henan. In general, the spread of the “G” series of experi-
ments is higher than that of the “E” series of experiments for
both upper levels and the surface, indicating the great im-
portance of the perturbation ICBCs for the design of the
CEFS. For the “G” series of experiments, the increase in the
number of ensemble members increases the spread if the
number of ensemble members is small. It can be seen that
GN20 obtains a mostly larger spread than GN10, and GN10
obtains mostly larger spread than GN05. However, the
spread does not increase when the number of ensemble
members reaches 20, as we see from the spread curves of
GN30 (red lines in Figure 12) and GN20 (black lines in
Figure 12), which mostly overlap one another. That indicates
that the spread reaches a saturation state at around 20
members. For the “E” series of experiments, since the first 10
members share the same ICBCs, the growth of spread is
totally dependent on the different physics schemes. The
spread of the ensemble system needs some time before it
reaches a saturation state. Taking the variable of temperature
as an example, it needs around 18 to 24 hours to reach a
saturation state (first row in Figure 12), and other variables
behave similarly. The time-lagged method increases the
spread considerably (see the difference between the blue and

Figure 11 Rank histogram for the 24 hour accumulated rainfall for different ensemble forecasts in a domain covering (a) Henan Province and (b)
Zhengzhou, for the first 24 hours of the forecast. ((c), (d)) as in ((a), (b)) but for the accumulated rainfall during hours 25–48.
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Figure 12 Spread for different variables at different levels over domain “L” in Figure 1a, where Henan heavy rainfall located. The first to fifth rows depict
the results at 500, 700, 850, 925 hPa and the surface, respectively. From left to right, the columns present the variables of U- and V-wind, temperature and
water vapor mixing ratio, respectively. In the legend in (a), “G” represents initial ICBCs from GEFS, and “E” from ERA5. The proceeding number represents
the number of members used for the calculation of spread.
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green lines in Figure 12), but is still not comparable to the
corresponding “G” series with the same number of en-
sembles, especially for the first 24 hours of the forecast. The
spread at 3 hours of the forecast for EN20 is lower than that
of GN20 at the beginning, which may suggest the current
±3 hour time window is not long enough for the growth of
ensemble spread. Larger time windows are needed for the
design of time-lagged CEFSs.
To further understand how the physics affects the spread,

we selected a region that was not directly affected by the
heavy rainfall (box “O” in Figure 1)—a region that is also
over the ocean, so it will have relatively stable underlying
surface forcing. The “E” series of experiments, which de-
pend mainly on different physics schemes, fail to obtain
sufficient spread. This is well illustrated in Figure 13.
Compared to the heavy rainfall region of Henan, the spread
differences between the “G” and “E” series of experiments
are enlarged, especially in the upper-air levels. It can be seen
that the spread of the “E” series of experiments is clearly not
comparable to that of the “G” series (see Figure 13), while it
is sometimes comparable to the “G” series in the region of
Henan for some variables after 24 hours of the forecast (see
U-wind at 700 hPa and V-wind and temperature at 500 hPa in
Figure 12). The release of latent heat within the heavy-rain
area will have significant impacts on the in-cloud environ-
ment. Levels around melting levels, such as 500 hPa, are
greatly affected by the heavy rainfall, and that explains why
the spread of the “E” series of experiments could grow to an
equivalent level as the “G” series for some variables at some
levels. The above results may suggest that the usage of dif-
ferent physics schemes will increase the spread of CEFSs but
that the region affected will be limited. The heavy rainfall
region will be affected more than the region without. The
insufficient spread outside the heavy-rainfall region is pos-
sibly one of the reasons why CEFS_ERA shows less varia-
tion in the distribution of precipitation (see Figure 3), since
the location of precipitation and its intensity are largely de-
termined by the environment.

5. Neighborhood POP results

Large position and intensity error ultimately lead to low
predictability of CEFSs. The traditional POP method men-
tioned above, since the position bias is not considered, fails
to provide instructive forecast guidance. In this section, the
neighborhood POP method introduced in Section 3.2 is in-
vestigated. Experiment CEFS_GEFS, which has better per-
formance, is used for the test.
Figure 14 shows the spatial-neighborhood POP for the 24

hour accumulated rainfall. Here, the neighborhood radius is
set to 12 grid spacing, and we therefore refer to this ex-
periment as N_POP_W12_T0. For the 50 mm threshold,

N_POP_W12_T0 greatly increases the precipitation prob-
ability. It can be seen that the POP for most of Zhengzhou is
larger than 98%. By comparison, the POP of CEFS_GEFS
without the neighborhood method is mostly larger than 70%
(not shown). This difference is well reflected in the like-
lihood diagram (see Figure 15), which can be used to vi-
sualize the ability of the forecast system to distinguish
situations leading to the occurrence of an event of interest
from those leading to nonoccurrence of the event. The larger
the separation of the means of the conditional distributions
between observed “Yes” and “No” events, the better the
discrimination of the forecast probability. Also, a better
system is expected to have larger variance within the con-
ditional distributions. For CEFS_GEFS, the number of cor-
rect occurrences is evenly distributed. By comparison,
N_POP_W12_T0 shows a larger variance for the correct
occurrences. The higher the forecast probability, the larger
the number of correct occurrences. Clearly,
N_POP_W12_T0 provides a more meaningful probability
forecast than CEFS_GEFS. For the 150 mm threshold,
CEFS_GEFS shows a POP of no more than 50%, and is
mostly located to the west of Zhengzhou (see Figure 4f).
N_POP_W12_T0 greatly increases the forecast precipitation
probability. The area of POP larger than 10% (see Figure
14b) matches well with observed rainfall amounts larger than
150 mm (see Figure 4a), indicating the extreme rainfall area
is well captured by the neighborhood precipitation prob-
ability. The distribution of observed correct occurrence is
improved, as we see the peak value moves to the right (see a
difference in Figure 15c, 15d). The ROC diagram is also
presented in Figure 14. Clearly, N_POP_W12_T0 is better
than CEFS_GEFS for both the 50 and 150 mm threshold.
For the hourly rainfall, both the temporal- and spatial-

neighborhood methods are employed, and we refer to the
experiments as N_POP_W12_T1 and N_POP_W12_T0,
respectively. Figure 16 shows the POP for the threshold
larger than 25 mm h−1 at the time of the observed hourly
maximum (0900 UTC 20 July 2021). At that time, the POP
of CEFS_GEFS without the neighborhood method is almost
zero (Figure 9f). Both neighborhood methods greatly in-
crease the POP value, covering the heavy-rainfall area well,
although the centers of high probability are still not in
Zhengzhou (Figure 16a, 16b). For the area under the ROC
curve, the traditional POP method shows a value close to 0.5
for most forecast hours, indicating almost no forecast skill
score for the threshold larger than 25 mm h−1.The neigh-
borhood POP method greatly increases the verification skill
scores. Compared to N_POP_W12_T0, N_POP_W12_T1
with the addition of the temporal neighborhood method is
slightly better.
Overall, the neighborhood POP method greatly improves

the performance of the CEFSs. Since precise predictions of
the location and amount of extreme rainfall are still beyond
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Figure 13 As in Figure 12 but for the domain “O” in Figure 1a over the ocean, which has scarce rainfall during the two days of the forecast.
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the capability of CPR models, such neighborhood products,
if available in real time, will greatly increase the confidence
of forecasters in the prediction of highly extreme rainfall.

6. Summary and future work

This paper reports on a study of the extreme rainfall event
that occurred in Henan Province on 19–21 July 2021 using
CEFSs. The recorded maximum hourly rainfall reached
201.9 mm h−1 in Zhengzhou, which is a record over Chinese
mainland. Two 4 km CEFSs based on the WRF model were
employed: one initialized from GEFS (CEFS_GEFS) and the

other from time-lagged ERA5 data (CEFS_ERA). Both
CEFSs used multi-physics schemes and employed WRF
models.
First, the predictability of this extreme rainfall was in-

vestigated. For the two days of extreme rainfall, the observed
rainfall centers moved from Zhengzhou to the foot of the
Taihang Mountains. Results showed the CEFSs to produce
high POP values of daily heavy rainfall along the Taihang
Mountains throughout the 48 hours of the forecast, indicting
the heavy rainfall induced by orographic lift and blocking is
predictable. However, for the extreme daily rainfall in
Zhengzhou, which is located a few hundred kilometers away
from the mountains, the CEFSs show large uncertainty, with

Figure 14 Neighborhood POP of 24 hour accumulated rainfall (from 1200 UTC 19 to 1200 UTC 20 July 2021) for rainfall (a) ≥50 mm and (b) ≥150 mm.
The neighborhood width is set to 12 grid points and the number of points for determining a forecast “Yes” event within the neighborhood area is set to 50 grid
points. ((c), (d)) Corresponding ROC diagrams of (a, b) for the verification domain “L”.
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only a few members predicting correct rainfall centers. The
predictability of extreme daily rainfall in Zhengzhou is
limited if the position biases are not considered. For the
hourly rainfall, only a few members capture the extreme
rainfall in Zhengzhou. Most of members have large position
errors. The predicted maximum hourly rainfall of all mem-
bers is around 180 mm h−1, lower than the observed max-
imum. The predictability of extreme hourly rainfall at the
accuracy of city scale in Zhengzhou is low.
The performances of the two CEFSs were evaluated. Both

CEFSs show under-dispersion for the precipitation forecast
in terms of RANK histograms. In terms of Brier score,
CEFS_GEFS performs better than CEFS_ERA for the large
verification domain covering Henan Province. For the small
verification domain of Zhengzhou, the Brier score of both
CEFSs increase greatly, highlighting the limited intrinsic
predictability for the location of city-scale extreme rainfall.
The roles of multi-physics schemes, multiple ICBCs, and

the time-lagged method in the growth of ensemble spread

were further examined through comparison of the two
CEFSs using different numbers of ensemble members and
different verification domains. Two regions were selected:
one was the same as the previous verification domain, which
was greatly influenced by the extreme rainfall in Henan; and
the other was over the ocean which has scarce rainfall during
the two days of the forecast. In general, the spreads of all
investigated forecast variables (U-wind, V-wind, tempera-
ture, and water vapor) for CEFS_GEFS are larger than those
of CEFS_ERA, indicating the key role played by multiple
ICBCs. The current ±3 hour time window is insufficient for
the forecast error growth, and the unified boundary is another
factor for the relatively smaller spread of CEFS_ERA. The
difference in spread between the two CEFSs is more obvious
in the no-precipitation region, suggesting the multi-physics
schemes mostly affect the region of heavy rainfall. With less
spread of forecast variables in the no-precipitation region,
CEFS_ERA shows less variation in the location of pre-
cipitation, resulting in poor forecast skill scores.

Figure 15 Likelihood diagrams for the 24 hour accumulated rainfall (≥50 mm) for the POP (a) without and (b) with the neighborhood method. ((c), (d)) As
in ((a), (b)) but for the threshold ≥150 mm. The time period is from 1200 UTC 19 to 1200 UTC 20 July 2021.
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Additionally, a neighborhood POP method is introduced,
with which CEFS_GEFS shows moderate POP values for
heavy rainfall, at both daily and hourly scales, over
Zhengzhou. The predictability of this extreme rainfall is
improved by using this method. Objective verification shows
that the neighborhood method improves the forecast prob-
ability distribution and significantly improves the forecast
skill score.
In this study, we focus on the predictability of extreme

rainfall using CEFSs. We do not attempt to fully analyze and
understand the role of ICBCs and physical processes re-
sponsible for the extreme rainfall, or the key factors for a
successful forecast. Some “good” members are able to re-
produce the general evolution and propagation of the ex-
treme rainfall, albeit with some intensity and position errors.
In the future, we plan to further analyze this dataset to gain
some insights along these lines. Also, some methods for
representing errors of ICBCs and uncertainty in the model

physics schemes are worthy of examination. The impact of
different perturbation methods on the ensemble spread at
convection-permitting resolution will be compared and in-
vestigated in the future.
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