
Received: 7 August 2019 Revised: 3 February 2020 Accepted: 21 February 2020 Published on: 20 March 2020

DOI: 10.1002/qj.3772

R E S E A R C H A R T I C L E

Assimilating polarimetric radar data with an ensemble
Kalman filter: OSSEs with a tornadic supercell storm
simulated with a two-moment microphysics scheme

Kefeng Zhu1 Ming Xue1,2 Kun Ouyang1 Youngsun Jung2

1Key Laboratory of Mesoscale Severe
Weather/Ministry of Education and
School of Atmospheric Sciences, Nanjing
University, Nanjing, China
2Center for Analysis and Prediction of
Storms and School of Meteorology,
University of Oklahoma, Norman,
Oklahoma

Correspondence
M. Xue, Center for Analysis and
Prediction of Storms, University of
Oklahoma, 120 David Boren Blvd,
Norman, OK 73072, USA.
Email: mxue@ou.edu

Funding information
National Natural Science Foundation of
China, Grant/Award Number: 41730965;
the National Key Research and
Development Program of China,
Grant/Award Number: 2018YFC1507604

Abstract

The impact of assimilating differential reflectivity ZDR in addition to reflectiv-
ity (ZH) and radial velocity (V r) from a polarimetric radar on the analysis of
a tornadic supercell storm using an ensemble Kalman filter (EnKF) is stud-
ied in an observing system simulation experiment (OSSE) framework assuming
a perfect forecast model. A double-moment microphysics scheme is used to
allow for proper simulation of polarimetric signatures. Root-mean-square errors
of analysed state variables are calculated and the structure and intensity of
analysed fields and derived quantities are examined. Compared to the baseline
experiment assimilating radial velocity and reflectivity only, the assimilation of
additional ZDR further reduces the errors of all state variables. The analysed
hydrometeor fields are improved in both pattern and intensity distributions.
Polarimetric signatures including ZDR and KDP columns, and ZDR arc in the
supercell, are much better reproduced. Sensitivity experiments are performed
that exclude the updating of hydrometeor number concentrations by ZDR or of
state variables not directly linked to ZDR via observation operators. The results
show that if number concentrations are not updated together with the mixing
ratios, most of the benefit of assimilating ZDR is lost. Among other state variables,
the updating of water vapour mixing ratio qv has the largest positive impact while
the impact of updating vertical wind w comes in second. The updating of hori-
zontal wind components or temperature has a much smaller but still noticeable
impact. Reliable flow-dependent cross-covariances among the state variables
and observation prior as derived from the forecast ensemble and used in EnKF
are clearly very beneficial.
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1 INTRODUCTION

The forecast accuracy of high-resolution numerical
weather prediction (NWP) models highly depends on the
model initial state, especially for short-lived convective
storms; the accuracy of initial microphysics (MP) state
variables is key to successful short-range forecasting of
precipitating systems (Sun et al., 2013). Radar is the only
observational platform that can capture the internal struc-
tures of convective storms, at high spatial and temporal
resolutions (Hu et al., 2006; Stensrud et al., 2009). Many
studies have shown that radar data assimilation (DA)
greatly reduces the spin-up time of a model and improves
short-range precipitation forecasts (Xue et al., 2003; Hu
et al., 2006; Hu and Xue, 2007; Xiao et al., 2008; Dixon
et al., 2009; Zhu et al., 2015).

To obtain additional information on precipitation MP,
the entire US operational WSR-88D Doppler radar net-
work was upgraded to dual polarization a few years
ago (ROC, 2013). In Europe, the number of operational
dual-Doppler radars has grown steadily (Huuskonen et al.,
2014). More countries such as China are in the process
of upgrading their operational radars to dual polariza-
tion (Zhao et al., 2019). Compared to single-polarization
radar, a dual-polarization radar measures hydrometeor
particle scattering at both horizontal and vertical polariza-
tions, and can thereby provide information on the shape
and other characteristics of hydrometeor particles. From
polarimetric radar data (PRD), rain drop/particle size dis-
tributions (PSDs) and related properties can be better
retrieved (Cao et al., 2013; Huang et al., 2019; Zhang et al.,
2019), as can hydrometeor classification within storms
(Ryzhkov and Zrnic, 1998; Vivekanandan et al., 1999).

It is expected that the assimilation of PRD into NWP
models would help improve the analysis (initialization)
and prediction of precipitating systems. So far, studies
on the assimilation of PRD are relatively few, however,
and most of the studies assimilate PRD indirectly, that is,
retrieval of model state variables from data is performed
first before assimilation. Wu et al. (2000) assimilated rain
and ice mixing ratios retrieved from ZH and differen-
tial reflectivity ZDR, assuming that only two hydrometeor
categories, that is, rain and ice, existed. In their study, the
positive impact of assimilating PRD did not, however, last
long in the forecast, and error associated with the very
simple ice MP scheme used was suggested to be a reason.

Li and Mecikalski (2010) assimilated ZH and ZDR data
based on warm-rain-only observation operators imple-
mented within the Weather Research and Forecasting
(WRF) three-dimensional variational (3DVAR) DA sys-
tem. With the assimilation of both ZH and ZDR, in-storm
structures were said to be better analysed and short-range

precipitation forecast was also improved. More recently, Li
et al. (2017) developed an observation operator for specific
differential phase (KDP) that includes an ice phase (snow)
and found positive impact of assimilating extra KDP data
using WRF 3DVAR on analysed rainwater in the lower
troposphere and snow in the mid- to upper troposphere
for a mesoscale convective system. However, the impact
of PRD assimilation was only assessed with respect to the
analysis increments of rainwater and snow, and was lim-
ited to a portion of the analysed storm due to limited data
coverage.1

Some studies have attempted to assimilate information
derived from polarimetric signatures within convective
storms. For example, in intense supercell storms, a column
of high ZDR or ZDR column is often found in the region
of intense updraught, corresponding to large raindrops
that can be lofted above the freezing level in the form of
supercooled liquid water (Kumjian and Ryzhkov, 2008).
In a proof-of-concept study, Carlin et al. (2017), the mois-
ture and temperature adjustments within the Advanced
Regional Prediction System (ARPS) cloud analysis system
(Hu et al., 2006) were modified to be based on the detection
of ZDR columns for two tornadic supercell storm cases.
Both analyses and forecasts of the storms were improved
compared to the use of the original cloud analysis in both
cases. While the procedure appears to be effective for tor-
nadic supercell storms, it will be hard to apply, however,
to weaker precipitating systems where the ZDR column
is much less pronounced or absent. Such methods also
rely on empirical relations between PRD and model state
variables.

More direct and quantitative use of PRD is desirable
through direct assimilation. Direct DA methods compare
simulated observations from the model state variables
against observations, and make adjustments to the state
variables to achieve optimal fit of the analysed state to
observations and the prior guess of the state subjected
to the weights related to their respective errors (Kalnay,
2002). Forward observation operators are needed to simu-
late PRD from the model state variables, and the forecast
model should have a reasonable capability in simulating
observed polarimetric signatures. Jung et al. (2008a) devel-
oped PRD observation operators based on calculations of
electromagnetic wave scattering by hydrometeors then
used power-law functions to fit backscattering amplitudes
to obtain computationally more efficient operators. The
contributions of wet snow and wet graupel/hail are also
included. In Jung et al. (2010b), more accurate observation
operators based on rigorous scattering calculations using

1We note that their reflectivity operators including liquid and ice
contained a significant error, so their results should be viewed with
caution.
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the T-matrix method (Vivekanandan et al., 1991) are
developed. Details of observation operators will be given in
Section 2.1. In Jung et al. (2010b), they also compared the
performance of single-moment (SM) and double-moment
(DM). Their results showed that certain polarimetric sig-
natures such as ZDR arc, 𝜌hv (cross-correlation coefficient)
rings can only be correctly simulated by a DM scheme.
Simulated PRD can have large uncertainties and can vary
significantly with the use of an MP scheme, however
(Putnam et al., 2017a; 2017b).

The observation operators for PRD variables such as
ZDR are highly nonlinear. To variationally assimilate PRD,
linear tangent and adjoint of the observation operators
are needed, and the high nonlinearity often causes con-
vergence problems with the variational minimization (Liu
et al., 2019). With the ensemble Kalman filter (EnKF)
method that has been shown to work well with com-
plex MP schemes (Tong and Xue, 2005), linear tangent
or adjoint of the observation operators is not needed.
EnKF also has the ability to directly update state vari-
ables not directly involved in the observation opera-
tors, through ensemble-estimated flow-dependent back-
ground error covariances, even in the presence of complex
mixed-phase microphysics (Tong and Xue, 2005). Jung
et al. (2008b) first assimilate PRD using EnKF with SM MP
schemes with positive impacts achieved, and Jung et al.
(2010a) demonstrated the benefit of PRD in improving the
estimation of both microphysical state variables and PSD
parameters associated with an SM MP scheme. Both of
these studies assimilated simulated PRD.

Certain polarimetric signatures that depend on
hydrometeor size sorting (Dawson et al., 2014), such as
the ZDR arc in the supercell storms, can only be properly
simulated using multi-moment MP schemes (Jung et al.,
2010b; Putnam et al., 2014). In the only published study
that directly assimilates real polarimetric observations
using EnKF, Putnam et al. (2019) showed that the analysed
ZDR structures including the ZDR arc in a supercell storm
are improved with additional ZDR assimilation. The study
also showed that the analysed rain mean mass diameter
is higher in the ZDR arc region and the total rain number
concentration is lower downshear in the forward flank,
agreeing with observational estimations. Biases do exist
in their EnKF analyses that require further investigations
(Putnam et al., 2019), however.

As far as we know, Putnam et al. (2019) is the only for-
mally published study that examines the impact of directly
assimilating additional PRD using EnKF combined with a
multi-moment MP scheme. Many issues, including anal-
ysis biases, remain that require further studies as they
pointed out. Being a real-data-based study, detailed ver-
ification of analysed state variables, especially those of
MP, is difficult, because of the lack of truth. Errors in

the observational data can complicate the issues. To bet-
ter understand the behaviours and impacts of assimilat-
ing additional PRD, observation system simulation exper-
iments (OSSEs) can be very helpful. While Jung et al.
(2008b; 2010b) examined the impacts of PRD data via
OSSEs, their EnKF DA studies had limitations with the use
of an SM MP scheme. For the above reasons, OSSEs are
performed in this study with EnKF combined with a DM
MP scheme and compatible observation operators, exam-
ining the impact of directly assimilating additional ZDR
data. Additional sensitivity experiments are performed
to see the impacts of updating total number concentra-
tions (the additional PSD moment associated with DM MP
schemes) and updating state variables not directly linked
to PRD via observation operators.

The rest of this article is organized as follows. In
Section 2, the observation operators used in this study
together with configurations of the OSSE experiments
are described. The results of control and sensitivity
experiments examining the impacts of PRD assimilation
are presented and discussed in Section 3. Summary and
conclusions are given in Section 4.

2 EXPERIMENT
CONFIGURATION AND SETTINGS

2.1 The truth simulation
and observation operators

For the OSSEs, a truth simulation is produced using the
Advanced Regional Prediction System (ARPS: Xue et al.,
2003) initialized from a sounding for the 1977 Del City,
Oklahoma supercell storm (Ray et al., 1981), as given
in Xue et al. (2001). A 4 K ellipsoidal thermal bubble
with radii of 10 km in the horizontal directions and
1.5 km in the vertical direction is used to initiate the
storm. Most of the configurations are inherited from Tong
and Xue (2005) except for the MP scheme used and the
grid configuration. The SM Lin MP scheme is replaced
by DM Milbrandt–Yau MP scheme (Milbrandt and Yau,
2005); as mentioned earlier, DM schemes can much bet-
ter reproduce ZDR signatures (Jung et al., 2010b). The
simulation domain has 105× 103× 53 grid points and the
horizontal grid spacing is 1 km. A vertically stretched
grid is employed. The average vertical grid spacing is
400 m and the minimum grid spacing is 50 m at the
surface.

For DM schemes, the shape parameter of
three-parameter gamma distributions assumed of most
hydrometeor PSDs is typically assumed constant (with
zero being assumed most often). In this study, the shape
parameter for rainwater in the Milbrandt–Yau DM scheme
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is set to two while for other hydrometeors it is set to
zero. Studies have found that most DM schemes tend to
overestimate simulated reflectivity (e.g. Brown et al., 2016;
Putnam et al., 2017b). One of the reasons, according to
Brown et al. (2016), is that most schemes tend to produce a
higher frequency of large raindrops than observed. Setting
the rain shape parameter to two helps reduce the number
of large raindrops and in turn reflectivity.

The observation operator for radial velocity is the
same as that used in Jung et al. (2008a). However, there
are some differences from OSSE experiments of Jung
et al. (2008a) where the observation operators for radar
reflectivity are calculated using a fitted approximation
to T-matrix scattering amplitudes for rain and Rayleigh
approximation for ice hydrometeors. This approxima-
tion may result in some error (Putnam et al., 2019). In
this study, more advanced observation operators using
look-up tables calculated from the T-matrix method are
used (Jung et al., 2010b). In the following, the for-
mula for radar reflectivity factors at the horizontal and
vertical polarizations are based on the full T-matrix
algorithm:

ZH,x =
4𝜆4

𝜋4|Kw|2 ∫
Dmax,x

0
[A|fa,x|𝜋||

2 + B|fb,x|𝜋||
2

+ 2C Re[fa,x[𝜋]f ∗b,x[𝜋]]]n(D)𝑑𝐷, (1)

ZV,x =
4𝜆4

𝜋4|Kw|2 ∫
Dmax,x

0
[B|fa,x|𝜋||

2 + A|fb,x|𝜋||
2

+ 2C Re[fa,x|𝜋|f ∗b,x[𝜋]]]n(D)𝑑𝐷, (2)

where

A = 1
8
(3 + 4 cos 2𝜙e−2𝜎2 + cos 4𝜙e−8𝜎2),

B = 1
8
(3 − 4 cos 2𝜙e−2𝜎2 + cos 4𝜙e−8𝜎2),

C = 1
8
(1 − cos 4𝜙e−8𝜎2).

Here, 𝜆 is the wavelength of the radar and we assume a
10.7 cm wavelength S-band radar. Kw = 0.93 is the dielec-
tric factor for water. 𝜙 is the mean canting angle and 𝜎

is the standard deviation of the canting angle. 𝜙 = 0 is
assumed for all species. 𝜎 are 0◦, 20◦, 60◦ and 60◦ for rain,
snow, graupel and hail, respectively. |… | represents the
modulus of a complex number while Re[· · ·] represents
the real part.

Superscript * implies the conjugate. Subscript x
can be rain (r), rain–snow mixture (rs), dry snow (ds),
rain–graupel mixture (rg), dry graupel (dg), rain–hail
mixture (rh) or dry hail (dh). D is the diameter of a
given hydrometeor and Dmax is the maximum diame-
ter of each hydrometeor category. In this article, the

maximum diameters of rain drops, snow aggregates,
graupels and hailstones are assumed to be 8, 30, 50 and
70 mm, respectively. n(D) is the number concentration of
the hydrometeor at diameter D. To numerically integrate
Equations 1 and 2, the integral ranges are partitioned into
100 bins. The backscattering amplitudes of each species
with assumed drop size for polarizations along the major
(f a[𝜋]) and minor (f b[𝜋]) axes are precomputed at the
centre of each size bin and stored in look-up tables. For
melting species including rain–snow, rain–graupel and
rain–hail mixtures, the same tables are constructed at the
uniform 5% water fraction interval. The fraction of water
of each ice species is calculated as fw,𝑖𝑥 = qr

qr+q𝑖𝑥

. Here, qr is
the mixing ratio of rain while qix is one of the ice hydrom-
eteors. More details on the PRD observation operators can
be found in Jung et al. (2010b).

Once the radar reflectivity factors of all hydrome-
teor categories are calculated, the reflectivity in dBZ at
horizontal and vertical are computed as follows:

ZH = 10 log10(Zh,r + Zh,𝑟𝑠 + Zh,𝑑𝑠 + Zh,𝑟𝑔

+ Zh,𝑑𝑔 + Zh,𝑟ℎ + Zh,𝑑ℎ), (3)

ZV = 10 log10(Zv,r + Zv,𝑟𝑠 + Zv,𝑑𝑠

+ Zv,𝑟𝑔 + Zv,𝑑𝑔 + Zv,𝑟ℎ + Zv,𝑑ℎ). (4)

The differential reflectivity ZDR is calculated according
to the following formula:

ZDR = ZH − ZV. (5)

2.2 EnKF experiment settings and DA
experiments

In this study, we use the ARPS EnKF package (Tong
and Xue, 2005; Xue et al., 2006) which uses the ensem-
ble square-root filter algorithm (Whitaker and Hamill,
2002). The EnKF experiments employ 40 members in this
study. With the DM Milbrandt–Yau MP scheme, the anal-
ysis variables include the three-dimensional wind com-
ponents (u, v and w), pressure (p), potential temperature
(𝜃), water vapour mixing ratio (qv), as well as microphys-
ical state variables including mixing ratios of cloud water
(qc), rainwater (qr), cloud ice (qi), snow aggregate (qs),
graupel (qg) and hail (qh), and their total number concen-
trations (Nqc, Nqr, Nqi, Nqs, Nqg and Nqh, respectively).
Spin-up ensemble forecasts are run for 20 min, starting
from initial ensemble states defined by the sounding
profiles plus smoothed Gaussian random perturbations
added in regions where observed reflectivity is larger than
10 dBZ. The mean standard deviations of added u, v, and
w perturbations are 2 m⋅s−1 and that of 𝜃 is 2 K. For water
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vapour and hydrometeor mixing ratios, the mean standard
deviations of added perturbations are 0.0006 kg⋅kg−1. Con-
sidering the large uncertainty of number concentrations,
we did not add perturbation to those variables. After the
20 min spin-up forecasts, EnKF DA cycles are run over a
90 min period assimilating radar data every 5 min, corre-
sponding to the model storm time period of 20 through to
110 min. Similar settings were in our earlier OSSE studies
(Tong and Xue, 2005; Jung et al., 2008a). The 90 min assim-
ilation period is chosen mostly based on the life cycle of the
storm. In the truth simulation, the main storm reaches its
mature stage between 60 and 100 min. After that, the storm
begins to weaken and move out of the simulation domain.

PRD from an assumed S-band radar with its centre
located in the southwest corner (x = 2, y = 2) are simulated
from the truth simulation output, using the observation
operators described in Section 2.1. Eleven elevations are
assumed, based on the WSR-88D radar VCP-11 scan mode.
Radar observation errors are assumed to be 1 m⋅s−1, 3 dBZ,
0.2 dB for radial velocity V r, and ZH and ZDR in terms
of standard deviation, respectively, and random errors of
the corresponding magnitudes are added to the simulated
PRD observations and assumed in the EnKF experiments.
V r observations are assimilated where observed ZH > 10
dBZ. For ZDR, only values larger than 0.3 dB are used
because smaller values tend to be very noisy. The covari-
ance localization radii for radar observations are set to
4 km in the horizontal and 2 km in the vertical direc-
tion using the correlation function of Gaspari and Cohn
(Gaspari and Cohn, 1999) for all state variables. The 4 km
horizontal grid spacing spans four grid intervals in this
study, which is consistent with most past studies in terms
of grid intervals. For example, in Tong and Xue (2005) and
Jung et al. (2008a), 6 to 8 km were suggested when a 2 km
horizontal grid spacing was used. Sobash and Stensrud
(2013) suggest 12 to 18 km horizontal radii when using a
3 km grid spacing. We have tested larger and smaller hor-
izontal localization radii. The state analysis errors were
found to be significantly larger when using a 6 km radius
while the results using 3 km were slightly worse. To
help maintain ensemble spread, multiplicative inflation
(Anderson, 2001; Tong and Xue, 2005) is applied to all
model state variables except for number concentrations,
using an inflation coefficient of 1.2.

Table 1 lists all experiments presented in this article.
Experiment VrZh assimilates V r and ZH data while experi-
ment VrZhZdr assimilates additional ZDR data. Both exper-
iments update a full set of state variables in the model.
Experiment VrZhZdr is considered a control experiment
while VrZh is a reference for comparison purpose. Addi-
tional sensitivity experiments are conducted to help bet-
ter understand how the assimilation of ZDR improves the
analysis. The first sensitivity experiment VrZhZdr_NoNt,

excludes the updating of total number concentrations of
the hydrometeors Nqx by ZDR observations compared to
experiment VrZhZdr. Nqx are still updated by V r and ZH
though, just not by ZDR. Nqx arise from the use of a
DM scheme and add complexity to the DA problem. The
number concentrations of hydrometeors have very wide
dynamic ranges, varying from 0 to as large as 1012 m−3,
implying that the relations between them and PRD obser-
vations can be very nonlinear. Updating both mixing ratios
and total number concentrations at the same time may or
may not be beneficial, especially when the correlations are
unreliable or inconsistent with each other. VrZhZdr_NoNt
serves to examine the benefit, if any, of updating the total
number concentrations using ZDR observations.

Other sensitivity experiments serve to examine the
impact of updating other state variables using ZDR. Exper-
iments VrZhZdr_NoW, VrZhZdr_NoUV, VrZhZdr_NoQv
and VrZhZdr_NoPt exclude the updating of vertical
velocity w, horizontal wind components u and v, water
vapour mixing ratio qv and potential temperature 𝜃,
respectively. In an intense tornadic supercell, a ZDR col-
umn typically exists in the updraught region (Kumjian
and Ryzhkov, 2008), indicating strong positive correla-
tion between upward motion and ZDR. Updraught regions
are also associated with high moisture values. The largest
theoretical benefit of EnKF method compared to 3D-Var
and some of the other methods lies with the use of
ensemble-derived correlations among all state variables,
and hence among observation priors and state variables,
which allows for the updating of state variables not directly
observed (or involved in the observation operators). For
such updating to be beneficial, the ensemble-derived
correlations have to be sufficiently accurate and reliable.
This second group of sensitivity experiments are designed
to test the impacts of updating state variables that are
not directly linked to ZDR observations via the observation
operators.

3 RESULTS OF ENKF ANALYSES

3.1 Evaluation of ZDR assimilation
in the control experiment

Figure 1 shows the ensemble mean analysis and fore-
cast RMSEs of model state variables during the assimi-
lation cycles. Following Tong and Xue (2005) and many
other studies, the RMSEs are calculated over grid points
where the true reflectivity is greater than 10 dBZ, which
roughly covers the precipitation regions. For most vari-
ables, VrZhZdr (red lines), which assimilates additional
differential reflectivity, produces consistently better anal-
yses and forecasts than VrZh (black lines), especially in
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T A B L E 1 List of experiments

Experiment name Assimilated data State variables updated by EnKF

VrZh V r, ZH u, v, w, p, 𝜃, qv, qx and Nqx (x = c, r, i, s, g or h)

VrZhZdr V r, ZH, ZDR As VrZh but with additional ZDR DA

VrZhZdr_NoNt V r, ZH, ZDR As VrZhZdr but ZDR DA does not update Nqx . Note that Nqx

are still updated by V r and ZH. Similarly for the following
experiments.

VrZhZdr_NoUV V r, ZH, ZDR As VrZhZdr but ZDR DA does not update u and v

VrZhZdr_NoW V r, ZH, ZDR As VrZhZdr but ZDR DA does not update w

VrZhZdr_NoPt V r, ZH, ZDR As VrZhZdr but ZDR DA does not update 𝜃′

VrZhZdr_NoQv V r, ZH, ZDR As VrZhZdr but ZDR does not update qv

later cycles. Such results are quite similar to those of Jung
et al. (2008b) which examined the impact of assimilat-
ing additional ZDR data in OSSEs employing an SM MP
scheme, except that RMSEs of most variables in the first
few cycles are also reduced here. In Jung et al. (2008b), the
assimilation of ZDR does not show positive impact until
later cycles. Additionally, we also examine the RMSEs
of total number concentrations of hydrometeor variables,
which were not predicted in Jung et al. (2008b). Here, for
most number concentrations, the ZDR assimilation shows
neutral to positive impact. Among them, the number con-
centration for graupel, Nqg, is improved most. As we will
discuss later, it is probably benefiting from better anal-
yses of liquid hydrometeor species, which in turn lead
to more accurate analyses of ice hydrometeor species. In
Figure 2, we show the RMSEs of the analyses and fore-
casts throughout the DA cycles in terms of radar observed
variables, that is, the verifications in observation space.
The results are consistent with the results in terms of the
state variables, as shown in Figure 1; the assimilation of
ZDR data further reduces the differences between the anal-
yses and forecasts from the observations in the observation
space.

Figure 3 shows the vertical profiles of ensemble mean
analysis and forecast RMSEs at 80 min, again averaged
over grid points with observed ZH exceeding 10 dBZ. At
this time, the RMSEs of most variables have stabilized
(Figure 1). It can be seen that the errors at most levels
for most variables are reduced from the additional ZDR
assimilation. The largest improvements are mostly located
where the errors are largest. As Jung et al. (2008b) pointed
out, the direct improvements from ZDR assimilation are
mainly to those highly correlated variables such as qv
and qr at the lower levels, where the ZDR signatures are
most prominent (given that large ZDR is mostly associated
with large raindrops). With more accurate analyses at the
lower levels, the analysis fields at upper levels can also be
improved through the dynamic interactions in the forecast

model. The weak and unreliable correlations between ZDR
and ice fields at the upper levels during the earlier cycles
might be the reason for larger errors in qh before 45 min
(Figure 1k) while the errors become smaller in later cycles.
Note that in Figures 1–3, the results of VrZhZdr_NoNt
are also included which will be discussed in Section 4.2
later.

In Figures 4 and 5, we further examine the impact of
ZDR assimilation on the polarimetric signatures of the sim-
ulated storm. At 80 min (Figure 4a), the ZDR arc is not
clearly seen in the truth simulation. We can see a nar-
row high ZDR band along the edge of 35 dBZ reflectivity.
Between this ZDR band and main storm, there is a weak
ZDR area (green to light yellow) which is due to hail falling
and melting in this region. At 110 min (Figure 5a), high
ZDR (red colour) extends all the way from the forward flank
reflectivity core to the southern edge of the forward flank
precipitation region; in fact, it extends beyond the 35 dBZ
reflectivity contour, suggesting the existence of a relatively
small number of large rain drops there, giving rise to rela-
tively high ZDR values. Along this edge, an arc of high ZDR
is often observed, due to hailstone and rain drop size sort-
ing (Dawson et al., 2014). For both analysis times, exper-
iment VrZhZdr with additional ZDR assimilation shows
better ZDR structure than that of VrZh, especially for later
analysis time. For experiment VrZh, the pattern of high
ZDR area (red colour) is not as good as experiment VrZhZdr
when compared to truth simulation at 110 min.

The ZDR structure near the hook echo region is similar
to the classic supercell storm structure for both truth sim-
ulation and EnKF analyses (Figure 4d,e,f). Here, we only
display the small hook area at 80 min because it shows
a clear ZDR column (Figure 6d). At 110 min, the ZDR
columns are not obvious (not shown). High ZDR values
are located at the leading edge of the high ZH hook (black
contours) (Figure 4d). Experiment VrZh shows generally
similar patterns but the intensity is clearly underesti-
mated for both ZH and ZDR (Figure 4b,e). With additional
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VrZh VrZhZdr VrZhZdr_NºNt

Nqg (m-3)

Nqs (m-3)

(a) u (m/s) (b) v (m/s) (c) w (m/s) (d) qv (g/kg)

(e) θ’ (K) (f) p’ (Pa) (g) qc (g/kg) (h) Nqc (m-3)

(i) qr (g/kg) (j) qi (g/kg) (k) (l) qh (g/kg)

(m) Nqr (m-3) (n) Nqi (m-3)
(p) Nqh (m-3)

qg (g/kg)

qs (g/kg)

time (min) time (min) time (min) time (min)

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

8.0

6.0

4.0

2.0

0.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

0.0

1.0

0.8

0.6

0.4

0.2

0.0

3.0

2.5

2.0

1.5

1.0

0.5

70

60

50

40

30

20

10

0

2.1

1.8

1.5

1.2

0.9

0.6

0.3

0.0

0.18

0.15

0.12

0.09

0.06

0.03

0.0

1.2

1.0

0.8

0.6

0.4

0.2

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

(o) 

2.1

1.8

1.5

1.2

0.9

0.6

0.3

0.0

x108

4.0

3.0

2.0

1.0

0.0

x1010

3.0

2.5

2.0

1.5

1.0

0.5

3.5

0.0

x103

500

400

300

200

100

0

2.4

2.0

1.6

1.2

0.8

0.4

0.0

x105

F I G U R E 1 The RMSEs of the ensemble-mean forecasts and analyses throughout the 5 min DA cycles, for experiments VrZh (black),
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corresponding number concentrations

ZDR assimilation, the shape of the ZDR arc in experiment
VrZhZdr looks closer to the truth than in experiment
VrZh (Figure 4c). The intensity of ZDR in the hook echo
region is also much enhanced in VrZhZdr (Figure 4f).
Moreover, the ZH pattern has also been improved. The
35 dBZ ZH contours in the southeast edge are much closer
to the truth (Figure 4a–c), and the ZH intensity in the
hook region is greatly enhanced (Figure 4d–f). In all, ZDR
assimilation improves the polarimetric signatures of the

simulated storm, especially in the hook echo and forward
flank regions.

The vertical cross-sections of analysed ZH, ZDR and
specific differential phase, KDP, in the hook echo region
through the low-level ZH and ZDR maximum centres at
80 min are shown in Figure 6. Here KDP is not directly
assimilated, but derived from analysed model state vari-
ables using the same equation as in Jung et al. (2010b).
In general, both experiments VrZh and VrZhZdr produce
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converted into the observation space using the observation operators, and the RMSEs of the simulated radar variables are calculated against
the corresponding observations [Colour figure can be viewed at wileyonlinelibrary.com]

similar patterns of these fields. However, the intensities of
ZDR and KDP are clearly underestimated in VrZh. For ZH,
the maximum values above 60 dBZ are right below the 0
◦C contours in all cases (Figure 6a–c). The 45 dBZ ZH con-
tours (orange) extend up to above the −20 ◦C in the truth
(Figure 6a) and in VrZhZdr (Figure 4c), but only to −10 ◦C
line in VrZh (Figure 6b), indicating the analysed storm is
less intense in VrZh. The improved vertical structure of ZH
indicates better analysis of the hydrometeor fields, which
we will show more in Figure 7. The assimilation of ZDR
data also results in a more intense core updraught that is
closer to the truth as indicated by the 10 m⋅s−1 w contours
in Figure 6a–c. With a stronger updraught, particles are
more likely transported to high altitudes and also likely
undergo more growth before falling to the ground. Asso-
ciated with the updraught is a column of high ZDR values
that extend to the −10 ◦C level in the truth (Figure 6d)
and in VrZhZdr (Figure 6f), while that in VrZh is clearly
weaker (Figure 6e). Also, a column of high KDP is also
better reproduced in VrZhZdr (Figure 6i) than in VrZh
(Figure 6h) compared to the truth (Figure 6g). High KDP is
mostly associated with high liquid water content, which is
linked to intense updraught and heavy precipitation.

Figure 7 shows the analysed cloud water, hail and rain
water mixing ratios from VrZh and VrZhZdr in the same
vertical cross-sections as Figure 6, as compared to the
truth. Since only ZDR observations larger than 0.3 dB are
assimilated, the direct impact from ZDR is mostly limited
in the lower levels (cf. Figure 6d). However, its benefit
could be spread to the higher levels through spatial and
cross-variable correlations, and through dynamic interac-
tions within the forecast model. Figure 7 shows that the
cloud ice field is better analysed all the way to the cloud
top at ∼9 km height in VrZhZdr (Figure 7c) and while
that in VrZh is mostly limited to below the –20 ◦C level
or about 6.5 km height; its maximum value is also too low
(Figure 7b). For hail, VrZhZdr also much better repro-
duces the vertical distribution and intensity (Figure 7f)

than VrZh (Figure 7e); the latter severely underestimates
hail at the higher levels. For rainwater, the analysis of
VrZhZdr is also better, although the differences are smaller
(Figure 7i,h). Overall, the assimilation of additional ZDR
produces analyses of the supercell storm whose intensity
and structure are much closer to the truth, in terms of
both observed parameters (ZH and ZDR) and model state
variables.

3.2 The updating of hydrometeor
number concentrations with ZDR

For the DM MP scheme, the hydrometeor number
concentrations are part of the forecast variables which
increase the degrees of freedom of the model state. As
pointed out earlier, the values of number concentrations
show a great range of variability. Additionally, for DM
schemes, ZDR depends mostly on the slope parameter of
PSD which is a strong function of the third moment, the
mass mixing ratio (Jung et al., 2008b). It is not certain
whether the updating of number concentrations by EnKF
will improve the overall analysis. The RMSEs for most
state variables and also for radar-observed variables of the
experiment VrZhZdr_NoNt that excludes the updating of
number concentrations are shown in Figures 1–3. It can
be seen that without updating Nqx, the RMSE curves of
VrZhZdr_NoNt (blue lines) are closer to those of VrZh
than VrZhZdr during the later DA cycles for most variables
(Figure 1). Similar is true in terms of radar-observed
variables V r, ZH and ZDR (Figure 2). For w, qr and qh, the
RMSEs of VrZhZdr_NoNt even exceed those of VrZh in
some of the cycles (Figure 1c,i,l). The deterioration of the
analyses in VrZhZdr_NoNt are clearer in the vertical pro-
files of RMSEs at 80 min (Figure 3). For w and most ice
state variables, the RMSEs in VrZhZdr_NoNt are larger
than those of VrZh at the upper levels (Figure 3) while for
qr this happens at the mid-levels (Figure 3i). These results
suggest that updating both mixing ratios and total number

http://wileyonlinelibrary.com
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F I G U R E 3 The profiles of horizontally averaged ensemble mean analysis RMSEs averaged over points at which the truth reflectivity is
greater than 10 dBZ at 80 min for variables (a) u, (b) v, (c) w, (d) water vapour content qv, (e) perturbation potential temperature 𝜃′ (f)
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experiments VrZh, VrZhZdr and VrZhZdr_NoNt are shown in black, red and blue, respectively. The RMSEs were calculated at 1 km intervals
in the vertical [Colour figure can be viewed at wileyonlinelibrary.com]

concentrations of hydrometeor species associated with a
DM MP scheme together when assimilating ZDR is impor-
tant; when only mixing ratios are updated, most of the ben-
efit of assimilating ZDR data is lost, and for some variables,
those analyses may be even worse than not assimilating
ZDR data at all. This is presumably because serious imbal-
ance or inconsistency is created between mixing ratios
and corresponding number concentrations when only the
former are updated.

Figure 8 shows the analysed rainwater number
concentrations Nqr at 3 km height, and hail number
concentrations Nqh at z = 6 km at 80 min from VrZhZdr
and VrZhZdr_NoNt, as compared to the truth. For the
truth, highest Nqr values are found in the southwest part
of the supercell storm near the hook echo region and
in the northwest part, corresponding to heavy rainfall in
the rear flank and forward flank downdraught regions,
respectively (Figure 8a). The patterns of analysed Nqr

http://wileyonlinelibrary.com
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are similar (Figure 8b,c) although there is a larger area
of overestimation in the forward flank region while the
high values in the rear flank region are underestimated
in VrZhZdr_NoNt (Figure 8c). Both overestimation and
underestimation are much less in VrZhZdr (Figure 8b).
The hail number concentration Nqh for the truth exhibits

moderately high values in the southeastward-spreading
forward flank and storm anvil regions at 6 km height
(Figure 8d) while in the hook echo region, a ring of
high Nqh is found around an Nqh hole, while the highest
values are found on the west and southwest sides of
the hole (Figure 8d). The hole should be associated
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with a bounded weak echo region typically found in
intense supercell storms where hydrometeors are mostly
absent, being swept away by the intense updraught. Within
VrZhZdr_NoNt, the “ring” structure is overestimated
(Figure 8f) although the pattern of Nqh in the forward flank
region is a little better in VrZhZdr_NoNt (Figure 8f) than
in VrZhZdr (Figure 8e). Overall, Nqr and Nqh are better
analysed in experiment VrZhZdr than in VrZhZdr_NoNt.

Figure 9 explain the possible reasons. Here, we cal-
culate the correlation coefficients between the ZDR obser-
vation prior and the hydrometeor state variables 𝜌(ZDR,
Nqx) at 80 min from the forecast ensemble in a vertical
cross-section passing through ZDR prior which is located
in the ZDR column at (x, y, z) = (34, 22, 3.5) km. In gen-
eral, ZDR has clearly higher correlations to Nqc, Nqr and
Nqh than to Nqi, Nqs and Nqg. This is because ZDR is
most sensitive to raindrop sizes and high ZDR is found
where there are a large number of large rain drops. Many
large drops originate from the melting of falling hailstones
(Dawson et al., 2014). A column of high correlation is
found for 𝜌(ZDR, Nqc), 𝜌(ZDR, Nqr) and 𝜌(ZDR, Nqh) near
the main updraught. For Nqi, Nqs and Nqg, the correla-
tions are weaker, and non-zero values are mostly found

above the freezing level (Figure 9). The coherent struc-
tures in the correlations between ZDR and qx, and between
ZDR and Nqx suggest that the flow-dependent error covari-
ances estimated and utilized within the EnKF should be
physically reasonable, and hence the updating of Nqx in
addition to qx can be beneficial.

We also examine correlations between ZDR at 1.8 km
height and hydrometeor state variables at 80 min in a ver-
tical cross-section in the forward flank high ZDR region
(Figure 10). The cloud water at this point is zero for
all members. Therefore, the correlation is zero and is
not shown. For other hydrometeor variables, similar to
the point in the hook echo region, correlations 𝜌(ZDR,
Nqr) and 𝜌(ZDR, Nqh) are clearly higher than 𝜌(ZDR, Nqs)
and 𝜌(ZDR, Nqg). The patterns of correlation 𝜌(ZDR, qx)
are also very similar to the corresponding 𝜌(ZDR, Nqx)
except that those of hail show opposite signs of correlation
near the surface (Figure 10e,j). The negative correla-
tion between ZDR at 1.8 km and qh at the lower levels
is consistent with the fact that hailstones tend to con-
tribute little to ZDR due to tumbling (which is the cause
of the ZDR hole within supercell storms as a significant
hail signature (Kumjian and Ryzhkov, 2008)), while the
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positive correlation between ZDR and Nqh suggests that
when a larger number of small hailstones exist, melt-
ing hailstones will cause less reduction to ZDR. Given
that large correlations between ZDR and mixing ratio
and between ZDR and number concentration for rain-
water and hail simultaneously, updating mixing ratios
without updating corresponding number concentrations
will create imbalances between different moments of the

hydrometeor PSDs which in turn will negatively affect the
analysis and forecast states.

3.3 The updating of other state
variables with ZDR assimilation

Figure 11 shows that analysis and forecast RMSEs of
sensitivity experiments without updating certain state
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F I G U R E 11 Forecast and analysis RMSEs of experiments VrZhZdr_NoPt (green), VrZhZdr_NoQv (purple), VrZhZdr_NoW (red),
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variables when assimilating ZDR. RMSEs for experi-
ment VrZhZdr are shown in black lines while those for
VrZhZdr_NoPt, VrZhZdr_NoUV and VrZhZdr_NoW are
shown in colour. Among all potential temperature, water
vapour, vertical and horizontal wind components, the
updating of water vapour qv has the greatest impact.
The RMSEs from VrZhZdr_NoQv (solid purple) are sig-
nificantly larger for almost all forecast times and state
variables and the differences are larger in later cycles.
The updating of w has the second largest impact as

the RMSEs of VrZhZdr_NoW (red) are noticeably larger
for most variables especially during the intermediate
cycles. The updating of horizontal wind components and
potential temperature has less impact as the RMSEs of
VrZhZdr_NoPt (solid green) and VrZhZdr_NoUV (blue)
are rather close to those of VrZhZdr. These results are rea-
sonable since water vapour is the primary fuel for intense
convection while w provides the best measure of the inten-
sity of convection. Given that VrZhZdr produces overall
the lowest RMSEs, all state variables should be updated
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F I G U R E 12 (a–l) Similar to Figure 11 but for vertical profiles of analysis RMSEs for different variables at 80 min

when assimilating ZDR, at least when no model error is
present and the ensemble-estimated covariances are rea-
sonably accurate.

The vertical RMSE profiles up to 5 km height at 80 min
are shown in Figure 12. Here, we focus on the low levels
where ZDR has largest impacts. Consistent with Figure 11,
experiment VrZhZdr_NoQv has the largest errors at essen-
tially all vertical levels shown. Experiment VrZhZdr_NoW
produces the second largest RMSEs for most variables at
most levels. The updating of potential temperature 𝜃 has
the third largest impact (e.g. on qv in Figure 12d, on p′ in

Figure 12f, and qh in Figure 12l), although for some vari-
ables not updating 𝜃 made little difference (e.g. for qc in
Figure 12g and qr in Figure 12h). The updating of u and v
has limited impact from lower to middle levels. In exper-
iment VrZhZdr_NoUV, the analysis RMSEs are close to
those of VrZhZdr below 2 km, but larger above 2 km for
variables including qv (Figure 12d), qc (Figure 12g) and qr
(Figure 12h). This is better illustrated in Figure 13 which
shows the correlations between the ZDR and wind com-
ponents, the mixing ratio qv and potential temperature
perturbation 𝜃′. The ZDR point is the same as the point in
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F I G U R E 13 Similar to Figure 9 but for correlations between ZDR and (a) u, (b) v, (c) w, (d) qv and (e) 𝜃′, respectively

Figure 9. For qv and w, they show high and continuous cor-
relation regions from the bottom to the top. For u, v and 𝜃,
the high correlation areas are clearly reduced and mostly
located in the lower levels.

In Figure 14, we further examine the impact of not
updating certain variables on the dynamic structures of
the analysed storm. Here, the vertical vorticity 𝜁 at 2 km
height in the main updraught region is shown, indicating
low-level mesocyclone structure and intensity. Also plot-
ted are the vertical velocity w and horizontal winds. The
truth shows an ellipse-shaped structure of 𝜁 with its centre
located to the south of the w maximum (Figure 14a). With
all state variables updated in EnKF, experiment VrZhZdr
obtains very similar structures of 𝜁 and w with the horizon-
tal winds flowing around the north side of the updraught
core (Figure 14b). Without updating horizontal winds in
VrZhZdr_NoUV when assimilating ZDR data, the overall

structures of 𝜁 and w and horizontal winds are not too dif-
ferent from those of VrZhZdr except that their intensities
are somewhat underestimated (Figure 14c). The impact
of not updating 𝜃 in VrZhZdr_NoPt by ZDR is similar to
not updating u and v (impact is relatively small), although
the maximum w is slightly overestimated according to
the w maximum values shown in the plots (Figure 14f).
Compared to u, v and 𝜃, the impact of not updating w
or qv when assimilating ZDR is much larger. Without
updating w, the 𝜁 pattern appears more circular and the
updraught is more concentrated but its maximum is over-
estimated (Figure 14d). Without updating qv, the shapes
of 𝜁 structure and updraught region are still close to those
of VrZhZdr and truth, but the maximum 𝜁 is most over-
estimated among the sensitivity experiments, and the w
maximum is also overestimated (Figure 14e), although
slightly less so than in VrZhZdr_NoW.
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The above results indicate the analysed flow structures
and intensity in the main updraught region are directly
linked to the updating of w and qv. This is more obvious
in vertical cross-sections. Figure 15 shows the vertical
cross-sections of 𝜁 and w fields through the maximum of
three-dimensional w in the y direction. In both truth and
experiment VrZhZdr, a 𝜁 maximum is found at ∼1.6 km
level which corresponds to relatively strong vertical
motion there, and the fields in VrZhZdr match the truth
very closely. Except for experiment VrZhZdr_NoW, the
general patterns of 𝜁 and w in other sensitivity experiments
are similar except for underestimation of the low-level
vorticity strength, especially in VrZhZdr_NoQv and
VrZhZdr_NoPt. In VrZhZdr_NoW, mid-level (z ∼ 5 km) w
is overestimated by nearly 50%, as is the column of high
vertical vorticity (Figure 15f). Figures 14 and 15 provide
more concrete ideas on the large impact of updating or not

updating w and qv by ZDR, results that are consistent with
earlier findings based on RMSEs. This further confirms
that there are reliable, strong ensemble-derived correla-
tion between w and ZDR that enables improved analysis of
w and other fields by ZDR observations.

Based on the above results, all model state variables
should be updated when assimilating ZDR data with in
the EnKF. This is at least true for perfect model OSSEs.
In our OSSE framework for a tornadic supercell storm,
apart from the updating of hydrometeor state variables, the
updating of water vapour mixing ratio qv has the largest
impact on the overall analysis accuracy followed by ver-
tical wind w. Not updating w leads to large errors in the
flows in the updraught region, including the updraught
itself and vertical vorticity associated with it. The errors
in qv affect the storm dynamics more indirectly through
moist processes.



ZHU et al. 1897

16 20 24 28
0.

0.8

1.6

2.4

3.2

4.0

4.8

4

4

4

8

8

12

16

4

4

48

8
1
2

4

4

4

8 8

12

1
6

16 20 24 28
0.

0.8

1.6

2.4

3.2

4.0

4.8

4

4

4

4

8

8

8

1
2

1
2

1
2

1
6

1
6

20

24

300. 500. 700. 900. 1100. 1300. 1500. 1700.

(a) Truth (b) VrZhZdr (c) VrZhZdr_NoUV

(d) VrZhZdr_NoW

4

4

4

4

8

8

12

4

4

4

8

8

1
2

1
6(e)VrZhZdr_NoQv (f) VrZhZdr_NoPt

Vort*10^5 (1/s, Shaded) Max=0.143E+04

w (m/s, contour) Max=22.23

Vort*10^5 (1/s, Shaded)

w (m/s, contour)

Max=0.133E+04

Max=19.4
Vort*10^5 (1/s, Shaded) Max=0.126E+04

w (m/s, contour) Max=20.78

Vort*10^5 (1/s, Shaded)

w (m/s, contour)

Max=0.168E+04

Max=32.29

Vort*10^5 (1/s, Shaded) Max=0.134E+04

w (m/s, contour) Max=18.74

Vort*10^5 (1/s, Shaded)

w (m/s, contour)

Max=0.124E+04

Max=19.96

16 20 24 28
0.

0.8

1.6

2.4

3.2

4.0

4.8

16 20 24 28
0.

0.8

1.6

2.4

3.2

4.0

4.8

16 20 24 28
0.

0.8

1.6

2.4

3.2

4.0

4.8

16 20 24 28
0.

0.8

1.6

2.4

3.2

4.0

4.8

F I G U R E 15 Vertical south–north slice of vertical vorticity (shaded) and velocity (contours) through the maximum w (x = 35.5 km
for VrZhZdr_NoW and x = 36.5 km for truth and other experiments in Figure 14). (a) Truth, (b) VrZhZdr, (c) VrZhZdr_NoUV, (d)
VrZhZdr_NoW, (e) VrZhZdr_NoQv and (f) VrZhZdr_NoPt

4 CONCLUSIONS AND
DISCUSSIONS

In this study, the impact of assimilating differential
reflectivity ZDR data within an EnKF framework is inves-
tigated using observing system simulation experiments
with simulated data for a tornadic supercell storm. The
Milbrandt and Yau (2005) double-moment microphysics
scheme is used in both truth simulation and for EnKF DA;
with this double-moment scheme, previous studies have
shown the reasonable ability to simulate most important
polarimetric radar signatures found in supercell storms.
Radar observations are simulated using a polarimetric
radar data simulator developed by Jung et al. (2010b),
in which the T-matrix method is used to calculate the
hydrometeor scattering magnitudes for particles of partic-
ular sizes. Observation errors of realistic magnitudes are
added to the simulated observations, and the same error
variances are specified in the EnKF DA. The observation

operators from the simulator are also used in the EnKF
DA, which is run over a 90 min period assimilating radar
data every 5 min spanning the developing and mature
stages of the supercell. Experiments are conducted with
and without assimilating ZDR data in addition to reflec-
tivity at horizontal polarization ZH and radial velocity V r
to examine the impact of ZDR assimilation. Results show
that the assimilation of ZDR reduces the RMSEs for almost
all model state variables at almost all analysis times. The
polarimetric signatures of tornadic storm including the
ZDR and KDP columns and ZDR arc are all improved.
Analyses show that the structures and intensities of
hydrometeor fields at both lower and upper levels are
improved, even though the strongest ZDR signatures are
mostly found at the lower levels due to the concentration
of large raindrops there.

Additional sensitivity experiments are conducted to
understand the benefit and impact of updating different
state variables when assimilating ZDR. The first sensitivity
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experiment excludes the updating of the total number con-
centrations of all hydrometeors, which arise from the use
of a double-moment microphysics scheme. Although the
number concentrations have very large dynamic ranges,
their relations with ZDR are highly nonlinear, and the
ensemble-derived error correlations with ZDR may or may
not be reliable enough to produce improved analyses,
the results show that updating number concentrations
together with the mixing ratios are very beneficial. The
number concentrations have high correlations with ZDR
at the lower levels that are comparable to those of mix-
ing ratios. If the number concentrations are not updated
by ZDR observations, most of the benefit of assimilat-
ing ZDR data is lost, and in fact, for vertical velocity,
rainwater and hail mixing ratios, the analysis RMSEs are
larger in intermediate DA cycles than those in the exper-
iment not assimilating ZDR data at all. Clearly, updating
both mixing ratios and total number concentrations of
hydrometeors leads to much more physically consistent
analyses.

In other sensitivity experiments, the updating of hor-
izontal wind components, vertical velocity, water vapour
or potential temperature by ZDR data is excluded, respec-
tively. This allows us to examine the impact and impor-
tance of updating these state variables, which are not
directly or are only weakly linked to ZDR via the observa-
tion operators. Among these state variables, the updating
of water vapour mixing ratio qv has the largest impact,
which is followed by the updating of vertical wind w.
The updating of horizontal wind components or potential
temperature has much smaller though still noticeable
impact. Further analysis shows that the updating of qv
or w has significant effects on the intensity and struc-
tures of vertical vorticity and vertical velocity in the
main updraught region, and significant underestimation
and overestimation are seen, respectively, in the vertical
cross-section through the main updraught when qv or w
is not updated. Clearly the updating of w has more direct
effect on the storm intensity than the updating of qv, but
the effect of the latter via moist processes is apparently
very significant. Overall, updating all model state vari-
ables when assimilating ZDR data produces the best results,
and the RMSEs of analysed state variables are consistently
lower than those of the experiment without assimilating
ZDR data.

Finally, we point out that the results presented in this
article are limited to OSSE tests with a single supercell
storm, and no model error is included. When model error
is present, as with all real data cases, the conclusions
may be somewhat different. In addition, other polarimetric
measurements, including specific differential phase KDP
and co-polar correlation coefficient 𝜌hv, also contain valu-
able information on the hydrometeors and their PSDs.

The assimilation of these parameters and their impact on
analysed storm and subsequent forecasts were not con-
sidered in this study, or in the real data study of Putnam
et al. (2019); they require further research and investiga-
tions. The impact of PRD assimilation on other types of
precipitation systems also requires study.
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