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ABSTRACT: In this study, all-sky GOES-R ABI infrared radiances at their native resolution are assimilated using an en-
hanced GSI ensemble Kalman filter (EnKF) data assimilation (DA) system, and the impacts of the data on the analysis
and forecast of a mesoscale convective system (MCS) are explored. Results show that all-sky ABI BT data can correctly
build up observed storms within the model and effectively remove spurious storms in model background through frequent
DA cycles. Both bias and root-mean-squared innovation of the background and analysis are significantly reduced during
the DA cycles, and free forecasts are improved when verified subjectively and objectively against observed ABI BTs and
independent radar reflectivity observations. A horizontal localization radius of 30 km is found to produce the best results
while 5-min DA cycles improve the storm analyses over 15-min cycles, but the differences in forecasts are small. Further
analyses show that the clearing of spurious clouds by ABI radiance is correctly accompanied by reduction in moisture
through background error cross covariance, but overdrying often occurs, which can cause spurious storm decay in the fore-
cast. The problem is reduced when the ensemble mean of observation prior instead of observation prior of the ensemble
mean state is used in the ensemble mean state update equation of EnKF. The significant difference between the two ways
that the ensemble mean of observation prior is calculated when the observational operator is very nonlinear has not been
recognized in earlier cloudy radiance DA studies.

SIGNIFICANCE STATEMENT: Satellite observations in cloudy regions are not used in most current operational
weather prediction systems due to complex nonlinear relations between satellite-observed quantities, the radiances,
and model state in such regions. The models also must predict clouds reasonably well for cloudy observations to be
effectively assimilated. The latest NOAA geostationary satellites can provide radiance observations at high spatial and
temporal resolutions and such data in both cloudy- and clear-air regions are assimilated using an advanced data assimi-
lation method into a model that explicitly represents convection. Forecasts up to 4 h are improved by the assimilation
while several issues associated with the assimilation are discussed. The study contributes to the eventual use of all-sky
satellite radiance data in operational models.

KEYWORDS: Satellite observations; Numerical weather prediction/forecasting; Cloud resolving models;
Data assimilation; Ensembles

1. Introduction

High-impact weather events, such as hurricanes, severe
thunderstorms, and tornadoes, cause significant property loss
and fatalities. The short-range prediction of these weather
events is, therefore, important but still very challenging mostly
because of their rapid evolution and insufficient accuracy in
the initial conditions of numerical weather prediction (NWP)
models. Where Doppler weather radar data are available, the
assimilation of radar reflectivity and radial velocity observa-
tions provides important information on convective storms
and precipitation systems, and has been shown to improve
short-range forecasting of high-impact weather (e.g., Kain et al.
2010; Stensrud et al. 2013; Sun et al. 2014). However, opera-
tional Doppler weather radars typically do not measure non-

precipitating clouds or the environment outside storms. Also,
the coverage of operational weather radars is usually limited
to regions over land and even over land there are often mea-
surement gaps due to blockages, etc. In comparison, satellite
observations usually have much wider spatial coverage and
can provide information on atmospheric environmental tem-
perature, moisture and cloud properties prior to the formation
of precipitation particles that can be detected by weather
radars.

With the aid of radiative transfer models (RTMs), a large
number of infrared (IR) and microwave (MW) satellite radi-
ance data have already been directly assimilated into global
as well as regional models, and are proven to yield great bene-
fits (Eyre et al. 1993; Derber and Wu 1998; McNally et al. 2006;
Pavelin et al. 2008; McNally 2009; Geer et al. 2010; Okamoto
2013; Zhu et al. 2016; Geer et al. 2018). Compared to geosta-
tionary satellites, data from polar-orbiting satellites have shown
larger impacts in global models. However, instruments on boardCorresponding author: Ming Xue, mxue@ou.edu
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polar-orbiting satellites usually have low temporal resolutions
(typically twice a day) that are insufficient for mesoscale or
storm-scale applications. Geostationary instruments are able to
observe Earth every few minutes with higher spatial resolutions
(often less than 10 km); therefore, making it possible to provide
nearly continuous coverage of the evolution of weather phe-
nomena even at the convective scale (Stengel et al. 2009; Zou
et al. 2011).

In recent years, the new-generation geostationary weather
satellites, including Himawari-8/9 operated by the Japan Me-
teorological Agency (Bessho et al. 2016), the GOES-R series
operated by the U.S. National Oceanic and Atmospheric Ad-
ministration (Schmit et al. 2005) and the Fengyun-4 series op-
erated by the China Meteorological Administration (J. Yang
et al. 2017), were launched successively, carrying more ad-
vanced and upgraded instruments than their predecessors, in-
cluding the infrared imagers the Advanced Himawari-8/9
Imager (AHI), the Advanced Baseline Imager (ABI), and the
Advanced Geosynchronous Radiation Imager (AGRI) on
these respective satellites. Due to their much higher spatial
and temporal resolutions, the assimilation of such observations
has great potential to improve severe weather forecasting.

Observations and their derived products from geostation-
ary satellites have been assimilated into NWP systems for sev-
eral decades. Many studies have demonstrated the positive
impacts of assimilating clear-sky geostationary IR radiances
(e.g., Köpken et al. 2004; Szyndel et al. 2005; Montmerle et al.
2007; Zou et al. 2011; Qin et al. 2013; Zou et al. 2015; Ma et al.
2017; Qin et al. 2017; C. Yang et al. 2017; Wang et al. 2018)
and more recently of satellite-derived cloud water path
(CWP) products (Jones et al. 2013a; Chen et al. 2015; Jones
and Stensrud 2015). However, direct assimilation of geosta-
tionary IR radiance data in cloudy regions and within convec-
tive scale models is still very limited. The short predictability
of cloud features (Fabry and Sun 2010) and the strong nonlin-
ear dependency of cloudy radiance on thermodynamic and
hydrometeor profiles are some of the reasons. To effectively
assimilate cloudy radiance, the forecast model that provides
background has to be able to produce reasonable prediction
of simulated radiance in cloudy regions.

Some progress has been made in the direct assimilation of
cloudy radiance data very recently. At the convective scale,
precipitation microphysics plays an important role, and cloud
and hydrometeors are directly involved in the cloudy radiance
calculation (e.g., Cintineo et al. 2014). Unlike variational data
assimilation (DA) methods where the tangent or adjoint mod-
els of the observation operators, the RTMs in this case, are
needed, ensemble DAmethods, such as the ensemble Kalman
filter (EnKF; Evensen 1994) is much easier to implement
when the observation operators are complex. EnKF derives
flow-dependent background error covariances from ensemble
forecasts, and can thereby update many state variables not di-
rectly observed; therefore, it has additional benefit for DA ap-
plications at the convective scale where observed parameters
tend to be more limited compared to the number of state vari-
ables (Snyder and Zhang 2003; Tong and Xue 2005; Aksoy
et al. 2009; Dowell et al. 2011; Yussouf et al. 2015). Consider-
ing these aspects, most studies on the assimilation of all-sky

geostationary IR observations into convective-scale models
have chosen to use EnKF or its variants, either with simulated
observations (e.g., Cintineo et al. 2016; Zhang et al. 2016;
Minamide and Zhang 2017) or real observations (e.g., Honda
et al. 2018; Jones et al. 2018; Minamide and Zhang 2018;
Zhang et al. 2018; Sawada et al. 2019; F. Zhang et al. 2019;
Y. Zhang et al. 2019; Jones et al. 2020).

Most earlier attempts to assimilate ABI radiance data used
synthetic or simulated observations via observing system sim-
ulation experiments (OSSEs). For example, Otkin (2010,
2012a) assimilated hourly clear and cloudy synthetic ABI win-
dow channel brightness temperatures (BTs) onto a 12-km
grid spacing model using ensemble adjustment Kalman filter
(EAKF; Anderson 2001) implemented in the Data Assimila-
tion Research Testbed (DART) system for an extratropical
cyclone case, and examined the impact of different horizontal
localization radii. Otkin found assimilating window channel
BTs improves cloud analyses and forecasts but also has the
tendency to degrade moisture and thermodynamic fields un-
less using a small localization radius of 100 km. Otkin (2012b)
assimilated three ABI water vapor channels and demon-
strated their enhanced abilities to improve not only cloud
analysis but also moisture, temperature, and wind fields, as
compared to the window channel. In the OSSE study of Jones
et al. (2013b), simulated ABI 6.95-mm water vapor channel
BTs were assimilated in a more frequent 5-min assimilation
intervals together with simulated WSR-88D radar reflectivity
and radial winds at a 15-km grid spacing using EAKF for a
cool-season extratropical cyclone. They found that ABI BTs
can provide additional improvements in the mid and upper
tropospheric cloud and humidity analyses when assimilated
together with radar observations. The follow-on study of
Jones et al. (2014) examined the impacts of the ABI BT and
radar DA of Jones et al. (2013b) on 1–3-h forecasts and found
the assimilation of ABI 6.95-mm BTs primarily improved wa-
ter vapor and ice cloud forecasts whereas radar observations
improved the lower and middle tropospheric hydrometeor
fields most. The effects of assimilating BT data decreased rap-
idly after 1 h of forecast. Compared to the above studies that
used non-convection-allowing resolutions, Cintineo et al.
(2016) assimilated bias-corrected synthetic ABI BTs and ra-
dar observations into a 4-km grid spacing convective-allowing
model. Different covariance localization radii of ABI BTs
were tested, and a radius of 28 km was found to perform best.
All these tests were done with simulated ABI observations
through OSSEs.

Following those previous OSSE efforts, convective-scale as-
similations of real all-sky Himawari-8/9 AHI and GOES-R
ABI IR BTs have been carried more recently. Using the local
ensemble transform Kalman Filter (LETKF; Hunt et al.
2007), Honda et al. (2018) assimilated all-sky AHI BTs from
Himawari-8 for the first time to investigate its impact on the
analyses and forecasts of Supertyphoon Soudelor (2015) and
found the analyzed TC structure and intensity forecasts are
improved. Using the Pennsylvania State University (PSU)
WRF-EnKF system, Minamide and Zhang (2018) demon-
strated that hourly assimilation of AHI BTs can constrain
Typhoon Soudelor’s inner-core moist convection and develop
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a more resilient initial vortex. Again using the PSU EnKF sys-
tem, Zhang et al. (2018) presented successful assimilation of
real GOES-R ABI observations for a tornadic thunderstorm
case and found all-sky ABI radiances can help suppress spuri-
ous model clouds before storm initiation and improve the
prediction of midlevel mesocyclone and low-level vortex sig-
natures. Sawada et al. (2019) assimilated multichannel AHI
BTs into a 2-km limited area model in Japan region using
LETKF with a running-in-place (RIP) technique that assimi-
lated the same observations a number of times. The results in-
dicated positive contribution of AHI infrared radiances to the
forecast of isolated and disorganized convective activities in
much smaller spatiotemporal scales. Following Zhang et al.
(2018), real ABI IR radiances were assimilated together with
radar data and additional benefit of the former was achieved.
Jones et al. (2020) showed that all-sky radiance assimilation
improved convective initiation forecast of severe storms in sev-
eral instances within the Warn-on-Forecast System (Wheatley
et al. 2015).

To better utilize all-sky IR radiances, Minamide and Zhang
(2017) proposed, for OSSE experiments for a tropical cyclone
(TC), an adaptive observation error inflation (AOEI) method
aiming at limiting erroneously large analysis increments when
the observation innovation is large. In Minamide and Zhang
(2019), an adaptive background error inflation (ABEI) method
was further proposed to help initiate convection within TCs
when the background spread is too small. Otkin et al. (2018) and
Otkin and Potthast (2019) developed and tested a nonlinear bias
correction algorithm for IR BT data and obtained promising
results.

Despite the afore-referenced work, the number of studies
assimilating real all-sky GOES-R ABI data into convection-
allowing/resolving models for improving short-range convec-
tive-scale weather prediction is still very limited. There are
still many issues needing more careful investigation before
such all-sky observations can be assimilated routinely or oper-
ationally to achieve robust positive impacts. Within the United
States, it is very desirable to test the data impact within a DA
system, such as the Gridpoint Statistical Interpolation (GSI;
Kleist et al. 2009) system, that is used by operational forecast
systems for easier operational implementation. Also, a better
understanding is needed of how the assimilation of cloudy and
clear-sky IR BT observations impacts, both positively and neg-
atively, the analyzed storms as well as their environment in
terms of individual state variables and on subsequent fore-
casts. Further, for high-density all-sky BT observations, appro-
priate data thinning and covariance localization need further
testing. Finally, how to better handle highly nonlinear observa-
tion operator in EnKF also deserves attention.

In this study, we explore the impact of assimilating GOES-R
ABI IR BTs on improving the analysis and forecast of a meso-
scale convective system (MCS) case in a 3-km convection-
allowing model using GSI-based EnKF system. The ability of
real all-sky ABI IR observations to build up observed storms
and remove spurious model storms are examined. We also
compare the results of using different ABI horizontal locali-
zation radii and assimilation intervals, as well as using two
variations of the EnKF ensemble mean update equation.

Significant differences are found with the assimilation results
between two different ways of calculating the ensemble mean
of BT observation prior, due to the high nonlinearity of the
BT observation operator in the presence of clouds. Further-
more, the background error correlations between simulated
BTs and model state variables, and the corresponding analy-
sis increments are analyzed to gain understanding on how BT
data impact different state variables. It is worth noting that
certain conclusions drawn based on a single test case in this
study will need to be tested with more cases for them to be
robust. The use of a single case makes it easier to investigate
specific behaviors in more details. We believe the results on
the ways the ensemble mean of ABI observation priors are
calculated are general.

The rest of this paper is organized as follows. Section 2 pro-
vides a brief description of the GOES-R ABI observations
used in this study. Descriptions of the EnKF algorithms, obser-
vation operator, and experiment design are given in section 3.
Results are given in section 4. Summary and conclusions are
provided in section 5.

2. GOES-16 ABI observations

GOES-16, launched by NASA and the National Oceanic
and Atmospheric Administration (NOAA) on 19 November
2016, is the first geostationary weather satellite of the NOAA
GOES-R series. ABI is a multichannel passive imaging radi-
ometer on GOES-R series designed to sense various surface
parameters and atmospheric phenomena. It has 16 spectral
bands in total, including 2 visible channels, 4 near-infrared
channels and 10 infrared channels (Schmit et al. 2017). The
spatial resolution of each ABI channel is between 0.5 and
2 km at subsatellite point, which is much higher than its pred-
ecessors. Three water vapor channels (channels 8–10) strongly
affected by atmospheric humidity are located at the middle
and upper troposphere. To avoid interchannel observation er-
ror correlations caused by the overlapping measurements of
adjacent channels, only observations from ABI channel 10
(7.3 mm) are assimilated, as it is more sensitive to low level
moisture and cloud properties.

The ABI BT data used in this study are the 5-min-interval
Multiband Cloud and Moisture Imagery products (MCMIP)
over a CONUS domain downloaded from NOAA’s Compre-
hensive Large Array-Data Stewardship System (CLASS).
These ABI brightness temperature products are derived from
the calibrated ABI level 1b radiances. Satellite zenith angle,
which will be an input parameter to the radiative transfer
model used as the ABI observation operator, is calculated fol-
lowing C. Yang et al. (2017), along with geolocation for each
BT pixel. Also, a parallax correction (e.g., Wang and Huang
2014) using ABI L2 Cloud Top Height (ACHA) products is
applied for cloudy BTs to reduce the “parallax error” caused
by the slantwise nature of satellite observation.

Following Zhang et al. (2018) and (Y. Zhang et al. 2019),
no extra thinning and quality control procedures are applied
to BT observations in this study so that detailed structures of
convective-scale weather systems can be better captured by
the high-resolution satellite observations. Although spatial
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error correlations may exist with the high-resolution observa-
tions, their effects can be partly reduced by inflating observa-
tion error somewhat. We do not apply bias correction here
because the rapid change in bias characteristics in both model
and observations at the convective scale makes online bias
correction (e.g., Zhu et al. 2019) more difficult. Bias correc-
tion of cloudy radiance data for convective scale DA is an im-
portant research topic that is beyond the scope of this study.

3. Methodology and experimental setup

a. GSI-based EnKF and radiative transfer model

An enhanced GSI-based EnKF DA system is used in this
study for the assimilation of all-sky GOES-R ABI BTs. The
ensemble DA algorithm used is the ensemble square root fil-
ter (EnSRF; Whitaker and Hamill 2002).

EnSRF is a serial filter, which means that the model state is
updated by one observation at a time. Within GSI EnKF, this
update process is done using the so-called “scalable” imple-
mentation of the filter (Anderson and Collins 2007), in which
both model state variables and precalculated observation pri-
ors are updated within the observation loop so as to avoid re-
computing the observation priors after each observation is
assimilated. The “scalable” implementation yields theoreti-
cally the same results as the observation recomputing method
only when the observation operator is linear.

According to Whitaker and Hamill (2002), by separating
the prior ensembles into an ensemble mean and perturba-
tions, model variables updated by a single observation follows
the equations below in EnSRF:

xa 5 xb 1 Kx(yo – yb), (1)x′ai 5 x′bi – K̃xy
′b
i , (2)

where x and x′i are, respectively, the ensemble mean and per-
turbation of state vector x, with superscripts a denoting the
analysis and b denoting the background. Subscript i indicates
the ith ensemble member. The term yo is the (single) observa-
tion being assimilated; yb and y′bi indicate the mean and per-
turbation of observation prior updated by the previous
observations. The term Kx is the Kalman gain and K̃x the
“reduced” Kalman gain to be given later.

After the update of model state variables, the ensemble
mean and perturbation priors of the observation being assimi-
lated are also updated before the assimilation of the next ob-
servation. Similar to Eqs. (1) and (2), the corresponding
equations are

ya 5 yb 1 Ky(yo – yb), (3)

y′ai 5 y′bi – K̃yy
′b
i : (4)

Here ya and y′ai are the updated observation prior mean and
perturbations after assimilating the current observation.

In Eqs. (1) and (3), Kx and Ky represent the Kalman gains
defined by Eqs. (5) and (6) below, and are used to update the
mean state variables and observation priors, respectively.
The K̃x and K̃y terms in Eqs. (2) and (4) are the “reduced”

Kalman gains used to update the perturbations and are given in
Eqs. (7) and (8):

Kx 5 PHT(HPfHT 1 R)21, (5)

Ky 5 (HPHT)(HPHT 1 R)21, (6)

K̃x 5 1 1

�����������������
R

HPHT 1 R

√( )21

Kx, (7)

K̃y 5 1 1

����������������
R

HPHT 1 R

√( )21

Ky, (8)

where P is the background-error covariance matrix and R is
the observation-error covariance matrix. The algorithms in
Eqs. (1)–(4) are repeated for all observations, one at a time in
a serial manner.

To use the parallel (Anderson and Collins 2007) algorithm
described above, the mean and perturbations of all observa-
tion priors need to be computed first by applying the forward
observation operator to the background state before actual
assimilation. In GSI, the observation prior mean y and pertur-
bation y′ vectors are calculated by

y 5 H(xb), (9)

y′i 5 H(xi) – H(xb), (10)

whereH is the observation operator.
Note that for the calculation of y in Eq. (9), the observation

operator is applied to the mean background state as in current
GSI EnKF system. Here, we will test an alternative that calcu-
lates y as the mean of the observation priors of all members,
i.e., as H(xb). The two are the same if the observation opera-
tor is linear. For nonlinear operators, such as the radiative
transfer model in cloudy regions, the choice of H(xb) or
H(xb) can make big difference, as will be shown later. We
note here that this alternative formulation is actually com-
monly used in previously published EnKF algorithms (e.g.,
Houtekamer and Mitchell 2001; Evensen 2009).

For the assimilation of satellite radiance including the ABI
BT in this paper, the Community Radiative Transfer Model
(CRTM; Han et al. 2006) is used as the forward observation
operator. CRTM is a rapid radiative transfer model developed
by Joint Center for Satellite Data Assimilation (JCSDA) and
it is integrated in the GSI EnKF system. This study uses
CRTM version 2.3.0 to compute the observation priors of ABI
infrared BT in clear and cloudy regions. For cloudy BT, mix-
ing ratios of hydrometeors including cloud water (qc), cloud
ice (qi), snow (qs), rainwater (qr), and graupel (qg) are part of
the input, in addition to temperature, water vapor, 10 m winds,
and land surface parameters. The effective radii of hydrome-
teors needed by CRTM are calculated based on the drop size
distribution assumptions of the Thompson microphysics scheme
(Thompson et al. 2008).
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b. Experimental setups

The MCS event from 12 to 13 July 2018 over the U.S. Central
Plains is selected as a test case for examining the impacts of as-
similating GOES-16 ABI BT data. The Weather Research and
Forecasting Model with Advanced Research dynamic core
(WRF-ARW) version 3.8.1 (Skamarock et al. 2008) is used as
the forecast model.

Our experiments use a single domain with a 3-km horizon-
tal grid spacing covering the central Great Plains, and there
are 3003 300 grid points in the horizontal. There are 50 verti-
cal layers with vertical grid stretching and the model top is at
50 hPa. The EnKF system includes 40 WRF ensemble forecast
members with different combinations of surface layer and
planetary boundary layer (PBL) parameterization schemes
following Kong et al. (2020).

The initial conditions of the ensemble forecasts are created
by adding perturbations derived from the 3-h forecasts of
1500 UTC cycle operational Short-Range Ensemble Forecast
(SREF) system to the operational North American Mesoscale
Forecast System (NAM) analysis valid at 1800 UTC (see Labriola
et al. 2021 for more details). Perturbations are constructed by tak-
ing the positive and negative differences between pairs of mem-
bers from the 24 SREF members. Some of these differences are
reused to generate a total of 39 perturbations. The perturbations
of u and y wind components, temperature, and water vapor mix-
ing ratio are then scaled with domain-averaged standard devia-
tions of 2 m s21, 18C, and 0.5 g kg21, respectively, before being
added to the NAM analysis. The 40 ensemble members are cre-
ated with those 39 perturbed members (i.e., member 2–40) and
one unperturbed member (member 1). The 3-h spinup ensemble
forecasts are carried out from 1800 to 2100 UTC 12 July when
the assimilation of ABI radiance starts.

For model physical parameterizations, we use partially double-
moment Thompson microphysics scheme (Thompson et al.
2008), the Rapid Radiative Transfer Model for General Cir-
culation Models (RRTMG) for longwave and shortwave ra-
diation (Iacono et al. 2008) and the Noah land surface model
(Chen and Dudhia 2001). The surface layer schemes used for the
ensemble members include the revised MM5 Monin–Obukhov
scheme (Jiménez and Dudhia 2012), the Monin–Obukhov Janjić
Eta scheme (Janjić 1996) and that from the Mellor–Yamada–
Nakanishi–Niino (MYNN) PBL scheme (Nakanishi 2001). The
PBL schemes used are the Yonsei University (YSU) scheme
(Hong et al. 2006), Mellor–Yamada–Janjić (MYJ) scheme (Janjić
1994), the MYNN level 2.5 scheme (Nakanishi and Niino 2006),

and the Asymmetrical Convective Model 2 (ACM2) scheme
(Pleim 2007). Using different combinations of PBL and sur-
face layer schemes aims to account for model error, and helps
increase the ensemble spread. This configuration is similar to
that of the 2018 Hazardous Weather Testbed (HWT) Spring
Experiment employed at the Center for the Analysis and Pre-
diction of Storms (CAPS). Cumulus parameterization is not
used in our 3-km domain.

Several experiments are performed. The control experi-
ment labeled as “CTRL” assimilates no observations within
the 2100–2300 UTC time window when other DA experi-
ments assimilate radiance data. CTRL continues the 2-h long
ensemble forecasts with the same configuration until 2300
UTC, when a deterministic forecast is started as in other DA
experiments, except from the ensemble mean of forecasts.
This CTRL experiment serves as a no-DA reference for the
DA experiments to compare against.

An alternative to the no-DA CTRL used here as reference
is a deterministic forecast starting from 1800 UTC NAM anal-
ysis that is run all the way through the end of the forecast pe-
riod of DA experiments. Both forecasts can be used as a
baseline for comparison purpose, although the current CTRL
has procedurally smaller differences from the DA experi-
ments which involve ensemble forecasts through 2300 UTC.
The convection in the ensemble mean initial condition at 2300
UTC for the deterministic forecast in the current CTRL is
subject to smoothing due to ensemble averaging, which may
lead to weaker convection in the initial forecast. The deter-
ministic forecast from 1800 UTC would not suffer from such
smoothing from 2300 UTC. This alternative forecast is also
performed and is named DETER in Table 1. Its forecast re-
sults will be included for comparison.

After 2 h of cycled DA, 4-h deterministic forecasts are run
from the ensemble mean final analysis at 2300 UTC for each
experiment, with NAM analyses at 3-h intervals providing the
lateral boundary conditions.

The first DA experiment (referred to as “MHX”) assimi-
lates all-sky ABI channel 10 BTs every 5 min using the modi-
fied EnSRF algorithm in GSI mentioned in section 3a that the
observation prior mean is calculated from H(xb), while the
second DA experiment (referred to as “HMX”) uses H(xb)
to calculate observation prior mean. The third experiment is
similar to “MHX,” except that it assimilates ABI BTs every
15 min (referred to as “MHX_15min”). These experiments
use a horizontal localization radius of 30 km. More details can
be found in Table 1.

TABLE 1. Descriptions of experiment settings.

Experiment name
Observation prior

mean (y)
EnKF interval

(min)
Horizontal localization

radius (km)
Vertical localization
radius (scale height)

CTRL } } } }

DETER } } } }

MHX_15km H(xf ) 5 15 4
MHX_50km H(xf ) 5 50 4
HMX H(xf ) 5 30 4
MHX H(xf ) 5 30 4
MHX_15min H(xf ) 15 30 4
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Twoadditional sensitivityexperimentsnamedas“MHX_15km”

and “MHX_50km” are carried out to test different localization
radii for all-sky ABI BTs. These two experiments are the
same as MHX except that the horizontal localization radius is
15 or 50 km, respectively. Figure 1 shows the experiment
workflows.

In all DA experiments, the observation height of ABI radi-
ance is assigned to the level where the atmospheric transmit-
tance changes the fastest, i.e., at the peak level of simulated
weighting function in clear-sky region or the ensemble mean
background cloud top when cloud is present in the column.
The height for ABI observation is only used for vertical locali-
zation purpose within the EnSRF algorithm. For clear-sky
ABI observations, observation error is set to 3 K, same as that
used in Zhang et al. (2018). An AOEI technique (Minamide
and Zhang 2017) is applied to adaptively inflate observation
error variance when the magnitude of calculated observation
innovation is large. Spatial covariance localization is applied
with the Gaspari and Cohn (1999) method with a horizontal
localization radius ranging between 15 and 50 km, as described
earlier. A relative broad vertical localization radius of 4.0 in
units of scale height is used in this study following Jones et al.
(2018). To help maintain ensemble spread and prevent the filter
divergence, the relaxation to prior spread (RTPS; Whitaker and
Hamill 2012) inflation method with an inflation parameter of
0.95 as used in Sawada et al.(2019) and Kong et al.(2020) is ap-
plied in each DA cycle. We also tested other covariance infla-
tion methods, including the relaxation to prior perturbation
(RTPP; Zhang et al. 2004) method and a combination of RTPS
and RTPP. The observation priors and posteriors had the small-
est biases and root-mean-square innovations (RMSIs) with
RTPS. Meanwhile, the ensemble spreads of RTPS were better

maintained compared to using RTPP or using RTPS and RTPP
together (figures not shown). The atmospheric state variables
analyzed by the EnSRF include three wind components, poten-
tial temperature, water vapor, hydrometeor mixing ratios, and
the number concentrations of ice and rainwater. For hydrome-
teors and number concentrations, an ad hoc adjustment used in
Zhang et al. (2016) was applied to the posterior ensembles to
avoid negative water vapor and hydrometeors; certain positive
values are reduced when negative values are set to zero to keep
the ensemble mean unchanged.

4. Results

a. Sensitivity experiments to horizontal
localization radius

Figure 2 shows the time series of the domain-averaged
biases and RMSIs for clear and cloudy ABI channel-10
BTs during the entire DA cycles in experiments MHX,
MHX_15km,MHX_50km, when different horizontal localization
radii of 30, 15, and 50 km are used, respectively. Here, the bias
and root-mean-squared innovation (RMSI) are calculated as

bias 5
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∑
M

m51
[ym –H(xm)], (11)
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√
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where M is the number of clear or cloudy observations within
the entire WRF domain. Note that the innovation used for
the calculating bias and RMSI is defined in terms of the

FIG. 1. Flow diagram of experiment design for DETER, CTRL, and cycling EnKF experiments. The 3-h spinup
ensemble forecasts with 40 members are initialized from 1800 UTC operational NAM analysis plus perturbations
derived from 3-h SREF forecasts. Deterministic forecasts are carried from 2300 to 0300 UTC. ABI BT data are assim-
ilated from 2100 through 2300 UTC at 5- or 15-min intervals. CTRL contains ensemble forecasts without DA through
2300 UTC when a deterministic forecast starts from its ensemble mean. DETER is a deterministic forecast from
1800 to 0300 UTC initialized from the 1800 UTCNAM analysis.
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observation minus the ensemble mean prior [yo – H(xb)] or
posterior [yo – H(xa)]. The channel-10 observations to be as-
similated at locations where ABI channel-14 (11.2 mm) BTs
are lower (higher) than 285 K are treated as cloudy (clear)
sky observations. This criterion is similar to that used in
Zhang et al. (2016, 2018). Under clear sky, within the first
75 min the biases and RMSIs are the largest using the 15-km
radius (Figs. 2a,c). Because most of the misfit to observations
comes from the background having spurious clouds or con-
vection, the results indicate that the effectiveness in removing
spurious convection is reduced when using a small 15-km
localization radius. The differences are relatively small between
30- and 50-km radii. However, the prior RMSIs for the 50-km
radius case became the largest in the last 30 min of DA, appar-
ently because of the generation of some new small spurious
storms during that period. The differences in RMSI are rela-
tively small though.

In cloudy regions, the 15-km radius case still has the overall
largest RMSI, especially during the second hour of DA. The
50-km case has the smallest bias and RMSI (Figs. 2b,d). Nega-
tive cloudy biases occur in these experiments after 2115 UTC
with increase in RMSIs. Unlike the clear sky regions, the dif-
ferences in cloudy biases and RMSIs among the three experi-
ments are small in the earlier cycles but become larger after
2140 UTC. As will be discussed more later, an important role
of cloudy radiance DA is to build up clouds and convection
that are missing in the forecast background. The 30- and
50-km radii appear to better able to build up observed convec-
tion missing in the background, presumably due to increased

impact of the observations when they influence more grid
points in the EnKF updating.

Neighborhood equitable threat scores (ETS; Mason 2003)
of composite reflectivity forecasts are calculated and shown in
Fig. 3. A 15-km neighborhood radius is used to accommodate
small displacement errors (Ebert 2009). For the 20-dBZ
threshold (Fig. 3a), the 30-km localization radius has the high-
est ETS, while the 50-km radius scores the lowest almost
throughout the forecast. For the 40-dBZ threshold, the 50-km
radius still underperforms the other two. The 15- and 30-km
radii alternate to have higher scores several times during the 4 h
of forecasts, and have similar performance on average. Overall,
the 50-km radius clearly has the lowest ETSs despite the smallest
observation minus background (O-B) and observation minus
analysis (O-A) biases and RMSIs during the DA cycles. Smaller
O-A differences do not necessarily mean more accurate analyses
because more state variables are not directly measured and do
not directly contribute to the O-A calculation. The 5-min fore-
casts may be too short to gauge the quality of analyses in terms
of O-B statistics. In the absence of truth about the state variables,
ensuing forecasts often have to be relied upon to gauge the true
quality of analysis. The poorer forecast in MHX_50km is most
likely due to the location displacement between observed and
analyzed convection, as well as the generally less accurate
moisture and thermodynamic analyses resulting from over-
spreading of cloudy radiance observation information when
using a relatively large radius of influence (figures not shown).

The results of above sensitivity experiments suggest that a
horizontal localization radius of 30 km is overall the best

FIG. 2. Time series of (a),(c) clear-sky and (b),(d) cloudy-sky channel-10 (top) BT biases [y– H(x) ] and (bottom)
RMSIs for the priors or background forecasts (typically high values at a given time) and posteriors or analyses (typi-
cally low values at a given time) during the entire EnKF cycles, for experiments with 15- (red), 30- (blue), and 50-km
(green) localization radius.
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choice among the three tested, and it is, therefore, used in all
remaining DA experiments in this study. This localization ra-
dius is similar to that used in the previous works for mesoscale
convective system applications at convection-allowing resolu-
tions (e.g., 28 km in Cintineo et al. 2016; 30 km in Zhang et al.
2018; 35 km in Otkin and Potthast 2019; and 36 km in Jones
et al. 2020) when assimilating ABI or SEVIRI data. It is,
however, larger than the radii typically used for radar DA on
;3-km grids (e.g., Sobash and Stensrud 2013; Wheatley et al.
2015; Kong et al. 2018; Tong et al. 2020).

b. Impact of all-sky ABI radiance on EnKF analyses

Comparison between observed and simulated ABI channel
10 BTs for experiments CTRL and MHX at 2100 (the first
DA cycle), 2200, and 2300 UTC (the last DA cycle) is shown
in Fig. 4. In the ensemble prior mean at 2100 UTC, there is a
large region of spurious clouds from southeastern Minnesota
to western Wisconsin (Fig. 4b), where the sky is observed to
be mostly cloud free (Fig. 4a). After the first EnKF cycle,
much of the cloud in this region is significantly reduced by the
assimilation of ABI radiance (Fig. 4c). Spurious background
clouds in northern Nebraska are also much reduced. By
2200 UTC, after a full hour of ABI radiance assimilation at
5-min intervals, almost all spurious clouds can be effectively
cleared (Fig. 4f) even though the forecast background still has
significant overprediction (Fig. 4e). The clouds in Nebraska
are very well reproduced in the analysis while those in eastern
South Dakota and southern Minnesota are somewhat under-
estimated in size and intensity (Fig. 4f). After 2 h of DA, the
difference between the analyzed (Fig. 4i) and observed
(Fig. 4g) BTs becomes quite small, indicating that the cycled
EnKF DA is very effective in ensuring close fit of the analysis
to observations (Fig. 4i). As a comparison, all the major sys-
tems found in the 2100 UTC background (Fig. 4b) continue to
develop in CTRL within the 2-h free ensemble forecasts with
much wider coverage of clouds but lower intensities than ob-
servations (not shown). We point out here that even though
the analyzed BT at 2300 UTC is very close to observed values
(Fig. 4i), the ensemble forecast mean in CTRL at the same time
still significantly overforecast the cloud coverage (Fig. 4h),

suggesting that errors in the analyzed state variables may still
contain significant error, causing quite fast forecast error growth.

The time series of domain-averaged bias, RMSI, ensemble
spread, and prior consistency ratio (CR) (Dowell et al. 2004;
Aksoy et al. 2009; Dowell and Wicker 2009) during each
EnKF cycle are also calculated for all three EnKF experi-
ments (“HMX,” “MHX,” and “MHX_15min”). The ensem-
ble spread and CR are defined as

spread 5
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where y – H(x) represents the prior or posterior innovation
and sobs is the observation error standard deviation. The
terms M and N are the number of observations and ensem-
bles, respectively. Note that the quantification of the observa-
tion error for satellite radiance is difficult, we choose to set
sobs to 3 K (the clear sky value without inflation) here, which
is different from the adaptively inflated observation error
(Minamide and Zhang 2017) used in the EnKF.

As shown in Fig. 5, assimilating all-sky ABI radiance has
the greatest impact in the first few cycles as biases for all three
experiments significantly decrease from their initial values of
;6.9 K, and biases remain relatively small thereafter (Fig. 5a).
Bias in MHX is closest to 0 K, while in MHX_15min, the prior
or forecast biases are much larger due to the longer DA cycles
used (15 vs 5 min) that results in more forecast errors. In ex-
periment HMX, the BT bias is reduced to about 21 K after
the first cycle and remains negative during the entire EnKF
cycles. This negative bias is associated with excessive back-
ground water vapor removal over cloudy regions in the back-
ground when H(x) is used to derive the prior innovation, as
drier moisture profiles lead to higher BTs. Meanwhile, more
spurious clouds are cleared in experiment HMX, which further
reduces positive biases.

RMSIs also decrease quickly in the first 15 min, owing to ef-
fective removal of spurious clouds. The reduction is largest in

FIG. 3. Neighborhood ETSs of composite reflectivity forecasts calculated with a 15-km neighborhood radius at
(a) 20-and (b) 40-dBZ thresholds for experiments using 15- (red), 30- (blue), and 50-km (green) localization radii.
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the first cycle (Fig. 5b). However, there is gradual growth in
RMSI from 2115 to 2200 UTC, resulting from a slower de-
velopment of new clouds in the analyses and forecasts com-
pared to observations. The RMSIs are decreased somewhat
again after 2200 UTC and reach minimum at the end of DA
cycles. The reduction of RMSI in HMX is initially larger
than that in MHX but becomes very close to that of MHX
until 2200 UTC when the RMSI of MHX becomes the
smallest. At the end of all DA cycles, the analysis RMSIs
are reduced to about 3.1, 3.6, and 5 K for MHX, HMX, and
MHX_15min, respectively. A larger RMSI of MHX_15min
is due to larger growth of RMSI during the longer 15-min
forecasts, and fewer DA cycles that serve to reduce the in-
novations (Fig. 5b).

The ensemble spreads are similar after 20 min for HMX
and MHX. The ensemble spread has been maintained at this
level using the RTPS covariance inflation; however, they are
still significantly lower than the corresponding RMSI. The
RMSIs of MHX_15min are more than twice as large, due to
the assimilation of much fewer observations. Not surprisingly,
prior CRs for all experiments are consistently below the opti-
mal value of approximately 1, suggesting that the ensemble
spread is low and/or observation error is specified to be too
small [see Eq. (14)]. We do point out that the observation er-
ror variance sobs used in Eq. (14) is 3 K while within EnKF it
is inflated to much larger values within cloudy regions that
have large background innovations. This would significantly
increase the actual CR in these areas.

FIG. 4. (left) Observations and simulated brightness temperatures (K) of ABI channel 10 for (center) CTRL ensemble mean forecasts
and (right) ensemble mean analyses of experiment MHX valid at (a)–(c) 2100, (d)–(f) 2200, and (g)–(i) 2300 UTC. The red star and circle
in (b) denote clear and cloudy pixels, respectively. Figure shows the entire WRF domain.
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The CRs do increase in all three experiments in the last
45 min with that of MHX reaching 0.75 at the end. The under-
dispersion (too low spread) problem is regularly seen in high-
resolution radar DA studies; the horizontal resolutions of
radar data are similar to that of BTs in this study (Aksoy et al.
2009; Dowell andWicker 2009; Dowell et al. 2011; Snook et al.
2011). Dense observations tend to significantly decrease en-
semble spread, as seen in Fig. 5c. We tried adding random ad-
ditive perturbations to the model state variables, but the
results were not much improved; they are, therefore, not em-
ployed in experiments shown here.

For independent verification, simulated composite radar re-
flectivity fields from the final ensemble mean analyses are
compared with observed one in Fig. 6. All DA experiments
are able to capture the more intense precipitation band
(Figs. 6d–f) while the no-DA CTRL shows a much broader
band of weak precipitation and there is also significant dis-
placement error (Fig. 6b). For CTRL it should be noted that
the reflectivity at this time (Fig. 6b) is the mean of 5-h ensem-
ble forecasts (cf. Fig. 1); therefore, it tends to underestimate
the peak values of reflectivity and overestimate the spatial cov-
erage than individual ensemble members due to smoothing
across the members. As a comparison, the reflectivity at
2300 UTC in DETER is noticeably stronger with more distinct
convective cores and is also less widespread than in CTRL.
However, the convective line in southern Minnesota is signifi-
cantly displaced to the south and the north–south-oriented line
in western Nebraska is too strong and displaced to the west
(Fig. 6c). In experiments MHX and MHX_15min, the reflectiv-
ity fields generally match the observation much better. The
higher (.35 dBZ) reflectivity values show a better linear

structure and at locations close to observed, although their spa-
tial coverages are slightly larger than observed. In MHX_15min,
more spurious storms, in terms of high reflectivity, are analyzed
than in the other two DA experiments. Overall, the analyzed
composite reflectivity is much close to observations than those
in CTRL and DETER, which assimilate no BT data. In
section 4c, we compare forecasts starting from the final
analyses at 2300 UTC.

c. Impact of BT data assimilation on forecasts

Last subsection showed benefits of assimilating all-sky ABI
radiance in improving the analysis of simulated BTs and radar
reflectivity. In this subsection, simulated ABI channel 10 BTs
of deterministic forecasts starting from the final analyses of
the three DA experiments are compared to observations and
the reference forecasts (i.e., CTRL and DETER) in Fig. 7 up
to 4 h. Compared to CTRL and DETER, three DA experi-
ments are able to better forecast the cloud patterns and evolu-
tions of storms in the first 2 h of forecasts, although there are
still displacement and intensity errors. The simulated cloudy
BTs of all the experiments except DETER are overall warmer
than observation, primarily near cloud edges, likely indicating
weaker convections in these regions. In CTRL, cloud cover
decreases in the first 2 h instead of increasing as observed, and
the coverage starts to increase after 2 h (Figs. 7b2,b3).
DETER and CTRL show similar cloud patterns, with DETER
producing much larger cloud coverages and colder cloud-top
BTs. Experiment HMX performs better than CTRL but
not as well as MHX and MHX_15min, and not even com-
pared to DETER, as storms become weaker after 2 h. Both
CTRL and HMX fail to forecast the deep clouds in the

FIG. 5. Time series of channel 10 BT (a) biases [y – H(x) ], (b) RMSIs, (c) ensemble spreads, and (d) prior consistency
ratios during the entire EnKF cycles, for experiments HMX (red), MHX (blue), and MHX_15min (green).
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northeastern part of the convective line in the 3–4-h forecasts
(Figs. 7b3,b4,d3,d4), while they are significantly overpredicted
in DETER (Figs. 7c3,c4). MHX and MHX_15min are able to
grow the deep clouds over the 4-h period, as in observations,
and the clouds in eastern South Dakota cover slightly larger
area (more consistent with observations) in MHX than in
MHX_15min. The simulated clear-sky BTs are much higher in
HMX at 1 h (Fig. 7d1) than in MHX (Fig. 7e1) and MHX_15min
(Fig. 7f1) on the south side of the storms near the northeast
end of the line, suggesting that the storm inflow air in that
region is too dry and/or too warm. An inflow environment
that is too dry, which is more likely due to the higher sensi-
tivity of channel 10 to moisture than to temperature, will
cause the forecasted storms to be weaker or to decay with
time.

Figure 8 shows the time series of biases and RMSIs of ABI
channels 10 and 14 for the forecasts calculated every 5 min. In
terms of channel 10, the greatest improvements of assimilat-
ing all-sky ABI BTs are found with the forecast biases and
RMSIs in the first hour, during which all three DA experi-
ments show similar performance. The biases and RMSIs of
the three DA experiment started to diverge somewhat after

0000 UTC (Fig. 8a). HMX is the closest to CTRL with larger
negative biases and RMSIs than the other two DA experiments,
and it underperforms DETER as well after ;0040 UTC. Both
MHX and MHX_15min have smaller bias and RMSI than
CTRL during the 4 h of forecast, but only during the first 2 h of
forecast compared to DETER. Also, MHX_15min performs
slightly better than MHX. For ABI window channel 14, the fore-
cast errors of the experiments, especially those of CTRL and
DETER, grow quickly during the first hour to magnitudes much
larger than those of channel 10 due to the fact that channel 14 is
more sensitive to cloud and surface parameters (Fig. 8b). In
terms of channel 14 BT, CTRL and DETER exhibit more
similar error characteristics and the differences between these
two forecasts and the DA experiments are more notable.
Unlike channel 10, the channel-14 bias and RMSI of MHX are
the smallest among all experiments during almost the entire
forecast period.

The 1–4-h composite reflectivity forecasts for all experi-
ments are also compared with observations from the WSR-
88D radars mapped onto model grid points. As is displayed in
Fig. 9, the southwest–northeast precipitation band of the
MCS can be reproduced by the DA experiments but is

FIG. 6. (a) Observed and (b) simulated composite reflectivity (dBZ) for CTRL ensemble forecast mean, (c) DETER forecast,
(d) ensemble analysis mean of experiment HMX, (e) MHX, and (f) MHX_15min valid at 2300 UTC, the time of final analysis.
Black contours in (b)–(f) are for observed 40-dBZ composite reflectivity. Figure shows the entire WRF domain.
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missing in CTRL in the first 2 h of the forecast. In DETER,
the displaced convective line in southern Minnesota in the fi-
nal analysis (cf. Fig. 6c) decays while a new line develops
slightly north of the observed one (Fig. 9c1). In the subsequent

forecasts, the convective cores are stronger (Figs. 9c3,c4) than
in DA experiments and observations. Compared to the analy-
sis at the last EnKF cycle (Fig. 6) that has more intensive re-
flectivity with broader coverage than observed, the coverage

FIG. 7. (a1)–(a4) Observations and simulated brightness temperatures (K) of ABI channel 10 for (b1)–(b4) CTRL, (c1)–(c4) DETER,
(d1)–(d4) HMX, (e1)–(e4) MHX, and (f1)–(f4) MHX_15min experiments after deterministic forecasts of 1 h in (a1)–(f1), 2 h in
(a2)–(f2), 3 h in (a3)–(f3), and 4 h in (a4)–(f4) following 2-h DA (valid at 0000–0300 UTC). Figure shows the entire WRF domain.

FIG. 8. Time series of biases [y– H(x) ] (solid curves) and RMSIs (dashed curves) of ABI (a) channel 10 and (b) chan-
nel 14 for the deterministic forecasts of experiments CTRL, DETER, HMX, MHX, and MHX_15min.
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of moderate-to-large reflectivity (i.e.,.35 dBZ) in the forecast is
generally smaller than in observations for all three DA experi-
ments despite the still much higher reflectivity. In addition, the
leading edge of the MCS in the northeast part is poorly main-
tained in the forecast of HMX while in MHX and MHX_15min
the convective cores at the leading edge are much closer to

observations through the 4 h of the forecast (e.g., Figs. 9e4,f4)
and the forecast quality of MHX andMHX_15min are similar.

Neighborhood ETSs of the deterministic forecast for each
experiment are computed with a 15-km neighborhood radius
and are presented in Fig. 10. Generally, all three experiments
that assimilate ABI BTs outperform CTRL notably for both

FIG. 9. As in Fig. 7, but for composite reflectivity fields from (a1)–(a4) observations, (b1)–(b4) CTRL, (c1)–(c4) DETER, (d1)–(d4) HMX,
(e1)–(e4) MHX, and (f1)–(f4) MHX_15min.

FIG. 10. Neighborhood ETSs of composite reflectivity forecasts calculated with a 15-km neighborhood radius
at (a) 20- and (b) 40-dBZ thresholds for experiments CTRL (black), DETER (gray), HMX (red), MHX (blue),
and MHX_15min (green).
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weak and convective precipitation (in terms of weak and
strong reflectivity), indicating improvements in both precipita-
tion coverage and intensity forecast. For the threshold of
20 dBZ, CTRL experiences an increase in the first 10 min;
this is because of decrease in the forecast of too large spatial
coverage of weak reflectivity found in the initial condition
that is the ensemble mean of 5-h forecasts. Such spindown of
spurious weak echoes helps with the ETS in CTRL for a short
time. After 10 min, the ETS of CTRL drops quickly in the
first hour and then rises somewhat after ;0130 UTC when
new convection develops (cf. Fig. 9). The improvement over
DETER is, however, less obvious. ETS of DETER continu-
ously increases during the 4 h of the forecast from a relatively
low value of 0.35 at 2300 UTC to close to 0.6 at 0300 UTC.

For MHX and MHX_15min, there is also increase in ETS
in the first 10 min (Fig. 10a) for the 20-dBZ threshold. There
is also overestimation of weak reflectivity in the final analyses
of these two experiments (Fig. 6e), and most of the weak reflec-
tivity is cleared out during the first hour of forecast (Figs. 9d,e),
improving the ETSs. Similar overestimation is not seen in the fi-
nal analysis of HMX so an initial increase in ETS does not oc-
cur with HMX (Fig. 10a). The ETS of HMX decreases nearly
monotonically with forecast time from its initial higher value
than in other experiments, and even falls below that of DETER
at about 0100 UTC and becomes essentially the same as that of
CTRL after 0200 UTC. The drop in prediction skill is clearly
related to the significant underprediction of storms in the
northeast part of the MCS line (Figs. 9d2–d4). For MHX and
MHX_15min, after the first 10 min, the ETSs decrease at a rate
much slower than HMX and both are maintained at around 0.6
after 1 h. In terms of the 40-dBZ threshold corresponding to
strong convection, CTRL has much lower scores in the first
hour, after which it approaches that of HMX and exceeds its
score somewhat after 0145 UTC (Fig. 10b). HMX underper-
forms MHX and MHX_15min throughout the entire forecast
period. MHX_15min scores slightly higher than MHX because
it somewhat better captures the convection in the northeast
part of the MCS line (Fig. 9). It is worth noting that DETER
shows comparable (or even higher) ETSs than MHX and
MHX_15min after ;2330 UTC, probably because DETER
overpredicts convective cores which benefits ETS scores. Over-
all, MHX and MHX_15min give consistently higher ETSs than
HMX and CTRL for both 20- and 40-dBZ thresholds, and
higher than DETER for 20 dBZ. In the next section, we will
provide some explanations on the different behaviors of MHX
and HMX.

d. Error correlations and analysis increments in different
experiments

In this section, we try to gain some understanding on how
the assimilation of BT data affects different state variables.
Because the impact of the assimilation is largest in the first as-
similation cycles (cf. Fig. 5), we examine the background error
correlations between simulated BTs and the model state
variables as calculated from the ensemble background at
2100 UTC, before the first EnKF analysis. Two pixels under
different scene types are selected to illustrate the correlations,

including a clear-sky pixel (marked with a star in Fig. 4b) and
a cloudy pixel where background ensemble has spurious
clouds (marked with a circle in Fig. 4b).

Figure 11 gives the vertical cross sections of correlations
that pass through the representative locations of these two
pixels. In clear-sky condition, the correlations between BT
and model thermodynamic and dynamic variables show
smooth patterns in the horizontal which are linked to the syn-
optic scale flows and conditions. The positive correlations be-
tween BT and potential temperatures mainly occur in the
middle troposphere where the weighting function of ABI
channel 10 peaks. The dominant negative correlations be-
tween BT and water vapor are related to the absorption of
the outgoing longwave radiation. For horizontal wind compo-
nents, the correlations are mostly associated with the horizon-
tal transport of moisture. For example, in this case, the wind
that comes from southeast in the low troposphere brings in
drier air hence increasing the BT. Situations are quite differ-
ent when it comes to the cloudy condition; the correlations
become overall noisier mostly because of large variations of
hydrometeors in space and across ensemble members. The
upper boundary of positive (negative) correlations between
BT and potential temperature (water vapor) occurs near the
cloud top (marked by a circle). This is because infrared radia-
tion is unable to penetrate clouds; therefore, it is most sensi-
tive to cloud top temperature and water vapor when clouds
are present. Asymmetrical features can be seen in dynamic
fields resulting from the strong low-level inflow that comes
from the southeast of the storm, helping enhance updraft
hence having positive impact on convection strength. All hy-
drometeors show negative correlations with BT due to their
absorption and scattering of radiation. The correlations be-
tween BT and ice particles (qs, qi, qg) are generally stronger
and broader in vertical than liquid clouds (qr, qc), indicating
BT is more sensitive to ice particles. The spatial correlations
between BT and model state variables in clear sky and cloudy
regions shown suggest they are physical and such information
is used by EnKF to update individual state variables using ob-
served BT.

To examine the impact of actually assimilating ABI radi-
ance on model state variables, cross sections of analysis incre-
ment for potential temperature and water vapor mixing ratio
from HMX and MHX after the first EnKF cycle are com-
pared in Fig. 12. The plots are in the same vertical cross sec-
tions as in Fig. 11. It is seen that the adjustments to state
variables from clear sky BT observations are small for both
HMX and MHX due to the small clear sky BT innovations
(observation minus background simulation). Potential tem-
perature analysis increments are within a range from 21 to
1 K, and water vapor adjustments are mainly under 500 hPa
where moisture content is much higher (Figs. 12a,b). How-
ever, when the background ensemble mean is covered with
spurious clouds, the lower background BTs compared to ob-
servations result in large positive prior innovations. Then
based on the positive innovations and the positive (negative)
background error correlations displayed in Fig. 11, model
state variables show negative (positive) analysis increment ac-
cordingly, as shown in Figs. 12c and 12d. The increments are
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noticeably larger in cloudy sky than in clear sky. Also, under
cloudy sky both potential temperature and water vapor incre-
ments in HMX are generally larger in magnitude than those
in MHX. In terms of adjustment to hydrometeors, both HMX
and MHX work well in clearing spurious clouds as most
clouds are removed after the first EnKF cycle (see Fig. 13).
Clearly, HMX outperforms MHX in removing both frozen
and liquid hydrometeors because of its larger innovations cal-
culated based on the specific H(x) formula. It should also be
pointed out that assimilating all-sky ABI radiance clearly has
more impact on the analysis of frozen hydrometeors than liq-
uid hydrometeors, because of the higher sensitivity of ABI ra-
diance to upper-level hydrometeors based on the radiative
transfer model.

It is evident that in HMX, assimilating ABI radiance may
produce larger analysis increments than in MHX when the
background is covered with spurious clouds. However, the ef-
fect of these large increments still needs to be discussed since
erroneous analysis increments could result in model imbalan-
ces. Figure 14 shows the 850-hPa water vapor mixing ratio
from CTRL and the difference between the water vapor
of each DA experiment and CTRL at 2100, 2200, and

2300 UTC. After the first EnKF cycle, some water vapor in
the northeastern domain is reduced in HMX together with
the removal of spurious model clouds in this area, but this re-
duction is not seen in MHX or MHX_15min. Small positive
differences (or analysis increments) are observed for all three
DA experiments over southern Minnesota. They are probably
related to the less reliable background error covariance re-
lated to limited ensemble size and errors in the mean state. In
the subsequent DA cycles, those positive differences become
negative in HMX and MHX, and are moderate in MHX_
15min, further suppressing the development of spurious con-
vection. Meanwhile, the atmosphere becomes more moist
over the observed cloudy region (e.g., in western Nebraska),
contributing to redevelopment of new storms.

The difference between the DA experiments is also notice-
able. For example, in HMX, large negative differences be-
come dominant at the final analysis time (Fig. 14j) especially
over the forward region of the leading convective edge in
southern Minnesota. The environment field in MHX is overall
more moist than in HMX, but negative differences still occur
in the northeastern domain. In MHX_15min, smaller adjust-
ments are made to the same region, however. This significant

FIG. 11. East–west vertical cross sections of background error correlations between a simulated channel-10 brightness temperature un-
der (top) clear-sky condition and (middle),(bottom) cloudy-sky condition, with model state variables potential temperature (pt), water va-
por mixing ratio (qy), and wind components (u, y, w) in the top and middle rows and hydrometeors in the bottom row. The correlations
are calculated from 3-h ensemble forecasts at 2100 UTC, the start time of DA cycles. The clear and cloudy brightness temperature loca-
tions are marked as a star and circle, respectively, and they are placed at the level of their respective peak response function.
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overdrying behavior is probably responsible for the underper-
formance of HMX. On the other hand, a 15-min DA interval
provides more time for adjustment in the model, possibly re-
ducing imbalances among state variables and leading to a
comparable forecast performance as the 5-min interval
experiment.

Figure 15 shows the time series of the domain-averaged 500-
and 850-hPa forecast and analysis ensemble mean water vaper
mixing ratio (g kg21) for each experiment during throughout
the EnKF cycles. It is seen that MHX and MHX_15min
have higher domain-averaged water vapor at 500 hPa than
CTRL and HMX. This is due to more moisture removal in
HMX than in MHX and MHX_15min at this level following
the clearing of spurious model clouds in the first few of
EnKF cycles, while assimilating observations in cloud-free
area moistens the 500 hPa environment. After the first few

cycles, EnKF generally decreases the 500-hPa moisture while
ensemble forecasts increase the moisture slightly (by trans-
porting low-level moisture to the level through convection).
Chan et al. (2020) also saw that the moistening effects in fore-
cast steps are unable to counter the drying effects brought by
ABI assimilation, leading to the overall drying. The drying is
more in MHX than in MHX_15min (Fig. 15a) due to 3 times
more DA cycles. In HMX, this is a small reduction instead of
large increase in the first analysis, leading to an overall much
lower moisture level than in the other two experiments.

At 850 hPa, all three DA experiments show lower domain-
averaged water vapor than CTRL and the differences become
more significant with time. The largest decreases in water va-
por result from the EnKF updates in the first two cycles; these
are mainly associated with the clearing of spurious clouds in
the background, especially those in southern Minnesota (see

FIG. 12. Vertical cross sections of analysis increments of water vapor mixing ratio (g kg21; shading) and potential
temperature (contours; 1-K interval) for experiments (left) HMX and (right) MHX at 2100 UTC, the time of the first
analysis. The cross sections pass through the same clear- and cloudy-sky observation locations in Fig. 11.
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Fig. 4). Unlike at 500 hPa, drying also occurs in the forecast
steps at 850 hPa, and is the strongest in HMX. Investigation
shows that the clearing of clouds by EnKF is accompanied by
creation and enhancement of low-level downward motion
(not shown), and the enhancement is larger in HMX. The
downward advection of moisture in such regions leads to the
drying during the forecast steps. MHX_15min is overall mois-
ter at both low- and midlevels due to a smaller number of
EnKF cycles.

To better understand the large difference in the behaviors
of H(x) and H(x) formulations in the ensemble mean state
update equation of EnSRF, the BTs calculated according to
H(x) and H(x) from the background ensemble forecasts be-
fore the first DA cycle at 2100 UTC are presented in Fig. 16,
along with the ensemble mean and standard deviation of total
hydrometeor mixing ratio at the 200-hPa level, which is close
to the cloud top. It is seen that in the clear sky condition, the
differences of H(x) and H(x) are relatively small, due to the
weak nonlinearity of the observation operator in these re-
gions, leading to the small differences in analysis increments
between HMX and MHX, as seen earlier in Figs. 12a and 12b.
When clouds are present, however, H(x) are much lower
than H(x). This is because there is a large spread in the cloud-
iness conditions among the ensemble members, as indicated
by the near-cloud-top total hydrometeor mixing ratio spread
(which is as large as the mean value). The calculated BTs
from H(x) also have a large spread; therefore, their mean val-
ues are not that low (Fig. 16b). When the mean BT is calcu-
lated from H(x) , even though the mean of total hydrometeors
x may be significantly reduced by the ensemble averaging, the
calculated BT can still be low, as long upper-level clouds are
present. As a result, large positive BT innovations are found
where background ensemble contains spurious convection,
even if there is significant spread among the ensemble mem-
bers. This results in larger analysis increments in HMX than in
MHX (see Figs. 12c,d and 13). Due to the large diversity of
clouds among ensemble members after 3 h of spinup ensemble

forecasts, the differences between H(x) and H(x) in cloudy
regions are more noticeable in the first few cycles before most
spurious clouds generated in the spinup period are cleared.
The removal of water vapor through cross-covariance in HMX
is also larger than in MHX, leading to the too much low-level
drying in HMX noticed above.

5. Summary and conclusions

In this study, all-sky IR BTs at their native resolution from
the GOES-R ABI water vapor channel 10 are assimilated
into the 3-km WRF model using an enhanced version of GSI
EnKF, and the assimilation impacts on the analysis and fore-
cast of a mesoscale convective system (MCS) are examined.
Adding to a limited number of prior studies assimilating high-
resolution GOES-R ABI BT type of data, this study employs
the operational GSI EnKF framework and tries to optimize
certain DA configurations and gain an understanding of the
behaviors of BT DA in cloudy and clear-sky regions.

A radius of 30 km was found to perform well when both
clear and cloudy ABI BTs are assimilated, yielding smaller
analysis biases and RMSIs as well as better reflectivity fore-
cast than other radii examined. This “optimal” choice of local-
ization radius is in a general agreement with those used in
most recent studies (e.g., Cintineo et al. 2016; Zhang et al.
2018; Otkin and Potthast 2019; Jones et al. 2020).

Because of the high nonlinearity of the radiative transfer
model that is used as the BT observation operator, especially
in cloudy regions, the DA results are found to be very sensi-
tive to the way the ensemble mean observation prior is calcu-
lated. Two different formulations of the ensemble mean
observation prior in the ensemble mean update equation are
examined. Using the 30-km localization radius, three DA ex-
periments are carried out. HMX uses the original way of cal-
culating the ensemble mean observation prior in GSI EnKF,
which applies the observation operator to the ensemble mean
state, i.e., using H(x) , in the ensemble mean state update

FIG. 13. Vertical cross sections of the mixing ratio (g kg21) of frozen hydrometeors (qs 1 qi 1 qg; shading) and liquid hydrometeors
(qc 1 qr; contours) for (a) CTRL ensemble mean forecast, (b) HMX mean analysis, and (c) MHX mean analysis valid at 2100 UTC. The
cross section passes through the same cloudy-sky observation location in Fig. 11.
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equation. MHX replaces H(x) with H(x) that performs the
mean operation on the ensemble of observation priors.
MHX_15min is the same as MHX except that BTs are assimi-
lated every 15 min instead of 5 min.

The results show that assimilating ABI BTs can, despite
some problems, build up observed storms within the model
and remove spurious storms in the background, as was also
previously found in Zhang et al. (2018). Both biases and
RMSIs of the background and analysis BTs are significantly
reduced during the assimilation cycles with MHX generally
has the smallest biases and RMSIs. Ensemble spread during
the DA cycles is well maintained by applying the relaxation to
prior spread covariance inflation method, and MHX produces
a closer-to-optimal prior consistency ratio. The assimilation of
ABI BTs also improves simulated radar reflectivity in the final
analyses, despite more spurious precipitation is analyzed in
MHX_15min.

Simulated channel 10 BTs of the 4-h deterministic forecasts
show that assimilating all-sky ABI BTs improves the forecast
of simulated BTs. Forecast biases and RMSIs of both water
vapor channel-10 and window channel-14 BTs are reduced in
the three DA experiments to some extent compared to CTRL
and DETER that do not assimilate any data. MHX has the
smallest forecast errors, slightly outperforming MHX_15min,
while HMX performs the worst. The forecast of weak radar
reflectivity is also significantly improved compared to CTRL
and DETER, up to 4 and 2 h, respectively. Convection is
more intensive and organized, closer to observations, in MHX
and MHX_15min than in HMX, hence have higher reflectivity
ETSs. It is also noted that increasing assimilating frequency
from 15 to 5 min, at least in this case using a 2-h assimilation
window, does not significantly improve the forecasting results.
This result is unlike the finding in Zhang et al. (2021) that in-
creasing assimilating frequency of ABI observations from

FIG. 14. The 850-hPa water vapor mixing ratio (g kg21) from experiment CTRL at (a) 2100, (e) 2200, and (i) 2300 UTC. The 850-hPa wa-
ter vapor mixing ratio (g kg21) differences between CTRL and experiments (b),(f),(j) HMX; (c),(g),(k) MHX; and (d),(h),(l) MHX_15min
at 2100 UTC in (b)–(d), 2200 UTC in (f)–(h), and 2300 UTC in (j)–(l).
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10 to 5 min improves both analysis and forecast of a thunder-
storm, thus further investigations are needed.

Analyses of background error correlations before the first
EnKF cycle indicate strong correlations between simulated
BT and model state variables in clear and cloudy conditions.
The correlations between BT and thermodynamic and dy-
namic fields in clear sky conditions are smooth in space and
are mainly associated with the synoptic-scale flows, while
those in cloudy conditions have much more small-scale struc-
tures. The adjustments of model state variables are consistent
with the sign and magnitude of background error covariance
and prior innovations. Larger observation innovations in
HMX lead to larger analysis increment of hydrometeors,
which is beneficial in terms of clearing spurious model clouds.
However, the clearing of spurious clouds is also accompanied
by the reduction in water vapor, mostly through background
error spatial covariance. Larger positive innovations in HMX
may result in excessive corrections to thermodynamic and dy-
namic fields, causing incorrect storm decay in the forecast;
this is so despite of the use of an adaptive observation error
inflation procedure that significantly increase the assumed ob-
servation error used in EnKF when observation innovation is
large. In experiments MHX and MHX_15min that use H(x)
instead of H(x) in the calculation of observation prior mean
in EnKF, the moisture drying is reduced.

Although the results presented in this study show positive
impacts of assimilating all-sky ABI observations, there remain
issues and limitations with the study. First, over drying of the
low levels when removing spurious clouds/convection in the
forecast background is an important issue and such overdry-
ing needs to be reduced. Apart from the effect on the calcula-
tion of BT observation prior of the ensemble mean, the
nonlinearity of the CRTM observation operator also leads to
differences between the “scalable” implementation of EnSRF
used in this study (and in GSI EnKF) and the original serial
EnSRF algorithm. The former updates observation prior yb

using the “scalable” implementation of (Anderson and Collins
2007) according to Eq. (3) while the latter recalculating yb us-
ing CRTM from state x updated by earlier observations. This
difference can also affect the observation innovation (yo 2 yb)
and affect the updating of moisture fields.

The assimilated ABI observations used in this study are at
their native resolutions. Further sensitivity tests on data thin-
ning intervals should be performed to see if computational
costs can be reduced without much loss of analysis quality
and/or help alleviate the effect of possible spatial error corre-
lations among observations. Also, more optimization on hori-
zontal and vertical localization radii, possibly using different
radii in cloudy and clear regions, can be performed to take
into account the different characteristics of clear and cloud

FIG. 15. Time series of domain-averaged (a) 500- and (b) 850-hPa water vaper mixing ratio
(g kg21) for experiments CTRL (black), HMX (red), MHX (blue), and MHX_15min (green)
during the entire EnKF cycles.
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sky observations. The ensemble is generally underdispersive
during the DA cycles, and the relaxation-to-prior-spread in-
flation method may need to be supplemented by other infla-
tion methods. Moreover, model and observation biases are
not considered in this study. Applying bias correction to ABI
BTs has the potential to improve our results although bias
correction in the cloudy regions remains a very challenging
task because the errors in the simulated background BTs can
be very large and uncertain. The adaptive observation error
inflation method employed, while very helpful, is ad hoc at
the best, and it acts to reduce the observation impact when
observation innovation is large. Better treatments and at least
tuning of the method may be needed to further improve results.
Further, assimilating multichannel ABI observations with addi-
tional quality control, and the assimilation of ABI radiances to-
gether with other observations such as high-resolution surface
observations, radar observations and even GOES lighting data
could provide more accurate analyses of storm structures and
their environment. Finally, the results of in this paper are based
on a single case; the generalization of the some of the conclusions

will require testing with a large enough sample. These are
some of the issues needing further research before all-sky
GOES-R ABI type observations can be effectively assimilated
into operational convective-scale forecasting systems with ro-
bust positive impact.
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FIG. 16. Brightness temperature calculated according to (a) H(x) and (b) H(x) from the background ensemble
forecasts at 2100 UTC, the start time of DA cycles, and the (c) ensemble mean and (d) standard deviation of total
hydrometeor mixing ratio at the 200-hPa level, which is near the height of cloud tops in southeastern Minnesota.
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