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ABSTRACT

A regional ensemble Kalman filter (EnKF) system is established for potential Rapid Refresh (RAP) op-

erational application. The system borrows data processing and observation operators from the gridpoint

statistical interpolation (GSI), and precalculates observation priors using the GSI. The ensemble square root

Kalman filter (EnSRF) algorithm is used, which updates both the state vector and observation priors. All

conventional observations that are used in the operational RAP GSI are assimilated. To minimize compu-

tational costs, the EnKF is run at 1/3 of the operational RAP resolution or about 40-km grid spacing, and its

performance is compared to theGSI using the same datasets and resolution. Short-range (up to 18 h, the RAP

forecast length) forecasts are verified against soundings, surface observations, and precipitation data. Ex-

periments are run with 3-hourly assimilation cycles over a 9-day convectively active retrospective period from

spring 2010. TheEnKFperformancewas improved by extensive tuning, including the use of height-dependent

covariance localization scales and adaptive covariance inflation. When multiple physics parameterization

schemes are employed by the EnKF, forecast errors are further reduced, especially for relative humidity and

temperature at the upper levels and for surface variables. The best EnKF configuration produces lower

forecast errors than the parallel GSI run. Gilbert skill scores of precipitation forecasts on the 13-kmRAP grid

initialized from the 3-hourly EnKF analyses are consistently better than those from GSI analyses.

1. Introduction

Variational methods, like three- or four-dimensional

variational data assimilation schemes (3DVAR or

4DVAR; Parrish and Derber 1992; Courtier et al. 1998;

Rabier et al. 2000), have been used successfully at op-

erational numerical weather prediction (NWP) centers

for over a decade. The typically used static, spatially ho-

mogenous, and isotropic background error covariance

(Purser et al. 2003) represents one of the main deficiencies

in such schemes. The ensemble Kalman filter (EnKF;

Evensen 1994) algorithm has gained much popularity,

because of its ability to estimate flow-dependent error
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covariance structures and its relative ease of implementa-

tion. Since its introduction into atmospheric data assimila-

tion (DA) by Houtekamer and Mitchell (1998), numerous

variations have been developed, including different for-

mulations and algorithm refinements (e.g., Burgers et al.

1998; Evensen and van Leeuwen 2000; Anderson 2001;

Bishop et al. 2001; Whitaker and Hamill 2002; Ott et al.

2004; Szunyogh et al. 2008) or combinations of the EnKF

with variational methods to arrive at hybrid schemes (e.g.,

Hamill and Snyder 2000; Lorenc 2003; Buehner 2005;

Wang et al. 2007b; Wang 2010). Some of these algorithms

have been used in operational global forecast systems to

provide ensemble-based background error covariance

(Wang 2010; Raynaud et al. 2011; Bonavita et al. 2012),

as well as initial conditions (Houtekamer and Mitchell

2005; Whitaker et al. 2008; Hamill et al. 2011).

Meng and Zhang (2011) reviewed the recent progress

with EnKF applications in limited-areamodels (LAMs).

For LAMs, the application of EnKF initially focused on

the convective scale through observing system simula-

tion experiments (OSSEs) under the perfect model as-

sumption (Snyder and Zhang 2003; Zhang et al. 2004;

Tong and Xue 2005). In those tests, EnKF using simu-

lated Doppler radar radial wind alone was able to ac-

curately estimate wind, temperature, andmoisture fields

for convective storms. When reflectivity data were also

assimilated into a model including complex ice micro-

physics, the EnKF analyses and subsequent forecasts

were further improved (Tong and Xue 2005). The ap-

plication of EnKF to the assimilation of real radar data is

also encouraging. For example, Dowell et al. (2004) used

EnKF to assimilate radar data from a single Doppler

radar and the analyzed storm location and strength were

comparable to those in dual-Doppler wind analyses. By

assimilating both surface station and radar data using

EnKF and a full-physics model, Lei et al. (2009) were

able to reproduce the main storm cell of a supercell

storm in their deterministic forecast. Aksoy et al. (2010)

launched 30-min ensemble forecasts after 60-min as-

similation of radial velocity data (Aksoy et al. 2009)

using an EnKF and a cloud model. They found that the

forecast skill generally decayed on the time scale of

tens of minutes for several types of storms. In Snook

et al. (2012), ensemble forecasts launched using the full-

physics Advanced Regional Prediction System (ARPS;

Xue et al. 2003) fromEnKF analyses that included data

from four X-band Collaborative Adaptive Sensing of

the Atmosphere (CASA) radars and five Weather Sur-

veillance Radar-1988 Dopplers (WSR-88Ds), were able

to predict high probability of surface vorticity centers

within a mesoscale convective system that matched re-

ported tornado locations more than 2 h after the end of

radar data assimilation.

Mesoscale applications of LAM EnKFs have also

progressed fromOSSEs (Zhang et al. 2006) to observing

system experiments (OSEs) using real data (Meng and

Zhang 2008a). In Meng and Zhang (2008b), month-long

tests with the assimilation of sounding data every 12 h

showed that the EnKF outperformed a corresponding

3DVAR simulation. When multiple physics sets were

used in the forecast ensemble, results for temperature

andmoisture fields were further improved. Thesemultiple-

physics results are consistent with those of Fujita et al.

(2007), who also examined the benefits of using multiple

physics sets.

The purpose of this paper is to document the devel-

opment and testing of a regional EnKF system intended

for future operational implementation for the Rapid

Refresh (RAP) model. The RAP, which replaced the

Rapid Update Cycle (RUC; Benjamin et al. 2004) in

May 2012, uses the Advanced Research core of the

Weather Research and Forecasting Model (WRF-

ARW; Skamarock et al. 2005) and the gridpoint statis-

tical interpolation (GSI) 3DVAR (Wu et al. 2002) for

its DA. So far, real-time or quasi-operational mesoscale

EnKF applications are still limited in the literature. Torn

and Hakim (2008) describe results from 2-yr pseudo-

operational regional EnKF runs. Compared with other

operational center deterministic forecasts, their WRF-

based EnKF system has slightly larger errors in wind

and temperature but smaller errors in moisture. In

their case, since half of their domain was centered over

Washington State is over the ocean and their system did

not assimilate any satellite data, their experimental re-

sults are encouraging. In another attempt, Bonavita

et al. (2008) developed a regional local ensemble trans-

form Kalman filter (LETKF; Hunt et al. 2007) system for

the Italian National Meteorological Service. Different

covariance inflation schemes were examined in their

15-day-long tests. Their results show that their LETKF

performed better than the operational 3DVAR system.

The EnKF system we present in this paper is developed

for potential RAP operational application, which re-

quires high-frequency updating. In addition, the system

is designed to be capable of assimilating all available

observations in the National Centers for Environ-

mental Prediction (NCEP) operational data stream

and takes advantage of all data-processing capabilities

in the operational GSI system; the EnKF results are

also directly compared with those of parallel GSI runs.

The rest of this paper is organized as follows. In sec-

tion 2, a brief introduction of the RAP system is pre-

sented together with an overview of the EnKF system.

The designs of the test experiments are given in section 3.

In section 4, deterministic forecasts from the 3-hourly

ensemble mean EnKF analyses are compared with
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corresponding forecasts initialized from parallel GSI

3DVAR analyses assimilating the same datasets at the

same 40-km resolution. Sensitivity to the localization

scheme and the impacts of using multiple physics suites

are also discussed in that section. Additionally, forecasts

on the 13-kmRAP grid, starting from interpolated 40-km

EnKF and GSI analyses, are compared in section 5. A

summary is given in section 6.

2. The prediction model, EnKF system, and
verification tool

a. The Rapid Refresh system

One way to improve the accuracy and utility of short-

range weather forecasts is to more frequently assimilate

the latest available observations and to make avail-

able rapidly updated forecasts. The NCEP opera-

tional hourly updated RUC system was designed using

this approach (Benjamin et al. 2004). Since its first im-

plementation in the 1990s with a 60-km grid spacing

and a 3-hourly update cycle, it has been widely used for

aviation and severe weather forecasting. Interested readers

are referred to Benjamin et al. (2004) for an evaluation of

the earlier version of RUC and to Benjamin et al. (2010),

inwhich the impacts of various conventional observations

on the accuracy of RUC forecasts are examined.

The RAP is a replacement for the RUC system, which

is based on the nonhydrostatic WRF-ARW dynamic

core and uses similar, but updated physical parameter-

izations compared to the RUC. The RAP was imple-

mented operationally at NCEP on 1May 2012. TheGSI,

a unified 3D variational DA system used for both global

and regional applications (Kleist et al. 2009), is used

within RAP for the hourly analysis update. The hori-

zontal resolution of the RAP is ;13 km and it has 50

vertical levels extending up to 10 hPa at the model

top. The RAP system assimilates more observations

than the RUC, including satellite radiance data, and

the RAP has a larger domain, covering all of North

America. The physics options used by the operational

RAP include the Grell-G3 cumulus parameterization,

Thompson microphysics, Rapid Radiative Transfer

Model (RRTM) longwave radiation, Goddard shortwave

radiation, Mellor–Yamada–Janji�c (MYJ) turbulent mix-

ing, and the RUC–Smirnova land surface model. Details

on these schemes can be found in Benjamin et al. (2009).

The RAP (along with its predecessor, the RUC) em-

ploys a digital filter initialization (DFI) before launching

the forecast. The DFI provides a simple, yet effective,

way to filter out high-frequency noise during the initial

period of model integration; the filtered model state

tends to be more balanced (Lynch and Huang 1992;

Chen and Huang 2006). There are three available DFI

options in theWRFmodel: digital filter launching (DFL;

Lynch and Huang 1994), Diabatic DFI (DDFI; Huang

and Lynch 1993), and twice DFI (TDFI; Lynch 1997). In

the operational version of RAP, TDFI is used, which

includes an adiabatic backward integration step and a

full-physics forward integration step. An important issue

with the TDFI option is the need to turn off diabatic

processes in the backward integration; for mesoscale

and convective applications, diabatic processes, including

the precipitation processes, can be critically important,

and neglecting them can lead to large errors.

In this study, we choose to use DFL, which does

not include the adiabatic backward integration step.

However, the original WRF DFL implementation

had a problem; the original implementation filters the

atmospheric variables but not the land surface model

fields. When the forecast is relaunched from the filtered

state at the center of the filter window, the unfiltered

land surface fields from the beginning of the filter win-

dow are used. Such an inconsistency between soil and

atmospheric variables occasionally caused model integra-

tion failures. In our current implementation, the land sur-

face fields are also subject to the same filtering, and the

modification improves the model integration stability.

b. The regional EnKF system based on GSI

As mentioned earlier, our EnKF system is specifically

designed for the RAP, using its operational data stream.

To facilitate the running of a large number of experi-

ments that seek to find the best settings of the EnKFDA

system, all the results presented in this paper employ

3-hourly assimilation cycles. We note here that for the

EnKF analysis, data input and output (I/O, including

reading and writing of all the ensemble grids in and out

of the GSI preprocessor and the EnKF code) represent

a large portion of the overall computational cost. Al-

though testing the EnKF system with hourly EnKF cy-

cles is preferred given that the operational RAP system

uses hourly cycles, doing this more than doubles the

total computational cost and is deferred to future re-

search. Figure 1 presents a flowchart of the RAP EnKF

system described and tested in this paper. The EnKF

system contains three major parts: 1) the 40-km-domain

3-hourly EnKF analysis–forecast cycles that include the

GSI observation processing component for observation

innovation calculations (not the actual 3DVAR anal-

ysis), 2) the EnKF analysis component, and 3) the en-

semble forecast component. Longer, 18-h deterministic

forecasts are launched from the ensemble mean anal-

yses every 3 h on the 40-km grid, and from interpolated

analyses at 0000 and 1200 UTC to produce forecasts

on a 13-km grid for verification purposes. The anal-

ysis variables of the EnKF system are the Cartesian
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components of horizontal wind, U and V (in map pro-

jection space), water vapor mixing ratio, potential tem-

perature, perturbation geopotential, and the perturbation

dry air mass in the model column. Additional details

on the EnKF algorithm and a description of the verifica-

tion procedure are given below.

1) THE ENKF ALGORITHM AND COVARIANCE

LOCALIZATION

The EnKF system uses the ensemble square root filter

(EnSRF) algorithm described by Whitaker and Hamill

(2002). The code base is the same as that used by the

Global Forecast System (GFS) EnKF system (Whitaker

et al. 2008). It was modified and linked to the regional

GSI for RAP and the RAP forecast model, including

codes for the reading and writing of RAP model grids,

and for handling RAP specific datasets. The standard

analysis equations for the ensemble mean and ensemble

perturbations of the EnSRF follow Eqs. (4) and (5) of

Whitaker andHamill (2002) and have been used in many

studies. TheKalman gain for the jth state variable xj and

mth observation ym is given by

Km,j 5 rm,j

Cov(xbj , y
b
m)

Cov(ybj , y
b
m)1Rm

, (1)

where Cov(xbj , y
b
m) is the error covariance between

background state variable xbj and observation prior ybm,

and Cov(ybm, y
b
m) is the background error variance of the

observation prior. The error variance of observation ym
is Rm. The corresponding Kalman gain for the ensemble

perturbations is equal to aKm,j, where a is the square

root filter factor given by Eq. (13) of Whitaker and

Hamill (2002). In Eq. (1), rm,j is the covariance locali-

zation coefficient, defined in our case as functions of

time and space according to

rm,j 5 rtrhry 5 taper

�jtm 2 taj
tcut

�
3 taper

�
rm,j

rcut

�

3 taper

(jln(pm)2 ln(pj)j
ln(pcut)

)
, (2)

where rt, rh, and ry are the localization coefficients

in time, and the horizontal and vertical directions, re-

spectively. Here, we introduce time localization to

allow for the assimilation of observations not taken

exactly as the analysis time, but within a time window

[ta 2 tcut, ta 1 tcut] around the analysis time ta. In addi-

tion, tm is the time of the mth observation. Coefficient

rt decreases as the observation time tm deviates from

the analysis time and decreases to zero outside the

time window. With this capability, the EnSRF is ac-

tually a four-dimensional algorithm (4DEnSRF), as is

also discussed by Wang et al. (2013). We set tcut, rcut,

and ln(pcut) to be the cutoff radii in time and in the

FIG. 1. Flowchart of the regional GSI-based EnKF system.
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horizontal and vertical, respectively. The horizontal

distance between the jth state variable and mth ob-

servation is rm,j, while pj and pm are the pressure

values of the jth state variable and mth observation,

respectively. Here, the taper function is based on Eq.

(4.10) of Gaspari and Cohn (1999), which is commonly

used to define spatial localization functions [see Eq. (3)

below]:

taper(r)5

8>>>>><
>>>>>:

�
[(20:5r1 0:5)3 2r1 0:625]3 2r2

5

3

�
3 (2r)21 1:0 0:0# r# 0:5

��h�r
6
2 0:5

�
3 2r1 0:625

i
3 2r1

5

3

�
3 2r2 5

�
3 2r1 42

1

3r
0:5r# 1:0

0 r. 1:0 or r, 0:0

. (3)

2) COVARIANCE INFLATION FOR THE ENSRF
ALGORITHM

To account for the sampling error associated with

the limited ensemble size, and model error that is in-

adequately represented by the forecast ensemble, as

well as other factors that can cause ensemble under-

dispersion and filter divergence, we apply multiplicative

covariance inflation (Anderson and Anderson 1999) in

our EnSRF. The inflation factor consists of two parts:

one that is horizontally homogeneous (on constant pre-

ssure levels) but height (pressure) dependent, and one

that is adaptive and related to the amount of variance

reduction by observations (Anderson 2009; Whitaker

and Hamill 2010). In equation form, it is

x0a5 (b11b2)x
0a , (4)

where x0a on the right- and left-hand sides are the en-

semble perturbations before and after inflation, re-

spectively. The coefficients are

b15 b3 taper

 
jlnpa2 lnpsfcj

lnpcovcut

!
and (5)

b25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
s2
b 2s2

a

s2
a

1 1

s
, (6)

where b and c are constants whose values are given in

Table 1 for various experiments. The cutoff distance in

terms of log pressure is lnpcovcut, and is set to 5 in our

experiments. The pressure (in hPa) at the analysis grid

point is pa and at the corresponding surface level is psfc,

while s2
b and sa are the prior and posterior (or back-

ground and analysis) variances, respectively, for the

variable being analyzed. In Eq. (5) the taper function is

also given by Eq. (3), as before. With this function, the

static inflation factor b1 has a maximum value of b at

the level of surface pressure and decreases with height

with a scale length of lnpcovcut. Additionally, in our tests,

when jlnpa 2 lnpsfcj/lnpcovcut . 0.75, that is when lnpsfc .
0:751 lnpa, b1 is set to 0; not doing so has led to too large

of a spread in temperature near the model top and occa-

sional model integration instability. In Eq. (6), we call c the

spread recovery factor. When c 5 1, b2 5sb/sa (which is

usually larger than 1), so the factor acts to fully recover the

spread found in the background ensemble. When c 5 0,

b2 5 1, and if the static component is also zero (b 5 0),

then there is no inflation according to Eq. (4).

c. The MET verification tool

The performance of our EnKF system is evaluated by

verifying short-range forecasts against observations. For

the verification, we employ the Model Evaluation Tools

(METs) developed by theDevelopment Testbed Center

(DTC; Brown et al. 2009), which contains comprehen-

sive verification metrics for both deterministic and

probabilistic forecasts. Even though only a few met-

rics are examined in this paper, the use of a well-tested,

community-supported, verification package improves the

reliability of the verification results.

For our experiments, the 40-km deterministic fore-

casts launched from the ensemble mean analyses (after

applyingDFL) are verified against upper-air and surface

observations. Upper-air sounding observations are used

to verify model relative humidity (RH), temperature T,

and model wind components U and V, while surface

observations are used to verify surface pressure, 2-m

RH, 2-m temperature, and 10-m U and V. Root-mean-

square error (RMSE) is used as the verification metric.

For forecasts on the interpolated 13-km grid, we focus

on the precipitation verification, using the NCEP stage

IV precipitation data (Lin andMitchell 2005). TheGilbert

skill score (GSS) (Gandin andMurphy 1992), also known

as the equitable threat score (ETS), is also used.

3. Design of data assimilation experiments

A 9-day retrospective period from 8 to 16 May 2010

was selected as our testing period. This period features
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a wide variety of weather, including the 10 May Okla-

homa tornado outbreak featuring strong mesoscale

forcing, a mesoscale convective system (MCS) during the

night of 11May, a cold-season-type Front Range upslope

low pressure precipitation event, and some southeast-

propagating MCSs across Texas. A key characteristic

for this period is the existence of propagating baroclinic

disturbances and associated surface weather phenom-

ena, as well as several episodes of precipitation events.

Our data assimilation experiments are run in contin-

uous 3-hourly updated cycles throughout the period;

they start at 0000 UTC 8May 2010 and end at 2100UTC

16 May 2010. Figure 2 shows the domain used by the

40-km grid-spacing DA and forecast experiments; the

domain has 207 3 207 horizontal grid points and covers

the entire North American region. The 13-km grid-

spacing domain used for the high-resolution forecasting

is slightly smaller, as indicated by the smaller box in Fig.

2a, and has 532 3 532 horizontal grid points. Both grids

use 50 vertical levels. From each of the 3-hourly cycled

EnKF ensemble mean analyses, an 18-h-long forecast is

launched (after applying DFL). To compare with the

GSI 3DVAR scheme currently employed by the oper-

ational RAP system, parallel experiments using the GSI

3DVAR system are also run. Both EnKF and GSI ex-

periments use almost the same configurations as the

current operational RAP except for the use of 40-km

instead of 13-km horizontal grid spacing. For the EnKF

system, 40 ensemble members are employed. The lat-

eral boundary conditions are based on the NCEP GFS

forecasts, available every 3 h and updated every 6 h. For

the ensemble forecasts within the EnKF cycles, pertur-

bations created using theWRF-3DVAR ‘‘randomCV’’

option (Barker 2005) following Torn et al. (2006) and

Wang et al. (2008) are added to theGFS forecast boundary

conditions and to the GFS analysis at 0000 UTC 8 May

2010 to create the initial ensemble. Such perturbations

have spatial structures similar to the background error

covariance derived from the National Meteorological

Center (NMC, now known as NCEP) method (Parrish

and Derber 1992) and have been used in other mesoscale

EnKF studies as initial perturbations (e.g., Meng and

Zhang 2008b). Our earlier tests with a single observation

showed that flow-dependent covariances are well de-

veloped about 1 day into the EnKF assimilation cycles.

The observation datasets used in this study are almost

the same as those used by the operational RAP. They

include the surface observations from land-reporting

stations, mesonets, ships and buoys, etc., while the

upper-air observations include land- or sea-launched

radiosondes, data from commercial aircrafts, wind pro-

filers, radar velocity–azimuth display (VAD) winds, and

satellite retrieval winds. The GPS precipitable water

(PW) and satellite radiance data are not used in the ex-

periments reported here; initial testing indicated the

need for improved bias correction, and results includ-

ing radiance data will be reported upon in the future.

Figure 2 shows an example of the horizontal distribu-

tions of several major observation types within the cur-

rent testing domain. In general, observations cover both

land and sea and are much denser over land. The radio-

sonde data are the most evenly distributed observation

type over land and are also used for forecast verifica-

tion. There are great concentrations of observations at

the surface (see Fig. 2b) and at the jet level around

200 hPa. The latter is mainly due to commercial aircraft

(see Fig. 2c) observations and satellite-retrieved winds

(see Fig. 2d). Figure 3 shows the average number of

TABLE 1. List of data assimilation experiments. The single set of physics is the same as group p1 in Table 2. In the vertical localization

column, the second factor is for surface pressure and the first factor is for other variables. The upward-pointing arrow (➚) indicates a value

that is increasing with height, and the height-dependent localization radius function is r1 2 r2 3 taper[jln(pob)2 ln(1020)j/2:0], where r1
and r2 are given before and after the arrow (➚) in the table.

Expt

Horizontal localization

radius rcut (km)

Vertical localization

radius lnpcut b in Eq. (5) c in Eq. (6) Physics schemes

EnKF_Ctr 1000 1.1 (RH, T, U, and V) 0.1 0.9 Single set

1.6 (Ps)

GSI_Ctr N/A

EnKF_S 800 1.0 (RH, T, U, and V) 0.1 0.9 Single set

1.2 (Ps)

EnKF_L 1200 1.2 (RH, T, U, and V) 0.1 0.9 Single set

2.0 (Ps)

EnKF_AI 1000 As EnKF_Ctr 0.0 0.98 Single set

EnKF_CtrHDL 700 ➚ 1050 1.1/4 ➚ 1.1/2 (RH and T ) 0.1 0.9 Single set

1.1/2 ➚ 1.1 (U and V)

1.6 (Ps)

EnKF_Mult5 As EnKF_CtrHDL As EnKF_CtrHDL 0.1 0.9 Multiple sets, 5 groups

EnKF_Mult10 As EnKF_CtrHDL As EnKF_CtrHDL 0.1 0.9 Multiple sets, 10 groups
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observations and their time distributions during the

testing period. Not surprisingly, there are more obser-

vations at 0000 and 1200 UTC than at other times.

Usually, the real-time RAP system collects data from

1.5 h before and 0.5 h after the time of analysis. How-

ever, for 0000 and 1200 UTC it waits half an hour longer

for more data (such as sounding data) to arrive. In our

tests, the datasets assimilated at 3-hourly intervals are

the datasets collected and used by the operational hourly

RAP system; as a result, observations that arrived in real

time outside the 2-h (2.5 h for 0000 and 1200 UTC) win-

dows are not used.

Table 1 lists all the experiments to be presented in this

paper. These experiments can be categorized into three

groups: the first group has two control experiments using

EnKF (EnKF_Ctr) and GSI 3DVAR (GSI_Ctr) as the

analysis schemes, respectively. Single observation tests

are first carried out to examine behaviors of the analysis

schemes. The second group examines variations in the

covariance localization scales and inflation factors in an

attempt to find the best configurations. The control ex-

periment EnKF_Ctr uses a 1000-km cutoff radius in the

horizontal and lnpcut 5 1.1 (which is about 7.6 km) in the

vertical. Experiments EnKF_L and EnKF_S use a larger

and a smaller horizontal and vertical localization radius,

respectively. The inflation includes both static and adap-

tive parts inEnKF_S andEnKF_L.ExperimentEnKF_AI

(AI for adaptive inflation) is the same as EnKF_Ctr but

FIG. 2. Examples of the horizontal distributions of observations collected in real time 1.5 h before and 1 h after

0000 UTC 14 May 2010 as used by the real-time RAP system and in tests of this study: (a) sounding (circles, dis-

placement of the circles is due to balloon drifting) and profiler (plus signs); (b) surface stations over land and from

ships, buoys, etc.; (c) aircraft observations; and (d) satellite retrieved winds. The smaller box in (a) is the domain used

by the 13-km forecast.
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includes adaptive inflation only and uses a larger

value for coefficient c (0.98) in the adaptive inflation

factor. The next experiment, EnKF_CtrHDL, uses height-

dependent localization radii in both the horizontal and

vertical, with the radii increasing with height. The third

group examines the impact of using multiple suites of

physics parameterizations in theWRF forecast ensemble.

Two experiments with different numbers of physics suites

are tested. Table 2 gives the physics scheme combinations

for the 10 suites used by EnKF_mult10. In this experi-

ment, the 40 ensemble members are evenly divided into

10 groups of 4, with each group using one suite of pa-

rameterizations. EnKF_mult5 includes five groups of

eight, employing the first five suites given in Table 2.

Physics suite p1 in Table 2 is used by all of the single-

physics suite experiments.

4. Results of experiments

In this section, we will first examine the results of

single observation tests, then compare the control EnKF

results against the GSI results. The sensitivity to the

localization and inflation schemes and the impacts of mul-

tiple physics suites are then examined. All verifications

in this section are carried out at 40-km grid spacing.

a. Single-observation tests

EnKF differs from the 3DVAR approach in its use of

flow-dependent background error covariance derived

from the forecast ensemble. Single-observation tests

provide a good view of the background error covariance

structures since the spatial spread of observation innova-

tion is primarily determined by the spatial correlation in

FIG. 3. Box plot of the total number of observations assimilated

at different times of the day during the testing period. The central

mark is the median, the edges of the box are the 25th and 75th

percentiles, and the whiskers are extended to the most extreme

numbers.

TABLE 2. Multiple-physics combinations (suites) used by experiment EnKF_mult10. The single-physics experiments use suite p1 while

EnKF_mult5 uses suites p1–p5.

Physics

suite

Longwave

radiation

Shortwave

radiation Surface layer PBL Cumulus

p1 RRTM Goddard shortwave Monin–Obukhov

(Janji�c)

Mellor–Yamada–Janji�c TKE Grell 3D ensemble

p2 RRTM Dudhia Monin–Obukhov Yonsei University Kain–Fritsch

(new Eta Model)

p3 RRTM Goddard shortwave MYNN surface layer Mellor–Yamada–Nakanishi–

Niino 2.5-level TKE

Grell–Devenyi ensemble

p4 GFDL (Eta

Model)

longwave

GFDL (Eta Model)

shortwave

Monin–Obukhov

(Janji�c)
Mellor–Yamada–Janji�c TKE Grell 3D ensemble

p5 RRTM Goddard shortwave Monin–Obukhov (Janji�c) Mellor–Yamada–Janji�c TKE Grell–Devenyi ensemble

p6 RRTM Goddard shortwave Quasi-normal scale

elimination (QNSE)

surface layer

QNSE PBL Kain–Fritsch

(new Eta Model)

p7 RRTM Goddard shortwave Monin–Obukhov (Janji�c) Mellor–Yamada–Janji�c TKE Betts–Miller–Janji�c
P8 GFDL (Eta

Model)

longwave

GFDL (Eta Model)

shortwave

Monin–Obukhov (Janji�c) Mellor–Yamada–Janji�c TKE Betts–Miller–Janji�c

P9 GFDL (Eta

Model)

longwave

GFDL (Eta Model)

shortwave

QNSE surface layer QNSE PBL Kain–Fritsch

(new Eta Model)

p10 RRTM Goddard shortwave Pleim–Xiu land surface

model (ARW)

Asymmetric Convective

Model version 2 (ACM2;

Pleim) PBL (ARW)

Grell 3D ensemble
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the covariance while correction to other variables is

determined by the cross-variable covariance. A single

temperature observation is assumed to be located at

the Norman, Oklahoma, radiosonde site at the 600-hPa

level, and is 1K above the background value. Figure 4

shows the analysis increments of temperature and wind

created by this single temperature observation. In this

test, the backgrounds are the 3-h forecasts after 5 days of

3-hourly EnKF analysis cycles employing the full set of

observations; the GSI analysis uses the mean of the 3-h

ensemble forecasts as the background; therefore, the

ensemble mean EnKF and GSI analyses used the same

background.

As expected, EnKF gives the temperature increment

(shaded) with flow-dependent structures, which are

more stretched along the direction of the isotherms

(Fig. 4a) while the GSI temperature increment has a

circular shape, reflecting its static, isotropic spatial co-

variance structures (Fig. 4b). The maximum tempera-

ture increment is right at the location of the observation

in GSI but is slightly off centered in the EnKF analysis.

The increment maxima are also found at the observa-

tion level (cf. to the second row). The flow-dependent

structure is more obvious below the observation level at

650 hPa. In Fig. 4c, the temperature increment is seen to

roughly follow a temperature trough east of the obser-

vation location and the maximum temperature incre-

ment is located northeast of the observation, apparently

reflecting spatially inhomogeneous flow-dependent co-

variance. In comparison, the analysis increment of GSI

is obviously unaffected by the first-guess temperature pat-

tern; the increment contours are circular, and the magni-

tude is smaller away from the observation level. The

differences between the EnKF and GSI analyses in the

vertical cross section are also obvious. Figures 4e and 4f

show that, for EnKF, the major axis of the temperature

increment is inclined to the west with height, which is

consistent with the temperature contour inclination at the

observation point. ForGSI, the temperature increment in

the vertical cross section is not exactly elliptic but follows

the terrain-following coordinate surfaces somewhat and

decreases away from the observation location. This is due

to the use of a recursive filter in the GSI to model the

background error covariance (Wu et al. 2002), where the

increment tends to be spread along coordinate surfaces.

The wind increments created by the single tempera-

ture observation are also worth examining. InGSI, there

are five control variables: streamfunction C; velocity

potential x; temperature T; relative humidity RH; and

surface pressure psfc. Except for the streamfunction and

relative humidity, all other variables are divided into the

balanced and unbalanced parts. When analyzing tem-

perature observations, wind increments are induced from

the balance relation between the balanced temperature

and streamfunction according to

Tb 5GC , (7)

where G contains the regression coefficients between

the streamfunction and temperature. In GSI,G is nearly

zero at the observation level, positive below and nega-

tive above. Correspondingly, the wind increment at the

observation level is nearly zero (Fig. 4b), cyclonic below

(Fig. 4d) and anticyclone above (Fig. 4f). This regression

more or less reflects the hydrostatic and geostrophic

relations; where there is a positive observation incre-

ment in temperature, geopotential height is increased

above the observation, inducing an anticyclonic geo-

strophic circulation (and cyclonic below). Compared to

the GSI analysis, the pattern of the EnKF wind incre-

ment is more complicated but is mainly oriented parallel

to the temperature gradient near the observation point,

consistent with the findings of Buehner (2005). The in-

crements do also show an anticyclonic pattern above

the observation and a cyclonic pattern below (Fig. 4e),

and the increments are an order of magnitude stronger

than those of GSI (note the 0.1 and 0.01m s21 contour

intervals used by the two). Overall, we see physically

consistent and strongly flow-dependent increments

produced by the EnKF analyses while the GSI analysis

increments are more isotropic and mainly reflect the

large-scale geostrophic balance between the tempera-

ture and wind fields.

b. Control EnKF and GSI experiments

The RAP system had been run experimentally in real

time for several years at the National Oceanic and At-

mospheric Administration/Earth System Research Labo-

ratory (NOAA/ESRL) before being officially implemented

at NCEP in May 2012. In our experiments, we borrow

from the standard configurations of the 13-km RAP

and made some adjustments for our 40-km grid-spacing

tests. One of the changes, as mentioned in section 2, is to

use the DFL with a single forward step employing full

physics. In the tests below, a single 40-min filter window

centered at 20min of forecast time is used. Compared to

TDFI, themodifiedDFL improves the forecast accuracy

of surface variables for both GSI and EnKF (not shown).

Using the modified DFL as an initialization scheme,

we compare forecasts initialized from the GSI analyses

and EnKF ensemble mean analyses. Figures 5 and 6

show the average RMSEs of 3- and 18-h forecasts, re-

spectively, verified against sounding data. It can be seen

that the RMSEs of EnKF_Ctr are overall lower than

those of GSI_Ctr except for the temperature at the up-

per levels, where the EnKF error can be ;0.1K larger.
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FIG. 4. Analysis increments of single observation tests using (left) EnKF and (right) GSI 3DVAR. A hypothetical

temperature observation of 1K above the background is located at 600hPa at Norman, as shown by the black dot in

(a),(b). (a),(b) The solid and dashed contours are the first-guess temperature (K) and geopotential height (m) at the

600-hPa level, respectively. Shading indicates the temperature analysis increment together with vector wind analysis

increments. (c),(d)As in (a),(b), but at the 650-hPa level. (e),(f) The increment fields in an east–west vertical cross section

through the observation point. Shading indicates the temperature increment. The thin contours (solid for positive and

dashed for negative) are for the north–southwind incrementwhile thick solid contours are for the first-guess temperature.
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The improvement by the EnKF over GSI seems to be

the largest for the RH field. Except for slightly higher

RMSEs at the upper levels in later hours, EnKF_Ctr

maintains its advantage over GSI_Ctr throughout the

18 h of forecast. For temperature, EnKF_Ctr is clearly

better at the lower levels, suggesting a better analysis of

the boundary layer structures. Table 3 lists the relative

percentage improvement (RPI) compared to GSI_Ctr,

defined as the RMSE of GSI_Ctr minus the RMSE of an

EnKF run normalized by the RMSE of GSI_Ctr. A

positive RPI indicates the improvement of EnKF over

GSI. It can be seen that the temperature RMSEs are

improved by 16.7% at 1000 hPa, the largest among the

variables. For the wind components, the improvement is

not as large as for temperature at the lower levels but is

generally positive, except for a slight degradation for V

at the surface. For nearly all forecast hours and height

levels, EnKF_Ctr outperforms GSI_Ctr (Table 3, Figs. 5

and 6).

The surface variables are verified against surface ob-

servations and shown in Fig. 7 for forecast hours 3–18.

For 2-mT and 10-mU, EnKF_Ctr is better thanGSI_Ctr

at almost all forecast hours (see Fig. 7). However, for

surface pressure, 2-m RH and 10-m V, EnKF_Ctr is

slightly worse than GSI_Ctr. This may be due to the

constant, rather large, 1000-km horizontal localization

scale used in EnKF_Ctr. In GSI, the horizontal covari-

ance decorrelation scale is generally smaller near the

surface but larger at the upper levels. The sensitivity to

localization scale will be examined next.

FIG. 5. Vertical profiles of 3-h forecast RMSEs fromEnKF_Ctr andGSI_Ctr, verified against upper-air sounding data

for (a) RH, (b) T, and the (c) U and (d) V wind components.
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c. Sensitivity to covariance inflation and localization

The covariance inflation and localization factors are

two of the most sensitive parameters in the EnKF. Un-

fortunately, their optimal values are difficult to deter-

mine theoretically. Their optimal values are related to

the size of the ensemble and the number and type of

observations assimilated, as well as the error character-

istics of the forecast model. Other factors including the

initial and lateral boundary conditions and their pertur-

bations can also affect the optimal settings. The next set

of experiments (EnKF_L, EnKF_S, EnKF_AI, EnKF_

CtrHDL) shows a few of many tests that we have con-

ducted in an attempt to determine the ‘‘optimal’’ settings.

Figure 7 shows the surface forecast RMSEs of

these and the control experiments. Note that given the

essentially infinite degrees of freedomwith the choice of

inflation and localization factors and their functional

forms, the ‘‘optimality’’ is only relative, and is only so

within the parameter space examined.

As described earlier, our covariance inflation includes

two parts. In EnKF_Ctr, a 10%maximum static inflation

[b 5 0.1 in Eq. (5)] plus an adaptive inflation with a

spread recovery factor of 0.9 [c5 0.9 in Eq. (6)] are used.

Other values of b and c had been tried, with values of

b up to 0.2 and c as small as 0.8. The values used by

EnKF_Ctr were found to give the best results. In

EnKF_AI, we turned off the static inflation. To com-

pensate, we used a larger spread recovery factor of 0.98.

It can be seen from Fig. 7 that EnKF_AI performs the

worst among all experiments in terms of the surface

variable forecast errors. As we can see in Fig. 8, the

FIG. 6. As in Fig. 5, but for 18-h forecast RMSEs.
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adaptive inflation alone cannot produce sufficient spread;

the spreads for most variables are about half of those of

other experiments. In addition to these tests, we also ran

experiments employing other inflation schemes, such as

that based on innovation statistics (Wang and Bishop

2003; Wang et al. 2007a), and were not able to obtain

better results. Therefore, we consider the inflation set-

tings used by EnKF_Ctr optimal and will use them in all

remaining experiments.

We saw earlier that EnKF_Ctr outperforms GSI_Ctr

in verifications against soundings for all variables, ex-

cept for some variables at the surface. We speculated

that the horizontal covariance localization scale may

be too large near the surface. To investigate this issue,

EnKF_S is run using a smaller horizontal localization

radius of 800 (instead of 1000) km and lnpcut 5 1 (rather

than 1.1) (Table 1). Simulation EnKF_L uses 1200 km

and lnpcut 5 1.2 (;8.3 km), respectively.

Figure 7 shows that EnKF_S performs better than

EnKF_Ctr for all surface variables. Errors using the larger

localization scales in EnKF_L are the largest. Full domain

verification against sounding data was also performed (not

shown). For RH, the smaller localization scale does help.

For temperature, EnKF_Ctr and EnKF_S have similar

levels of performance, and both are better than EnKF_L.

Although EnKF_S has a somewhat better perfor-

mance than EnKF_Ctr, further reduction of the locali-

zation scale is not recommended. Figure 8 shows that the

forecast spread increases as the localization scale de-

creases. The spread of EnKF_S for wind components

is approaching the forecast RMSEs near 300 hPa (cf.

Fig. 6), which can be too large after accounting for

the expected error in the observations used for the

verification (here, the RMSEs are actually the obser-

vation innovations). The spread in some tests using

further reduced localization scales was even larger; too

large spread created by localized inflation can create

discontinuities in the model fields, causing model inte-

gration instability. In addition, for U and V verifications

against soundings, EnKF_S shows better performance

than EnKF_Ctr at the lower levels but not at the upper

levels. For example, the 3-h forecast RMSEs of U over

500 hPa areworse inEnKF_S than inEnKF_Ctr (Fig. 9a).

The flows at the upper levels are usually smoother than

at the lower levels, corresponding to typically larger

horizontal correlation scales. In fact, the background er-

ror matrix computed using the NMC method in the GSI

system has larger correlation scales at the upper levels

than at the lower levels. These results suggest that per-

haps localization scales that increase with height can give

better results. This is tested in EnKF_CtrHDL.

In EnKF_CtrHDL, localization scale parameters rcut
and ln(pcut) in Eq. (2) are made height dependent; rcut at

the model top is set to 1.5 times the value at the surface

(i.e., increasing from the 700km at the surface to 1050km

at the model top), according to the same taper function

used in Eq. (2) (Table 1); in the vertical ln(pcut) is de-

signed similarly but with additional observation type

dependency. For RH and temperature, it is set to a

quarter of 1.1 and half of 1.1 for the surface and model

top, respectively. For U and V, the vertical correlation

length is twice that for RH and temperature. We set

ln(pcut) to 1.6 for surface pressure observations. The

choices of these settings were guided by the correlations

scales in the NMC-method-derived error statistics used

by GSI and were further tuned based on dozens of sen-

sitivity tests. We have tried to use the same height-

dependent vertical localization for all variables; the

results were not as good as in EnKF_CtrHDL.

Figure 7 shows the surface forecast RMSEs of EnKF_

CtrHDL. Compared to EnKF_S, which is the best for

surface variables among earlier experiments, EnKF_

CtrHDL has slightly larger RMSEs for surface pressure

and temperature and similar RMSEs for surface V, but

TABLE 3. RPI compared to experiment GSI_Ctr for 3-h forecasts averaged over all forecast cycles throughout the experiment period.

ColumnsA,B, andCare for experimentsEnKF_Ctr,EnKF_CtrHDL, andEnKF_Mult5, respectively. The ‘‘surface’’ row has theRPIs of 2-m

RH, 2-m temperature, and 10-m U and V components.

Level (hPa) RH (%) T (%) U (%) V (%)

A B C A B C A B C A B C

100 21.8 22.4 2.3 4.1 6.1 3.2 12.2 14.0 11.6

200 23.4 22.3 21.4 2.7 3.2 4.0 1.0 2.1 3.3

300 5.5 5.7 7.2 0.3 20.3 21.2 3.5 2.0 2.5 3.3 2.4 3.3

400 1.3 2.4 4.5 2.1 3.6 2.6 3.7 2.7 5.0 4.4 4.6 4.8

500 0.3 1.1 2.1 22.5 0.9 1.2 3.7 4.7 6.4 2.4 2.0 2.8

600 2.1 4.0 4.5 24.0 24.3 22.0 2.1 4.0 5.3 4.4 6.0 6.9

700 2.1 3.9 6.2 0.2 0.2 2.3 21.3 3.0 3.9 0.3 5.7 5.2

800 2.6 4.2 5.4 4.4 3.9 5.8 2.5 4.8 6.5 2.4 5.4 5.4

900 4.1 7.2 9.4 8.2 9.5 10.4 1.7 4.0 5.1 1.6 3.7 5.0

1000 4.1 6.2 8.9 16.7 18.0 20.7 1.3 3.5 4.5 1.5 1.4 4.2

Surface 21.4 1.0 3.6 6.7 7.6 8.1 0.4 2.0 3.3 20.3 1.3 3.5
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smaller RMSEs for surface RH and U. The RPIs from

EnKF_CtrHDL using height-dependent localization

are given in Table 3. The RPIs in the ‘‘surface’’ row for

EnKF_CtrHDL (column B) are all positive. In general,

EnKF_CtrHDL is better than EnKF_Ctr for surface

variables.

For 3-h forecast RMSEs ofU andV against soundings,

EnKF_CtrHDL outperforms EnKF_S at all levels

FIG. 7. The 9-day and domain-averaged forecast

RMSEs verified against surface observations for (a) sur-

face pressure, (b) 2-m RH, (c) 2-m temperature, and the

10-m (d) U and (e) V wind components. The horizontal

axis shows the forecast hour.
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(Figs. 9a and 9b). Moreover, EnKF_CtrHDL maintains

its advantage over EnKF_S throughout 18h of forecast

(Figs. 9c and 9d). As discussed earlier, for the 3-h forecast

RMSEs of the wind components, EnKF_S is better than

EnKF_Ctr at the lower levels but slightly worse at the

upper levels. The 3-h forecast RPIs for EnKF_CtrHDL

aremostly higher than those for EnKF_Ctr (Table 3). For

the wind components, there are larger improvements in

EnKF_CtrHDL than in EnKF_Ctr for U and V at all

levels except for 300 and 400 hPa for U and 500 and

1000hPa for V. For RH, the improvement in EnKF_

CtrHDL is always larger (column B versus column A

under RH in Table 3), while for T there is larger im-

provement for about half of the levels. Overall, the height-

dependent localization scheme, EnKF_CtrHDL, improves

the forecasts over the experiments using constant locali-

zations. The height-dependent scheme is therefore used in

two additional experiments with multiple physics suites.

FIG. 8. Vertical profiles of 3-h forecast spread calculated in the sounding observation space (i.e., in terms of the observed variables) for

(a) RH, (b) temperature, and the (c) U and (d) V wind components.
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d. Impact of using multiple physics suites in forecast
ensemble

In the earlier tests, the effect of model errors on en-

semble spread was considered indirectly through covari-

ance inflation. Another approach to including model

uncertainty, as investigated by, for example, Fujita et al.

(2007),Meng andZhang (2008b), and Snook et al. (2012),

is to use different physics suites in the ensemble forecast

model.

In this subsection, the impacts of using multiple

physics schemes are examined. Compared to EnKF_

CtrHDL, which uses a single set of physics scheme,

EnKF_mult5 and EnKF_mult10 have smaller surface

RMSEs (Fig. 10). For example, for surface pressure

(Fig. 10a), EnKF_CtrHDL has similar errors asGSI_Ctr

up to 9 h of forecast, but EnKF_mult5 and EnKF_

mult10 clearly outperformGSI_Ctr at all forecast hours.

The improvement with the use of multiple physics

is largest with surface temperature (Fig. 10b; see also

Table 3) and the least with surface wind (Fig. 10c; see also

Table 3). The use of 10 physics suites in EnKF_mult10

produces generally smaller errors than using 5 suites,

especially for the V wind component (Fig. 10e) but the

differences here are generally smaller than the differences

between the single- and multiple-physics approaches.

Figures 11a and 11b show the vertical profiles of 3-h-

average RMSEs against soundings. Compared to the

single-physics suite, the multiphysics runs do improve

the 3-h RH and T forecasts at most levels. This can also

FIG. 9. Vertical profiles of 3-h forecast RMSEs verified against sounding data for the (a) U and (b) V wind

components. (c),(d) As in (a),(b), but for domain-average RMSEs at different forecast hours.
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be seen in Table 3. For RH, column C (EnKF_Mult5)

has consistently larger RPIs than column B (EnKF_

CtrHDL). For temperature, the RPI of EnKF_CtrHDL

is 18% at 1000 hPa while that of EnKF_Mult5 is 20.7%,

the largest value among all tests. Though T at some

levels still has negative RPI, most levels are improved

over EnKF_CtrHDL. The multiple-physics suites give

overall better performance than does the single-physics

FIG. 10. As in Fig. 7, but for experi-

ments EnKF_

CtrHDL, EnKF_Mult5, EnKF_Mult10, and GSI_Ctr.
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case throughout the 18h of forecast for both RH and T

(Figs. 11c and 11d), although the difference becomes

smaller in later forecast hours forRH. For 3-h forecasts of

the wind components, the multiple-physics suites im-

prove the lower levels but not by as much as the upper

levels (Table 3). In summary, the use of multiple-physics

suites in the ensemble forecasts in the EnKF further im-

proves the model forecasts over GSI compared to the use

of a single-physics suite, making the EnKF-based fore-

casts better for almost all levels and at all forecast hours

compared to the GSI-based forecasts.

5. Precipitation forecasts on a 13-km grid

In this section, precipitation forecasts on the 13-km

grid initialized from the 40-kmEnKF_Mult5 andGSI_Ctr

analyses are compared. For simplicity, in the following

description, we refer to these experiments as EnKF and

GSI, respectively. Due to the limitation of computer

resources, we launched the forecasts only twice a day at

0000 and 1200UTC. The precipitation forecasts are then

verified against the NCEP stage IV precipitation data.

GSSs calculated within the continental U.S. (CONUS)

domain are presented.

Figure 12 shows the 1-h accumulated precipitation

forecasts of two select cases during the testing period.

The first case corresponds to the 10 May Oklahoma

tornado outbreak. At a 13-km grid spacing, the convec-

tive storms are partially parameterized (using cumulus

parameterization) and partially resolved by the grid.

For both EnKF and GSI, the predicted precipitation is

weaker than observed but EnKF is better than GSI at

FIG. 11. As in Fig. 9, but for RH and temperature.
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predicting the locations and intensity of precipitation

in general. For the 10 May case and at the 11th forecast

hour shown (close to the times of tornado outbreaks

associated with a series of supercell storms through

central Oklahoma), EnKF predicts a stronger line of

precipitation than GSI, at roughly the location of the

convective line within Oklahoma (first row in Fig. 12).

It also produces a larger convective storm labeled A in

south-southwest Kansas that verifies better than GSI.

The second case is a fast-moving mesoscale convec-

tive system (MCS), which first formed in the central

United States and propagated to the northeast. In this

case, both EnKF and GSI predicted precipitation struc-

tures similar to the observations, but overall the pattern

of stronger precipitation (above 5mmh21) is better in

EnKF at 12 h (second row of Fig. 12). These examples

illustrate the kinds of differences found between forecasts

with EnKF and GSI DA. The rather coarse 40-km reso-

lution used by the data assimilation might have limited

the impact of flow-dependent error covariance in EnKF,

but the impact is clearly positive.

Figure 13 shows the GSSs averaged over all cases for

thresholds of 0.1, 1.25, and 2.5mm. Since EnKF andGSI

share the same initial conditions at time 0000 UTC

8 May 2010, the statistics start at 0900 UTC. It can be

seen that EnKF outperforms GSI on average for all

forecast hours and thresholds shown. Therefore, the

EnKF analyses performed on the 40-km grid, using

multiple physics in the ensemble, improve precipitation

forecasts produced on a 13-km grid.

6. Summary and discussion

This paper describes a newly developed regional EnKF

DA system based on the operational GSI 3DVAR

FIG. 12. Observed and forecast 1-h accumulated precipitation for select forecasts starting from two different times. (left) The NCEP

stage IV precipitation; forecasts from (middle) EnKF_Mult5 and (right) GSI_Ctr analyses, with the two sets of forecasts starting at (top)

1200 UTC 10 May and (bottom) 0000 UTC 11 May 2010, at forecast lengths of 11 and 12 h, respectively.
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method, as well as its configuration and tuning for po-

tential Rapid Refresh operational application. A 9-day-

period containing many active convection events is

selected to examine the performance of such a system

through comparisons with parallel experiments using

the GSI. The EnKF and GSI experiments use the same

observational datasets as the operational RAP system

except that GPS PW, satellite radiance, and radar data

are not included in the results presented here. To keep

the computational cost manageable for potential op-

erational implementation, the experiments were per-

formed on a grid with a spacing of ;40 km and with

assimilation intervals of 3 h. The performance of the

DA systems is evaluated based on forecast RMSEs

calculated against surface-state observations and upper-

air sounding data, for forecasts ranging from 3 to 18h.

The results indicate that the control EnKF experiment

EnKF_Ctr using fixed covariance localization radii of

1000 km in the horizontal and 1.1 in terms of logarithmic

pressure (in hPa) (about 7.6 km) in the vertical, and also

using a single suite of RAP physics parameterizations in

the ensemble, is generally better than the GSI control

experiment GSI_Ctr in terms of the domain-averaged

forecast errors throughout the 18h of forecast but slightly

worse in the forecast of some surface variables. Sensi-

tivity experiments show that when the localization radii

are reduced to 800 km and 1.0 in the horizontal and

vertical, respectively, in EnKF_S, errors at the lower

levels are reduced but errors in the upper-level wind

components become slightly larger. A height-dependent

localization scheme in which the localization radii de-

crease with height was designed, and it led to smaller

errors at both lower and upper levels in experiment

EnKF_CtrHDL. To better consider the model uncer-

tainty, we further tested the use of multiple-physics

suites in EnKF_mult5 and EnKF_mult10. The use of

5 or 10 physics suites among the 40 ensemble members

in the forecast step further improves the EnKF perfor-

mance, leading to smaller forecast errors for all variables

at all model levels and forecast hours compared to GSI,

and the use of 10 physics suites slightly outperforms 5

physics suites. The percentage improvements over GSI

in terms of the 3-h forecast RMSEs indicate that the

improvement is generally increased by the use of height-

dependent localization and multiple physics suites

(Table 3). The largest increment is 20.7% for tempera-

ture at 1000 hPa when multiple physics is used.

Forecasts were launched on a 13-km grid initialized

from interpolated EnKF ensemble mean analyses at

0000 and 1200 UTC of each day. Hourly accumulated

precipitation is better predicted in the EnKF experi-

ments (results using five physics suites were shown) than

the GSI experiment, in terms of both the predicted pre-

cipitation structures and Gilbert skill scores of hourly

accumulated precipitation.

Despite the encouraging results, the EnKF system still

should have room for further improvement. Future ex-

periments will include additional GPS PW and satellite

radiance data. For satellite radiance data, bias correction

FIG. 13. Average hourly precipitation GSSs of all 13-km fore-

casts at different forecast lengths for thresholds of (a) 0.1, (b) 1.25,

and (c) 2.5mmh21.
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appears to be an important issue and the positive impact

from including the data over the data-dense continental

United States is not automatic, as suggested by our earlier

preliminary tests. For the eventual operationally imple-

mentation, it will be desirable to perform the EnKF DA

at a higher resolution, either completely on the 13-km

RAP grid (at a higher computational cost), or using dual

resolutions where the ensemble forecasts remain at the

lower resolution while the ensemble mean analysis up-

date and a control forecast are performed at the native

13-km resolution. We expect even greater impacts from

the flow-dependent error covariances in the EnKF when

more transient convective features are captured by the

higher-resolution grid. Efforts are also under way to im-

plement and test a hybrid DA system using the EnKF to

provide ensemble perturbations to a variational analysis

system.
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