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Characterizing, Mitigating, and Comparing the
Along-Scanline Noise in Fengyun-3 Series
Microwave Humidity Sounders (MWHSs)

Lijian Zhu , Zhengkun Qin , Jinzhong Min, and Ming Xue

Abstract— Chinese Fengyun 3 (FY-3) polar-orbiting satel-
lites carry Microwave Humidity Sounders (MWHSs), includ-
ing MWHS and MWHS-2 which are on board FY-3A/B and
FY-3C/D, respectively. Understanding the quality of MWHS
data is important for data assimilation and other applications.
Examination of observed and simulated brightness temperatures
and comparison with those of the NOAA-18 Microwave Humidity
Sounder (MHS) reveal that the FY-3C MWHS-2 observations
contain significant along-scanline noise. Similar noise exists in
the humidity sounder data from FY-3 series satellites. In this
study, the principal component analysis (PCA) method is used
to identify and characterize the along-scanline noise, and a noise
filter is also applied to the FY-3 series MWHS data by combining
a PCA with a five-point smoother. The observation minus back-
ground or O-B biases of MWHS channels vary more smoothly
with scan position after applying the filter, indicating that the
along-scanline noise has been effectively reduced. Comparisons
of O-B biases among all four FY-3 MWHS instruments show
that biases for different channels have different asymmetric
scan-angle features. As for along-scanline noise, FY-3A MWHS
has the largest noise: 0.16, 0.27, and 0.89 K for channels 3–5,
respectively. Noise in the FY-3D humidity channels is the smallest,
of the order of 0.06–0.07 K. The along-scanline noise is also
strongly correlated between channels.

Index Terms— Along-scanline noise, Fengyun-3, microwave
humidity sounder, principal component analysis (PCA).

I. INTRODUCTION

S INCE the launch of the first polar-orbiting National
Oceanic and Atmospheric Administration NOAA-15 satel-

lite carrying an Advanced Microwave Sounding Unit B
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(AMSU-B), Microwave Humidity Sounder data have been
playing an important role in numerical weather predic-
tion (NWP). Microwave Humidity Sounders (MWHS) are
sensitive to atmospheric temperature and humidity; therefore,
they can be used to monitor atmospheric parameters associated
with severe convective weather systems, such as tropical
cyclones and thunderstorms, as well as providing vertical
profiles of atmospheric water vapor globally under nearly
all weather conditions, and such data are important for data
assimilation (DA). MWHS data are effective supplements
to conventional water vapor measurements, such as those
from traditional radiosonde observations. Prior researches have
also shown positive impacts with direct assimilating radiance
from humidity sounders on improving the analysis and the
prediction of mid–upper tropospheric wind, temperature, and
humidity [1]–[4].

On May 27, 2008 and November 5, 2010, China launched
two polar-orbiting meteorological satellites, Fengyun (FY)
3A and 3B. The first generation of MWHS was among
the instruments on these two satellites [5]. MWHS is sim-
ilar to the AMSU-B/MHS (Microwave Humidity Sounder)
on board the NOAA and the European Organization for
the Exploitation of Meteorological Satellite (EUMETSAT)
operational polar-orbiting satellites. The second-generation
satellites of the FY-3 series, FY-3C, and FY-3D, were suc-
cessfully launched on September 23, 2013 and November 15,
2017, carrying an updated version of MWHS, known as
MWHS-2. Two extra sounding channels near 183 GHz were
added to MWHS-2, similar to the Advanced Technology
Microwave Sounder (ATMS) on board the Suomi National
Polar-Orbiting Partnership (SNPP) but with different polariza-
tions. In addition, MWHS-2 has eight new sounding channels
centered around the 118-GHz oxygen band. This is the first
time that these channels have been applied to polar-orbiting
satellites.

Since the launch of FY-3A, MWHS data have been widely
used in NWPs. Precipitation and atmospheric temperature and
humidity profiles can be retrieved from the MWHS observa-
tions [6], [7]. Many studies have also focused on cloud para-
meter estimation (e.g., ice water path (IWP) and cloud liquid
water) and cloud detection [8]–[11]. In addition, the improve-
ment in assimilating MWHS data into short-term weather
forecasting has been well demonstrated [12]–[14]. The Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)
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has been routinely assimilating FY-series MWHS observa-
tions into its operational forecasting system since Septem-
ber 2014 [15]–[18]. Its results show an improvement in both
short-range and long-range forecasts, even with relatively large
MWHS instrumental noise.

To better utilize the MWHS data for DA and other appli-
cations, a better understanding of their bias characteristics
is necessary. Calibration studies of MWHS and MWHS-2,
and evaluations of MWHS data quality indicate that their
in-orbit performances are comparable to similar instruments
on board other platforms [19]–[22]. However, by comparing
model-simulated brightness temperatures with MWHS mea-
surements, Zou et al. [23] found a line shape cohesive noise
along the scanline in the FY-3B MWHS sounding chan-
nels. Although this noise was first found in FY-3B MWHS,
less attention was paid to the MWHS on board other FY
polar-orbiting satellites. In addition, no comparison studies of
their bias characteristics before and after removing the noise
have been performed. In this study, the along-scanline noises
in the MWHS data from the four FY-3 satellites are compared,
and the bias characteristics of the MWHS data are analyzed
to provide some reference for the improvement in MWHS
instruments and the assimilation of MWHS data into NWP
models.

This article is organized as follows. The MWHS instrument
characteristics and the radiative-transfer model (RTM) used in
this article are briefly introduced in Section II. In Section III,
the scan-angle dependence of O-B biases for FY-3C
MWHS-2 and NOAA-18 MHS is compared to help reveal the
along-scanline noise in MWHS-2. The principal component
analysis (PCA) approach combined with a five-point smoother
is used to characterize and filter the noise; then along-scanline
noise characteristics and comparisons of the noises among the
four MWHSs on the FY-3 satellites are presented in Section IV.
Finally, in Section V, a summary and conclusions are provided.

II. INSTRUMENT CHARACTERISTICS AND RTM

A. MWHS and MWHS-2 Instrument Characteristics

In this study, we use Level-1C MWHS and MWHS-2
radiance data provided by the National Satellite
Meteorological Center (NSMC) (http://satellite.nsmc.org.
cn/PortalSite/Data/Satellite.aspx). Four weeks of data,
i.e., November 1–7, 2008 for FY-3A MWHS, April 2–8,
2011 for FY-3B MWHS, November 1–7, 2013 for FY-3C
MWHS-2, and June 1–7, 2018 for FY-3D MWHS-2, are used
for the characterization and mitigation of the along-scanline
noise in those instruments.

Both MWHS and MWHS-2 are cross-track scanning
microwave radiometers with a swath width of 2700 km and
a scan coverage of 53.35◦ with respect to the nadir. Each
scan line has a total of 98 fields of view (FOVs) and is
completed in 8/3 s. The detailed characteristics of MWHS
and MWHS-2 are provided in Table I. The MWHS on board
FY-3A/B has five channels, including two window channels
at 150 GHz with different polarizations and three humidity
sounding channels at approximately 183 GHz (near the water
vapor absorption line) designed to provide information on

TABLE I

MWHS AND MWHS-2 INSTRUMENT CHARACTERISTICS

humidity at different heights in the atmosphere. Each MWHS
channel has a horizontal resolution of 16 km at the nadir.
The MWHS-2 shown on FY-3C/D has 15 channels. Channels
1 and 10 are two window channels at 89 and 150 GHz,
which are sensitive to surface parameters and precipitation.
Channels 2–9 sample around the 118.75-GHz oxygen line.
These channels are strongly sensitive to both atmospheric tem-
perature and humidity. Two new channels were added to the
MWHS-2 183-GHz water vapor line with frequencies at 183.3
± 1.8 and 183.31 ± 4.5 GHz. The resolution of MWHS-2 is
32 km at the nadir for channels 1–9 and 16 km for channels
10–15. The noise equivalent differential temperature (NEdT)
values range from 1 to 3.6 K for all MWHS-2 channels.

Weighting functions of the MWHS and MWHS-2 water
vapor channels calculated from the 1976 standard U.S.
atmospheric profiles are shown in Fig. 1. Channels with
frequencies centered around 183 GHz have their weighting
functions distributed in the low and middle troposphere.

B. Brief Description of the RTM

The Community Radiative Transfer Model (CRTM) devel-
oped by the Joint Center for Satellite Data Assimila-
tion (JCSDA) is used for the simulations of MWHS and
MWHS-2 clear-sky radiances from ERA-interim reanalysis
with an interval of 6 h (00, 06, 12, and 18 UTC) [24]–[26].
The version employed in this study is v2.2.3. The ERA-interim
reanalysis has a horizontal resolution of 0.75◦ × 0.75◦ and
37 vertical levels in total, with the model top near 1 hPa.
Profiles of atmospheric temperature, relative humidity, ozone
mass mixing ratio, and pressure are required as input variables,
along with surface parameters (e.g., surface skin temperature,
surface pressure, 2-m dew point temperature, 2-m temperature,
and 10-m winds) and information about the satellite geometry.

III. MODEL SIMULATIONS AND CLOUD DETECTION

Humidity sounding channels with different frequencies usu-
ally have different sensitivities to surface parameters, clouds,
and precipitation. Although microwave radiation can penetrate
some cirrus and nonprecipitating clouds, the absorption and
scattering of precipitating and ice clouds still cannot be prop-
erly described by an RTM. In addition, surface emissivity also
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Fig. 1. Weighting functions of the MWHS and MWHS-2 humidity channels
at the nadir.

contributes to the uncertainties in microwave radiance simu-
lations, especially over land. To avoid the influence of these
interfering factors, only clear-sky data over oceans between
55◦S and 55◦N are used to analyze the bias characteristics of
different humidity sounders.

The liquid water path (LWP) and IWP products used
to identify clear-sky MHS radiances are downloaded
from NOAA’s Comprehensive Large Array-Data Steward-
ship System (CLASS). These products are retrieved from
NOAA-18 AMSU-A and MHS observations [27]–[29]. Those
areas where both retrieved LWP and IWP are less than
0.05 kg/m2 are treated as clear-sky areas in this study. Also,
the LWPs retrieved from AMSU-A are interpolated in MHS
footprints. Fig. 2 shows the mean and standard deviations of
O-B for NOAA-18 MHS channels 3–5 as a function of the
beam position; only clear-sky data identified by LWP and IWP
are used for the calculation from November 1 to 16, 2016.
Nadir biases are 3.92, 3.10, and −0.44 K for channels 3–5,
respectively. It can be seen that O-B biases of the MHS data
vary smoothly with scan position and appear to be symmetric
about the nadir for channel 5, but not for channels 3 and 4. The
standard deviations of O-B are around 2 K for MHS channels 3
and 4, while channel 5 has a slightly larger standard deviation,
especially at the edges of the scanline.

Unlike AMSU-A, the lack of two low-frequency window
channels at 23.4 and 31.8 GHz that are sensitive to cloud liquid
water makes it impossible to retrieve LWPs and IWPs from

Fig. 2. Biases (solid curves) and standard deviations (dashed curves) of O-B
varying with beam positions for NOAA-18 MHS channel 3 (red), 4 (blue),
and 5 (green) clear-sky data identified by LWP/IWP retrieval products over
the ocean between 55◦S and 55◦N from November 1 to 16, 2016.

Fig. 3. Clear-sky data points over the ocean between 55◦S and 55◦N
identified by (a) NOAA-18 AMSU-A LWP retrievals, (b) ERA-interim LWP
reanalysis (green for LWP < 0.01 kg/m2 and yellow for 0.01 kg/m2 ≤
LWP ≤ 0.05 kg/m2), and (c) (green) clear-sky and (red) cloudy data points
identified by both AMSU-A LWP products and ERA reanalysis, (blue) cloudy
and (black) clear-sky data points identified by AMSU-A LWP products but
not by ERA reanalysis for NOAA-18 MHS in ascending orbit on November 1,
2016.

MWHS or MWHS-2 observations. Therefore, it is necessary
to find an alternative way to help identify clear-sky MWHS(-2)
radiances. In this study, ERA-interim-derived LWP and IWP
are used to identify cloudy observations. Fig. 3 shows the
spatial distribution of MHS clear-sky data over the ocean,
identified by AMSU-A LWP retrievals [Fig. 3(a)] and by
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ERA LWP reanalysis [Fig. 3(b)] on November 1, 2016.
Both AMSU-A LWP retrievals and ERA LWP are already
interpolated in MHS footprints. Their differences are shown
in Fig. 3(c), where data over clear skies and over cloudy areas
identified by both AMSU-A LWP products and ERA LWP
reanalysis are shown in green and red points, respectively;
cloudy data identified only by retrieved products are shown in
blue, and black points are for cloudy-sky data identified only
by ERA LWP reanalysis. It can be seen that most clear-sky and
cloudy observations identified by AMSU-A LWP retrievals
can also be identified by ERA-derived LWP reanalysis. ERA
LWP reanalysis only overestimated the water vapor contents
at low latitudes and thus identified more cloudy data than
the AMSU-A retrievals did. The situation is just the opposite
in the middle or high latitudes. But, in general, the LWP of
ERA reanalysis has a recognition ability very close to that of
the retrieved LWP. Similar results can be derived from IWP
patterns (figures omitted).

Fig. 4(a) shows the biases and standard deviations of O-B
varying with beam position for the MHS data over a clear sky
identified by ERA LWP and IWP. The characteristics of O-B
biases and standard deviations in Fig. 4(a) are quite similar to
those in Fig. 2. This proves again that the LWP and IWP from
ERA data are good enough for the identification of cloudy
data.

Fig. 4(b) shows the bias and standard deviations of O-B
for five FY-3C MWHS-2 channels of FY-3C. Compared with
MHS data, the scan-angle biases of the MWHS-2 data are
larger than those of MHS. The mean biases with the nadir
bias subtracted for the MHS channels are within the range
of 0.5 K while the range is approximately 1.0 K for MWHS-2.
The standard deviations of the MWHS-2 channels are around
2.0 K, which are similar to MHS channels 3 and 4, but
slightly smaller than those of MHS channel 5. High-frequency
oscillations of O-B biases can be observed along the scanline
in all MWHS-2 humidity sounding channels. These oscilla-
tions (called “along-scanline noise" hereafter) also occur in
the MWHS-2 oxygen absorption channels and MWHS on
board FY-3A/B (figures omitted). In contrast, the O-B biases
of the MHS channels are much smoother with respect to scan
position. The cause of this oscillatory along-scanline noise still
remains unclear; however, previous research has found that
this noise has a periodicity of 2.6 FOVs according to power
spectral density analysis [23].

IV. FILTER AND ANALYSIS OF MWHS
ALONG-SCANLINE NOISE

A. Brief Description of the PCA Method

The PCA method is a statistical procedure that can convert
a set of possibly correlated variable values into linearly uncor-
related values. The PCA method was used in previous studies
to remove and characterize random noise in hyperspectral
infrared satellite observations and striping noise in some
microwave instruments [30]–[35]. In this study, a PCA method
combined with a five-point smoother is used to extract the
along-scanline noise. First, PCA is carried out for a single
swath of MWHS (or MWHS-2) observations.

Fig. 4. Biases (solid curves) and standard deviations (dashed curves) of O-B
varying with beam positions for (a) NOAA-18 MHS and (b) FY-3C MWHS-
2 humidity sounding channel clear-sky data identified by LWP and IWP from
the ERA reanalysis data set (LWP ≤ 0.05 kg/m2 and IWP ≤ 0.05 kg/m2)
over the ocean between 55◦S and 55◦N.

A data matrix A is constructed from the brightness temper-
atures of the selected channel

AM×N =
⎛
⎜⎝

T b1,1 · · · T b1,N
...

. . .
...

T bM,1 · · · T bM,N

⎞
⎟⎠ (1)

where T bk, j = (k = 1, 2, . . . , M; j = 1, 2, . . . , N) is the
observed brightness temperature at the kth FOV and the j th
scan line of a single swath. M is the total number of FOVs
on one scan line [98 for MWHS (MWHS-2)] and N is the
number of scan lines.

Then, the scatter matrix S is computed from the following
equation:

S = AAT . (2)
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The eigenvalues λi (i = 1, 2, . . . , M) and eigenvectors �ei (i =
1, 2, . . . , M) of matrix S are then calculated to satisfy the
following equation:

S�e = λ�e (3)

where �e is called the principal component (PC) mode, which
describes the variation in observations with FOV, and λ
corresponds to the variance explained by the PC.

The eigenvector matrix E can be derived using (4) by
sorting eigenvalues in descending order. Therefore, we have
the following equation:

SE = E� (4)

where

� =
⎛
⎜⎝

λ1 0 0

0
. . . 0

0 0 λM

⎞
⎟⎠. (5)

Since the values of �e are orthonormal to each other, we have
E−1 = ET . The scatter matrix can be written as follows:

S = E�E−1 = E�ET . (6)

The data matrix A can be decomposed into: A = E ET A =
EU , where

U = ET A =

⎛
⎜⎜⎜⎝

u1,1 u1,2 · · · u1,N

u2,1 u2,2 · · · u2,N
...

...
. . .

...
uM,1 uM,2 · · · uM,N

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

�u1

�u2
...

�uM

⎞
⎟⎟⎟⎠ (7)

is called the matrix of PC coefficients, indicating the
along-track variation in the brightness temperature.

Then, a five-point smoothing (moving average) filter is
applied to the first PC eigenvector (�e1) to remove the
along-scanline noise

�esm
1,k = 1

5

2�
i=−2

�e1,k+i (8)

where �esm
1,k represents the smoothed �e1 at the kth FOV.

Thus, the original observation matrix A can be rewritten in
the form

A =
M�

i=1

�ei �ui (9)

in which �ei and �ui are the eigenvectors and the PC coefficients
for the i th PC mode, respectively.

The observations can be reconstructed by replacing �e1 with
�esm

1

Arec = �esm
1 �u1 +

M�
i=2

�ei �ui (10)

where �esm
1 is the five-point smoothed �e1.

Finally, the noise is extracted by subtracting Arec from A
and the magnitude of mean noise for each channel is defined
as

noisem = |A − Arec|. (11)

Fig. 5. Matrix of the vector products of PCs with PC coefficients ( �ei �ui )
for (a) first, (b) second, and (c) third modes of MWHS-2 channel 11 using a
single swath at 0047-0229 UTC on November 1, 2013.

B. Characterization of MWHS-2 Noise Using PCA

The PCA method decomposes the brightness temperatures
into uncorrelated PCs. Fig. 5 presents the spatial distribu-
tions of the products of the first three PCs with PC coeffi-
cients for a swath of MWHS-2 channel 11 observations at
0047–0229 UTC, November 1, 2013. The first PC mode con-
tributed approximately 99.95% of the total variance, mainly
indicating the average atmospheric state where the brightness
temperature varies with latitude. In tropical or subtropical
areas where water vapor is abundant, the scattering of clouds
causes brightness temperatures to decrease. The optical path
length decreases as the scan angle increases, which also
results in observations varying with scan angle. This feature
is well captured by the product of the first PCs with PC
coefficients, as shown in Fig. 5(a). In the subsequent PC
modes, the contribution of each PC to the total variance
successively declines, accounting for 0.028% and 0.014% for
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Fig. 6. First (a) eigenvector ( �e1) and (b) PC coefficients ( �u1) calculated from
the (red) observed and (black) CRTM-simulated brightness temperatures for
the same swath and channel as in Fig. 5.

the second and third PCs, respectively, representing some
disturbances overlapping in the average state. These two PCs
mainly describe the asymmetric and small-scale features with
respect to the nadir.

The first eigenvector and its corresponding PC coefficient
of the MWHS-2 channel 11 are given in Fig. 6 using the same
swath as in Fig. 5. The variations of MWHS-2 observations
(red solid curve) and model simulations (black solid curve)
are in good agreement, and the limb effect is also simulated
by CRTM. Since the first PC mode captures most of the
scan-dependent features of cross-track radiometer measure-
ments [23], the along-scanline noise is mainly contained
in the PC coefficients corresponding to the first PC mode
[see Fig. 6(a)]. Besides, the high-frequency noise in the first
PC exists only in the MWHS-2 observations but cannot be
simulated by the CRTM model.

A swath portion with 600 scanlines in the swath mentioned
above is used to further characterize the noise in MWHS-2.
The selected portion with 600 continuous scanlines covers an
area of approximately 90◦ in the middle and low latitudes
for MWHS-2 channel 11, whose weighting function peaks
at approximately 450 hPa in a clear sky, is quite sensi-
tive to the atmospheric temperature and water vapor. There-
fore, brightness temperatures are easily affected by clouds
and precipitation. Fig. 7(a) and (b) provides the observed
and reconstructed brightness temperatures of the portion for
MWHS-2 channel 11, respectively. The dynamic range of
brightness temperatures of the MWHS-2 channel 11 is over
40 K. Since the magnitude of the along-scanline noise is much
smaller than that of the observations, the differences between
observed and reconstructed brightness temperatures can hardly
be observed from Fig. 7(a)–(b). Fig. 7(c) is the distribution of
model simulations for the same swath portion. The CRTM
used in this article is accurate enough to simulate large-scale

Fig. 7. Observed brightness temperatures (a) before and (b) after removing
the along-scanline noises and (c) simulated brightness temperatures for
MWHS-2 channel 11 using a chosen portion of the swath at 0047–0229 UTC
on November 1, 2013.

Fig. 8. (a) O-B of the first PC mode. (b) Sum of the last 97 PC modes.
(c) Five-point smoothed O-Bs of the first mode for the same swath and channel
as in Fig. 7.

features under clear-sky conditions, but cloud scattering and
precipitation are not considered. Also, the errors in background
temperature and water vapor profiles are another cause of the
simulation errors.

Fig. 8(a) shows the difference between the observations
and the simulations of the first PC mode of MWHS-2 chan-
nel 11. We can clearly see the noise along the scanline.
Fig. 8(b) shows the O-Bs of the sum of the remaining
97 PCs for channel 11 and indicates the weather signals.
The along-scanline noise does not occur in Fig. 8(b), which
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Fig. 9. O-B (a) before and (b) after removing the along-scanline noises and
(c) along-scanline noises for the same swath and channel as in Fig. 7.

proves that this noise is mainly contained in the first PC
mode. After applying a five-point smoothing filter to the
observed brightness temperatures of the first PC, the O-Bs
vary smoothly with FOV for the first PC [see Fig. 8(c)].
Fig. 9(a) and (b) shows the distribution of O-Bs before and
after removing the along-scanline noise. The noise is obvious
in O-B before it is removed from the observations, while
the filtering operator can eliminate the discontinuity in the
observed brightness temperatures, indicating that the noise is
significantly reduced. Fig. 9(c) shows the distribution of the
noise by subtracting the reconstructed brightness temperatures
from the observations. The magnitude of this noise is within
−0.3 to 0.3 K for most FOVs, which is much less than the
NEdT for MWHS-2 channel 11. Notably, the magnitude of
the noise has no relationship with the surface types and the
noises vary only with FOVs as well as the first PC coefficient.
In addition, we further examine whether the noise changes
under cloudy conditions. From Fig. 10 which presents the
ERA-derived LWP and IWP reanalysis that was interpolated
in MWHS-2 footprints for the same swath as in Fig. 7,
we can see that there are no significant differences between
the noise under a clear sky and that under cloudy conditions
[Fig. 9(c)]. Therefore, this method works in both clear and
cloudy conditions.

Furthermore, this filtering method is applied to all five
humidity channels of MWHS-2 to remove the along-scanline
noise. In Fig. 11(a), the variations in O-B biases with respect to
the FOVs for the five MWHS-2 humidity channels are shown.
Biases before the filtering are shown as a gray curve, and
biases with the noise removed are shown as colored curves.
Nadir biases have already been subtracted. Only results from
FOV 3 to 96 are given, since the brightness temperatures
of the two FOVs at either end of a scanline remain the
same after applying the five-point smoother. At the first few
FOVs, the O-B biases increase rapidly for all channels except
channel 14, then decrease gradually toward the nadir. The

Fig. 10. Distributions of (a) LWP and (b) IWP of ERA reanalysis interpolated
in MWHS-2 footprints for the same swath as in Fig. 7.

Fig. 11. Variations in (a) O-B biases and (b) averaged along-scanline noise
with respect to beam position for FY-3C MWHS-2 channels 11–15. Gray
and colored solid lines in Fig. 11(a) indicate data before and after PCA
reconstruction, respectively.

O-B biases for the MWHS-2 channels show some symmetric
features about the nadir, so that they increase as the scan angle
ranges from 0 to 53.35◦; for channel 14, its bias increases
monotonously with scan position. These features did not
change much, but biases vary more smoothly with FOVs after
the filtering.

Fig. 11(b) shows the variation in mean noise with scan
position. The noise for all channels is within the range of
−0.3–0.3 K, and is not scan-angle dependent, but the variation
seems to be highly correlated between channels.

C. Comparisons Between MWHS and MWHS-2

The along-scanline noises are contained in both MWHS
and MWHS-2 on board the FY-3 polar-orbiting satellite. The
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Fig. 12. Same as in Fig. 11(a) but for (a) FY-3A, (b) FY-3B MWHS, and
(c) FY-3D MWHS-2 humidity sounding channels.

scan-angle dependence of the MWHS and MWHS-2 biases
before and after smoothing are shown in Fig. 12. Observations
used for statistics are from November 1 to 7, 2008 and from
April 2 to 8, 2011 for FY-3A and FY-3B MWHS channels 3–5
[see Fig. 12(a) and (b)], and from June 1 to 7, 2018 for FY-3D
MWHS-2 channels 11 to 15 [see Fig. 12(c)]. The O-B bias of
FY-3A MWHS shows obvious fluctuation characteristics along
the FOVs, especially for channel 5. The difference between the
maximum and the minimum bias of FY-3A MWHS channel 5
reaches 4.0 K, which is much larger than those of other
channels. After the noise is removed, it can be seen that the
O-B biases of all FY-3A MWHS channels have a fluctuation
characteristic with a period of about ten FOVs. The biases of
the FY-3B and FY-3D channels show neither a sudden bend at
the first few scanning positions as FY-3C does, nor periodic
phenomena like those of FY-3A. The O-B biases of FY-3B
MWHS increase with FOVs. The noise of the instrument
on board FY-3B is much smaller than that of FY-3A and is
comparable to the magnitude of the MWHS-2 noise. The O-B

TABLE II

MAGNITUDES OF ALONG-SCANLINE NOISES FOR MWHS AND
MWHS-2 HUMIDITY SOUNDING CHANNELS

Fig. 13. Interchannel correlations of along-scanline noise for (a) FY-3A and
(b) FY-3B MWHS and (c) FY-3C and (d) FY-3D MWHS-2 humidity sounding
channels.

biases of FY-3D MWHS-2 have the most obvious symmetrical
characteristics with the nadir.

Table II provides the magnitudes of the noise for different
channels of MWHS and MWHS-2 on board FY-3 calculated
from (11). The MWHS noise increases with the channel
frequency except for FY-3D. FY-3A MWHS has the largest
noise: 0.16, 0.27, and 0.89 K for channels 3–5, respectively.
The noise of FY-3B MWHS is much smaller than the noise of
FY-3A, especially for channel 5, where the noise is reduced
from 0.89 to 0.12 K. All FY-3C MWHS-2 channels have noise
around 0.11 K. The noise for FY-3D MWHS-2 is reduced
to 0.06–0.07 K. With the continuous improvement in this
instrument, this along-scanline noise has been significantly
reduced.

As can be seen in Figs. 11 and 12, the along-scanline
noise is highly consistent for different channels. This may
contribute to the correlation in the MWHS observation errors.
Fig. 13 shows the interchannel correlation coefficients of the
along-scanline noises in the MWHS and MWHS-2 water
vapor channels calculated using the one-week data described
above. Generally, the noise in FY-3A, 3B, and 3C water
vapor channels is strongly correlated between channels, but
it is much weaker for FY-3D MWHS-2; weak correlation will
contribute to the effective assimilation of these data.

V. SUMMARY

Satellite observations have become one of the most impor-
tant sources for NWP and climate research. China has
launched a series of polar-orbiting meteorological satellites
(e.g., FY-3A/B/C/D) since 2008. Various instruments carried
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on the Chinese Fengyun meteorological satellites provide
numerous data for China’s weather forecasting and climate
research. More attention has been paid to the assimilation
and climate applications of MWHS data. Therefore, it is very
important to understand the bias characteristics of observations
before they are used.

In this study, we compared the observed and simulated
brightness temperatures of MWHS-2 and found along-scanline
noises in the MWHS-2 observations. This noise is not sig-
nificant in MHS on board the NOAA and MetOp series.
To characterize and mitigate the along-scanline noises in
MWHS-2, a PCA approach is first employed to decompose
the observation data. The results show that this noise is mainly
contained in the first PC mode. The O-B varies more smoothly
with FOV after applying a five-point smoothing filter to the
first PC. The noise can be effectively extracted and eliminated
by the PCA/five-point smoothing method.

After the noise elimination, O-B biases for the
MWHS-1/2 on board different Fengyun satellites are
analyzed. There is a periodicity of 10 FOVs in the O-Bs of
FY-3A MWHS. Biases for most channels of FY-3B, 3C, and
3D show asymmetric features with the nadir.

The along-scanline noise exists in both MWHS and
MWHS-2 on board the FY-3 series. By comparing the
noise of the four instruments, it is found that the noise in
FY-3A MWHS is the largest, being 0.16, 0.27, and 0.89 K,
for channels 3–5, respectively. Noise in FY-3 B/C/D is
much smaller than that in FY-3A. Among them, the FY-3D
MWHS-2 channels have the smallest noise at about 0.06 K.

There are also strong interchannel correlations between the
noise of different channels except for FY-3D. A reduction in
interchannel correlation of the noise will definitely be good
for the effective assimilation of MWHS-2 observations.

Despite the fact that the PCA method combined with
a five-point smoother can filter out the along-scanline
noises, the current work does not examine the impact of
quality-controlled data on NWP or other applications. Also,
this study does not identify the root cause of the noise; these
are goals in our follow-up study.
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