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ABSTRACT

A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based
on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous three-
hourly  updated  cycles  followed  by  18-h  deterministic  forecasts  from  every  three-hourly  ensemble  mean  analysis.  Initial
tests  showed  negative  to  neutral  impacts  of  assimilating  satellite  radiance  data  due  to  the  improper  bias  correction
procedure.  In  this  study,  two  bias  correction  schemes  within  the  established  EnKF  DA  system  are  investigated  and  the
impact  of  assimilating  additional  polar-orbiting  satellite  radiance  is  also  investigated.  Two  group  experiments  are
conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods
based  on  GSI  3DVar  and  EnKF  algorithms  are  used  to  assimilate  AMSU-A  radiance  data.  Results  show  that  both
variational  and  EnKF-based  bias  correction  procedures  effectively  reduce  the  observation  and  background  radiance
differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations
including  AMSU-A,  AMSU-B,  AIRS,  HIRS3/4,  and  MHS  in  the  second  group.  The  relative  percentage  improvements
(RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of
upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km
EnKF analyses are also improved by radiance assimilation for almost all forecast hours.
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Article Highlights:

•  The  variational  and  EnKF-based  bias  correction  methods  have  comparable  performance  assimilating  polar-orbiting
satellite radiance data.
•  Radiance assimilation improves short-range forecast accuracies for most variables and times.
•  Short-range precipitation forecasts at 13-km grid spacing from EnKF analyses are improved by the radiance assimilation.

 
 

1.    Introduction

The  quality  of  short-range  weather  forecasts  depends,
to  a  large  extent,  on  the  accuracy  of  model  initial  condi-

tions (Sun et al.,  2014). Compared to radiosonde and other
conventional  observations,  satellite  observations  usually
have  wider  coverage  and  are  the  most  important  data  over
the oceans (Le Marshall et al., 2007). In fact, satellite data as-
similation  (DA)  is  responsible  for  much  of  the  forecasting
skill  improvement  in  global  NWP models  over  recent  dec-
ades, especially in the Southern Hemisphere (Le Marshall et
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al., 2007).
However,  studies  on  the  impact  of  satellite  radiance

data  within regional  models,  especially  those that  focus on
continental  regions,  are  relatively  few. Zapotocny  et  al.
(2005a, b) studied the relative impacts of Geostationary Oper-
ational  Environmental  Satellite (GOES) and Polar Orbiting
Operational  Environmental  Satellite  (POES)  radiance  data
versus rawinsonde data within the National Centers for Envir-
onmental Prediction (NCEP) Eta (Black, 1994) three-dimen-
sional variational (3DVar) DA system (Rogers et al., 1996).
They found that GOES data had a larger impact on 24-h fore-
casts than the POES data for most of the levels and seasons
examined, while the only components of POES data show-
ing  appreciable  forecast  impacts  were  the  combined  Ad-
vanced Microwave Sounding Unit A and B (AMSU-A and -
B) data and the Special Sensor Microwave/Imager Precipit-
able Water (SSM/I PW) data. The individual components of
the  POES  Microwave  Sounding  Unit,  High  Resolution  In-
frared Radiation Sounder (HIRS) and SSM/I wind data exhib-
ited little impact at 24 h (Zapotocny et al., 2005b). Other stud-
ies have focused on a specific sensor (McCarty et al., 2009)
or a  case (Liu et  al.,  2012; Schwartz et  al.,  2012).  Collect-
ively,  their  results  showed that  both  the  analyses  and fore-
casts were improved by assimilating radiance.

Encouraging as they are, the assimilation of satellite radi-
ance observations in regional models has not led to consist-
ently better results as in global models. Most recently, Kazu-
mori (2014) examined the impact of radiance data from vari-
ous satellite systems in the Japan Meteorological Agency op-
erational  mesoscale  four-dimensional  variational  system.
When verified against sounding data, their forecasts showed
slightly  negative  impacts  above  500  hPa  and  positive  im-
pacts  below.  Similar  results  are  also  reported  in Lin  et  al.
(2017b),  who  found  small  consistently  positive  impacts
between 800 and 400 hPa for AIRS DA within the operation-
al Rapid Refresh (RAP) system (Benjamin et al., 2016), but
not always positive impacts at levels above and below.

To effectively assimilate radiance data,  bias correction
is essential and the key to successful radiance assimilation.
Rizzi and Matricardi (1998) summarized the possible discrep-
ancies between measured and simulated radiances. Firstly, er-
rors from preprocessing of observations. For example, most
of  the  radiance  data  used  in  operational  models  are  clear-
sky  radiance.  But  until  now,  most  cloud  detection  al-
gorithms are threshold-based, in which thresholds are often
set empirically (Zou and Da, 2014).  Accurate detection for
all types of clouds is still challenging. Secondly, errors from
the forward observation operator model. The simulated radi-
ance over land is less accurate than over ocean due to the com-
plexity  of  the  surface  emissivity  of  land  (Karbou  et  al.,
2010).  Also,  the  simulated  radiance  is  less  accurate  in
cloud-contaminated  regions  than  in  clear-sky  conditions
(Bauer  et  al.,  2010).  Finally,  errors  from  the  model  back-
ground.  Biases  in  the  forecast  background  are  common is-
sues  for  NWP  models.  For  a  specific  system,  forecast  bi-
ases due to the use of specific empirical physics schemes is
inevitable (Fan and van den Dool, 2011).

Bias correction for limited-area frequently updated fore-
cast systems has unique challenges compared to that for glob-
al forecast systems. The accuracy of bias correction largely
depends on the size of usable data samples. The number of
available radiance observations in regional models depends
strongly on the satellite location, while in global models the
total number is almost constant (Kazumori, 2014). Besides,
shorter data cutoff time, limited extent of the model domain,
and lower model top in regional models all reduces the avail-
able number of radiance data (Lin et al., 2017a).

Various  bias  correction  methods  have  been  developed
in  the  past,  including  offline  and  online  types.  The  former
uses long-term forecasts and radiance observations to gener-
ate  fixed  bias  correction  coefficients  (Harris  and  Kelly,
2001),  while the latter  incorporates bias correction into the
variational (Derber and Wu, 1998; Auligné et al., 2007; Dee
and Uppala, 2009) or ensemble (Miyoshi et al., 2010) DA pro-
cesses.  With  online  correction,  the  correction  coefficients
are  updated  within  the  assimilation  procedure,  cycle
through  cycle.  Details  of  online  bias  correction  methods
will be introduced in section 2.

Recently,  we  successfully  demonstrated  the  advantage
of the GSI-based ensemble Kalman filter (EnKF) (Zhu et al.
2013,  Z13  hereafter)  and  hybrid  ensemble-3D  variational
(En3DVar) (Pan et al., 2014) methods over the GSI 3DVar
method for  assimilating  conventional  observations  used  by
the operational RAP (Benjamin et al., 2016) system. Those
studies, however, did not include satellite data, because ini-
tial  tests  did not show clear positive impacts.  As discussed
later, proper bias correction is found to be key step towards
achieving  positive  impacts  of  satellite  radiance  data  within
our regional EnKF system. In this paper, two online bias cor-
rection methods are first tested within the established EnKF
when  assimilating  AMSU-A  radiance  data.  Then,  all  radi-
ance data available are assimilated and their impacts on the
subsequent forecasts are evaluated.

The  rest  of  this  paper  is  organized  as  follows.  In  sec-
tion 2, a brief introduction to the current GSI-based EnKF sys-
tem is presented together with a description of the radiance
data  and  bias  correction  procedures.  Experimental  design
and verification metrics used are described in section 3. The
behaviors of the two bias correction methods on short-range
forecasts  are first  investigated in section 4 using AMSU-A
data within the EnKF framework. In section 5, the impacts
of assimilating the full suite of satellite radiance data using
the EnKF are further examined. A summary and further dis-
cussion are given in section 6.

2.    Data and assimilation system

2.1.    Brief review of the GSI-based EnKF system

In  Z13,  an  experimental  GSI-based  EnKF  DA  system
was established and tested at 40-km grid spacing with 40 en-
semble  members  and  three-hourly  assimilation  cycles.  The
system was intended to be a prototypical system for the opera-
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tional RAP (Benjamin et al., 2016), and the forecast model
was configured based on the operational RAP except for the
assimilation  interval  and  resolution.  The  operational  RAP
runs  hourly  and  has  an  approximate  13-km  grid  spacing.
The  choice  for  the  current  EnKF tests  was  dictated  by  the
availability  of  computational  resources  required  by  a  large
number  of  sensitivity  experiments  with  continuous  cycles.
Another consideration is the potential use of a lower-resolu-
tion EnKF in combination with a higher (native) resolution
EnVar  in  a  dual-resolution  EnKF-EnVar  hybrid  setup
(Schwartz et al., 2015; Pan et al., 2018) to save computation-
al cost of operational implementation.

The eventual goal is to provide hourly ensemble perturba-
tions to the operational RAP hybrid DA system. As a pilot
study, an EnKF-En3DVar hybrid DA system at 40-km grid
spacing was established based on the RAP system in Pan et
al.  (2014), and more recently a dual-resolution version that
uses ensemble covariance downscaled from the 40-km En-
KF DA system has also been tested (Pan et al., 2018). Res-
ults  show  consistent  advantages  of  EnKF  and  hybrid
En3DVar over GSI 3DVar, and that the hybrid DA further im-
proves upon EnKF in some aspects of forecasts. These earli-
er encouraging results prompted the implementation of hy-
brid En3DVar DA for the operational RAP, but it borrows en-
semble perturbations from the NCEP GFS EnKF system in-
stead of producing them using RAP’s own EnKF (Hu et al.,
2017; Wu  et  al.,  2017),  partly  due  to  computational  con-
straints.  The  current  operational  13-km  RAP  hybrid  DA
uses 25% and 75% static and ensemble background error cov-
ariances, respectively (Benjamin et al., 2016), with the GFS
EnKF perturbations available only every six hours and with
delayed availability. For optimal results, it is desirable to oper-
ationally  implement  RAP’s  own  EnKF  DA  cycles,  and  to
couple  these  with  the  EnVar  hybrid  DA system.  Our  prior
and  current  studies  represent  some  of  the  efforts  toward
such a goal.

For the cycled ensemble DA system, the lateral bound-
ary  conditions  are  from  three-hourly  NCEP  GFS  forecasts
but  perturbed  using  the  “randomCV ”  option  of  the  WRF
DA  system  (Barker  et  al.,  2012)  following Torn  et  al.
(2006).  The  same  method  was  used  to  generate  perturba-
tions for initializing the first EnKF DA cycle. For the GSI-
based EnKF system, the observation innovations, y − H(x),
are calculated within GSI and then used within the EnKF sys-
tem. The analysis algorithm is the ensemble square root fil-
ter  of Whitaker  and  Hamill  (2002).  Forty-member  en-
semble forecasts are run for three hours between the analys-
is  times,  while  18-h  short-range  deterministic  forecasts  are
run from the ensemble mean analyses of  each cycle.  As in
Z13,  a  modified digital  filter  launch procedure (Lynch and
Huang,  1994)  where  the  land  surface  fields  are  subject  to
the  same  filtering,  is  used  before  launching  the  forecasts.
All members use the same physics options, including Grell-
G3  cumulus  parameterization,  Thompson  microphysics,
RRTM  longwave  radiation,  Goddard  shortwave  radiation,
the  MYJ  planetary  boundary  layer  scheme,  and  the  RUC-

Smirnova  land-surface  model.  In  short,  the  EnKF DA sys-
tem used is the same as that described in Z13, and the specif-
ic configurations are the same as experiment EnKF_CtrHDL
of Z13, except for the addition of satellite radiance data and
global positioning system (GPS) PW (Smith et al., 2007).

Following Z13, height-dependent background error cov-
ariance localization scales are used, in which the horizontal
covariance localization scale increases from 700 km at the sur-
face to 1050 km at the model top. The vertical localization
scale ln(pcut) depends on the analysis variable. For relative hu-
midity (RH) and temperature,  it  is  set  to a  quarter  and one
half of 1.1 at the surface and model top, respectively. For hori-
zontal  wind  components, U and V,  the  vertical  correlation
length  is  twice  as  large  as  that  for  RH and  temperature.  A
value of 1.6 is used for surface pressure observations. These
settings were found to produce the best results in Z13 based
on  sensitivity  experiments.  Here,  the  vertical  localization
scale for radiance observations is 1.6. The covariance infla-
tion used is the same as in Z13, containing a fixed and an ad-
aptive  part  (Anderson,  2009; Whitaker  and  Hamill,  2010).
For the experiments with satellite radiance assimilation, the
coefficient  of  the  fixed  part, b in  Eq.  (5)  of  Z13,  is  in-
creased from 0.1 (no satellite radiance assimilation) to 0.16
(AMSU-A radiance assimilation) and 0.18 (full radiance as-
similation). This is because the ensemble spread tends to be
reduced  when  more  satellite  observations  are  assimilated.
More details on other settings can be found in Z13.

For radiance assimilation, GSI uses the Community Radi-
ative Transfer Model (CRTM) developed by the Joint Cen-
ter for Satellite Data Assimilation (Han et al., 2006; Weng,
2007) as its observation operator. CRTM is capable of simu-
lating  most  geostationary/polar-orbiting  satellite  observa-
tions, covering microwave and infrared frequencies.

2.2.    Assimilation data

The  radiance  data  assimilated  in  this  study  include
AMSU-A, AMSU-B, AIRS, as well as the Microwave Humid-
ity  Sounder  (MHS) and High-resolution Infrared Radiation
Sounder  (HIRS/3  and  HIRS/4)  instruments  on  polar-obit-
ting satellites. These data were part of the operational RAP
and  GFS  observation  data  streams.  For  a  regional,  fre-
quently  updated  forecasting  system,  radiance  data  prepro-
cessing is an important step towards obtaining a positive im-
pact of radiance assimilation (Lin et al., 2017a). To be consist-
ent with the three-hourly assimilation cycles tested in this pa-
per, the radiance data are reprocessed into three-hourly data
batches, including data within the ±1.5-h windows centered
on the analysis times. In this study, clear-sky radiance data
are assimilated. GSI uses the minimum residual method to de-
tect  clouds  (Eyre  and  Menzel,  1989).  Additionally,  for  the
quality control step, GSI uses outliers to reject observations
along the scan edges. Table 1 gives the GSI default  values
for each sensor. Note that some satellite sensors have high-
er  spatial  resolution,  and hence more  scan points  than oth-
ers. In general, about 10% of the scan points along both left
and right edges were removed.

Figure 1 shows the number of assimilated data for each
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channel used and the corresponding height level of the maxim-
um  response  function.  AMSU-A  and  MHS  are  at  mi-
crowave frequency, while AIRS and HIRS are at infrared fre-
quency. For infrared sensors, the number of assimilated data
is  smaller  near  the  surface  compared  to  higher-level  chan-

nels  (Figs.  1a, e and f).  This  is  especially  true  for  infrared
sensors such as HIRS4 (Figs. 1e and f). AIRS behaves simil-
arly but benefits from more channels available near the sur-
face (Fig.  1b),  and the total  number of  near-surface data is
still large (Fig. 1a). In fact, for this study, the total number
of  assimilated  AIRS  data  is  the  largest.  For  microwave
sensors, the number of surface channel data is not as many
as for upper-level channels, but is still comparable (Figs. 1c
and g). AMSU-A mainly provides atmospheric temperature
profiling  with  data  from  several  satellites  and  provides  by
far the best coverage. Among all instruments, the amount of
assimilated  AMSU-A data  is  the  second largest.  In  all,  the
satellite  radiance  data  from  multiple  sensors  and  satellites
provide  a  reasonably  good  coverage  in  the  3D  model  do-
main over a period of time.

Table  1.   Lists  of  scan  points  used  by  GSI  for  each  satellite
sensor. Points outside the left and right bounds are removed.

Sensor name Number of scan points Left bound Right bound

AMSU-A 30 4 27
AMSU-B 90 10 81

MHS 90 10 81
HIRS 56 7 50
AIRS 90 10 81
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Fig.  1.  Number  of  assimilated  observations  (left)  and  corresponding  heights  (of  the  level  of  maximum
response  function,  right).  The  first  to  fourth  rows  are  for  AIRS,  Metop  AMSU-A,  HIRS4,  and  MHS,
respectively. Here, only used channels are displayed. The x-axis is the channel index.
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2.3.    Introduction to two online bias correction schemes

Online bias correction methods can be classified into vari-
ational  versus  non-variational  approaches.  Variational  bias
correction  estimates  the  correction  coefficients  simultan-
eously with state estimation within a variational framework.
Specifically, in a 3DVar framework, the cost function, follow-
ing Dee and Uppala (2009), is given by 

J(x,β) =(xb− x)TB−1
x (xb− x)+ (βb−β)TB−1

β (βb−β)

+ [y1−H1(x)]TR−1
1 [y1−H1(x)]

+ [y2−H2(x)− PTβ]TR−1
2 [y2−H2(x)− PTβ] , (1)

where 

b = PTβ =

Np∑
i=0

βi pi(x) (2)

H2(x) y2

J
β

y2

y1

xb

βb

Bx Bβ

b

is  the  correction  to  the  departure  of  simulated  radiance
 from  radiance  observations .  Here,  the  modified

3DVar cost function  includes the estimation of bias correc-
tion coefficients in coefficient vector , which are analyzed
together with state vector x. We write the observation term
in two parts: one for radiance data , and one for all other ob-
servations , which are associated with the corresponding er-
ror  covariances R1 and R2,  and  observation  operators H1

and H2.  is the background state vector, and x is the state
vector to be analyzed.  is the prior estimate of bias correc-
tion coefficient.  and  are the error covariance matrices
for  the  background state  and bias  parameters,  respectively.
The radiance data are corrected using the bias correction vec-
tor  given  by  Eq.  (2),  which  depends  on  predictors  in P.
Those predictors are usually air-mass dependent (Flobert et
al., 1991). Subscript i represents the index of predictors, Np

is the number of predictors. pi represents individual column
vector i of  matrix P.  In  the  version  of  GSI  used  in  this
study,  there  are  five  predictors  for  bias  correction,  includ-
ing the global offset, zenith angle predictor, cloud liquid wa-
ter  (CLW) predictor,  temperature lapse rate  (TLR) predict-
or, and the square of the TLR predictor. In the version used,
the scan-angle component is still updated outside GSI (Der-
ber  and  Wu,  1998)  using  the  moving  average  of  the
weighted  differences  between  the  quality  controlled  radi-
ance observations and the first guess. More recent versions
of GSI have incorporated this term into the variational estima-
tion (Zhu et al., 2014).

Equations (3) and (4) give an example of how the predict-
or terms CLW and TLR are calculated within GSI for the Met-
op AMSU-A sensor: 

CLW = d1
BTsim1−BTobs1

285−BTsim1
+d2

BTsim2−BTobs2

285−BTsim2
, (3)

 

TLR =
N−1∑
k=1

[τ(k)−τ(k+1)] [T (k−1)−T (k+1)] . (4)

BTsim BTobs

τ

∆τ = τ(k)−τ(k+1)
∆τ

∆T = T (k−1)−T (k+1)

Here,  and  are  the simulated and observed
brightness  temperature,  respectively.  The  numbers  indicate
channels 1 and 2; d1 = 0.754 and d2 = −2.265 are weight coef-
ficients. Based on Eqs. (3) and (4), CLW is not channel-de-
pendent, while TLR is. In Eq. (4),  is the transmittance and
T is  the model background temperature.  Index k represents
the  vertical  level,  while N is  the  number  of  vertical  levels.
T0 is  surface  temperature. Figure  2 shows  an  example  of
TLR  calculated  using  the  US  standard  atmosphere  profile
for  the  Metop  AMSU-A  sensor.  The  changes  of  transmit-
tance  between levels  are  very  similar  to
vertical weighting functions (not shown).  is always posit-
ive  (Fig.  2a).  For  TLR,  channels  1−6  are  positive.  Among
these, channels 4 and 5 have clearly larger TLR values than
other  channels.  As  the  temperature  gradient

 turns  to  be  negative  at  some  high
levels,  the  TLR of  channels  8−11  become negative.  Chan-
nel 15 is an exception since it also peaks near the surface.

β

δβ

The other non-variational bias-correction approach uses
the EnKF analysis equation to update the bias-correction coef-
ficients or predictors, and it is performed within each cycle
before state estimation (Miyoshi et al., 2010). Setting the de-
rivative  of  cost  function J in  Eq.  (1)  with  respect  to  to
zero yields the following optimal update equation for the in-
crement of bias correction coefficient vector, : 

δβ = (B−1
β + PR−1

2 PT)−1 PR−1
2

[
y2−H2(x)− PTβ

]
, (5)

y2

β

δβ

β

where only satellite data in vector  are used. The above for-
mulation  can  be  shown to  be  mathematically  equivalent  to
the 3DVar solution for a linear and Gaussian system, which
also has  the same form as  the EnKF analysis  update  equa-
tion  (with  the  inclusion  of  online  bias  correction)  (Kalnay,
2002). Here, Bβ is assumed to be diagonal and the diagonal
elements  are  assumed to  be  0.1,  which  is  also  the  GSI  de-
fault value. Within the EnKF system, we apply bias correc-
tion to observation priors using prior estimated bias correc-
tion coefficients. Equation (5) is used to update  after state
estimation. After  is obtained, the bias correction coeffi-
cients  are updated according to 

β = βb+δβ . (6)

Bx Bβ

We note here that the coefficient estimation in Eq. (5) ap-
pears independent of the state vector estimation, while the es-
timation of the coefficients using the cost function in Eq. (1)
involves state vector x. This is because the EnKF algorithm
is  sequential;  the  correction  coefficients  are  updated  using
the updated state vector. In comparison, in Eq. (1), state vec-
tor x and the coefficient  vector are updated simutaneously.
However, because  and  are uncorrelated, the state and
coefficient  estimations,  even  in  the  variational  framework,
are  not  strongly  linked.  Still,  the  algorithm differences  can
lead to differences in results in practice,  and it  is  a goal of
this paper to compare their relative performance.
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In our EnKF experiments, we use either the variational
procedure that minimizes the cost function Eq. (1) or the En-
KF procedure that updates the correction coefficients using
Eq. (5). In Table 1, we label the former procedure “variation-
al” and the latter procedure “EnKF ”. When the variational
procedure is used to estimate bias correction coefficients for
EnKF  experiments  (for  comparison  purposes),  GSI  3DVar
is run with full observations using the EnKF ensemble mean
forecast  as  its  background  in  each  analysis  cycle;  in  other
words,  the  GSI  3DVar  cycles  piggyback  on  the  EnKF
cycles;  the  GSI  3DVar  solver  is  therefore  used  purely  for

the  purpose  of  variationally  estimating  the  bias  correction
parameters, while its state estimation is discarded. For GSI
3DVar,  two outer  loops  and a  maximum of  50  inner  itera-
tions are imposed.

As pointed out earlier, in theory, the variational and En-
KF parameter updates should be mathematically equivalent,
for linear systems with Gaussian errors at least. The key dif-
ference lies in that, within a variational framework, the para-
meter  and  state  estimations  are  performed  simultaneously,
while  within  EnKF they  are  updated  sequentially.  In  addi-
tion,  the  variational  minimization  involves  linearization  of
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Fig. 2. (a) Vertical profiles of transmittance changes for Metop AMSU-A, (b) vertical profile
of  temperature,  and  (c)  bias  corrected  term  of  the  temperature  lapse  rate.  All  figures  are
plotted  using  US  standard  atmosphere  within  the  CRTM.  Only  channels  that  are  finally
assimilated are given.
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the observation operators.

3.    Experimental  setup  and  verification  met-
rics

3.1.    Experimental design

To compare with the results without satellite radiance as-
similation, we continue to use the same test period as Z13,
starting at 0000 UTC 8 May 2010 and ending at 2100 UTC
16  May  2010,  over  a  total  of  nine  days.  This  period  fea-
tures  a  variety  of  active  convective  weather,  including  the
10 May Oklahoma tornado outbreak featuring strong meso-
scale forcing, a mesoscale convective system (MCS) on the
night  of  the  11th,  a  cold-season  type  Front  Range  upslope
low-pressure  precipitation  event,  and  some  southeast
propagating  MCSs  across  Texas.  The  DA  experiments  are
run in continuous three-hourly updated cycles. The assimila-
tion  domain  has  a  horizontal  grid  spacing  of  40  km,  with
207 × 207 × 50 grid points, and covers the whole of North
America (Fig. 3). The model top is at 10 hPa. As described
in  Z13,  the  use  of  a  relatively  short  nine-day  period  was
mainly due to computational resource constraints; however,

this length appears long enough for the EnKF state estima-
tion and bias correction to stabilize [as discussed in Pan et
al. (2014)].

y

β

β

βb
βb

βb

βb

βb

βb

Table  2 lists  all  experiments  presented  in  this  paper.
We first investigate initial bias correction coefficient issues
and  test  the  two bias  correction  methods  in  the  EnKF sys-
tem described in section 2c. AMSU-A radiance data are as-
similated  since  they  are  available  from  different  satellites
and the number of data available within the domain is much
more stable than other types of radiance data.  Experiments
EnKF_AMSUA_VarB0, EnKF_AMSUA_VarB,  and  En-
KF_AMSUA_VarB2  use  the variational  bias  correction
with GSI 3DVar. For the variational bias correction,  also
contains conventional observations during the update of bi-
as  correction  coefficients .  In  experiment  EnKF_AM-
SUA_VarB_SP,  we  use  only  radiance  observation  to  up-
date . Experiments EnKF_AMSUA_EnB use EnKF para-
meter estimation. Here, the number “0” in the name indic-
ates the use of zero  in the first analysis cycle; otherwise,
the  recycled  initial  estimate  of  is  used.  In  the  recycled
case,  the entire  nine days of  DA cycles  are  repeated,  start-
ing from the  estimated at the end of the previous pass of
the nine-day cycled DA. The numbers “1” and “2” repres-
ent the recycled initial estimate of  from the zero and first
run,  respectively.  For  simplicity,  the  number  1  is  ignored.
This recycled procedure is an attempt to improve the initial
guess of  when the total length of DA cycles is relatively
short. Experiments with “0” are considered as spin-up runs
for  the  correction  parameter  estimation  and  are  included
here mainly to see if a better initial estimate of , which is
typically available in long-running DA cycles, can improve
the  results,  given  the  relatively  short  nine-day  DA  period
we are  using.  Note  that  in  continuously  cycled  operational
DA  systems,  this  procedure  is  not  necessary,  and  is  used
here to help alleviate the potential problem of the short DA
period.

βb

We then test the impact of the full set of radiance data
in  the  EnKF  system.  EnKF_ALL  assimilates  all  of  the
AMSU-A, AMSU-B, AIRS, MHS, HIRS3 and HIRS4 data,
and  is  compared  with  EnKF_NoSat  without  satellite  data
(but  with  PW  data  included).  The  nine-day  DA  cycles  are
run twice, with the second time starting from the recycled es-
timate of  from the first pass, as in the “1” experiments.
To see if the DA results produced on the 40-km grid can im-

βbTable  2.   List  of  data  assimilation  experiments.  Here,  is  the  first  guess  of  the  bias  correction  coefficients  vector  used  in  the  first
analysis  cycle.  “VarB ”  in  the  experiment  names  stands  for  variational  bias  correction,  while  “EnB ”  stands  for  EnKF-based  bias
correction.

Experiment Satellite radiance Bias correction method

EnKF_AMSUA_VarB0 AMSU-A βbVariational procedure, = 0
EnKF_AMSUA_VarB AMSU-A βbVariational procedure, using recycled  from EnKF_AMSUA_VarB0
EnKF_AMSUA_VarB2 AMSU-A βbVariational procedure, using recycled  from EnKF_AMSUA_VarB
EnKF_AMSUA_VarB_SP AMSU-A βbSimilar to EnKF_AMSUA_VarB, but  is obtained using only radiance observations
EnKF_AMSUA_EnB AMSU-A Similar to EnKF_AMSUA_VarB, but using EnKF procedure
EnKF_NoSat − −
EnKF_ALL AMSU, AIRS,

MHS, HIRS 3/4
Similar to EnKF_AMSUA_VarB, but using full radiance
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Fig. 3. Horizontal domain of the 40-km WRF forecast.
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prove  forecasts  at  the  13-km  RAP  operational  resolution,
13-km  forecasts  from  interpolated  analyses  of  the  above
two  experiments  are  run  twice  a  day  starting  at  0000  and
1200 UTC, and the precipitation forecasts are evaluated.

3.2.    Verification scores

The 40-km forecasts  are verified against  sounding and
surface  observations.  As  in  Z13,  root-mean-square  error
(RMSE)  and  relative  percentage  improvement  (RPI)  are
used as the verification metrics. The RPI is defined as 

RPI =
RMSEnosat−RMSEsat

RMSEnosat
, (7)

where the subscripts “sat” and “nosat” represent the experi-
ments with and without satellite radiance assimilation. Posit-
ive RPI values mean reduced error or improved analyses/fore-
casts due to radiance assimilation.

Following Pan  et  al  (2014),  the  statistical  significance
of RMSE differences and RPIs is determined by using boot-
strap  resampling  (Candille  et  al.,  2007; Buehner  and
Mahidjiba, 2010; Schwartz and Liu, 2014). The same meth-
od with 3000 randomly selected samples are used. For those
samples, their mean and a two-tailed 90% confidence inter-
val  from 5% to 95% is  calculated.  For  RPIs,  if  the bounds
of  a  90% confidence interval  between the  forecast  pair  are
all higher than zero, it means that the improvement from the
satellite  assimilation experiment over the corresponding no
satellite experiment is statistically significant at the 90% con-
fidence level. In contrast,  if the bounds of the 90% confid-
ence level includes zero, it indicates a statistically insignific-
ant difference (Xue et al., 2013; Pan et al., 2014).

For the 13-km forecasts, we focus on precipitation verific-
ation using the NCEP stage IV precipitation data as observa-
tion. Two verification scores—the Gilbert skill score (GSS)
(Gandin  and  Murphy,  1992)  (also  known  as  the  equitable
threat  score)  and  frequency  bias  (FBIAS)—are  calculated
over the contiguous US.

4.    Comparisons of the two online bias correc-
tion methods using AMSU-A

βb

Bias correction accuracy largely depends on the estim-
ated bias correction coefficients. Liu et al.  (2012) ran prior
three-month  offline  statistics  to  get  an  initial .  In
Schwartz et al. (2012), the spinup time period of bias correc-
tion coefficients is about a week. In their paper, a 6-h assimila-
tion  cycle  interval  is  used.  In  this  study,  the  assimilation
cycle interval is three hours. This greatly reduces the num-
ber  of  samples  at  a  given  analysis  time,  which  may  have
large  impact  on  the  stabilization  of  bias  correction  coeffi-
cients.

βb

To examine the required duration for the coefficients to
stabilize, Fig.  4 presents  the  time  series  of  bias  correction
coefficients  through  the  assimilation  cycles.  Here,  we  take
the values of  of NOAA-15 AMSU-A channel 5 as an ex-
ample  using  variational  bias  correction  methods.  Choosing

other channels or using the EnKF-based bias correction meth-
od result  in similar behaviors and are not shown. To see if
more cycles are helpful, in the EnKF_AMSUA_VarB2 experi-
ment,  we  repeat  the  nine-day  DA  cycles  starting  from  the
coefficients from the last cycle of EnKF_AMSUA_VarB. In
EnKF_AMSUA_VarB0, the coefficients of different predict-
ors  become stable  after  a  few days  of  spin  up.  The  coeffi-
cients of the CLW predictor and the TLR predictor equilib-
rate  in  less  than two days  (Figs.  4b and c).  Coefficients  of
the zenith angle predictor and the square of the TLR predict-
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Fig.  4.  Bias  correction  coefficients  through  the  assimilation
cycles.  Here,  NOAA-15  AMSU-A  channel  5  is  used  as  an
example.  Panels  (a−d)  are  for  the  coefficients  for  the  zenith
angle predictor, cloud liquid water predictor, temperature lapse
rate  predictor,  and  the  square  of  the  temperature  lapse  rate
predictor,  respectively.  The x-axis  marks  the  date  of  the  test
period. For example, “8” represents 0000 UTC 8 May 2010.
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βb

βb

or  take  longer  to  stabilize  but  also  approach  nearly  steady
states after seven days or so (Figs. 4a and d). Starting from
the recycled , the coefficients require virtually no spin up
in  EnKF_AMSUA_VarB  and  are  more  or  less  stable
throughout the nine-day cycles. Even more cycles in anoth-
er pass of the nine-day DA in EnKF_AMSUA_VarB2 pro-
duce little  systematic  change in  the  correction coefficients,
suggesting  that  the  nine  days  of  the  testing  period  is  long
enough to produce reliable results as far as the bias correc-
tion  procedure  and  the  data  impacts  are  concerned,  espe-
cially  when  a  better  initial  guess  of  the  coefficients  ob-
tained from a trial experiment is used. In the following, all ex-
periments are conducted twice, with the first discarded as a
spin-up run, for the purpose of getting a better initial guess
of .

Figure 5 shows the mean bias between observation and
simulated  brightness  temperature  of  each  channel  for  both
variational bias correction and EnKF-based bias correction.
The  median  bars  of  the  mean  bias  error  are  close  to  zero.
Compared  to  variational  bias  correction,  EnKF_AMSUA_
VarB, the EnKF-based bias correction method EnKF_AM-
SUA_EnB  produces  slightly  smaller  mean  errors  for  most
channels.  For  the  variational  bias  correction,  the  median
bars  indicate  either  cold  or  warm  bias  for  most  channels
(Fig.  5a).  Note  that  the  bias  correction  coefficients  of  En-
KF_AMSUA_EnB are calculated using only radiance obser-
vations, while for the EnKF_AMSUA_VarB experiment con-
ventional data are also involved during the minimization pro-
cedure.

β
To see if only the radiance observations should be used

to update , EnKF_AMSUA_VarB_SP was conducted and
the mean bias is presented in Fig. 5c. For channels 4−7, the
box  of  mean  biases  of  EnKF_AMSUA_VarB_SP  appears
much thicker than that of EnKF_AMSUA_VarB. This indic-

ates that, for most analysis times, the former may have lar-
ger biases. To see this more clearly, we show the mean bias
during  the  assimilation  cycle  for  two  selected  channels  in
Fig. 6. In both channels, EnKF_AMSUA_EnB has the smal-
lest  mean  bias  among the  three  experiments.  Running  GSI
variational  bias  correction  with  pure  radiance  observation
does  not  reduce  the  mean bias.  Instead,  for  channel  5,  En-
KF_AMSUA_VarB_SP  even  gets  higher  bias  than
EnKF_AMSUA_VarB  (Fig.  6b),  suggesting  conventional
datasets should not be excluded when updating bias correc-
tion  coefficients.  The  difference  between  two  bias  correc-
tion methods may lie in the minimization procedure.  It  ap-
pears that the EnKF-based method, which uses optimal estim-
ation, is less affected by available samples. The variational
method, which uses a conjugate gradient algorithm, is more
likely subjected to large bias in cases of small samples.

PTβ

The contributions of each predictor in both bias correc-
tion schemes are also compared,  in Fig.  7.  The black solid
lines represent the total bias correction—that is,  in Eq.
(1). The red solid lines are the scan-angle component, which
is updated outside GSI, while other dashed colored lines rep-
resent individual predictor terms for the online bias correc-
tion. In general, the behaviors of both experiments are very
similar and both are stable in the recycled run. For most chan-
nels, the scan-angle component is a larger term. As we ex-
plained  in  section  2c,  it  represents  the  mean  bias  of  each
scan angle and is applied before the variational bias correc-
tion. Therefore, it is unsurprising to see relatively large val-
ues. For most channels, the global offset is also a large term
and is comparable to the scan-angle term. These two predict-
ors contribute to a great fraction of the total bias correction.
In more recent versions of GSI, the scan-angle and air-mass
steps are  combined into one.  In  that  case,  the global  offset
term turns out to be the largest term for most channels (Zhu
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Fig.  5.  Boxplot  of  the  bias  of  simulated  radiances  for  NOAA-15  AMSU-A  of  the  nine-day  test  period  for
experiments (a) EnKF_AMSUA_VarB, (b) EnKF_AMSUA_EnB and (c) EnKF_AMSUA_VarB_SP.
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et al., 2014).
For  other  predictors,  their  contributions  vary  channel

by channel. For surface channel 2, the CLW dominates the
variation of total bias correction (Figs. 7a and b). The contri-
bution of CLW decreases rapidly with height for the upper-
level  channels  8  and  9  (Figs.  7e−h),  and  becomes  zero
through the nine-day period. Since CLW is not channel-de-
pendent,  the  reduced  impact  indicates  less  correlation
between CLW and the bias of upper-level channels. In con-
trast, the TLR term plays an increasingly important role in bi-
as  correction  for  channels  5  and  8  (Figs.  7c−f).  The  TLR
term turns to zero at channel 9, which is consistent with the
result  of  using  standard  US  sounding  profiles  (see  section
2).  For  higher-level  channels,  such  as  channel  11,  TLR  is
again a key bias correction term (not shown).

The spatial distribution of predictors is given in Fig. 8.
Here,  we  select  surface  channel  2  from  experiment
EnKF_AMSUA_EnB at 0000 UTC 13 May 2010 as an ex-
ample  (results  from  EnKF_AMSUA_VarB  are  similar  and
not shown here). The scan-angle component depends on the

scan  position  and  usually  has  larger  bias  for  points  at  two
edges than at the field of view (Fig. 8a). For the global off-
set term, its values are the same for all observation points in
the  same  channel  (not  shown).  The  contribution  of  the
zenith  angle  predictor  is  mostly  small  (Fig.  8b),  consistent
with Fig.  7,  where the contributions of  the zenith compon-
ent  are  almost  zero.  The  CLW  term  is  currently  only  ap-
plied  to  satellite  sensors  at  microwave  frequency  over
oceans  and  under  clear-sky  conditions.  Therefore,  it  is
either zero or small for most points. The larger-value points
indicate  areas  with  rich  water  vapor  but  without  precipita-
tion or thick clouds (Fig. 8c) (Zhu et al., 2014). For TLR, as
explained  above,  this  is  small  for  surface  channel  2  (Fig.
8d).  The square of  TLR is  nearly zero in  this  case and not
shown. In short, the CLW term, which depends on the wa-
ter  vapor  content,  has  considerable  spatial  variation  and
plays an important role in reducing biases for the low-level
channels. The scan-angle component removes the mean bi-
as of each scan position and is a large term for most chan-
nels (see also Fig. 7).
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Fig. 6. Bias of the simulated radiances for NOAA-15 AMSU-A (a) channel 2 and (b) channel 5.
The  numbers  are  the  available  observations  during  the  bias  correction  procedure.  The x-axis
marks the date of the test period. For example, “11” represents 0000 UTC 11 May 2010.
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In Fig. 9, the RMSEs of experiments using the two differ-
ent bias correction procedures, together with no satellite radi-
ance  assimilation,  are  displayed.  The  corresponding  RPIs
are  also  added.  Considering  that  the  EnKF  system  needs
about three days to reach a stable stage, the first three days
are excluded in Fig. 9 during the calculation of RMSEs and
RPIs. In general, the RMSEs of experiments from assimilat-
ing AMSU-A radiance observations are lower than the no-ra-
diance  experiment  for  most  variables  and  times  except  for
temperature and RH during the first few hours. The corres-
ponding RPIs indicate that the AMSU-A radiance assimila-
tion significantly improves U and V forecasts at the 90% con-
fidence  level.  For  the  two  bias  correction  procedures,  the

RMSEs  of  EnKF_AMSUA_EnB  are  slightly  lower  than
those of EnKF_AMSUA_VarB for RH, but are comparable
for other variables. Their overall differences are not signific-
ant.

Overall, both variational and EnKF procedures have com-
parable performance and can effectively remove radiance bi-
ases.  Using  either  variational  or  EnKF  procedures,  the
AMSU-A radiance assimilation improves the forecast accur-
acy  for  most  variables  and times.  In  the  following section,
the  full  radiance  datasets  are  assimilated.  Both  procedures
show positive impact with additional radiance assimilation.
The  experiment  with  variational  bias  correction  shows
slightly better performance than that with EnKF-based bias
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Fig.  7.  Time  series  of  each  predictor  through  the  nine-day  period.  Panels  (a,  c,  e,  g)  are  from  experiment
EnKF_AMSUA_VarB for NOAA-15 AMSU-A channels 2, 5, 8 and 9, respectively. Panels (b, d, f, h) are similar
to (a, c, e, g) but for experiment EnKF_AMSUA_ EnB.
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correction for U and V. Similar to the AMSU-A tests, their
differences  are  not  significant.  Therefore,  for  brevity,  only
the results using variational bias correction are presented in
the next section. Another reason for choosing variational bi-
as correction is that it is also used in the Hybrid EnKF sys-
tem, which is currently under investigation.

5.    Impacts of full radiance datasets

5.1.    Assimilation of full radiance datasets using EnKF

βb

Using the variational bias correction procedure with the
recycled initial guess of , the full set of radiance data, in-
cluding AMSU-A, AIRS, HIRS3/4 and AMSU-B, are assimil-
ated in experiment EnKF_ALL. It can be seen that the assimil-
ation  of  satellite  radiance  data  reduces  forecast  error  for
most variables at most times (Fig. 10). The corresponding RP-
Is  indicate  that  the  improvements  from  assimilating  radi-
ance  observations  are  significant  for  most  variables  and
times at the 90% confidence level. Among the forecast vari-
ables and experiments, the largest improvement is achieved
with the assimilation of radiance data using EnKF for vari-
able  RH.  Compared  to  assimilating  AMSU-A  radiance

alone,  full  radiance  assimilation  significantly  improves  the
RH forecasts, as indicated by unanimously larger-than-zero
RPIs,  while  for  the  experiment  with  only  AMSU-A  radi-
ance assimilation the lower bounds are still below zero (see
Fig. 9a). A preliminary investigation shows that this improve-
ment is mostly contributed by AIRS radiance DA from 600
hPa to 300 hPa (not shown). For temperature, the positive im-
pact is only seen after nine hours (Fig. 10b). For the horizont-
al  wind  vector,  the  positive  impacts  of  radiance  data  are
seen throughout the forecasts (Figs. 10a, c and d).

Figure 11 presents the mean 18-h forecast RMSEs at dif-
ferent heights for EnKF_ALL, and the corresponding experi-
ment  without  satellite  data.  The  RPIs  comparing
EnKF_ALL against EnKF_NoSat are also included. The as-
similation of radiance data reduces the RMSEs at 18 hours
for  most  variables  and  vertical  levels.  The  RPIs  at  various
levels  are  predominantly  positive  except  for  temperature.
Most  improvements  are  found  at  mid-levels  between  600
and 300 hPa where RPI bounds at the 90% confidence level
of EnKF_ALL are mostly greater than zero. This is because
many  channels  peak  at  the  mid-levels  (Fig.  1),  which  also
have less bias. In comparison, radiance data at lower levels
are more easily contaminated by surface emissivity, while at
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Fig. 8. Values of each predictor (units: K) for NOAA-15 AMSU-A surface channel 2 at 0000 UTC 13 May
2010. The result of EnKF_AMSUA_ EnB is presented. The predictors are (a) the scan-angle component, (b)
the  zenith  angle,  (c)  cloud  liquid  water,  and  (d)  the  temperature  lapse  rate.  The  global  offset  predictor  is
constant for all  the points and is therefore not shown. The square of the temperature lapse rate predictor is
nearly zero and is also not shown.
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higher  levels  some  radiance  channels  are  above  the  model
top (Kazumori, 2014). Therefore, the values of RPIs are relat-
ively  small  at  lower  and  higher  levels  within  our  experi-
ments.

The surface  forecast  variables  are  verified  against  sur-
face  observations  and  are  shown  in Fig.  12 for  hours  3
through 18. Unlike the assimilation of conventional data (in-
cluding surface  observations),  radiance data  have little  dir-
ect impact on the analysis of surface variables. Yet, in our En-
KF_ALL  tests,  almost  all  surface  forecast  variables  show
small but consistent improvements, except for surface pres-

sure and 10-m U for the first 12 hours of forecasts. The RP-
Is are predominantly positive except for 10-m U.  It  is  pos-
sible  that  observations  from  other  sensors  have  com-
pensated the AMSU-A radiance distribution at lower levels.

5.2.    Precipitation forecast skill on a 13-km grid

Two sets of forecasts are run on the 13-km grid, initial-
ized  from  the  interpolated  40-km  grid  analyses  of
EnKF_ALL  and  EnKF_NoSat,  respectively.  For  conveni-
ence,  these  names  are  also  used  for  the  corresponding  13-
km grid forecast experiments. Note that the no-satellite-data
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Fig. 9.  Domain-averaged forecast RMSEs verified against sounding observations (top panel in each subfigure),
with error bars representing two-tailed 90% confidence intervals, and the RPIs calculated at the 90% confidence
interval (bottom panel in each subfigure) for experiments with radiance assimilation compared to the no-satellite-
radiance  experiment  EnKF_NoSat  for  (a)  RH,  (b)  temperature,  (c) U-wind,  and  (d) V-wind.  The x-axis  is  the
forecast hour. Only forecasts after the first three days are included in the statistics.
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experiment  (EnKF_NoSat) differs  from  experiment
EnKF_CtrHDL of Z13 because of the addition of GPS PW
data.

Figure  13 shows  the  GSSs  and  FBIAS  over  all  fore-
casts starting from 0000 UTC 11 May to 1200 UTC 16 May
2010, for thresholds of 0.1 and 5.0 mm h−1. Both scores are
calculated  from aggregated  contingency tables.  For  the  0.1
mm h−1 threshold, forecasts initialized from EnKF analyses
show small  but  mostly  positive  impacts  of  satellite  data  in
terms  of  GSSs.  The  FBIAS  values  of  forecasts  are  larger
than 1. However, for the 5.0 mm h−1 threshold, the FBIAS val-

ues  of  all  four  experiments  are  less  than  1  for  the  first  six
hours of forecasts, but close to 1 after that. The low FBIAS
in the first six hours is due to model spin-up. With a better loc-
ation of  the  water  vapor  transport  belt,  forecasts  initialized
from  EnKF  analyses  in  EnKF_ALL  produce  higher  GSSs
than EnKF_NoSat.

Figure 14 presents the observed (top row) and 1-h accu-
mulated  precipitation  forecast  from  EnKF_NoSat  (middle
row)  and  EnKF_ALL  (bottom  row)  ensemble  mean  ana-
lyses. The left-hand column starts from 1200 UTC 11 May
2010  and  the  right-hand  column  from  1200  UTC  12  May
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Fig. 10. Domain-averaged forecast RMSEs verified against sounding observations (top panel in each subfigure),
with error bars representing two-tailed 90% confidence intervals, and the RPIs calculated at the 90% confidence
interval  (bottom  panel  in  each  subfigure)  for  experiment  EnKF_ALL  compared  to  the  no-satellite-radiance
experiment  EnKF_NoSat  for  (a)  RH,  (b)  temperature,  (c) U-wind,  and  (d) V-wind.  The x-axis  is  the  forecast
hour. Only forecasts after the first three days are include in the statistics.
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2010.  For both cases,  the assimilation of  radiance data im-
proves short-range precipitation forecasts. The forecast rain
intensity  in  EnKF_ALL  is  closer  to  that  of  observations
than  that  in  EnKF_NoSat.  For  the  second  case,  the  pre-
dicted location of the rainstorm center is also more accurate.
Since  the  1-h  forecasts  are  dominated  by  the  initial  condi-
tion, the positive contribution is mainly from radiance assimil-
ation, which improves the RH analyses (Fig. 10a).

6.    Summary and conclusions

In this study, satellite radiance data are assimilated with-
in  three-hourly  assimilation  cycles  through  a  regional  En-
KF DA system established in Z13. All experiments are per-
formed at 40-km grid spacing and have 40 ensemble mem-
bers. Following Z13, the same nine-day test period starting
from  8  May  2010  is  used.  Results  are  evaluated  based  on
RMSEs of 3–18-h forecasts against upper-air sounding and
surface observations.

The variational bias correction scheme within the GSI-
3DVar system is first tested and compared with an EnKF bi-
as  correction  scheme  suitable  for  ensemble  DA,  using  the

AMSU-A data that have the best spatial coverage among all
satellite data types. Both procedures effectively reduce the dif-
ferences between observed and simulated radiances. In term
of RMSEs,  both procedures  show similar  performance and
their differences are small and not significant at the 90% con-
fidence level.  In both experiments,  short-range forecast  ac-
curacies  are  improved  for  most  investigated  variables  and
times,  especially  for  upper-air  wind  components.  In  short,
the EnKF and variational bias correction schemes have com-
parable performance.

Experiments assimilating the full set of radiance data, in-
cluding  AMSU-A,  AMSU-B,  AIRS,  HIRS  3/4  and  MHS,
are  then  conducted  using  a  common variational  procedure.
The results are compared with the experiment without radi-
ance assimilation. The impacts of the radiance data are posit-
ive  for  most  forecast  variables,  forecast  times  and  height
levels,  especially  for  RH,  when  verified  against  sounding
data. Additionally, as in Z13, deterministic forecasts are ini-
tialized  on  a  13-km  grid  at  0000  and  1200  UTC  each  day
from the interpolated 40-km analyses. In terms of GSSs, pre-
cipitation is generally better predicted in experiments with ra-
diance assimilation.
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Fig.  11.  Mean 18-h forecast  RMSEs at  different  heights  for  full-satellite  and no-satellite-data  experiments,
verified against upper-air sounding data for (a) RH, (b) temperature, (c) U-wind, and (d) V-wind. Error bars
represent  two-tailed  90%  confidence  intervals  using  the  bootstrap  distribution  method.  The  corresponding
RPIs relative to the experiment without satellite data are plotted to the right of the RMSEs, with error bars
indicating the 90% confidence interval. Only forecasts after the first three days are included in the statistics.
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Finally, we point out again that the choice of a nine-day
period for the assimilation experiments was limited by both
the available computing resources, and by the available data
(saved  shortly  after  the  real-time  experimental  RAP  fore-
casts). The relatively short nine-day period might limit the ef-
fectiveness of the bias-correction coefficient estimation. For
this reason, we implemented a recycling procedure of bias cor-

rection,  where  the  coefficients  estimated  at  the  end  of  the
nine-day DA cycles are used as the first guess at the begin-
ning  of  repeated  nine-day  DA  cycles.  Results  show  that
such recycling  is  beneficial  to  improving the  results  of  the
earlier DA cycles and the bias correction by the end of the
first nine-day DA cycles is stabilized. In fact, the correction
coefficients are found to be more or less stable after five to
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Fig. 12. Domain-averaged forecast RMSEs verified against surface observations (top part of each subfigure)
and  RPIs  calculated  at  the  90%  confidence  interval  of  experiment  EnKF_ALL  compared  to  the
corresponding no-satellite-radiance experiment  EnKF_NoSat  for  (a)  surface  pressure,  (b)  2-m RH, (c)  2-m
temperature, (d) 10-m U-wind, and (e) 10-m V-wind. The x-axis is the forecast hour. The error bars represent
the two-tailed 90% confidence intervals. Only forecasts after the first three days are included in the statistics.
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Fig. 13. Aggregate hourly precipitation GSSs of all 13-km forecasts at different forecast lengths
for thresholds at (a) 0.1 mm h−1 and (b) 5.0 mm h−1. (c, d) Corresponding frequency bias scores.
Only forecasts after the first three days are included in the statistics.
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Fig. 14. Observed and forecast 1-h accumulated precipitation (units: mm h−1) for select forecasts
starting  from  two  different  times:  (a,  b)  NCEP  stage  IV  precipitation;  (c,  d)  forecasts  from
EnKF_NoSat  analyses;  (e,  f)  forecasts  from  EnKF_ALL  analyses.  The  two  sets  of  forecasts
started  at  (left-hand  column)  1200  UTC  11  May  and  (right-hand  column)  1200  UTC  12  May
2010,  respectively.  Both  are  1-h  forecasts.  The  red  circles  indicate  the  locations  of  the  most
significant improvements.
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seven days within the first pass. We note here that, in opera-
tional  implementations  where  the  DA  cycles  run  continu-
ously, such a recycling procedure is not needed. With the re-
cycling,  our  results  are  not  affected much by the relatively
short nine-day test period.
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