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ABSTRACT

The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias.
In this study, the neighborhood precipitation threat score is modified by defining the thresholds in terms of the percentiles of
overall precipitation instead of fixed threshold values. The impact of intensity forecast bias on the calculated threat score is
reduced. The method is tested with the forecasts of a tropical storm that re-intensified after making landfall and caused heavy
flooding. The forecasts are produced with and without radar data assimilation. The forecast with assimilation of both radial
velocity and reflectivity produce precipitation patterns that better match observations but have large positive intensity bias.
When using fixed thresholds, the neighborhood threat scores fail to yield high scores for forecasts that have good pattern
match with observations, due to large intensity bias. In contrast, the percentile-based neighborhood method yields the highest
score for the forecast with the best pattern match and the smallest position error. The percentile-based method also yields
scores that are more consistent with object-based verifications, which are less sensitive to intensity bias, demonstrating the
potential value of percentile-based verification.
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1. Introduction

Traditional point-to-point verification scores such as the
Critical Success Index (CSI), also known as the “threat”
score, are often used for precipitation verification. These
scores generally use a 2× 2 contingency table to determine
“yes” and “no” points (Wilks, 1995). Verification at high res-
olution, when the predicted rain storm deviates from the ob-
servations, can result in a “double penalty” in observed-but-
not-forecasted and forecasted-but-not-observed cases (Ebert,
2008). Neighborhood-based methods act as if the forecast
precipitation amounts on the model grid are randomly dis-
tributed in the vicinity of the correct position (Rezacova et al.,
2007). Instead of a point-to-point verification of the forecasts
against observations, the verification is performed with a de-
pendence on the surrounding grid boxes (Ebert, 2008, 2009).
Such methods can reduce the impact of displacement error on
the calculated verification score. It has been demonstrated to
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be more meaningful than the traditional point-to-point meth-
ods, and it can also be used to diagnose the forecast skill as a
function of spatial scale (Clark et al., 2010).

However, the displacement error is merely one form of
forecast error. Errors in the intensity, size and shape of pre-
cipitation are also very common in numerical model predic-
tions. In practice, the size and shape of the precipitation re-
gions, or the precipitation patterns, are often more important
to the forecast end users. Verification methods such as the
object-based method turn the forecasts and observations into
a cluster of rainfall pairs (Davis et al., 2006a, b; Brown et
al., 2007). The geometric features of the object pairs, such
as area, angle of axis, curvature, and centroid, are used to
describe the similarity between forecasts and observations.
Such a method is much closer to a subjective verification,
where the precipitation pattern carries more weight, and is
helpful in identifying the sources of forecast error. The prob-
lem is, as will be discussed later, the object pairs for one ex-
periment may differ from those of another. Therefore, a fair
comparison between experiments with large forecast differ-
ences is difficult because the matched pairs can differ signifi-
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cantly among the experiments.
In both neighborhood and objected-based methods men-

tioned above, a common question is: to what extent is the
forecast bias tolerable? In neighborhood verification, the
forecasts require approximate agreement with observations
(Ebert, 2008). A forecast with a small displacement error is
still considered a “good” forecast. In object-based verifica-
tion, a small intensity bias is acceptable as long as the geo-
metric features of selected pairs are similar.

The percentile-based neighborhood method attempts to
reduce the impact of intensity error as well as displacement
error on the calculated verification score. In both neighbor-
hood and object-based methods, the intensity threshold is im-
portant in determining the initial boundary of the verification
pairs. However, that threshold is a fixed value. The problem
is that in real forecast systems, the forecast intensity, espe-
cially for the intensity of the heavy rain area, is most likely
uncertain. It can be affected by factors such as model reso-
lution, model physics, and initial conditions. When the same
fixed threshold is used across forecasts of different intensity
biases, the final objective verification results may be incon-
sistent with the subjective assessment.

The concept of a percentile-based threshold is not entirely
new. Johannes et al. (2008) used a percentile-based threshold
in a traditional point-to-point verification method. In Roberts
and Lean (2008), the authors used a percentile-based thresh-
old within their neighborhood verification. Because they
were comparing forecasts with different model resolutions,
the use of a percentile-based threshold served to remove the
impact of bias in the rainfall amounts, as the focus was placed
on spatial accuracy. In their paper, newly proposed continu-
ous statistical verification scores, such as the fraction skill
score, were examined using the percentile-based threshold.
Here, we apply a percentile-based threshold to the most com-
monly used category verification score, the CSI, and borrow
the idea of the “raw threshold” from the object-based method.
The latter can potentially reduce the initial size error. Details
are presented in the following section.

The rest of the paper is organized as follows. In section 2,
the basic verification metrics of the traditional neighborhood
method and the object-based method are briefly introduced,
together with our percentile-based neighborhood verification
method. In section 3, the forecasts for a re-intensifying land-
falling tropical storm are used as an example to examine
the ability of the three verification methods in distinguishing
forecasts with large intensity, size and structural differences
in precipitation. These forecasts differ in whether radar data
are assimilated and how they are assimilated. Finally, a sum-
mary and conclusions are given in section 4.

2. Verification methods

2.1. Object-based verification methods

Object-based verification methods evaluate forecasts by
identifying objects in the forecast fields and comparing them
with those identified in the observation fields. Their intention

is to provide an evaluation of the forecasts that is more consis-
tent with subjective assessment. They measure forecast errors
in terms of the objects’ properties, such as intensity, location,
size and geometric differences of the objects. In this man-
ner, the objects are no longer treated as “points”. Instead, the
method converts the forecasts or observations into a cluster
of objects or points. Here, we introduce one typical method,
proposed by Davis et al. (2006a), that was implemented in
the Model Evaluation Tools (METs) (Brown et al., 2009).

There are generally two steps to finding the objects within
MET: convolution and thresholding. The raw data are first
convoluted using a simple filter function. Then, the convo-
luted field is thresholded, and the boundaries of objects are
detected. Once the objects are isolated, the points within
them are restored to the original values. The various attributes
of an isolated object, such as intensity, area, axis angle, and
aspect ratio, are calculated, and differences between pairs
of objects, such as the centroid difference, are calculated as
well. An index named “total interest” is then calculated, in
which the attributes are weighted and summarized. The defi-
nition of total interest T (α) is described as (DTC, 2009)

T (ααα) =
∑
i

wiCi(ααα)Ii(αi)

∑
i

wiCi(ααα)
, (1)

where ααα is the vector of various object attributes (α1,α2,
α3, . . . ,αn), Ci is the confidence map range from 0 to 1 and
is a function of the entire attribute vector (α1,α2,α3, . . . ,αn),
Ii(αi) is the interest map that depends on αi only, and wi is the
weight assigned to each attribute. Finally, the isolated objects
are merged (if they are in the same field) or matched (if they
are in different fields) when they exceed a certain threshold.

2.2. Neighborhood verification methods
A forecast bias such as position error is a common prob-

lem, especially for high-resolution models. Ebert (2008) pro-
posed a neighborhood method to reduce the impact of dis-
placement error. Instead of treating the point as either “yes”
or “no”, it turns the “point value” to “probability rain” and
calculates the probability in a square box around that point.
The formula is

〈P〉s =
1
M

M

∑
i

Ii, Ii =

{
1, ri � rthresh

0, ri < rthresh
. (2)

Here, M is the total number of grid points surrounding the
verification point, which is determined by the neighborhood
width. Ii is a Heaviside function that depends on the grid-
point rain intensity value ri and the given threshold rthresh.
After the probability 〈P〉s is calculated, the 〈I〉s of the point
is determined by giving a coverage threshold Pthresh:

〈I〉s =

{
1〈P〉s � Pthresh

0〈P〉s < Pthresh
. (3)

Using 〈I〉s, the calculation of various forecast skill scores is
the same as in the traditional method.
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Compared to the traditional point-to-point method, the
neighborhood method has two other key parameters: the
neighborhood width and the coverage threshold. Here, the
sensitivity of those two parameters to the verification scores
is demonstrated for CSI. For simplicity, the forecast is as-
sumed to have only displacement error and has a 30 grid-
point offset from the observed feature (Fig. 1a). The use of the
neighborhood width increases the cross-sectional area for the
forecast and observation. The coverage threshold then deter-
mines the point’s properties, including “hits”, “false alarms”,
“misses” or “correct rejections”. If the same neighborhood
width is used, a lower coverage threshold usually results in
more “yes” points [see Eq. (3), 〈I〉s] for both the forecast
and observation. The lower threshold increases the number
of “hits” points, which results in a higher CSI score (see Fig.
1b). If the same coverage threshold is used, an increase in the
neighborhood width initially raises the CSI score, and then
decreases it (see Fig. 1b). This occurs because the higher
the neighborhood width is, the lower 〈P〉s is. When 〈P〉s is
smaller than the coverage threshold, the probability of hit ra-
tios is decreased.

2.3. Percentile-based neighborhood verification
In traditional neighborhood verification, rthresh is fixed;

hence, variations in storm intensity are not considered. When
a fixed threshold is used, it is common to observe the veri-
fication scores dropping rapidly as the storm weakens. This
is especially true for a high threshold. Sometimes, low fore-
cast skill is reported during the storm’s initial and dissipating
stages, causing the rate of intensification or weakening to be
not quite right. As such, it is difficult to distinguish between
intensity and shape or size errors in the forecast.

To minimize the impact of intensity error, we propose a
flexible threshold that is based on the percentile. While the
fixed-value threshold attaches more importance to the inten-
sity, the percentile-based threshold gives more weight to the
size. Figure 2 represents an example of an idealized forecast.
Both the predicted size and location of the storm match those
of the observation, except that the maximum rain intensity is
underestimated by 50 mm (see the innermost contours in Fig.
2). Here, we assume that the contours of 100 mm, 150 mm
and 250 mm correspond to the 50th, 75th and 90th percentiles
for the observation, respectively. For the forecast, the first
two percentile values are the same as the observations, but
the last one is 200 mm. If the 250 mm threshold is used to
calculate the equitable threat scores (ETS), the score is zero
because none of the forecast reaches the observed intensity.
On the contrary, if the 90th percentile of the percentile-based
threshold is used, the thresholds for the observation and fore-
cast are set to 250 and 200 mm, respectively, and then the
ETS score is 1. The percentile-based threshold can reduce the
impact of the intensity error if the predicted size is the same.
The formula for the percentile-based threshold is given as

rthresh = percentile(r > rraw,n) , (4)

where n represents the “nth percentile” and rraw is a raw
threshold. This raw threshold is necessary because the precip-
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Fig. 1. An example of neighborhood CSI score as a function of
neighborhood width and coverage threshold. The verification
domain has 201× 201 grid points. Both forecast and observed
features cover 60 × 60 grid points but the forecast is shifted
in position by 30 grid points to the east (a). The CSI scores
for neighborhoods with varying widths and coverage thresholds
(b). Note: “Cov” in the legend means “coverage threshold”.

itation area is usually small compared to the entire verifica-
tion region, which often includes too many zero points. Once
the threshold is computed, the rest of the procedures follow
the neighborhood verification method, described above.

3. Verification results of a radar data assimila-

tion case

In this section, a selected inland tropical storm, Erin, is
used to examine the newly introduced percentile-based ver-
ification method. A subjective assessment is first made by
side-to-side comparison. Next, the object-based method is
used to further support the results of the subjective assess-
ment. The traditional fixed neighborhood method and the
percentile-based method are then presented and compared.
The entire verification uses National Centers for Environmen-
tal Prediction (NCEP) stage IV precipitation data (Lin and
Mitchell, 2005) as observations.
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Fig. 2. The accumulated rainfall for an idealized forecast (right)
as compared to observation (left). Here, we assume that the pre-
dicted rain has the same shape and location as the observation,
except that it underestimates the intensity of heavy rain. The
innermost observation contour is at 250 mm, while the corre-
sponding forecast contour is at 200 mm.

3.1. The inland tropical storm case and subjective assess-
ment

Erin began as Atlantic Tropical Depression Five (2007).
Throughout its existence over open water, its sustained winds
never exceeded 18 m s−1, and its lowest reported central pres-
sure was 1003 hPa. However, on the day immediately fol-
lowing Erin’s landfall, it unexpectedly and dramatically re-
intensified from 0000 UTC through 1500 UTC 19 August
2007 over western Oklahoma, approximately 500 miles in-
land from the Gulf of Mexico. It reached its peak intensity
between 0600 UTC and 1200 UTC. Erin happened to move
across an observation-dense area (Arndt et al., 2009) and, as
such, its re-intensification process was fully captured by four
Doppler radars located in the state of Oklahoma. At 0950
UTC, an eye-like feature was first observed in the radar re-
flectivity map and lasted for approximately three hours. This
eye-like feature was the most noticeable characteristic during
its re-intensification. A successful simulation should be able
to reproduce this feature.

Three experiments are conducted: one without any radar
data assimilation (NoDA), one with radar radial velocity data
assimilated (VEL), and one with both radar reflectivity and
radial velocity data assimilation (CTRRAD). Here, we use
the Advanced Research Weather Research and Forecasting
model (WRF-ARW) (Skamarock et al., 2005) as the forecast
model and an enhanced version of the Grid-point Statistical
Interpolation (GSI) three-dimensional variational (3DVAR)
system (Wu et al., 2002) for data assimilation. The configu-
ration of WRF-ARW follows that of the experimental High-
Resolution Rapid Refresh system used in Hu et al. (2007).
Radar data assimilation capabilities within the GSI were en-
hanced by the Center for Analysis and Prediction of Storms
(CAPS) research group, with some of the details described in
Hu et al. (2007). In this study, the radial velocity data used are

the 3D radar mosaic gridded data at 1-km horizontal spacing
produced by the National Severe Storm Laboratory (Zhang
et al., 2005). The radial velocity data are preprocessed using
a package borrowed from the Advanced Regional Prediction
System (ARPS) (Brewster et al., 2005) and directly assimi-
lated within the enhanced GSI 3DVAR system, while the re-
flectivity data are assimilated using a complex cloud analy-
sis package adapted from the ARPS system and implemented
within GSI after the variational analysis step. Details can be
found in Hu et al. (2007) and an earlier example of applying
the ARPS cloud analysis package to initialize WRF can be
found in Hu and Xue (2007).

The initial analysis background and lateral boundary
conditions are from NCEP operational North American
Mesoscale Model analysis and forecasts, respectively. The
domain has 881 × 881 horizontal grid points with a hori-
zontal grid spacing of 3 km and 41 vertical levels. The ex-
periment without radar data assimilation (NoDA) starts from
0000 UTC 19 August 2007. For the other two experiments,
radar data are assimilated by GSI at 10-min intervals between
0000 and 0200 UTC using an intermittent data assimilation
procedure (Hu and Xue, 2005). All forecasts end at 1800
UTC, covering the re-intensification and dissipation periods
of Erin.

Figure 3 presents the observed reflectivity and the fore-
casts from the three experiments at 3 km MSL. From 0600
UTC to 1200 UTC, Erin was intensifying while moving
northeastward. An eye feature was observed at 1200 UTC.
After that, it began to weaken, and finally dissipated over
northeastern Oklahoma. The NoDA experiment results fail
to reach the intensity of a tropical storm. The forecasted rain
band does not even rotate, not to mention the eye feature
at 1200 UTC. The assimilation of radar velocity improves
the circulation. The rain band structure shows closer resem-
blance to the observation. Especially at 1200 UTC, two fake
rain bands that appear in NoDA are suppressed and organized
into one narrow rain band. However, the VEL experiment
also fails to reproduce the eye feature. With both radial winds
and reflectivity assimilated, CTRRAD (see Fig. 3, third row)
successfully simulates Erin’s intensification and dissipation
processes. It reproduces an eye feature at 1200 UTC, though
the size is a little larger than observed. Compared to the other
two experiments, the predicted rain bands during the intensi-
fication and dissipation stages are also closest to the observa-
tion. The main deficiency is that the forecast overestimates
the rain area during the first few hours.

Figure 4 displays Erin’s observed and forecasted tracks.
For all forecasts, the predicted storm moves toward the north-
east, consistent with observations. The problem is that the
predicted storm moves slower than observed, with the NoDA
prediction being the slowest. The assimilation of radial winds
accelerates the motion. At 1200 UTC, the VEL prediction
is between the NoDA prediction and the actual observation.
However, the simulated storm decelerates again once the im-
pact of radial wind disappears. With both radial wind and
reflectivity assimilated, CTRRAD moves Erin fastest, result-
ing in the lowest track errors. At 1200 UTC, the predicted
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Fig. 3. The observed 3 km-height radar reflectivity (top row) and the corresponding forecasted reflectivity of NoDA (second
row), VEL (third row) and CTRRAD (fourth row). The columns from left to right are times from 0600 to 1800 UTC.
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August 2007.
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storm center is merely 38 km away from the observed center.
Overall, the subjective assessment suggests that the CTR-

RAD forecast is the best in terms of both storm structure and
track, followed by VEL. The NoDA prediction is the worst.
This is especially true at 1200 UTC. At that time, both VEL
and NoDA fail to reproduce the eye feature of Erin.

3.2. Results of the object-based verification method
In this subsection, to objectively evaluate the forecasts, an

object-based method is employed. Here, only a high thresh-

old (coverage threshold of 15 mm) is examined because the
prediction of the heavy rainstorm is the main concern. Figure
5 presents an example of isolated objects from CTRRAD and
NCEP Stage IV data at 1200 UTC. There are four objects in
CTRRAD but only two of them match with the observation
(see Figs. 5e and f). The isolated objects in the observation
field merged together (Fig. 5d), while the forecast objects re-
main separate. The main objects in CTRRAD and the obser-
vations do match. Unfortunately, the forecast still has three
objects that are not matched by any observations (see the blue

Fig. 5. METs isolated objects from CTRRAD and Stage IV precipitation valid at 1200 UTC 19 August
2007. Panels (a) and (b) are hourly accumulated rainfall. Here, the raw data threshold and the convolution
threshold are 10 mm [light blue in (a)] and 15 mm [blue in (a)], respectively. Panels (c) and (d) are the
isolated and merged objects; (e) and (f) are the serial numbers of the objects. Panels (a), (c) and (e) are from
the forecast, while (b), (d) and (f) are from the observation.
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patches in Fig. 5c). This means that CTRRAD produces an
unrealistic rain storm. For the matched objects, the main fea-
ture is similar, but CTRRAD over-predicts the size and has a
fake tail on the east side.

Figure 6 shows an example of using the isolated prop-
erty centroid to draw the path of the moving storm and to
calculate the position error. Clearly, NoDA has the largest
position error. With the radial wind assimilated, VEL is able
to correct its direction of motion. It can be observed that the
position error is greatly reduced in the first few hours. How-
ever, the impact of radial wind only lasts for a few hours. As
the impact of radial wind vanishes, the direction of motion is
the same as in NoDA. The position error therefore increases
again. With both reflectivity and radial wind assimilated, the
storm in CTRRAD moves along the direction of the observed
one, and, especially in the later hours, the direction of motion
is almost the same as observed, except that the speed is a little
slower. Its position error is smallest among all three experi-
ments. At 1500 UTC, CTRRAD has only a 20 km position
error (see inset panel in Fig. 6). The impact of assimilating
full radar datasets seems to last longer. This is not surprising
because the assimilation of full radar datasets has the poten-
tial to improve both dynamic and thermodynamic structures,
while most of the direct adjustment is dynamic when only
radial velocity is assimilated.

Figure 7 illustrates the index of total interest. The prop-
erties used for this plot include area (1), intersection area
(2), centroid (2), boundary (4), intensity (1), angle (2), and
convex hull (1), where the numbers in parentheses are the
weights for each property. Most settings follow the MET de-
fault settings. The cross-sectional area between the forecast
and observation and its relative position are still considered
to be important elements. Shape properties such as the an-
gle are given a higher weight, while the weight of intensity is
lower. CTRRAD obtains a higher total interest than VEL for

most of the forecast times, while both are better than NoDA.
At 1200 UTC, the total interest indicates that CTRRAD has
the best performance, followed by VEL, and subsequently
NoDA. Compared to the neighborhood verification, this re-
sult is much more consistent with the earlier subjective as-
sessment. Other settings, such as turning off the property
intensity have also been tested. Problems occur when the pa-
rameters are changed. That is, the matched object pairs may
change because some isolated objects are sensitive to a cer-
tain property while others are not. Therefore, manual proce-
dures are necessary to ensure that the same matched object
pairs are compared. Except for this deficiency, the general
conclusion remains unchanged, as long as the settings are in
the appropriate range.

All in all, the object-based verification also indicates that
the CTRRAD prediction is the best, followed by VEL, and
then NoDA. This result is consistent with the subjective as-
sessment.

3.3. Results of the neighborhood verification method
Normally, if the forecast only has a displacement error,

the neighborhood method can help distinguish between a bad
and good forecast by using proper neighborhood width and
coverage threshold. However, in our case, the position error
is not the main issue: the size and intensity are.

Figure 8 presents the results of neighborhood CSI scores.
For the small threshold of 1.25 mm h−1, the neighborhood
method has no problem distinguishing good from bad fore-
casts. The CSI scores indicate the VEL has better perfor-
mance than NoDA for most of the forecast times (see Figs.
8a and b), while CTRRAD is the worst. Here, CTRRAD is
not expected to be the best because it clearly over-forecasts
the size. The controversy lies in the results of the high thresh-
old of 15 mm h−1. For that threshold, the over-forecast is-
sue is not as serious as the lower threshold (1.25 mm h−1).
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Fig. 6. Similar to Fig. 4, except for the geometrical center of the rain storm. The inset panel shows the distance
between two rain storms.
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CTRRAD has the smallest position error and the best shape
prediction. At 1200 UTC, it successfully reproduces the eye
feature. However, when using a small neighborhood width
of two grid points, CTRRAD is no better than VEL (see Fig.
8c). This is because the assimilation of radar reflectivity re-
sults in a larger area of fake rain, which is probably due to the

over-adjustment of water vapor content (Zhao and Xue, 2009;
Schenkman et al., 2011). When using a large neighborhood
width of eight grid points, CTRRAD is better than VEL. The
problem is that in the later hours, VEL is worse than NoDA
(see Fig. 8d). The fixed neighborhood fails to give a result
that is consistent with the subjective assessment.

3.4. Results of percentile-based neighborhood verification
Verification scores such as the CSI use a category method.

The threshold determines the boundary of the verification ob-
jects. The larger the cross-sectional area between forecast
and observation, the higher the verification score. Because
the neighborhood method can reduce the impact of displace-
ment error by using proper neighborhood configurations, the
remaining question is how to obtain reasonable object pairs
between forecast and observation. The traditional method
uses a fixed threshold. However, in reality, quantitative pre-
cipitation forecasting remains a great challenge for numerical
models. Even with a similar pattern, the intensity may differ
greatly for different experiments. The use of the same thresh-
old will contain not only the intensity error but also the size
error. In this case study, when the 15 mm threshold is used,
although the main rain band of CTRRAD is similar to the
observation, the identified object is approximately twice as
large in terms of width (see Fig. 5). NoDA and VEL have
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similar issues, though the size is not as large as with CTR-
RAD (not shown). Thus, in this study, the 90th percentile
value is used to replace the fixed threshold. Compared to the
15 mm threshold, the size of the observation does not change
much; the sizes of VEL and NoDA are much closer to the ob-
servation, while the size of CTRRAD is greatly reduced (not
shown).

Figure 9 displays the percentile-based neighborhood CSI
scores. The neighborhood width is the same as that in Fig. 8,
except that the coverage threshold is reduced by 30%. When
a neighborhood width of two grid points is used, CTRRAD
is the best for almost all forecast times except 0600 UTC.
At 1200 UTC, CTRRAD has better performance than VEL,
while NoDA is the worst. When a neighborhood width of 8
grid points is used, the advantage of CTRRAD over VEL and
NoDA is more obvious. The CSI scores are much more con-
sistent with the subjective assessment when compared to the
fixed threshold.

As a further attempt, we use a series of other combina-
tions of configurations. Herein, the fixed threshold of 15
mm h−1 is presented as a comparison. For the fixed thresh-
old, when a large coverage threshold of 50% is adopted, the

6 9 12 15 18
0

0.1

0.2

0.3

0.4

 

 

NoDA

VEL

CTRRAD

6 9 12 15 18
0

0.1

0.2

0.3

0.4

 

 

NoDA

VEL

CTRRAD

C
S

I 
sc

o
re

s
C

S
I 

sc
o
re

s

(a)

(b)

             21-Aug-2007 Time (UTC) 

              21-Aug-2007 Time (UTC)

Fig. 9. Percentile-based neighborhood CSI scores for a thresh-
old of 15 mm h−1, with a coverage threshold of 30%: (a) neigh-
borhood width r = two grid intervals; (b) r = eight grid inter-
vals.

CSI scores of NoDA and VEL decrease as the neighborhood
width increases. However, for CTRRAD, the CSI first in-
creases then decreases (Fig. 10a). For a small coverage
threshold of 30%, the CSI scores of all the experiments first
increase then decrease (Fig. 10c). The results of the different
experiments indicate different behaviors as the neighborhood
configurations change. However, the general conclusion re-
mains the same: VEL is the best, followed by CTTRAD, and
NoDA is the worst. Note that CTRAD does surpass the other
two when the neighborhood width is larger than eight grid
points (Fig. 10a). The problem is that at that range, the
VEL and NoDA obtain “NaN” values in the later forecast
hours. Therefore, the results indicated by a larger neighbor-
hood width (e.g., in Fig. 10a when the neighborhood width
is larger than eight) becomes meaningless. Figures 10b and
d show the percentile-based CSI scores. All CSI scores are
between 0 and 1, and “NaNs” are avoided. Moreover, for al-
most all settings, CTRRAD outperforms VEL, especially for
the larger neighborhood width, while both are consistently
better than NoDA. Therefore, the result of percentile-based
neighborhood verification is more consistent with the subjec-
tive assessment. Compared to the fixed threshold method, the
percentile-based CSI scores reduce the impact of intensity er-
ror.

4. Summary and discussion

In this paper, a percentile-based neighborhood method is
proposed and used to calculate a category verification score,
i.e., the CSI. The purpose of using a percentile-based instead
of a fixed threshold is to reduce the impact of forecast in-
tensity bias on the calculation of verification scores. A case
of a re-intensifying tropical storm after landfall is selected
for the purpose of examining radar data assimilation impact.
A key feature of this tropical storm is the eye feature dur-
ing its re-intensification. The forecast without radar data as-
similation (experiment NoDA) fails to reach the intensity of
a tropical storm, and the predicted rain band is the worst
based on the side-by-side subjective comparisons with ob-
servations. With the radial velocity data assimilated (experi-
ment VEL), the rain band structure is improved and the track
error is reduced, but the experiment still fails to reproduce
the eye feature. When the reflectivity data are assimilated to-
gether with the radial velocity data (experiment CTRRAD),
the eye is successfully reproduced, although the size of the
eye is somewhat larger. The track error of CTRRAD is the
smallest among the three experiments. However, CTRRAD
over-forecasts the rain intensity and size.

To objectively demonstrate that the forecast with the rain
band structure is overall the best, an object-based evalua-
tion method within MET is employed. The object-based
method calculates the geometric properties such as area, cen-
troid, curvature, angle, and so on. The evaluation results are
close to the subjective assessment. The index of total inter-
est, which weights various properties, is used to distinguish
the three forecasts. CTRRAD is found to out-perform VEL,
while both of them are better than NoDA. This result is con-
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Fig. 10. The mean CSI scores of five verified moments from 0600 UTC to 1800 UTC for (a) the threshold 15 mm h−1

and (b) the 90th percentile. The coverage threshold is 50%. Panels (c) and (d) are the same as (a) and (b) but with the
coverage threshold set to 30%. Here, the x-axis is the neighborhood width.

sistent with the subjective assessment.
However, the traditional fixed threshold neighborhood

fails to indicate that CTRRAD is the best because of the over-
forecasting problems. Instead, for most of the settings, VEL,
which has a relatively clean forecast, and is better than CTR-
RAD. With the percentile threshold, the neighborhood CSI
score indicates that CTRRAD consistently outperforms VEL,
while the latter is always better than NoDA. This result is
consistent with the object-based verification as well as the
subjective assessment. The percentile-based method is there-
fore better at handling the forecast intensity than the fixed
threshold.

Finally, we note that the percentile threshold could also
be combined with object-based methods in which the bound-
aries of the isolated objects are determined by a convolution
threshold. As shown in Fig. 5, the use of a fixed threshold
results in over-sized objects, which impacts the calculation
of various properties. If the percentile threshold is used, it
may match the observations much better. At this point, we
leave this work for future investigation. We also point out
that the results of this paper are based on a single case only.
The methods should be tested in the future with more cases
to obtain more robust results.
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