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[1] Radial velocity (Vr) and reflectivity (Z) data from eight coastal operational radars
of mainland China and Taiwan are assimilated for the first time using the ARPS
3DVAR and cloud analysis package for Pacific Typhoon Meranti of 2010. It is shown
that the vortex-scale circulations of Meranti can be adequately established after only
2 hourly assimilation cycles while additional cycles provide more details for
subvortex-scale structures. Subsequent 12 h forecasts of typhoon structure, intensity,
track, and precipitation are greatly improved over the one without radar data
assimilation. Vr data lead to a larger improvement to the intensity and track forecasts
than Z data, while additional Z data further improve the precipitation forecast.
Overall, assimilating both Vr and Z data from multiple radars gives the best
forecasts. In that case, three local rainfall maxima related to typhoon circulations and
their interactions with the complex terrain in the southeast China coastal region are
also captured. Assimilating radar data at a lower 3 or 6 hourly frequency leads to a
weaker typhoon with larger track forecast errors compared to hourly frequency. An
attempt to assimilate additional best track minimum sea level pressure data is also
made; it results in more accurate surface pressure analyses, but the benefit is mostly lost
within the first hour of forecast. Assimilating data from a single Doppler radar with a
good coverage of the typhoon inner core region is also quite effective, but it takes one
more cycle to establish circulation analyses of similar quality. The forecasts using
multiple radars are still the best.
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1. Introduction

[2] China is one of the world’s countries suffering the
most from typhoon damage, and the average number of
tropical cyclones (TCs) making landfall along the China
coast is about nine per year, according to the Yearbook of
Tropical Cyclones (typhoon) from Chinese Meteorological
Administration (CMA). Accurate prediction of the track,
intensity and associated precipitation of TCs making landfall
can help reduce the loss of lives and property. Over the past
decade, TC track forecasts have improved steadily because
of the increased use of nontraditional data (e.g., satellite

data) and the advancement of numerical weather prediction
(NWP) models. However, TC intensity and structure fore-
casts have improved very slowly [Houze et al., 2007]. Par-
ticularly, TCs with abrupt intensity changes are often poorly
predicted by the operational models. The lack of accurate
initial conditions capturing the internal structure of TCs has
been attributed as one of the main factors [Davis et al., 2008].
[3] Coastal Doppler weather radar is the only platform that

can observe the three-dimensional structure of TCs near
landfall with sufficiently high temporal (�6 min) and spatial
resolutions (�1 km). How to effectively assimilate these radar
data into the numerical model for the TC analysis and forecast
has received great interest in recent years from TC researchers.
Several recent studies assimilated radar observations into
high-resolution TC prediction models to improve the initial
conditions and prediction of TCs at landfall, using three-
dimensional variational (3DVAR) methods [e.g., Xiao et al.,
2007; Zhao et al., 2008; Zhao and Jin, 2008; Zhao and Xue,
2009; Lin et al., 2011] or ensemble Kalman filter (EnKF)
[e.g., Zhang et al., 2009; Dong and Xue, 2010; J. Dong and
M. Xue, Coastal WSR-88D radar data assimilation with
ensemble Kalman filter for analysis and forecast of

1Key Laboratory of Mesoscale Severe Weather/MOE, School of
Atmospheric Sciences, Nanjing University, Nanjing, China.

2Center for Analysis and Prediction of Storms and School of
Meteorology, University of Oklahoma, Norman, Oklahoma, USA.

3Department of Atmospheric Sciences, National Taiwan University,
Taipei, Taiwan.

4Earth Observing Laboratory, National Center for Atmospheric
Research, Boulder, Colorado, USA.

Copyright 2012 by the American Geophysical Union.
0148-0227/12/2011JD017109

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, D06108, doi:10.1029/2011JD017109, 2012

D06108 1 of 20

http://dx.doi.org/10.1029/2011JD017109


Hurricane Ike, submitted to Quarterly Journal of the Royal
Meteorological Society, 2011]. Among these existing
methods, an efficient and effective way to assimilate high-
frequency coastal radar data is to employ intermittent
assimilation cycles with a 3DVAR system combined with a
mesoscale model. Zhao and Xue [2009] applied a 3DVAR/
cloud analysis package from the ARPS modeling system
[Xue et al., 2003] for the first time to the initialization of a
hurricane using data from two U.S. Gulf of Mexico coastal
radars. This system had been demonstrated to be effective
for convective storms [e.g., Xue et al., 2003; Hu et al.,
2006a, 2006b; Hu and Xue, 2007], typically using frequent
assimilation cycles. The results of Zhao and Xue [2009] show
that the assimilation of radial velocity (Vr) data has more
impact on the track and intensity forecast, while the
assimilation of reflectivity (Z) data has more impact on the
precipitation structure forecast, and can also improve the
intensity forecast through moisture adjustment. Zhao and
Xue [2009] assimilated radar data over a 6 h period at
30 min intervals. In contrast, most other TC radar data
assimilation (DA) studies based on other 3DVAR systems
used only one or a few analyses at longer intervals [e.g.,
Xiao et al., 2007; Lin et al., 2011], not taking full advantage
of the high frequency of radar observations. While the
results of the above studies are encouraging, the cases
studied so far are rather few, and different TC systems may
have different responses to the data as well as the DA sys-
tem and methods used. Furthermore, the performance of the
ARPS 3DVAR/cloud analysis system as applied to typhoon

initialization in the Asian region has not been documented
in published literature. In general, radar DA remains a
challenging problem.
[4] With the deployment of the Chinese next generation

Weather Surveillance Radar 1998 Doppler (CINRAD WSR-
98D) network and the Taiwan operational radar network in
recent years, effective assimilation of high-resolution data
from these radars into NWP models for improving landfall
of TC forecasts becomes an important issue for the local
research and operational communities. This study explores
for the first time the intermittent assimilation of radar data
from mainland China and Taiwan within the ARPS 3DVAR/
complex cloud analysis framework, for the analysis and
prediction of a typhoon with sudden intensification near the
coast. The typhoon to be studied is Meranti (2010), the
eleventh TC of the 2010 typhoon season in the western North
Pacific. Meranti formed as a tropical depression east of Tai-
wan on 7 September 2010 and moved southwest immediately
afterward. It intensified into a tropical storm by 06:00 UTC,
8 September, then turned and moved northward. It underwent
rapid intensification from 18:00 UTC, 8 September (�25.5 h
prior to landfall) to 18:00 UTC, 9 September, with the peak
surface wind speed increasing from 20 m s�1 to 35 m s�1

when approaching landfall according to the official best track
data from CMA [Yu et al., 2007]. The storm weakened rap-
idly after landfall (19:30 UTC) and brought heavy rainfall
and strong winds to coastal Fujian and Zhejiang Provinces.
The real-time forecasts by the operational Global Forecast
Systems at CMA and the National Centers for Environmental

Figure 1. The analysis and prediction domain at 3 km horizontal resolution, with the best track locations
of Typhoon Meranti marked at 6 h intervals from 12:00 UTC, 9 September, to 12:00 UTC, 10 September
2010. The locations of radar stations are shown by the solid triangles, and the maximum Doppler ranges of
the radar data are indicated by the solid circles. The dashed square box indicates the region of the reflec-
tivity/precipitation verification. The gray shading shows the terrain height. Radar data assimilation occurs
between 12:00 and 18:00 UTC before landfall.
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Predication (NCEP) failed to capture the intensification near
the coast, or the heavy rain in Fujian.
[5] At the stage of rapid intensification, Meranti was

located in the Taiwan Strait, within the range of costal radars
in mainland China and Taiwan (Figure 1). These radars
provided valuable three-dimensional observations of TC
structure with high spatial and temporal resolution, but their
data were not used in real-time operational models. This
study assimilates Vr and Z data into the ARPS model [Xue
et al., 2000; Xue et al., 2001; Xue et al., 2003] and
examines its performance in predicting the structure, inten-
sity, and quantitative precipitation of Meranti. Compared to
the short paper of Zhao and Xue [2009] that only briefly
discussed the impact of radar data assimilated using a fixed
cycling strategy on the final analysis and the forecast, this
study examines in more detail (1) the analysis increments
produced by the 3DVAR/cloud analysis system using radar
data, (2) the dynamic and thermodynamic responses during
the forecast step, (3) the effects of assimilation configurations
on forecast, (4) the three dimensional structure of the ana-
lyzed typhoon, and (5) the amount and spatial distributions of
precipitation after typhoon landfall.
[6] This paper is organized as follows. Section 2 describes

radar data processing, the assimilation method, and the
design of assimilation experiments. The analysis results are
presented and discussed in section 3 while the prediction
results are shown in section 4. The impacts of assimilation
strategies on the forecast are discussed in section 5. Sum-
mary and conclusions are presented in section 6.

2. Data, Methodology, and Experimental Design

2.1. Radar Data Processing and Quality Control

[7] In this paper, radar data from eight S band coastal
Doppler radars, including five CINRAD WSR-98D radars
along the southeast coast of mainland China and three Gema-
tronik 1500S Doppler radars on the Taiwan Island, are used.
Specifically, these radars are located at Xiamen (XMRD),
Fuzhou (FZRD), Longyan (LYRD), Santou (STRD),Wenzhou
(WZRD), Ken-Ting (RCKT), Hua-Lien (RCHL), and Chi-
Gu (RCCG) sites, as shown in Figure 1. All of them operated
in the same volume coverage pattern 21 (VCP21) scanning
mode of WSR-88D in the United States, which consists of
nine elevations between 0.5� and 19.5� [Crum et al.,
1993]. The maximum Doppler ranges for WSR-98D and
Gematronik radars are 230 km. The data quality control
procedures within the 88d2arps program available in the
ARPS system [Brewster et al., 2005] is first used to auto-
matically remove/correct erroneous observations, including
velocity dealiasing and ground clutter removal. These data
are then examined and edited manually using the NCAR
“SOLO” software [Oye et al., 1995]. Finally, the quality
controlled data are spatially mapped onto the model grid
using a local least square fitting method [Brewster et al.,
2005] before they are analyzed by the ARPS 3DVAR/
Complex cloud analysis system. This data remapping pro-
cedure can be considered data thinning which helps reduce
the analysis cost, and also has the benefit of making the
uncorrelated observation error assumption more valid. Sim-
ilar to most previous radar data assimilation studies, we only
use Z and Vr data in regions where Z is no less than 15 dBZ.
Such a threshold actually corresponds to very low values of

hydrometeor mixing ratios, and the data in low-reflectivity
regions usually have high noise levels because of low signal-
to-noise ratio with the radar measurements.

2.2. ARPS Prediction Model and ARPS3DVAR/
Complex Cloud Analysis System

[8] The nonhydrostatic ARPS prediction model with full
physics is used during the assimilation cycles and for the
subsequent forecast. The physics options used include the
Lin ice microphysics, Goddard longwave and shortwave
radiation, a 2 layer soil model and the turbulent kinetic
energy (TKE)-based subgrid-scale turbulence and planetary
boundary layer (PBL) parameterizations [see Xue et al.,
2001]. A domain of 1830 � 1830 � 25 km is used
(Figure 1), consisting of 611 � 611 � 53 grid points with a
3 km horizontal grid spacing and varying vertical resolutions
ranging from 50 m at the surface to 770 m at the model top.
The initial analysis background and the lateral boundary
conditions (LBCs) are from 6 hourly operational NCEP
Global Forecast System (GFS) analyses combined with 3 h
forecasts at a 0.5� resolution.
[9] The ARPS 3DVAR uses an incremental form of the

cost function that includes the background, observation, and
mass-continuity equation constraint terms. The analysis
variables include three wind components, potential temper-
ature, pressure, and water vapor mixing ratio [Gao et al.,
2004]. In the current system, the cross correlations between
variables are not included in the background error covari-
ance. The spatial covariance of background error is assumed
to be spatially homogeneous and Gaussian, and is modeled
using a recursive filter. The observation errors are assumed
to be uncorrelated so that the observation error covariance
matrix is diagonal, and its diagonal elements are specified
according to the estimated observation errors. Except for the
wind variables that are coupled through the mass continuity
constraint, the ARPS 3DVAR is effectively a univariate
analysis system; the assimilation of Vr data directly affects
wind only. The standard deviation of Vr observation errors
is prescribed to be 1.5 m s�1 similar to that used by Zhao
and Xue [2009]. Since Vr data have been edited carefully
in the objective and subjective quality control steps, the
observational errors in Vr are mainly due to inhomogeneities
of velocity and reflectivity within a sampling volume that
generally have a standard error of about 1 m s�1 as the lower
bound [Doviak et al., 1976]. When applying the radar data,
the horizontal and vertical covariance decorrelation scales
are set as 10 km and 4 grid intervals, respectively. These
settings are similar to those used by Zhao and Xue [2009]
and other related studies. After the 3DVAR analysis, com-
plex cloud analysis is performed using reflectivity data to
adjust the cloud and hydrometeor fields as well as in-cloud
temperature and moisture. The rainwater mixing ratio (qr) is
estimated via the reflectivity formula of Kessler [1969], and
snow (qs) and hail (qh) are estimated using the reflectivity
equations of Rogers and Yau [1989]. The cloud analysis
package contains a hydrometeor classification procedure
that controls the partitioning of water and ice substances
among the species while ensuring the reflectivity calculated
from the model state variables matches the observations. The
in-cloud temperature and moisture are retrieved by assuming
a modified moist-adiabatic ascent that accounts for entrain-
ment. More details on the cloud analysis procedure can be
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found in the work of Hu et al. [2006a]. In this study, we do
note that repeated adjustment of the in-cloud water vapor
mixing ratio (qv) via the cloud analysis procedure in the
high-frequency assimilation cycles may result in unrealistic
warming in the middle troposphere and too much precipi-
tation, similar to the finding of Schenkman et al. [2011].
Thus, the cloud analysis procedure is modified so that qv is
adjusted only in the first analysis cycle. Sensitivity experi-
ments showed better results with this configuration.

2.3. Experimental Design

[10] The baseline control forecast without radar DA
(CNTL) starts at 18:00 UTC, 9 September, from the NCEP
GFS analysis (Table 1). In other experiments, radar data are
assimilated from 12:00 to 18:00 UTC, spanning the last 6 h
of the rapid intensification stage. Twelve hour forecasts are
then launched from 18:00 UTC, and the forecast hours cover
the landfall and postlandfall periods of Meranti (Figure 1)
when Meranti is weakening. The DA experiments are

divided into two groups. The first group is designed to
investigate the impact of assimilating Z and/or Vr data, and
it includes two experiments with 1 h assimilation intervals:
one with Vr only (ExpV), and one with both Z and Vr data
(ExpVZ). The second group is designed to examine the
impact of different assimilation configurations, including
assimilation frequency (ExpVZ3h and ExpVZ6h), single
radar (ExpVZRCCG) versus multiple radars, and the
assimilation of additional minimum sea level pressure
(MSLP) data (ExpVZMSLP). ExpVZ3h and ExpVZ6h are
the same as ExpVZ except for the 3 h and 6 h assimilation
intervals, respectively, as compared to 1 h in other experi-
ments (Table 1). Experiment ExpVZRCCG uses data from
RCCG radar only, which was best positioned to capture the
inner core regions of Meranti (Figure 1). Considering the
poor coverage of ground-based Doppler radars in the lower
troposphere because of nonzero elevation, terrain blockage,
and Earth curvature effect, and also the inability of the
ARPS 3DVAR system to directly update pressure using
radar data, we experimented with direct assimilation of
additional MSLP data from the best track data in experiment
ExpVZMSLP (Table 1), to see if the MSLP data can
improve the analysis and forecast. The MSLP data are trea-
ted as point measurements located at the surface and at the
center of the background vortex. Figure 2 shows the flow
diagrams for each of the experiments.

3. Analysis Results With Radar Data Assimilation

[11] In this section and section 4, we will present and
discuss analysis and forecast results from experiments
ExpVZ and ExpV and compare them with experiment
CNTL that did not assimilate any radar data. Data from all

Figure 2. Flowchart of control experiment (CNTL) and experiments assimilating radar data with differ-
ent configurations. Upward pointing arrows indicate the times when radar (and minimum sea level pres-
sure (MSLP) in ExpVZMSLP) data are assimilated. A 12 h forecast follows the final analysis at 18:00
UTC, 9 September 2010 (18/09), in all experiments.

Table 1. List of Experiments

Experiment Description

CNTL No radar data assimilation
ExpV Assimilating radial velocity only at hourly intervals
ExpVZ Assimilating radial velocity and reflectivity

data at hourly intervals
ExpVZ3h Same as ExpVZ but with 3 hourly analysis cycles
ExpVZ6h Same as ExpVZ but with 6 hourly analysis cycles
ExpVZRCCG Same as ExpVZ but with data from Taiwan

Chi-Gu (RCCG) radar only
ExpVZMSLP Same as ExpVZ but with additional

MSLP data from best track
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eight radars are used in these experiments with an assimila-
tion interval of 1 h (Table 1). Results of sensitivity experi-
ments will be discussed in section 5.

3.1. Analysis Innovations

[12] We first look at the impact of radar data during
the assimilation cycles. The response of the model state
to the data analysis and the forecast error growth through
the assimilation cycles can be seen by calculating the root-
mean-square differences or errors (RMSEs) of the model
version of Vr, Z, MSLP and maximum surface wind (MSW)
speed against radar observations and best track data. Here
we use RMSE loosely for the difference between model state
and observations, which also contain error. These root-
mean-square differences are also called observation inno-
vations [Kalnay, 2003], and in our case, the Vr and Z
innovations are calculated at grid points where observed Z
exceeds 15 dBZ. It is worth pointing out that the surface
winds of the model forecast are from the lowest model level
that is at 25 m above the surface. In this study, they are used
as an approximation to the 10 m winds for comparison with
the best track wind data.
[13] The innovations (RMSEs) for Vr, Z, MSLP, and

MSW before and after each analysis in ExpV and ExpVZ
are plotted in Figure 3, in “sawtooth” plots that are com-
monly used in ensemble Kalman filter DA papers [e.g.,
Dowell et al., 2004; Tong and Xue, 2005]. Apparently,
ExpVZ has smaller RMSEs of Z than ExpV, benefiting
from the assimilation of Z data. In contrast, the RMSEs of
Vr in ExpV and ExpVZ are very close, as are the MSLP
and MSW, suggesting that the assimilation of Vr data has
a dominant impact on the intensity analysis. The RMSEs
of Vr (Z) in ExpVZ show the largest reduction in the first

DA cycle (the first analysis at 12:00 UTC), with the value
decreasing from 7.5 m s�1 (25 dBZ) to 1.8 m s�1 (4 dBZ)
(Figures 3a and 3b). After that, the RMSEs of Vr for each
analysis cycle are below generally 2 m s�1, similar to the
assumed observational error. The MSLP (Figure 3c) and
MSW (Figure 3d) before the first analysis, i.e., in the GFS
analysis background, is about 25 hPa too high and
13 m s�1 too weak, respectively, compared to the official
best track data from CMA. With frequent assimilation of
radar data, the intensity increased steadily, with the analysis
error in MSLP (MSW) decreasing to 13 hPa (2 m s�1) at the
end of the cycles (18:00 UTC). Figure 3 also shows that the
forecast error in Vr increases to around 4 m s�1 from around
2 m s�1 during the 1 h forecasts (Figure 3a), which is not bad,
considering the radar data measure convective-scale struc-
tures that have fast error growth. The error in reflectivity
increases from <5 dBZ to around 17 dBZ (Figure 3b) which
is not considered high either. Figure 3c shows that all of the
MSLP decrease was achieved during the forecast process,
with the analysis having no direct impact on pressure (no
drop in error at analysis times). This is because the ARPS
3DVAR is a univariate analysis system, and cloud analysis
does not adjust pressure either. The minimum pressure
decrease is the result of model adjustment to the analyses
of wind, temperature and moisture. Partly for this reason,
the error in MSLP remained relatively large (13 hPa at
18:00 UTC). In comparison, the error in MSW decreased
rather rapidly through the analysis cycles, reaching about
2 m s�1 at the end of the cycles (Figure 3d). This is
apparently because the wind fields are directly updated by
the Vr observations through the assimilation.
[14] We do note here that the MSLP estimates in best track

data usually have larger uncertainty than wind speed data.

Figure 3. The root-mean-square errors (RMSEs) or observation innovations of (a) Vr and (b) Z calcu-
lated in precipitation region (dBZ >15 dBZ) and of (c) the MSLP and (d) the maximum surface wind speed
(MSW) before and after each analysis from ExpV and ExpVZ. The assimilation experiments and the best
track data are color coded in Figure 3d.
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Figure 4. Horizontal wind increments at z = 3 km for (a and b) the first analysis (12:00 UTC), (c and d)
second analysis (13:00 UTC), and (e and f) third analysis (14:00 UTC) from (left) ExpVZ and (right)
ExpVZRCCG. The black dot indicates the approximate center location of observed typhoon.
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This is because MSLP is usually, as is the case of CMA best
track data, estimated from estimated maximum wind speed
using a wind pressure relationship [Atkinson and Holliday,
1977]. In the model, the surface low pressure is built up in
response to the vortex circulation, in a roughly cyclostrophic
balance. To see what kind of MSLP one would get from
radar measured winds (which were not used for the best
track estimate), we retrieved the axisymmetric tangential
winds of the typhoon vortex from the Vr data of XMRD
radar using the ground-based track display technique
(GBVTD) [Lee et al., 1999], and then estimated the MSLP
using the gradient wind approximation and surface pressure
measurements over land from automatic weather station [Lee
et al., 2000]. GBVTD was initially developed for retrieving
two-dimensional primary circulations of TCs making land-
fall and has been shown to achieve wind retrieval accuracies
of 2–3 m s�1 in some recent studies of mature TCs [Lee et
al., 2000; Harasti et al., 2004; Lee and Bell, 2007]. The
domain of the GBVTD analyses extends from the center of
the typhoon to an 80 km radius and from 1 to 15 km in the
vertical. At 18:00 UTC, the estimated cyclostrophic MSLP
is about 980 hPa, about 10 hPa higher than the best track
data (of 970 hPa). This estimate is closer to the MSLP
obtained in the model (Figure 3c). To say the least, there is a
larger uncertainty in the best track MSLP estimate than the
wind speed estimate.
[15] It is also noted that the MSWs are reduced by the

3DVAR analysis in all except for the first and last cycles
(Figure 3d), increasing the MSW error. An investigation
revealed that this behavior was mainly caused by the mass
divergence constraint in the ARPS 3DVAR [Gao et al.,
1999; Gao et al., 2004] and the fact that, at the surface,
there were no radar observations to directly constrain the
surface wind analysis (Vr information gets spread to the
surface through spatial covariance). The mass divergence
constraint acts to couple the three wind components together
to ensure the three dimensional mass divergence is nearly
zero [Gao et al., 1999; Hu et al., 2006b]. The constraint also
has a smoothing effect on the wind fields, which decreases
the MSW. A sensitivity experiment, in which the divergence
constraint was removed, showed no such decrease in MSW
(not shown). Because the mass divergence constraint helps
to produce more physical three dimensional wind fields, and
because the TC intensity and track forecasts that include the
constraint are slightly better, we choose to include it in all
assimilation experiments presented in this study. The fact
that wind fields do fit the Vr observations better after anal-
ysis (Figure 3a) indicates that the analysis system is gener-
ally well behaved.

3.2. Analysis Increments

[16] To better understand the behavior of radar data anal-
ysis, analysis increments in the horizontal wind components

Figure 5. Analyzed sea level pressure (SLP, thick solid
contours, hPa), and surface wind speed (shaded con-
tours, m s�1) and wind barbs, for Typhoon Meranti at
18:00 UTC, 9 September 2010, from experiments (a)
CNTL, (b) ExpV, and (c) ExpVZ. The black dot near
the domain center indicates the approximate center loca-
tion of observed typhoon.
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Figure 6
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at 3 km height in the first three cycles are plotted in Figure 4
for ExpVZ and ExpVZRCCG. For ExpVZ, the first analysis
at 12:00 UTC produced the largest wind increments with a
well-organized cyclonic structure (Figure 4a), consistent
with the largest decrease in RMSE for Vr shown in
Figure 3a. The clear cyclonic structure is due to the overly
weak vortex in the GFS background. In the second analysis
cycle (13:00 UTC), the horizontal wind increments still
show a cyclonic structure, but their magnitudes are much
weaker and are mainly confined to the core region
(Figure 4c). By the third analysis cycle, the error in the
overall vortex of the background forecast has been signifi-
cantly reduced (Figure 4e) so that the wind increments are
much less organized, indicating that most of the corrections
correspond to structures at the subvortex scale, i.e., asym-
metric structures within the typhoon vortex including those
with wave number 2 and higher as well as structures related
to convective rainbands. Similar structure in wind incre-
ments can be seen in the subsequent analyses (not shown).
These results, together with the analysis from Figure 3,
indicate that the first two cycles have the greatest impact on
the vortex-scale analysis while later cycles correct mostly
subvortex-scale details. At the same time, the MSLP error
curve in Figure 3c suggests additional benefits of more
cycles. Similar behavior is found in ExpVZRCCG (right
column of Figure 4), except that a single radar is less
effective in building up the vortex (more on this later).

3.3. Analyzed Typhoon Structures

[17] Figure 5 shows the sea level pressure and surface
wind speed from CNTL (GFS analysis), and from ExpV and
ExpVZ at the end of the DA window (18:00 UTC). Appar-
ently, the typhoon in the GFS reanalysis is too weak
(Figure 5a); its MSLP is about 1001 hPa versus 970 hPa in
the best track data. The best track MSW is about 35 m s�1

while it is only about 18 m s�1 in CNTL. Meranti is sig-
nificantly stronger in ExpV and ExpVZ, with the MSLP
(MSW) being 984 hPa (31.5 m s�1) and 983 hPa (33 m s�1),
respectively. The vortex circulation in ExpVZ is the stron-
gest, with wind speeds of at least 25 m s�1 (second darkest
shading) forming a closed circle (Figure 5c) instead of
covering only the western semicircle in ExpV (Figure 5b);
this is consistent with the lowest MSLP of ExpVZ. The
horizontal wind speed in both ExpV and ExpVZ exhibits
wave number one asymmetry with the peak winds (darkest
shading) located in the northwest quadrant. Besides the
improvement in intensity, the analyzed typhoon centers are
closer to the observed location with radar DA. Figure 5
indicates the best track center (the black dot) at 18:00 UTC.
Similar to intensity, the center locations of ExpV and ExpVZ
are also very close, suggesting that the assimilation of Vr data
plays a dominant role in determining the wind field and
vortex circulation.
[18] To examine the vertical structure of the analyzed

typhoon, the azimuthal mean tangential wind and the hori-
zontal temperature anomaly (defined at each level as the

deviation from horizontal average within a circle of 180 km
radius, similar to the work of Liu et al. [1999]) are presented
in Figures 6a–6f, for ExpV and ExpVZ, together with that of
CNTL for reference. For further comparison, the azimuthal
mean observed reflectivity and tangential wind retrieved
from XMRD data using GBVTD [Lee et al., 1999] valid at
the same time are given in Figure 6g. In the GFS analysis
used in CNTL, the vortex circulation is weaker and broader
(Figure 6a), characterized by a large radius of maximum
wind (RMW) of about 130 km, an outwardly sloping RMW
axis, and a very weak warm core (Figure 6b). Since the GFS
analysis contains no hydrometeors, the reflectivity field is
blank in CNTL. The vortex in ExpV is much stronger with a
maximum mean tangential wind speed of 33 m s�1 in the
boundary layer and a RMW of �30 km (Figure 6c), which
are much closer to the GBVTD-retrieved values of 35 m s�1

and 24 km, respectively (Figure 6g). Corresponding to the
stronger vortex, the maximum temperature anomaly is
�4.5�C at 8 km altitude (Figure 6d). The cycled assimilation
of Vr data is also able to spin up the eye wall and eye wall
rainbands, thus accurately reproducing the azimuthal mean
radar reflectivity structures (Figure 6c) including a clear eye,
an outward sloping eye wall with mean reflectivity exceed-
ing 40 dBZ near R = 30 km, and an outer ring of high
reflectivity near R = 100 km. These features are in general
agreement with the observed azimuthal mean structures
(Figure 6g), except for quantitative differences. In compari-
son, ExpVZ produces a slightly stronger vortex, with a
35 m s�1 maximum mean wind speed (Figure 6e) and a 5�C
maximum temperature anomaly (Figure 6f). Benefiting from
the reflectivity assimilation, the pattern and magnitude of
mean reflectivity in ExpVZ are much closer to those in the
observations (Figure 6g). These results are consistent with
the findings of limited existing studies [Zhao and Jin, 2008;
Zhao and Xue, 2009] that assimilating both Z and Vr can
result in better TC circulation and precipitation structures,
while assimilating Vr directly substantially improves circu-
lation analysis. The analyzed TC structures are consistent
with conceptual models of TCs.

4. Forecasting Results of ExpV and ExpZV

4.1. Impact of Radar Data on Precipitation
and Structure Forecasts

[19] We first examine the forecast precipitation structures
of Meranti from CNTL, ExpV and ExpVZ. Figure 7 shows
the composite (column maximum) radar reflectivity and
3 km height wind fields at 3, 6, 9 and 12 h of forecast from
the three experiments, as compared to observed composite
reflectivity. Here, the model simulated reflectivity is calcu-
lated from the model hydrometeor mixing ratios using the
same formula employed by the complex cloud analysis
package. By 21:00 UTC or the 3 h forecast time, Meranti has
made landfall. The observed strong precipitation is now
mostly located on the northern and southwestern parts of the
vortex (Figure 7a), presumably because of stronger moisture

Figure 6. (a, c, and e) Azimuthally averaged tangential wind (solid isolines with intervals of 2.5 m s�1), (b, d, and f)
temperature deviation from horizontal mean (solid isolines with interval of 0.5�C), and reflectivity (shaded with the scale
on the right) at 18:00 UTC, 9 September 2010, from experiments (Figures 6a and 6b) CNTL, (Figures 6c and 6d) ExpV,
and (Figures 6e and 6f) ExpVZ, as compared with (g) the observed mean reflectivity and GBVTD-derived tangential wind.
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transport from the ocean on the east side and interaction with
coastal terrain in Fujian Province. The predicted vortex in
CNTL (Figure 7b) is much weaker and broader than the
observation and that of other experiments, as was the case at
the initial condition time (compare Figure 5). The stronger
circulation is not well organized in the inner core region, and
the precipitation region to the south over the ocean is absent
(Figure 7b). As Meranti’s motion in CNTL appears faster
than the observation, its center has moved to about 60 km
north of the observed center. On the other hand, experiments
ExpV (Figure 7c) and ExpVZ (Figure 7d) predict much
better TC positions, tighter vortex circulations and well-
organized eye walls, together with a small, weak reflectivity
hole in the eye. Moreover, the rainband over the ocean is also
captured to some extent. ExpV overpredicts reflectivity west
of the center in the coastal area (Figure 7c), while ExpVZ
does a better job predicting both distribution and magnitude
of reflectivity (Figure 7d). By 00:00 UTC, 10 September, the
precipitation pattern became more asymmetric (Figure 7e)

with strong precipitation mostly found in the west half of
the vortex; the observed typhoon eye more or less dis-
appeared by this time. The TC center in CNTL has moved
farther inland compared to the best track and its echo
pattern does not match the observation well (Figure 7f). In
contrast, ExpV and ExpVZ continue to predict strong
circulations, better TC positions, and better organized
reflectivity structures (Figures 7g and 7h). Visually, the
regions with reflectivity exceeding 35 dBZ (yellow areas)
in ExpVZ match the observations better than in ExpV,
which is consistent with quantitative evaluations to be
shown later. A significant difference from the observation
is that both ExpV and ExpVZ still maintain a precipita-
tion-free eye at this time, and that in ExpVZ is even
present by the end of 12 h forecast. These are signs that
the predicted Meranti is not filling as fast as the observed
one. Such discrepancies can be due to errors in the pre-
diction model, such as those related to the surface flux and
microphysics parameterizations, as well as errors in the

Figure 7. Observed (first column) and predicted (other columns) composite (column maximum) reflec-
tivity and the wind vectors at 3 km MSL corresponding to (a–d) 3 h (21:00 UTC), (e–h) 6 h (00:00 UTC),
(i–l) 9 h (03:00 UTC, 3rd row), and (m–p) 12 h (06:00 UTC) forecasts, from experiments CNTL (second
column), ExpV (third column), and ExpVZ (fourth column).
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initial condition. An investigation of the exact cause is
beyond the scope of this paper.
[20] At the 9 h forecast time, the observed precipitation

pattern became even more asymmetric (Figure 7i). The
observed reflectivity structure is again best captured by
ExpVZ (Figure 7l). The reflectivity in CNTL becomes dis-
organized (Figure 7j). The reflectivity pattern in ExpV is
closer to observations than in CNTL, but the reflectivity
west of the vortex center is a little too weak, while those to
the north are overpredicted (Figure 7k). The vortex circula-
tions in ExpV and ExpVZ are close, and still appear tighter
than in CNTL. At the 12 h forecast time, precipitation has
weakened considerably and stronger echoes remain on the
west half of the vortex (Figure 7m). Again, ExpVZ predicts
the best reflectivity structures (Figure 7p), while CNTL
performs the worst compared with observations (Figure 7n);
in fact, no clear vortex structure is seen in the CNTL
prediction.
[21] For quantitative evaluation of forecast precipitation,

equitable threat scores (ETS, also called Gilbert Skill Score
[Schaefer, 1990]) of instantaneous composite radar reflec-
tivity at 20 and 30 dBZ thresholds are calculated for differ-
ent forecast ranges for the three experiments (Figure 8). The
observed composite reflectivity fields were constructed from
level II data from multiple radars, some of which were
shown earlier in Figure 7. For the 20 dBZ threshold, CNTL
has the lowest scores in the entire 12 h of forecast
(Figure 8a), with values <0.1. ExpVZ shows the highest
scores at all times except for 4 and 5 h. The scores of ExpVZ
are about 0.2 in the first 8 h then decrease rapidly to below
0.1 after 10 h; the weakening of precipitation after landfall is
at least partially responsible for the rapid reduction. Similar
characteristics of scores can also be seen for the 30 dBZ
threshold (Figure 8b). These scores indicate that the

assimilation of Z in addition to Vr further improves precip-
itation forecast while the assimilation of Vr data alone is also
quite effective. These quantitative ETSs are consistent with
our earlier subjective assessment of precipitation structures.

4.2. Track and Intensity Predictions

[22] The predicted typhoon tracks, MSW and MSLP
from CNTL, ExpV, and ExpVZ are plotted in Figure 9
together with the best track for the 12 h forecast period
from 18:00 UTC, 9 September, through 06:00 UTC, 10
September 2010. Figure 9a shows the predicted and
observed tracks, while Figure 9b shows the track errors (in
km) at each forecast hour. In CNTL, the predicted typhoon
moves northward much faster than the best track (Figure 9a),
resulting in a 12 h mean track error of about 92 km
(Figure 9b). With the assimilation of radar data, the 12 h
mean track error is reduced to 11 km and 9 km in ExpV and
ExpVZ, respectively (Figure 9b). This indicates that the
assimilation of radar data also has an impact on the track
forecast. Such improvement in the Meranti case can be
attributed to the improved vortex intensity and structure,
while the large-scale environmental conditions remained
about the same because of the lack of other observations in
our assimilation. Note that the tracks of ExpV and ExpVZ
are very close, suggesting that the assimilation of Z data has
a small impact on the track forecast, similar to the results of
previous studies [Zhao and Jin, 2008; Zhao and Xue, 2009].
[23] The best track MSLP and MSW and those predicted

by CNTL, ExpV and ExpVZ are plotted in Figures 9c and
9d. Clearly, CNTL did not have a realistically strong vortex
at the initial time, so the storm remained very weak with
little MSLP change throughout the forecast. A total increase
(decrease) of 25 hPa (15 m s�1) in MSLP (MSW) is
observed in the 12 h period, but the MSLP in CNTL
changed by only a few hPa. With improved initial intensity
in the radar assimilation experiments (compare Figure 3), the
intensity forecast errors are much lower. In general, the
predicted MSLP and MSW are similar in ExpV and ExpVZ.
The predicted MSWs are within a few meters per second
from the best track data throughout the forecasting hours
(Figure 9d) with the decreasing trend, while the MSLPs
started about 13 hPa too high (for possible reasons discussed
in section 3) and became very close to the observed MSLP at
the end of 12 h. These results again show the benefit of
assimilating radar data. An additional experiment that
assimilated reflectivity data only showed much smaller
improvement (not shown). We do note again here that in our
cycled cloud analysis, we do not adjust the moisture field
except for the first cycle, which limits the impact of Z data.
In the work of Zhao and Xue [2009], when moisture
adjustment is performed in every cycle, Z data were found to
have the largest impacts.

4.3. Precipitation Forecasting After Landfall

[24] Inland flooding is a major hazard of TCs making
landfall, thus accurate precipitation forecasting near and
after landfall is very important for warning purposes.
Figure 10 shows the 6 h accumulated precipitation fields
valid at 00:00 UTC and 06:00 UTC, 10 September, which
represents periods during and after landfall, respectively,
from CNTL, ExpV and ExpVZ, as compared to automatic
weather station rainfall observations (first column of

Figure 8. Equitable threat scores of predicted composite
reflectivity for (a) 20 dBZ and (b) 30 dBZ thresholds from
experiments CNTL, ExpV, and ExpVZ.
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Figure 10). The observations show a heavy precipitation
band extending from the southeast coast to the northern
mountainous areas of Fujian Province during landfall
(Figure 10a). Embedded within are two heavy precipitation
regions, with the strongest one extending from Shiniu
Mountain (SN) to the southern mountainous area (circle A),
and a weaker one at the southern coast (circle B). The
maximum precipitation amount associated with region A is
over 204 mm, located in a valley (118.3�E, 25.6�N) to the
south of SN, which may be partly due to the valley chan-
neling effect. After landfall (Figure 10e), the whole precip-
itation band moved north with the TC, producing a region of
high precipitation (circle C in Figure 10e) over SN and
Baiyan Mountain (BY). On the basis of the strong correla-
tion between high precipitation and high terrain seen from
Figure 10e, we suspect that terrain lifting played an impor-
tant role.
[25] It is clear that CNTL forecasts the precipitation pat-

tern and amount (Figures 10b and 10f) rather poorly. Par-
ticularly, it does not reproduce high precipitation areas A
and B during landfall (Figure 10a), or C after landfall
(Figure 10e). The northward bias in the precipitation

location can be attributed to the excessively fast TC move-
ment. Compared with CNTL, the two radar-assimilating
experiments show significant improvements. At a glance,
both ExpV (Figures 10c and 10g) and ExpVZ (Figures 10d
and 10h) correctly reproduce high-precipitation regions A,
B and C. Compared to rain gauge observations, the rainfall
in regions A and C is generally underpredicted, while that in
B is overpredicted. A careful examination indicates that
ExpVZ produces a better forecast for the structure and
maximum center location of the high-precipitation areas. It
produces the precipitation maxima of about 100 mm over the
eastern (windward) slopes of SN and the southern moun-
tainous area of SN (Figure 10d), while ExpV only predicts a
maximum of about 75 mm for the latter region (Figure 10c).
Note that both experiments miss the maximum center in the
valley, south of SN. This may be due to the still coarse
(3 km) resolution of the model, which may not be adequate
to resolve the local terrain forcing accurately. ExpVZ also
decreases the overprediction of precipitation in region B, and
thus produces weaker precipitation than ExpV. As for pre-
cipitation region C, ExpVZ reproduces a north-south ori-
ented high rainband that roughly matches observations

Figure 9. The 12 h predicted (a) tracks, (b) track errors, (c) MSLP (hPa), and (d) MSW (m s�1) of
Typhoon Meranti from 18:00 UTC, 9 September, through 06:00 UTC, 10 September 2010. Results from
different assimilation experiments and the best track centers are color coded as shown in Figure 9c. Solid
triangles indicate the locations of coastal radars in China. The numbers in Figure 9b represent the mean
track errors over the 12 h forecast period.
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Figure 10. Six hour accumulated precipitation (mm) valid at 00:00 UTC (first row) and 06:00 UTC (sec-
ond row) on 10 September 2010 from (a and e) automatic weather station hourly observations, experi-
ments (b and f) CNTL, (c and g) ExpV, and (d and h) ExpVZ. Terrain height is indicated by contours
with an interval of 150 m (MSL). Locations of Shiniu (SN) and Baiyan (BY) mountains are marked.

Figure 11. One hour accumulated precipitation (color shaded, mm) at (a and e) 20:00 UTC, (b and f)
23:00 UTC, 9 September, (c and g) 02:00 UTC, and (d and h) 06:00 UTC, 10 September 2010, from auto-
matic weather station observations (first row) and experiment ExpVZ (second row). Terrain height is indi-
cated by contours with an interval of 150 m (MSL).
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(Figure 10e), and two maximum centers over SN and BY
(Figure 10h). The predicted maxima of about 50 mm in these
two centers are weaker than the observed 100 and 75 mm. In
comparison, ExpV predicts a maximum of about 25 mm
over SN (Figure 10g).
[26] To further evaluate the spatial and temporal accuracy

of forecast precipitation during and after landfall, we present
in Figure 11 hourly accumulated precipitation from ExpVZ
valid at 20:00 and 23:00 UTC of 9 September and at 02:00
and 06:00 UTC of 10 September, and compare them with the
automatic weather station observations. At 20:00 UTC, the
typhoon center had just moved across the shoreline. A pre-
cipitation band formed along the coast (Figure 11a, note that
there is no precipitation observation coverage off the coast),
which is reasonably well forecasted by ExpVZ (Figure 11e).
This rainband should have mainly resulted from the eye wall
precipitation, as shown in Figure 7a. With the northward
movement of Meranti, a northeast-southwest-oriented strong
precipitation band formed south of SN with the maximum
located in the valley (Figure 11b), implying valley chan-
neling effects. ExpVZ captures the banded structure, but
with some position errors and a significant underestimation
of amount (Figure 11f). The predicted band is displaced
northward by about 10 km, thus placing the heaviest pre-
cipitation on the southeastern slope of SN instead of in the
valley. The maximum precipitation in ExpVZ is about
30 mm, weaker than the observed 80 mm. An error in the

typhoon track forecast can easily cause this precipitation
displacement error.
[27] After 23:00 UTC, the precipitation band moved fur-

ther northward with the typhoon. The heaviest precipitation
is located between SN and BY at 02:00 UTC (Figure 11c),
and to the northern mountainous area of BY at 06:00 UTC
(Figure 11d). Overall, ExpVZ captures these precipitation
regions and their evolution rather accurately except for some
underestimation over SN (Figures 11g and 11h). These
results indicate that assimilating Z and Vr into a TC making
landfall is able to give short-range forecasts of hourly pre-
cipitation with impressive temporal and spatial accuracy. We
note there have been few studies [e.g., Hendricks et al.,
2011] showing similarly detailed verification of precipita-
tion within a TC making landfall that also involve complex
terrain interactions.
[28] Given the availability of high-resolution precipitation

data, we calculated ETSs and biases of the 12 h accumulated
precipitation as a function of precipitation threshold for the
three experiments (Figure 12). It is clear that the radar
assimilation experiments obtain much higher ETS scores
than CNTL. Among them, ExpVZ has the highest ETS score
and least precipitation bias for all thresholds except for those
between 5 and 30 mm. CNTL underpredicts precipitation in
all categories, especially above 65 mm, consistent with a
weaker predicted typhoon; its ETS scores drop quickly above
the 30 mm threshold. ExpV underpredicts the precipitation
for all except for the smallest thresholds (<20 mm). These
quantitative scores again indicate that assimilating both Z and
Vr data is advantageous in general.

5. Sensitivity Experiments

[29] Past studies have shown the importance of different
radar DA strategies on the analysis and forecast of conti-
nental convective storms [e.g., Hu and Xue, 2007; Xiao and
Sun, 2007]. Here, we would like to see if the positive
impacts of radar data found in the previous sections are
dependent on the assimilation strategy, including the
assimilation cycle length, the number of radars used, and the
inclusion of additional MSLP data. A set of sensitivity
experiments are performed to examine these issues. For
brevity, we present only the final analysis and predicted
intensity and track results from these experiments.

5.1. Impact of Assimilation Interval

[30] We examine the impact of radar DA frequency in
experiments ExpVZ3h and ExpVZ6h, which are the same as
ExpVZ except for the use of 3 hourly and 6 hourly assimi-
lation intervals, respectively. With the increase of assimila-
tion interval and reduction of radar data assimilated, the
analyzed typhoon is significantly weaker (Figures 13a and
13b), with the resulting MSLPs (MSWs) being 988 hPa
(27.6 m s�1) and 992 hPa (26.9 m s�1), versus 983 hPa
(33 m s�1) in ExpVZ. There is also a southward error in the
analyzed typhoon center location. ExpVZ6h has larger
intensity and position errors of about 22 hPa and 25 km.
Consistently, ExpVZ6h also has larger errors in intensity
and track forecasts compared to ExpZV and ExpZV3h
(Figure 14). Its mean track and intensity errors are about
14 km and 7 hPa (2.8 m s�1). It is worth pointing out that,
although the MSLP of ExpVZ3h is 5 hPa higher than that of

Figure 12. (a) Equitable threat scores and (b) bias scores of
the 12 h accumulated precipitation forecasts from CNTL,
ExpV, and ExpVZ (as shown in Figure 10), verified against
automatic weather station hourly precipitation observations,
valid at 06:00 UTC, 10 September 2010.
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ExpVZ in the initial field, it decreases rapidly to be within
2 hPa of ExpVZ in the first hour of forecast (Figure 14c);
this is apparently due to the model response to the improved
circulation by radar DA. After that time, the MSLP in
ExpVZ3h remains close to that of ExpVZ. A similar
behavior with MSLP is found with ExpVZ6h, though the
errors are larger. The MSW errors from ExpVZ3h and
ExpVZ6h are larger than those of ExpVZ (Figure 14d), but
still much smaller than those of CNTL shown in Figure 9c.
The same is true for track error (Figures 14b and 9b). These
results suggest that the higher assimilation frequency can
produce better analyses and forecasts of TCs, but when radar
data are only available at large time intervals, as is the case

with airborne radar data, positive impacts can also be
observed when the data is properly assimilated.

5.2. Impact of Assimilating MSLP Data

[31] A few recent studies [e.g., Chen and Snyder, 2007;
Hamill et al., 2011] have shown that the assimilation of
best track MSLP information, as part of the so-called TC-
Vitals data, can improve TC predictions. Those two studies
used the more sophisticated ensemble Kalman filter
[Evensen, 2003] method that utilizes ensemble-derived flow-
dependent covariance information. In the ARPS 3DVAR,
MSLP is used to update pressure only. As shown in
Figure 9b, the analyzed MSLP in ExpVZ is more than 10 hPa

Figure 13. Same as Figure 5 but for experiments (a) ExpVZ3h, (b) ExpVZ6h, (c) ExpVZMSLP, and (d)
ExpVZRCCG.
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higher than the observed (best track) value (see also
Figure 3c). Even with the uncertainty in the best track MSLP
data (as discussed earlier), the analyzed MSLP is most likely
too high. To see if directly analyzing MSLP data in our
assimilation framework can produce further improvement,
experiment ExpVZMSLP is conducted, which is the same as
ExpVZ except for the addition of MSLP data. The MSLP
data from the best track are first interpolated to hourly
intervals between 1200 and 1800 UTC and then assimi-
lated as single surface observations located at the best
track TC center, together with the radar data through
ARPS 3DVAR. In this study, a 200 km horizontal
covariance decorrelation scale and a 2 hPa observation
error are used for the MSLP data in the 3DVAR. The sea
level pressure and surface wind speed in the final analysis
are plotted in Figure 13c. Many aspects of the analyzed
typhoon in ExpVZMSLP (Figure 13c) are similar to those
of ExpVZ (Figure 5c), with the main differences being in
the minimum pressure (Figure 14c). The analyzed MSLP
in ExpVZMSLP is within 4 hPa from the best track estimate.
The impact of the MSLP data on the intensity forecasting is,
however, very limited. Figure 14c shows that the difference
in MSLP between ExpVZ and ExpVZMSLP is mostly lost
after the first hour of forecast. This is not very surprising
because of the univariate nature of the ARPS 3DVAR, and
the lack of temperature and wind analysis increments that

balance the MSLP-derived pressure increments. Without
the basic hydrostatic balance between temperature and
pressure for the larger-scale pressure increments, pressure
quickly adjusts to the temperature fields in the model pre-
diction through mostly acoustic adjustment processes; in
fact, most of the adjustment happens within the first 10 min
of the forecast, seen by monitoring the surface pressure
time tendency. To more fully realize the benefit of MSLP
data, multivariate analysis methods such as EnKF and
4DVAR will be needed. This result is nevertheless worth
documenting.

5.3. Impact of Single Versus Multiple Radars

[32] Our study benefits from the availability of data from
multiple radars, some of which have overlapping dual-
Doppler coverage. A question one can ask is how well a
single, well-positioned radar can do. In our case, the RCCG
radar on the southwest coast of Taiwan covered most of the
inner core region of Meranti during the assimilation period
(Figure 1 and 15). Experiment ExpVZRCCG is therefore
performed, which is the same as ExpVZ but uses data from
RCCG only. The analysis increments of horizontal winds at
3 km height in the first three cycles are shown in the right
column of Figure 4 for easier comparison with ExpVZ.
Similar to ExpVZ, ExpVZRCCG produces an increment of
cyclonic circulation around the observed TC center in its

Figure 14. Same as Figure 9 but for sensitivity experiments ExpVZ3h, ExpVZ6h, ExpVZMSLP, and
ExpVZRCCG, plus ExpVZ.
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first analysis (Figure 4b). However, the wind increment
vectors do not form a closed circulation around the center,
and the nonradial component of wind is generally weak
(RCCG radar is east of the plotting domain, in the direction
of the thick dashed line in Figure 4b; see also Figure 1). The
wind speed along the radar radial through the TC center
(along the thick dashed line) is weaker than in ExpVZ
(Figure 4a), due at least partly to the underestimation of
cross-beam component. ExpVZ analyzes the flow field bet-
ter because of the coverage by additional radars from dif-
ferent viewing angles (Figure 15).
[33] Because the wind analysis of ExpVZRCCG from the

first analysis cycle is poorer than ExpVZ (Figures 4a and
4b), the increments of the second cycle are larger in
ExpVZRCCG than in ExpVZ (Figures 4c and 4d). They
become comparable from the third cycle onward (Figures 4e
and 4f), indicating the establishment of vortex circulations of
a similar quality after three analysis cycles, even when data
from only one (well positioned) radar are used. To put it
another way, ExpVZRCCG is able to build up dynamically
consistent vortex-scale structure from single-Doppler data,
but it takes more volume scans of data and assimilation
cycles to achieve a comparable quality. With multiple radar
coverage, wind fields can be analyzed quite accurately after

a couple of cycles (but this is not necessarily true for all
fields; compare Figure 3).
[34] At the end of the assimilation cycles, ExpVZ and

ExpVZRCCG produce similar analyses in vortex structure,
intensity and center location (Figure 13d). Their MSLPs
(MSWs) are 983 hPa (33 m s�1) and 984 hPa (32 m s�1),
respectively. With similar initial conditions, the predicted
tracks (Figures 14a and 14b) and intensities (Figures 14c and
14d) in ExpVZRCCG and ExpVZ are similar, with those of
ExpVZ being slightly better, especially in track and wind
speed error during the later hours (Figures 14b and 14d).
[35] The weak mass continuity constraint in the ARPS

3DVAR does help significantly in improving the wind
analysis. The constraint couples the three wind components
together and helps to produce wind fields that approximately
satisfy the mass continuity equation. An additional experi-
ment was performed, which is the same as ExpVZRCCG,
except that this constraint is turned off. Figure 16 shows the
3 km level flow analysis corresponding to Figure 4b. With-
out the constraint, the wind speed along the radial through
the TC center is very weak, and most of the wind increments
are in the radial direction.
[36] These results suggest that through several intermittent

cycles assimilating data from a single well positioned radar,

Figure 15. Valid Vr data points from Xiamen (XMRD) (open circle), Chi-Gu (RCCG) (cross), and San-
tou (STRD) (triangle) radars at the 3 km level at 12:00 UTC, 9 September , the time of first analysis. The
thick box indicates the plotting domain shown in Figure 4b.
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using the ARPS 3DVAR with a mass continuity constraint, a
quality circulation analysis of a typhoon can also be
obtained. The use of more radars reduces the number of
cycles needed to reach a similar quality. The forecasting
results are somewhat better with multiple Doppler radars.

6. Summary and Conclusions

[37] This study examines, for the first time, the impact of
intermittently assimilated high-resolution data of ground-
based radars from Taiwan and mainland China, for the
analysis and prediction of a typhoon making landfall on a
3 km high-resolution grid. This typhoon, Meranti (2010),
intensified suddenly when it was near the southeast coast of
China within the Taiwan Strait. The reflectivity (Z) and
radial velocity (Vr) data from five S band coastal operational
CINRAD WSR-98D radars from mainland China and three
Gematronik 1500S Doppler radars from Taiwan were
assimilated over a 6 h period (12:00 to 18:00 UTC) spanning
the last 6 h of rapid intensification and about 1.5 h prior to
landfall. The ARPS prediction model and its 3DVAR/cloud
analysis system were used for intermittent assimilation
cycles, which were followed by 12 h long predictions.
Compared to similar studies published by these authors and
others based on 3DVAR methods [e.g., Xiao et al., 2007;
Zhao and Jin, 2008; Zhao and Xue, 2009; Lin et al., 2011],
this study examines in more detail the analysis increments
produced by the 3DVAR/cloud analysis system, the model
responses during the forecast steps, the three dimensional

structures of the analyzed typhoon, the effects of assimila-
tion cycle lengths, the use of single versus multiple Doppler
radars, and the amount and spatial distributions of precipi-
tation after typhoon landfall. Direct verification against
observations was performed whenever possible. Key results
are summarized in the following paragraph.
[38] Experiments that only assimilate radar data over the

6 h long assimilation window produce final typhoon vortex
analyses with maximum surface wind speeds that are very
close to the best track data. The MSLP is up to 13 hPa too
high, but it is much closer to the best track data than the
operational NCEP GFS analysis, whose error is over 30 hPa.
Because the ARPS 3DVAR system does not directly update
pressure when analyzing radar data, the reduction in MSLP
is achieved through model adjustments during the assimi-
lation cycles, where pressure responds to the analyzed
winds. The most significant improvement to the model
vortex occurs in the first and second cycles, when the
background error is larger. In later cycles, the corrections
contain mostly subvortex, convective-scale structures. The
center location and MSW are close to best track data; the
axisymmetric wind and reflectivity structures of the ana-
lyzed typhoon also agree well with the radar-derived axi-
symmetric structures.
[39] With the improved initial conditions, the subsequent

12 h forecasts of typhoon structure, intensity, track and
precipitation are greatly improved in all radar assimilation
experiments. The improvement to both track and intensity
predictions persists over the full 12 h forecast period. The

Figure 16. Same as Figure 4b but from an experiment that is the same as ExpVZRCCG but without the
mass divergence constraint in ARPS 3DVAR.
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assimilation of Vr data is found to have a larger impact on
the intensity and track than Z data, while additional Z data
help to further improve the forecast precipitation structures.
Overall, assimilating both Vr and Z at hourly intervals leads
to the best forecast. With the improved track and structure
forecasts of Typhoon Meranti, three local rainfall maxima
related to typhoon circulations and their interaction with the
complex terrain in Fujian province were captured well,
except for small position errors and occasional under-
prediction of rainfall amount.
[40] Sensitivity experiments suggest that the assimilation

time interval also affects the analysis and forecast. The
experiments with 3 and 6 hourly assimilation cycles pre-
dicted a somewhat weaker typhoon with larger track errors
later on than the experiment with hourly cycles, but they still
performed much better than the experiment without radar
data. Assimilating MSLP from the best track in addition to
radar resulted in a vortex whose MSLP is much closer to
observed in the analysis, but the benefit was mostly lost
within the first hour of free forecast, mainly because of the
lack of balance between the pressure and temperature fields
analyzed by the 3DVAR. A longer lasting benefit will
require multivariate analysis methods that can produce a
more balanced vortex. Assimilating data from a single
Doppler radar with good coverage of the typhoon inner core
region is also quite effective, except that it takes one more
cycle to establish circulation analyses of a similar quality as
the multiple radar case; although, the forecasts using multi-
ple radars are still the best.
[41] We note finally that even though the conclusions

drawn in this paper are based on a single case, detailed
examinations of the analysis and forecasting results and
processes lead us to believe that our results have general
meaning, at least for the given or similar DA approaches
used. Considering that radar DA research for tropical cyclone
initialization is still relatively limited, our current study
represents an important step toward eventual robust opera-
tional implementation of these techniques. In fact, a similar
procedure is being tested in real time at CMA, and the eval-
uation of the system for many cases is the natural next step.
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