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ABSTRACT

The exponential distribution N(D) � N0 exp(��D) with a fixed intercept parameter N0 is most com-
monly used to represent raindrop size distribution (DSD) in rainfall estimation and in single-moment bulk
microphysics parameterization schemes. Disdrometer observations show that the intercept parameter is far
from constant and systematically depends on the rain type and intensity. In this study, a diagnostic relation
of N0 as a function of rainwater content W is derived based on two-dimensional video disdrometer (2DVD)
measurements. The data reveal a clear correlation between N0 and W in which N0 increases as W increases.
To minimize the effects of sampling error, a relation between two middle moments is used to derive the
N0–W relation. This diagnostic relation has the potential to improve rainfall estimation and bulk micro-
physics parameterizations. A parameterization scheme for warm rain processes based on the diagnostic N0

DSD model is formulated and presented. The diagnostic N0-based parameterization scheme yields less
evaporation and accretion for stratiform rain than that using fixed N0.

1. Introduction

Information about the drop size distribution (DSD)
is essential for understanding precipitation physics, es-
timating rainfall, and improving microphysics param-

eterizations in numerical weather prediction (NWP)
models (Steiner et al. 2004). The characteristics of rain
DSDs are often associated with the types of storms
(e.g., convective versus stratiform rain) and their stages
of development (e.g., the developing versus decaying
stage; Brandes et al. 2006). Strong convective rain
usually contains both large and small drops and has a
broad DSD while the decaying stage of convection
is often dominated by small drops. Stratiform rain usu-
ally contains relatively larger drops but has a low num-
ber concentration for a given rain rate (Zhang et al.
2006).

Rain DSDs are usually represented by distribution
models, such as the exponential distribution, Gamma
distribution, and lognormal distribution models. A
DSD model usually contains a few free parameters
that should be easy to determine and the model should
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be capable of capturing the main physical processes
and properties. The exponential distribution with two
free parameters is the most commonly used DSD
model that has some of these properties, and it is
given by

N�D� � N0 exp���D�, �1�

where N0 (m�3 mm�1) is the intercept parameter and �
(mm�1) is a slope parameter. A single-moment bulk
microphysics model predicts one of the moments of the
DSD, which determines one of the two parameters. Ei-
ther the intercept parameter N0 or the slope � is fixed
so that the other parameter � (or N0) is uniquely re-
lated to the predicted water content W (g m�3), which
in turn is linearly related to the third moment of the
DSD. The Marshall–Palmer (MP; Marshall and Palmer
1948) exponential DSD model with the N0 value fixed
at 8000 m�3 mm�1 � 8 � 106 m�4 is widely used for
representing warm rain (Kessler 1969) and ice (e.g., Lin
et al. 1983; Hong et al. 2004) microphysics. In a micro-
physics scheme used by the Regional Atmospheric
Modeling System (RAMS) model, the slope parameter
� is fixed and the N0 is determined from the W (Walko
et al. 1995). The single-moment schemes are computa-
tionally efficient and widely used in research and op-
erational NWP models.

In NWP model simulations, forecast results are sen-
sitive to the DSD parameters chosen (e.g., Gilmore et
al. 2004; van den Heever and Cotton 2004; Tong and
Xue 2008). While one of the exponential distribution
parameters needs to be fixed in single-moment
schemes, two-moment schemes allow more flexibility in
representing DSDs by determining both parameters
from two prognostic state variables (often the mixing
ratio and total number concentration). The gamma dis-
tribution has also been used in two- and three-moment
parameterization schemes (Meyers et al. 1997; Mil-
brandt and Yau 2005a,b; Seifert 2005), allowing for
varying shape parameters of DSDs. While the exponen-
tial distribution may be sufficient for snowflakes, the
gamma distribution has the advantage of better char-
acterizing hail size distributions where there are few
small particles.

Recent disdrometer observations have indicated that
the N0 and number concentration (Nt) are not constant,
but vary depending on precipitation type, rain intensity,
and stage of development. Waldvogel (1974) found
large changes in N0 for DSDs at different heights in
profiling radar data. Sauvageot and Lacaux (1995)
showed variations of both N0 and � from impact dis-
drometer measurements. Recent observations by 2D
video disdrometers (2DVD) suggest that rain DSDs are
better represented by a constrained gamma distribution

(Zhang et al. 2001) that also contains two free param-
eters. In Zhang et al. (2006), the constrained gamma
model was further simplified to a single-parameter
model for bulk microphysical parameterization, which
produced more accurate precipitation system forecasts
than the MP model. Since the exponential distribution
model is widely used, a diagnostic relation of N0 as a
function of W would improve rain estimation and mi-
crophysical parameterizations that are based on such an
improved model. Thompson et al. (2004) proposed a
diagnostic N0 relation using a hyperbolic tangent func-
tion to represent drizzle-type rain for winter weather
prediction, which has not been verified by observations.
The relation yields too many small drops and hence too
much evaporation, which may not be applicable to sum-
mertime convection or stratiform rain types.

In this study, we derive a diagnostic N0 relation from
rain DSD data that were collected in Oklahoma using
disdrometers. To minimize the error effects introduced
in the fitting procedure, we formulate the problem with
a relation between two DSD moments. A diagnostic
relation is found from the relation between two middle
moments. Section 2 describes methods of deriving the
diagnostic relation and section 3 presents results of di-
agnosing N0 from water content using 2DVD measure-
ments. In section 4, we discuss applications of the diag-
nostic relation in the parameterization of rain physics
and microphysical processes. A final summary and dis-
cussion are given in section 5.

2. Diagnosing methods

The diagnostic relation for the intercept parameter
N0 as a function of water content can be derived using
two different approaches: (i) the direct fitting approach
(DFA) and (ii) the moment relation method (MRM),
described as follows:

The DFA is to first find the DSD parameters (N0, �)
by fitting DSD (e.g., disdrometer) data to the exponen-
tial function (1) for each DSD, and then to plot the
estimated N0 versus W for the whole dataset to obtain
a mean relation.

The nth moment of the exponential DSD (1) is

Mn � �DnN�D� dD � N0���n�1���n � 1�. �2�

Hence, the DSD parameters, N0 and �, can be deter-
mined from any two moments (Ml, Mm) as

� � �Ml��m � 1�

Mm��l � 1��
1

m�l
and �3�

N0 �
Ml�

l�1

��l � 1�
. �4�
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When N0 is obtained along with the water content W
for DSD datasets, a N0–W relation can be found
through another fitting procedure (e.g., power-law fit-
ting). It is noted that the values of the estimated N0

depend on which two moments are used and on the
accuracy of the two moment estimates. Since the esti-
mates of both the moments (Ml, Mm) have errors, the
DSD parameters (N0, �) obtained from them will also
have errors. The natural variation in DSDs and model
error also causes a large scatter in the N0–W plot (see
Fig. 2 in next section). The estimation error and natural
variation are very difficult to separate unless two or
more instruments are used (Cao et al. 2008). Hence, the
N0–W relation derived from the above procedure tends
to have larger errors than those produced by the MRM
procedure discussed below.

To minimize the error effects introduced in the fitting
procedures, we propose an alternative method that uses
MRM to obtain the N0–W relation. In MRM, we first
seek to establish a relation between two DSD mo-
ments. With this relation, the exponential distribution is
reduced to having a single free parameter so that N0

can be determined from W. Suppose that two DSD
moments Ml, and Mm are related by a power-law rela-
tion:

Ml � aMm
b , �5�

where a and b are coefficients that can be estimated
from disdrometer observations. From (2) for the third
moment, we have water content W � �/6	M3 �
�	N0��4 (	 is water density), yielding the slope param-
eter � � (N0�	 /W)1/4. Substituting (2) into (5) for Ml

and Mm, and making use of the relation for �, we ob-
tain

N0 � �W�, �6�

where

� � �a
�b�m � 1�

��l � 1�� c�c��1�1�b�c�

, �7�

� �
c

1 � b � c
, �8�

and

c �
b�m � 1� � �l � 1�

4
. �9�

Hence, (6)–(9) constitute a general formulation for
deriving a N0–W relation using a statistical relation be-
tween two DSD moments. When the coefficients a and
b in the relation (5) are determined from a set of DSD
data, we have a diagnostic relation between the water

content W and the intercept parameter N0. This is the
procedure that will be used in the next section with a
disdrometer dataset.

3. Derivation of the N0–W relation from
disdrometer observations

We test our method for deriving the N0–W relation
using disdrometer data collected in Oklahoma during
the summer seasons of 2005, 2006, and 2007 (Cao et al.
2008). Three 2DVDs, operated respectively by the Uni-
versity of Oklahoma (OU), National Center for Atmo-
spheric Research (NCAR), and National Severe
Storms Laboratory (NSSL), were deployed at the
NSSL site in Norman, Oklahoma, and at the Southern
Great Plains (SGP) site of the Atmospheric Radiation
Measurement (ARM) Program. The ARM site is lo-
cated approximately 28 km south of the NSSL site. The
three 2DVDs have similar characteristics, but with
slightly different resolutions. The OU and NCAR dis-
drometers have the same resolution of 0.132 mm while
the NSSL disdrometer has a 0.195-mm resolution. The
resolutions limit the performance and accuracy in mea-
suring very small drops (D 
 0.4 mm). A total of 14 200
min of disdrometer data with total drop counts greater
than 50 were collected. The recorded raindrops within
each minute were processed to produce 1-min DSD
samples, resulting in 14 200 DSDs. Among them, only
870 DSDs are side-by-side measurements, yielding 435
pairs of DSDs.

With the side-by-side data, measurement errors of
DSDs were quantified. The sampling errors are further
reduced by sorting and averaging based on two param-
eters (SATP), a method that combines DSDs with simi-
lar rainfall rates R and median volume diameters (D0;
Cao et al. 2008). There are 2160 quality-controlled
DSDs after SATP processing for the same dataset
(14 200 DSDs). The DSD moments are estimated by
the sum of weighted DSDs as defined in (2). As shown
in Table 1 of Cao et al. (2008), the relative errors of the
moments: M0, M2, M3, M4, and M6 are 10.3%, 9.1%,
9.0%, 10.3%, and 17.5%, respectively. In addition, the
low moment measurements are highly affected by wind,
splashing, and instrumentation limits, resulting in even
more error that is not shown in that table (Kruger and
Krajewski 2002). Since the middle moments (M2, M3,
M4) are measured more accurately, their use in DSD
fitting should be more reliable. It is desirable to con-
sider both error effects and physical significance of the
moments being used for the application. A moment
pair (M2, M4) is considered a good combination that
balances both well (Smith and Kliche 2005). In addi-
tion, the moment pair (M2, M4) has an advantage over
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(M2, M3) or (M3, M4) because of the larger difference in
the information the two moments provide.

As an example, three measured rain DSDs are shown
in Fig. 1 as discrete points. Based on rain rate and pre-
cipitation duration, they correspond to strong convec-
tion (A: 2231 UTC), weak convection (B: 2344 UTC),
and stratiform rain (C: 2301 UTC), respectively (taken
from the rain events shown in Figs. 5c, 6c). Using the
moment pair of (M2, M4), the DSDs are fitted to the
exponential distribution, shown as dashed lines. The
exponential DSD model fits the data reasonably well,
especially for the strong convection and stratiform rain
cases. It is also noted that the exponential model does
not capture well the curved shape of stratiform and
weak convection DSDs (see, e.g., Fig. 3 of Brandes et
al. 2006). In those instances, it tends to overestimate the
number concentration. It is clear that the intercept pa-
rameter values are quite different for strong convec-
tion, weak convection, and stratiform DSDs; however,
there seems to be a systematic/statistical trend: the
heavier the rain intensity, the larger the N0 value.

In the DFA, the exponential DSD parameters N0 and
� are first estimated from the moment pairs of (M0,
M3), (M2, M4), and (M3, M6) using (3) and (4) for the
whole dataset. The exponentially fitted N0 values are
plotted versus the rainwater content in Fig. 2. The rain-
water content is calculated from the estimated third
moment by W � �/6 � 10�3M3 from measured DSDs.
As expected, there is a large scatter in the N0–W plot
because of measurement and model errors as well as
natural variations. It is important to note that the N0

variability is part of rain microphysical properties, rep-
resented by the exponential DSD model. Also, differ-
ent moment pairs produce different results for N0 due
to differences in estimation error and error propagation
in the fitting procedure (Zhang et al. 2003). It is clear
that there is a positive correlation between N0 and W.
However, due to the large scatter of data points in Fig.
2, it is difficult to fit them to stable N0–W relations. For
example, minimizing error in the x axis (W) gives a
different result from that of minimizing error in the y
axis N0. We chose to minimize the errors on both axes,
yielding the results shown in Fig. 2 as straight lines. The
coefficients (�, �) for these power-law relations are
listed in Table 1. As discussed earlier, the most reliable
result is that from the pair (M2, M4), which is

N0
�D��M2, M4� � 24 144W1.326. �10�

Even after minimizing errors on both axes, the results
are not optimized because of the large scatter of the
data.

In the MRM, however, an N0–W relation is derived
from a moment relation as outlined in section 2. Figure
3 shows the scatterplots of moments for the pair of (M0,
M3), (M2, M4), and (M3, M6) directly calculated from

TABLE 1. Coefficients of diagnostic N0–W relations.

Moment pair

DFA MRM

� � � �

M0, M3 5674 1.135 4910 1.053
M2, M4 24 144 1.326 7106 0.648
M3, M6 58 842 1.611 4903 0.204

FIG. 1. Examples of raindrop size distributions and their fit to
the exponential distribution using the moment pair (M2, M4). The
four DSDs correspond to strong convection, weak convection,
and stratiform rain.

FIG. 2. Dependence of N0 on W. Scattered points are fitted
results from a pair of DSD moments. Straight lines are derived
relations using the direct fitting method.
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the DSD data, and the corresponding power-law rela-
tions are obtained as

M0 � 0.962M3
1.040, �11a�

M2 � 1.473M4
0.838, and �11b�

M3 � 3.038M6
0.626. �11c�

For the moment pair (M2, M4), we have a � 1.473 and
b � 0.838 in Eq. (5). The correlation between the mo-
ments is high, with a correlation coefficient of 0.85 in
the linear domain and 0.90 in the logarithmic domain
for this pair. Substituting for a and b in (6)–(9), we
obtain � � 7106 and � � 0.648, therefore

N0
�M��M2, M4� � 7106W0.648. �12�

The results with the other moment pairs of (M0, M3)
and (M3, M6) are shown in Table 1 with their coeffi-
cients. This N0–W relation (12) derived from the mo-
ment pair (M2, M4) is shown in Fig. 4 along with those
derived from moment pairs (M0, M3) and (M3, M6) as
thick lines. The lower (higher) moment pair yields a
relation with a larger (smaller) slope, which is opposite
to the DFA results. Overall, the DFA results have even
larger slopes, attributed to the effects of a limited num-
ber of drops for light rain, since each data point is
equally weighted and there are more points for light
rain. Nevertheless, they all have an increasing trend
with W. The diagnostic relation by Thompson et al.
(2004) is also shown for comparison, which has a trend
opposite to those indicated by (10) and (12), developed
here based on disdrometer data. Because the total
number concentration is given by Nt � N0 /� and the
median volume diameter is given by D0 � 3.67/�, the
Thompson scheme yields a large (small) total number
concentration for light (heavy) rain, which is not true in
observations of summer rain events (Zhang et al. 2001).
Hence, Thompson’s relation proposed for winter
weather drizzle may not be suitable for simulating con-
vective and stratiform rain events.

While it is true that the performance of both the

FIG. 3. Interrelationships among DSD moments based on dis-
drometer measurements. Scattered points are direct estimates
from disdrometer measurements. Straight lines represent fitted
power-law relations. (a) M0–M3, (b) M2–M4, and (c) M3–M6.

FIG. 4. Results of diagnostic N0–W relations using the moment
relation method. The results of the direct fitting approach and the
Thompson et al. (2004) approach are shown for comparison.
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DFA and MRM depends on the accuracy of moment
estimates, the error propagations in the two approaches
are different: normally, DSD parameters are difficult to
estimate with high accuracy from a measured DSD (as
in the DFA), especially for light rain with few drops. In
MRM, however, a mean moment relation is derived,
which may not be affected by the light-rain error as
much as in the methods used in DFA. As discussed
earlier, the middle moment pair (M2, M4) has smaller
errors and its derived relations should be used. The two
N0–W relations in (10) and (12), derived using the DFA
and MRM methods, and the fixed N0 are compared
through their error statistics. The absolute value of the
mass-weighted relative error of moment estimates us-
ing the constrained exponential DSD models is calcu-
lated as

�n �


l�1

L

|Mn
�e��l� � Mn

�m��l� | � M3
�m��l�


l�1

L

Mn
�m��l� � M3

�m��l�

, �13�

where the measured nth moment is M(m)
n (l), which is

directly calculated from the lth DSD, and M(e)
n (l) is the

estimated moment from water content using the diag-
nostic N0 DSD model. The results are listed in Table 2.
It is shown that the DFA relation (10) yield larger er-
rors, with negative biases for the higher moments (M4,
M5, and M6) and positive biases for the lower moments
(M0, M1, and M2). This is because the DFA treats each
data point with equal weight in the log–log plot (Fig. 2).
The large number of light-rain DSDs may dominate the
fitted relation, leading to an unrealistically large power
coefficient and yielding overestimation (underestima-
tion) of N0 for heavy (light) rain, and hence the nega-
tive and positive biases. However, the moment errors
with relation (12) are much smaller, especially for the
lower moments, because the MRM-derived relation ac-
counts for proper weighting. It is interesting to note
that the fixed N0 � 8000 m�3 mm�1 used by the MP
model performs better than the DFA-derived relation.
On the other hand, other fixed N0 values may not yield
the same performance. This shows the importance of
the procedure used in deriving a diagnostic relation. It
is obvious that the MRM relation (12) has the best

performance in characterizing rain microphysics.
Therefore relation (12) is recommended.

For a better understanding of the N0–W relation (12),
Fig. 5 shows an example of N0 values along with other
physical parameters (Nt, W, and D0) as a function of
time for a convective rain event starting on 21 July
2006. This event was characterized by a strong convec-
tive storm followed by weak convection passing over
the OU disdrometer deployed at the ARM site in
Washington, Oklahoma. The water content is very low
during the weak convection periods, but the median
volume diameter D0 is comparable to that during the
strong convection. The comparison between exponen-
tially fitted N0 values from DSD moments M2 and M4

and those diagnosed from W using (12) is plotted in Fig.
5a. Had the Thompson et al. (2004) relation been plot-
ted, it would have been out of the range of the graph
except for the strong convection period. As shown in

TABLE 2. Comparison of relative errors of moment estimates.

Moment M0 M1 M2 M3 M4 M5 M6

�n, % DFA: Eq. (10) 285.6 90.4 35.1 0.0 32.6 59.8 78.0
MRM: Eq. (12) 41.9 34.9 21.9 0.0 24.4 45.3 62.5
MP: fixed N0 59.3 47.9 29.6 0.0 35.9 69.5 97.0

FIG. 5. Time series comparison of physical parameters: intercept
parameter N0, total number concentration Nt, water content W,
and median volume diameter D0 for a convective rain event start-
ing on 21 Jul 2006. Results are shown for disdrometer measure-
ments and fitted values using exponential, diagnostic-N0, and
fixed-N0 DSD models. Here, “A” and “B” correspond to strong
and weak convection, respectively. Their DSDs are shown in
Fig. 1.
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Fig. 5b, moment fitting of the exponential DSD model
yields a good estimate of total number concentration Nt

as compared with direct estimates from DSD data (dis-
crete “�”). Here, the fitted N0 can be considered as
“truth” because N0 is a model parameter that is ob-
tained through the fitting procedure of (2)–(4). It is
clear that the diagnosed N0 captures the main trend of
the observed rainstorm very well in a dynamic range of
more than two orders of magnitude, that is, from an
order of 104 for strong convection to 10 for light-rain
precipitation. In comparison, the fixed-N0 model over-
estimates N0 except for heavy convective rain. Figure 5c
shows the rainwater content directly estimated from the
DSD data. Also indicated in the figure are times when
the two convection DSDs shown in Fig. 1 are taken.
Figure 5d compares median volume diameter D0 calcu-
lated from the DSD data, estimated using the diagnos-
tic-N0 DSD model and that with the fixed-N0 DSD
model. The diagnostic-N0 model yields D0 results argu-
ably better than those of fixed-N0 model.

Figure 6 shows the same parameters as that in Fig. 5,

but for a primarily stratiform rain event that began with
weak convection (at 2115 UTC) on 6 November 2006.
Again, the diagnostic N0–W relation produces a much
better agreement with the measurements than does the
fixed-N0 model, especially for D0 during the stratiform
rain period (after 2230 UTC). It is also noted that the
stratiform rain has a much lower number concentration
(Nt 
 500) than the strong convection in Fig. 5. Even
the exponential fit and the diagnostic N0 model over-
estimate Nt by 3–4 times. This is because stratiform rain
DSDs tend to have a convex shape and do not contain
as many small drops as the exponential model. Also,
since the dataset is dominated by convective rain
events, the derived relation (12) may not represent
stratiform rain as well as convective rain. Further re-
duction of N0 may be needed for better representing
stratiform rain characteristics.

4. Application to warm rain microphysical
parameterization

The warm rain microphysical processes related to the
DSD include rain evaporation, accretion of cloud water
by rainwater, and rain sedimentation. Microphysical
parameterizations of these processes based on the ex-
ponential DSD model have been derived by Kessler
(1969, his Table 4). After unit conversion, the evapo-
ration rate Re (kg kg�1 s�1), accretion rate Rc (kg kg�1

s�1), mass-weighted terminal velocity Vtm (m s�1), and
reflectivity factor Z (mm6 m�3) are given by

Re � 2.17 � 10�5EeN0
7�20�q	s � q	�W

13�20, �14a�

Rc � 1.65 � 10�3EcN0
1� 8qcW

7� 8, �14b�

Vtm � 16.4N0
� 1�8W1�8��0 ���0.5, and �14c�

Z � 1.73 � 107N0
� 3�4W7�4, �14d�

where Ee and Ec are the evaporation and accretion ef-
ficiency factors, respectively (normally taken as 1); W is
rainwater content in grams per meter cubed as before
(W � 1000	qr); and q�, qc, and qr are, respectively, the
water vapor, cloud water, and rainwater mixing ratios
(kg kg�1).

Substituting the diagnostic relation (12) into (14) and
assuming unit saturation deficit and unit cloud water
mixing ratio as well as unit efficiency factors, we obtain
a parameterization scheme based on the diagnostic-N0

DSD model. The terms corresponding to those in Eq.
(14) are listed in Table 3 along with those of the stan-
dard fixed-N0 MP model. The coefficients of these
terms are similar for the two schemes, but the powers
are substantially different. The larger power in evapo-
ration rate means more (less) evaporation for heavy
(light) rain compared to the fixed-N0 model. The

FIG. 6. As in Fig. 5 but for a stratiform rain event on 6 Nov 2006.
Here, “C” is identified as stratiform rain whose DSD is shown in
Fig. 1.
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smaller power in the reflectivity formula for the diag-
nostic-N0 model gives smaller (larger) reflectivity than
the fixed N0 for heavy (light) rain. This may lead to a
better agreement between numerical model forecasts
and radar observations. The fixed-N0 DSD model tends
to overpredict large reflectivity values and underpredict
low reflectivity values (Brandes et al. 2006). In this
sense, the diagnostic-N0 model has similar properties as
the simplified constrained Gamma model investigated
in Zhang et al. (2006).

Figure 7 compares the two parameterization schemes
based on the diagnostic-N0 and fixed-N0 DSD models,
respectively, by showing the microphysical processes/
parameters as a function of W. The direct calculations
from the DSD dataset are also shown for comparison.
The diagnostic-N0 results agree well with those from
the measurements except for reflectivity. The mass-
weighted error of the reflectivity estimates with the di-
agnostic N0, however, is smaller than that of the fixed
N0, as indicated in Table 2. As stated in the previous
paragraph, the diagnostic-N0 model yields smaller
(larger) evaporation and accretion rates for light
(heavy) rain than the fixed-N0 model. However, the
diagnostic-N0 scheme gives large (small) reflectivity
and mass-weighted velocity values for light (heavy) rain
cases. It is noted that the low end of the data points in
Fig. 7b is associated with light rain and has large sam-
pling errors. The performance of the DSD models
should also be evaluated by calculating the relative er-
rors for all the moments, as given in Table 2 and dis-
cussed earlier.

Figures 8 and 9 compare the terms for the micro-
physical processes estimated from W with the diagnos-
tic-N0 scheme with those from the fixed-N0 scheme for
the two rain events shown in Figs. 5, 6. Direct calcula-
tions from the observed DSD data and those with the
exponential scheme with N0 as one of the two free pa-
rameters are also shown for reference. The results may
appear to be close to each other in the semilogarithm
plots, but actually, the fixed-N0 scheme underestimates
the evaporation rate for strong convection (2220–2240
UTC) as the dashed line is below the red line and has

smaller values than that of the direct calculations in Fig.
8. However, the scheme overestimates the evaporation
rate for stratiform rain by about a factor of 5, shown in
Fig. 9. This might be the reason that the parameteriza-
tion coefficients in the Kessler scheme are sometimes
reduced by a half or more to obtain a better match of
modeling results with observations (e.g., Miller and
Pearce 1974; Sun and Crook 1997). The diagnostic-N0

scheme also performs slightly better than the fixed-N0

scheme in estimating accretion rate and mass-weighted
terminal velocity, which are visible in Figs. 7–9 except
for a few missing points. Therefore the diagnostic-N0

scheme characterizes rain evaporation, accretion, and
rainfall processes more accurately than the fixed-N0

model for both heavy and light rainfall. By introducing
the dependency of N0 on W based on observations,

TABLE 3. Parameterization of warm rain processes with
diagnostic N0 and fixed N0 .

Parameterized
quantity Diagnostic N0 Fixed N0

N0, m�3 mm�1 7106W0.648 8000
Re, kg kg�1 s�1 4.84 � 10�4W0.878 5.03 � 10�4W0.65

Rc, kg kg�1 s�1 5.0 � 10�3W0.956 5.08 � 10�3W0.875

Vtm, m s�1 5.41W0.044 5.32W0.125

Z, mm6 m�3 2.24 � 104W1.264 2.04 � 104W1.75

FIG. 7. Comparison of rain physical process parameters for a
unit saturation deficit and cloud water mixing ratio between the
diagnostic-N0 and fixed DSD models. (a) Re and Rc (kg kg�1 s�1),
and Vtm (m s�1), and (b) reflectivity Z (mm6 m�3).

2990 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 47



raindrop number concentration and total surface area
of rain drops are better represented, leading to a better
estimation of evaporation and accretion rates.

5. Summary and discussion

In this paper, we present a method for diagnosing the
intercept parameter N0 of the exponential drop size
distribution (DSD) based on water content W, and ap-
ply the diagnostic-N0 DSD model toward improving
warm rain microphysical parameterization. The diag-
nostic relation is derived from a relation between two
DSD moments that are estimated from 2D video dis-
drometer data. The DSD data were collected in Okla-
homa during the summer seasons of 2005 and 2006,
which should be representative for rain events in the
central Great Plains region. The diagnostic N0–W rela-
tion is used to improve the Kessler parameterization
scheme of warm rain microphysics, and can be used in
schemes containing ice phases also [e.g., those in com-
monly used schemes of Lin et al. (1983) and Hong et al.
(2004)].

It has been shown that the diagnostic-N0 model bet-
ter characterizes natural-rain DSDs, including the
physical properties (e.g., Nt, and D0) and microphysical

processes. For a given water content, the diagnostic-N0

DSD model represents the total number concentration,
median volume diameter, reflectivity factor, evapora-
tion rate, and accretion rate more accurately than the
MP model with a fixed N0. Compared with the MP
model–based Kessler scheme, the modified parameter-
ization scheme with a diagnostic N0 has the following
advantages: (i) it leads to less (more) evaporation for
light (heavy) rain and therefore can preserve stratiform
rain better in numerical models, and (ii) it yields a
larger (smaller) reflectivity factor for light (heavy) rain,
having the potential of yielding a better agreement be-
tween model-predicted and radar-observed reflectivi-
ties in a way similar to the simplified constrained
Gamma model. Realistic simulation of reflectivity is
important for assimilating radar reflectivity data into
NWP models.

It is noted that the diagnostic N0–W relation obtained
in this paper is based on a specific set of disdrometer
data in a specific climate region, dominated by convec-
tive rain events. While the methodology developed in
this paper is general, the coefficients in the relation may
require tuning for them to better fit specific regions
and/or seasons or specific rain types. For example, the
coefficient of (12) may need to be reduced by a factor
of 2–3 to better represent stratiform rain characteris-

FIG. 9. As in Fig. 8 but for the stratiform rain event on 6 Nov
2006.

FIG. 8. As in Fig. 5 but for evaporation rate for a unit vapor
saturation deficit Re, accretion rate Rc for a unit cloud water
content, and mass-weighted terminal velocity Vtm.
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tics. The improved parameterization based on the di-
agnostic-N0 model is now being tested within a meso-
scale model for real events to examine its impact on
precipitation forecasts; the results will be presented in
the future.
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