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A B S T R A C T

Wavelet-decomposition-based intensity-scale skill (ISS) score is a verification metric which decomposes the
forecast fields into different scales and then calculates verification scores. However, due to the “double-penalty”
issues, ISS at small scales are often very low even when the forecasts appear subjectively skillful. The dis-
placement error is an important reason for the low ISS. To address this problem, verification methods based on a
combination of neighborhood and scale-separation verification approaches are explored. Instead of calculating
ISS, a neighborhood-based fractions skill score at different spatial scales, which we call IS_FSS is proposed.
Additionally, to reduce the impact of intensity bias, percentile-based instead of fixed thresholds are used in
IS_FSS, leading to ISP_FSS. Those two newly developed verification scores are then used to assess WRF forecasts
at 4 km and 12 km grid spacings (WRF-4 and WRF-12, respectively) for a case and the entire Meiyu season of
2016. Compared to ISS scores, both IS_FSS and ISP_FSS show more positive verification scores of both WRF-4 and
WRF-12 at small scales. Moreover, IS_FSS and ISP_FSS are able to differentiate WRF-12 and WRF-4 forecasts at
smaller scales when ISS cannot. Both scores indicate that WRF-4 outperforms WRF-12 for spatial scales from
12 km through 96 km. The scores of WRF-12 improve more when using ISP_FSS than WRF-4, because the former
has higher intensity bias.

1. Introduction

With the advancement of computing power, operational numerical
weather prediction (NWP) models are heading towards convection-al-
lowing or convection-resolving resolutions (at grid spacings less than
4–5 km) (Xue et al., 2007; Funatsu et al., 2009; Gowan et al., 2018; Sun
et al., 2019). At such resolutions, many convective-scale features, in-
cluding many aspects of convective storms, can be resolved. Many
studies have shown that models at convection-allowing or convection-
resolving resolutions produce better precipitation forecasts in terms of
spatial distribution, and diurnal variation of precipitation as well as
precipitation structures (Burgess et al., 2002; Davies et al., 2005; Clark
et al., 2007; Weisman et al., 2008; Love et al., 2011; Zhu et al., 2018).
However, when it comes to quantitative precipitation verification,
commonly used verification scores do not always reveal better forecast
skills for such high-resolution models compared to lower resolution
ones. As shown later in this paper, standard intensity-scale skill (ISS)
scores of the 4-km Weather Research and Forecast (WRF, Skamarock

et al., 2005) model precipitation forecasts show negative ISS scores for
small scales. The ISS scores use the Haar-wavelet to decompose the
forecast fields into a range of scales for which verification scores are
calculated individually.

There are many reasons why useful forecast skill scores are not seen
in objective assessments for small scales. Spatial and intensity errors are
two of the major error sources. Although high-resolution models can
successfully predict precipitation structures that are of value to fore-
casters and end users, such structures usually cannot exactly match
observations in location and timing beyond several hours of forecast.
Additionally, convective systems are highly variable in their size, in-
tensity, structure, orientation, timing, etc. (Lorenz, 1969; Brandes et al.,
2003; Hintsa et al., 2004), therefore exact predictions in all details and
scales are impossible beyond several hours due to predictability limits.
Certain aspects of the forecast error should be tolerated while skillful
aspects of the forecasts should be properly reflected in the verification
scores used.

Various verification methods have been proposed in recent years to
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address some of the above issues. The methods can be divided into four
categories (Gilleland et al., 2009): feature-based (or object-based)
(Ebert and McBride, 2000; Davis et al., 2006a), field deformation
(Wernli et al., 2008; Gilleland et al., 2010a), neighborhood (or fuzzy)
(Casati et al., 2008; Ebert, 2009), and scale-separation (or decomposi-
tion) (Casati et al., 2004; Casati, 2010) techniques. Another class of
method is based on distance measures (Dorninger et al., 2018), as
discussed in more detail in Gilleland et al. (2020). There have been
projects focusing on inter-comparing and understanding a large number
of forecast verification methods, including the first spatial verification
methods intercomparison project (ICP; Gilleland et al., 2009), and its
second phase called the Mesoscale Verification Intercomparison over
Complex Terrain (MesoVICT) project (Dorninger et al., 2018). Several
review papers exist on forecast verification methods, including Davis
et al. (2006b), Ebert (2008), Gilleland et al. (2010b), and Brown et al.
(2012). Interested readers are referred to those papers and references
therein.

The neighborhood techniques can be described as filtering methods,
which evaluate model skill based on filtered fields. Instead of point-to-
point verification, neighborhood methods act as a smoothing filter to
the binary probabilities. Such methods are useful to understand the
contribution of spatial error (Ebert, 2009). However, the neighborhood
method cannot measure scale-dependent error. Scale-separation
methods are designed to address this issue. Such methods separate or
decompose the forecast fields into different scales by applying several
single-band-pass spatial filters or performing wavelet or spectral de-
composition. Verification scores are then calculated for different scales
(Briggs and Levine, 1997; Zepeda-Arce et al., 2000; Jung and
Leutbecher, 2008; Weniger et al., 2017; Buschow and Friederichs,
2020).

Among various scale-separation methods, the intensity-scale tech-
nique (Casati et al., 2004) is quite popular. By performing wavelet
decomposition, forecast skills can be obtained at different intensity and
spatial scales (Mittermaier, 2006; Casati, 2010; Stratman et al., 2013).
However, because skill scores for the smaller scales are still calculated
on the point-to-point basis, the double-penalty issue remains. It is still
often difficult for such skill scores to show useful skill for high-resolu-
tion models. Mittermaier (2006) showed that both 4- and 12-km re-
solution models mostly record negative skill scores in terms of ISS for
scales from 12 km to 96 km when using the Haar wavelet decomposi-
tion. Negative ISS scores indicate that the model forecast is worse than
a random forecast, but in reality the forecast may still be useful (be-
cause of correct forecast of features, for example). Displacement and
intensity errors are often the main causes of negative skill scores for
small-scale convection. Besides, the intensity-scale methods are still
penalized by intensity and/or position errors. The neighborhood ap-
proach, on the other hand, can provide information on the scale at
which the forecast becomes skillful, and is thereby less influenced by
position and intensity errors. Therefore, it is desirable to combine the
scale separation and neighborhood approaches within score metrics for
the purpose of measuring different aspects of errors while not getting
over-penalized by intensity and/or position errors.

In this study, with the aim of reducing the negative impacts of
displacement and intensity errors on scale-separation evaluation me-
trics so that the calculated verification scores better reflect the value of
forecasts, we take the idea of neighborhood-based methods and apply it
to the regular ISS, and develop a new intensity-scale-based fraction skill
score (IS_FSS). As a variation to IS_FSS, percentile-based thresholds are
used to replace fixed-value thresholds (Zhu et al., 2015) to reduce the
effect of intensity error, resulting in a percentile-based IS_FSS or
ISP_FSS. These metrics are then applied to 4 km and 12 km WRF
forecasts over China for an individual Meiyu frontal precipitation case,
then to the entire Meiyu season of 2016 and the performances of the
metrics are evaluated. The goal is to obtain objective verification scores
that can reduce the impact of the “double -penalty” on small scales and
better match subjective evaluations.

The Meiyu season is one of the major rainy period of warm season
rainfall (May to September) in China. In the Yangtze River-Huaihe
Valleys, it usually begins around mid-June and lasts for up to four
weeks (Bao et al., 2011). During this period, a west-east-oriented
rainband extending thousands of kilometers forms along the quasi-
stationary Meiyu front. Along the Meiyu front, mesoscale convective
systems are prevalent, which often contain embedded intensive con-
vection including squall lines. As a result, the precipitation fields con-
tain multi-scale structures, including intense localized precipitation
cores and wide spread stratiform precipitation regions. In the mean-
time, afternoon convection is active in southern China, and more or-
ganized quasi-linear convective systems such as squall lines and bow
echoes are common. For such multiscale precipitation, verification
metrics capable of distinguishing forecast skills at different scales are
highly desirable.

The rest of the paper is organized as follows. In section 2, we briefly
summarize relevant verification metrics, including scale-separation and
neighborhood-based methods, and put forward our proposed new me-
trics. The forecast datasets and observations used for the verifications
and their processing are described in section 3. Evaluation results with
various verification metrics for a single Meiyu frontal precipitation case
are presented in section 4, followed in section 5 by the application of
the metrics to the entire Meiyu season (~40 days) of 2016. A summary
is given in section 6.

2. Verification metrics

Existing scale-decomposition and neighborhood-based fuzzy ver-
ification metrics as well as our proposed ones are discussed in this
section.

2.1. Intensity-scale separation methods and intensity-scale skill score

The intensity-scale verification method employed in this study is
based on Casati et al. (2004), which we briefly summarize here. The
first step is to transform the model forecast (Y) and observation (X)
fields into binary fields for each threshold. If the gridded precipitation
value is greater than a predetermined threshold, it is assigned 1;
otherwise, it is assigned 0. In this study, intensity thresholds u are set to
4, 13, 25 and 60 mm for 6-hour accumulated rainfall. The same
thresholds are used by the National Meteorological Center in China.
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Once the binary fields are obtained, the wavelet scale components
for a given threshold are obtained by applying a two-dimensional dis-
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multi-level wavelet decomposition is explained in detail in Casati et al.
(2004)

For each intensity threshold u and spatial scale l, the mean square
error (MSE) is calculated as =MSE Zu l u l, ,

2 where the overbar denotes the
average. Also, random MSE is estimated through the following equa-
tion:

= × × − + × − ×MSE FBIAS BR BR BR FBIAS BR(1 ) (1 )u
random

u u u u u u

(2)

where FBIASu is the frequency bias and BRu is the base rate (which is
calculated as the probability of observed precipitation occurrence
within the verification domain) (Stratman et al., 2013) for a given
threshold u. The ISS score is then calculated as a function of pre-
cipitation intensity and the spatial scale of the errors in terms of MSE,
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Positive ISS values are associated with skillful forecasts, whereas
negative ISS values are associated with no forecast skill (Casati, 2010).

2.2. Intensity-scale-based fractions skill score

The ISS score is still based on point-to-point comparisons.
Displacement error will have a significant impact on ISS, especially for
small spatial scales. For the intensity-scale-based fractions skill score we
propose in this section, we keep the procedure of ISS, including the
steps for obtaining the binary field and wavelet decomposition, but we
do not calculate ISS in the final step. Instead, the fractions skill score
(FSS, Roberts, 2008; Roberts and Lean, 2008), which is based on the
idea of neighborhood verification (Ebert, 2008), is used to assess the
forecast skill of each wavelet component. In doing so, the impact of
displacement error on the verification score can be considered. To
distinguish from the original ISS verification score, we refer to this
score as intensity-scale-based fractions skill score or IS_FSS.

During the score calculations, wavelet decomposition is applied to
the binary fields of observation IX and forecast IY separately. The
squared value of the binary wavelet decomposition term in the fore-
cast/observation field Iu, l2 in section 2.1 can be regarded as energy for a
given threshold and spatial scale (Garg et al., 2011). Once Iu, l is ob-
tained, the binary field for a given threshold and spatial scale is cal-
culated as follows. If gridded energy Iu, l2 is non-zero, it is assigned 1;
otherwise, it is assigned 0. The “yes” event occurrence probability of
forecast, Pu, lfcst, and of observation, Pu, lobs, are then calculated within
the n × n grid box. IS_FSS is calculated as follows:
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=IS FSS FSS FSS_ ‐u l u l u l
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where N is the number of neighborhood grid points for each neigh-
borhood size; and FSSu, l

useful = 0.5 + fu, l
o/2, where fu, l

o is the ob-
servation hit rate (Roberts and Lean, 2008). It takes into account the
random forecast skill, which is also treated as a reasonable “target
skill”. Following the regular FSSu,l, the forecast is considered skillful
when IS_FSSu,l > 0, whereas it has no skill when less than zero
(Roberts and Lean, 2008). IS_FSSu,l is applied to each wavelet scale l for
a given threshold u, as the regular ISS score does (see Eq. (3)).

2.3. Percentile-based thresholds for IS_FSS

Many studies have pointed out that convection-allowing models
tend to over-predict the precipitation intensity (Murata et al., 2016;
Karki et al., 2017; Zhu et al., 2018). To be able to better assess a model's
ability in predicting precipitation pattern and distribution, forecast bias
often needs to be removed before calculating scores (Hamill, 1999).
Zhu et al. (2018) used a bias-corrected Gilbert skill score (GSS, Gandin
and Murphy, 1992) to assess forecasts from models with different re-
solutions. To reduce the impact of the intensity bias on the verification
score, we replace the fixed threshold with a percentile-based threshold
(Roberts and Lean, 2008; Zhu et al., 2015) during the initial determi-
nation of the binary fields (Eq. (1)) when calculating IS_FSS. The rest of
the calculation is the same as with IS_FSS, and we refer to this ver-
ification score as percentile-based IS_FSS or ISP_FSS. In this study, four
thresholds at the 75th, 90th, 95th and 99th percentiles are used in place
of the 4, 13, 25 and 60 mm thresholds for 6-hour accumulated rainfall.
Similar percentile thresholds were used by Roberts and Lean (2008).
For calculating the kth percentile, we first sort the data in ascending
order. The kth percentile is a value on a scale of 100 that indicates the

percent of a distribution that is equal to or below it.

3. Data and methods

3.1. Forecasts and observations

Since 2013, a convection-permitting resolution model that covers
the entire Chinese mainland has been run at Nanjing University, China,
in real-time, twice a day at 0000 and 1200 UTC, during the June to
August months, starting from analyses of the NCEP operational Global
Forecasting System (GFS), and forced at the lateral boundaries by GFS
forecasts. The system employs WRF as the forecast model and has a
horizontal grid resolution of 4 km (hereafter referred to as WRF-4). A
single grid covering the entire continental China was used. The con-
figurations of WRF-4 are described in detail in (Zhu et al., 2018).
Briefly, the physics schemes used are the Morrison double-moment
microphysics scheme (Morrison et al., 2005), the Asymmetrical Con-
vective Model planetary boundary layer scheme, version 2 (Pleim,
2007), the Pleim–Xiu land-surface model (Pleim and Xiu, 1995), the
Pleim–Xiu surface layer schemes (Pleim, 2006), and the CAM short- and
long-wave radiation schemes (Collins et al., 2004). No cumulus para-
meterization was employed. Detailed assessments of the 2013–2014
forecasts show that WRF-4 outperforms many global operational fore-
casts in terms of spatial distribution, intensity, and diurnal variations of
precipitation over China. The convection-allowing resolution was be-
lieved to be an important contributor (Zhu et al., 2018).

To investigate the sensitivity of precipitation forecasts to grid spa-
cing, WRF forecasts with a 12 km grid spacing (WRF-12) was run for the
summer of 2016. In terms of model physics, WRF-12 was configured the
same way as WRF-4, except that Grell-3 (Grell, 1993) cumulus para-
meterization was used in addition. The WRF-12 domain was somewhat
larger than that of WRF-4 (Fig. 1). In this study, the performances of
WRF-12 and WRF-4 are compared in terms of precipitation forecast
skills using various evaluation metrics.

The observations used for precipitation verification are the
0.05°×0.05° hourly merged precipitation products/analysis (Shen
et al., 2014) (over 70°–140°E, 15°–60°N) from the National Meteor-
ological Information Center of the China Meteorological Administration
(CMA). This precipitation dataset is a merged product from three
gridded observations, including: 0.05° × 0.05° Chinese Precipitation
Analyses, which are generated using ~40,000 rain gauge observations
(Zheng et al., 2016), 0.01° × 0.01° gridded radar-estimated precipita-
tion (Zheng et al., 2016), and NOAA CMORPH (Climate Precipitation
Center Morphing) precipitation product, with an 8-km grid spacing,
estimated from multiple satellite sensors (Joyce et al., 2004; Shen et al.,
2010). Verifications at independent stations show that this merged
precipitation product has smaller RMSEs than any of the three gridded
precipitation products (Pan et al., 2015). This high-resolution gridded
precipitation product allows for grid-based verifications, especially
those employing scale decomposition.

3.2. Data preprocessing and choice of verification grid

For the intensity-scale verification employing the Haar wavelet, a
2n × 2n square grid is required. Here, a 128 × 128 (n = 7) grid with a
12 km grid spacing is selected as the verification domain (see Fig. 1,
gray area). This area, including south China and the region along the
Yangtze River, are two major heavy rain areas during the summer. All
the observations and forecasts are then interpolated to the same ver-
ification domain using the neighborhood budget interpolation method
(Zheng et al., 2016). This method ensures area conservation for total
precipitation.

The merged CMA gridded precipitation product has a 0.05° or about
5 km horizontal grid spacing. In principle, it is suitable for verification
of our 4-km WRF forecasts. However, because the products were de-
rived from satellite, rain gauge and radar observations of various
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resolutions, the product may or may not resolve precipitation details up
to the maximum resolution allowed by the gridded dataset, i.e., a wa-
velength of two grid spacings. To see what scales are actually well re-
solved in the CMA precipitation product, we examine its energy spectra.
The average energy spectra of the CMA precipitation fields for summer
of 2016, as well as those of WRF-12 and WRF-4 24 h precipitation
forecasts, are computed using a two-dimensional discrete cosine
transform (deElia et al., 2002). Here, the observation domain for the
spectral analysis is slightly larger than the verification domain. This size
discrepancy results because spectral analyses are applied to the native

grid. We use the minimum latitude-longitude rectangle surrounding the
verification domain as the observation analysis domain. The results of
the spectral analyses are plotted in Fig. 2. For convective scale to me-
soscale motions, with wavelengths in the range of ~1 km to ~100 km,
the kinetic energy spectra are expected to have a slope of −5/3 in the
log-log space (Lindborg, 1999; Skamarock, 2004). Studies (e.g., Surcel
et al., 2014; Snook et al., 2019a) show that high-resolution observed
precipitation estimates maintain the −5/3 slope down to kilometer
wavelengths. A line with the −5/3 slope is plotted in Fig. 2 for re-
ference.

It can be seen in Fig. 2 that the precipitation energy spectra for
WRF-4 maintain a − 5/3 or a somewhat shallower slope from wave-
lengths of about 200 km to about 20 km (~5Δx) while that of WRF-12
starts to drop off at about 100 km. The curve for the CMA precipitation
product (black line) has a slope close to −5/3 between 500 km and
40 km then starts to drop off quickly. This drop-off in slope suggests
that the CMA precipitation product, even at a ~ 5 km grid spacing (and
being able to resolve up to 10 km wavelength), is lacking energy for
wavelengths below ~40 km. Such spectral drop-off is likely due to in-
sufficient resolution of the rainfall measurements and spatial smoothing
involved in analyzing the observations on a regular grid (Surcel et al.,
2014; Wong and Skamarock, 2016; Snook et al., 2019b). For this
reason, it would be unfair to perform verification of WRF-12 and WRF-4
forecasts on the native ~5 km grid of the CMA precipitation product;
doing so will actually negatively penalize WRF-4, because it correctly
predicts more energy at the shorter wavelengths that is actually missing
in the verification data (see differences between the black line and the
red line below 24 km wavelength). Therefore, in this study, we inter-
polate both WRF-4 precipitation forecasts and CMA merged precipita-
tion data to the 12 km WRF-12 grid, which permits wavelengths down
to 24 km wavelength. At 12 km grid spacing, the spectra of both CMA
products and WRF-4 are relatively well-resolved.

4. Verification results for a Meiyu front case

In this section, we examine the behaviors of various verification
metrics when applied to the WRF-12 and WRF-4 precipitation forecasts,
using a typical Meiyu front case as an example. Associated with the

Fig. 1. The outer box is the domain for the 12 km
forecast with 600 × 800 grids, and the inner red box
is for the 4 km forecast with 1080 × 1408 grids. The
gray-shaded square is a domain with 128 × 128 grid
points used for verification. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)

Fig. 2. Power spectra of CMA precipitation product (black), WRF-12 (blue), and
WRF-4 (red) forecast precipitation over 24 h accumulation periods, averaged
over June–August of 2016. Also plotted as dashed line is a − 5/3 slope ex-
pected of the power spectra of mesoscale to convective scale motion
(Skamarock, 2004). The vertical dashed black line indicates where the wave-
length equals 24 km. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Meiyu front is a loosely organized mesoscale rainband with convective
elements embedded within and outside. In other words, the precipita-
tion fields contain multi-scale structures.

4.1. Results of original ISS score

Fig. 3 shows the 6-h accumulated rainfall from July 1, 2016,

associated with a typical Meiyu front. It can be seen that in the ob-
servations (Fig. 3a) the main rainband has a southwest–northeast or-
ientation with a heavy north precipitation center near (31°N, 116°E)
and a smaller area of intense precipitation at the southwestern end of
rainband (~26°N, 110°E). At the same time, in south China there are
many small areas of more scattered precipitation that are associated
with afternoon convection (enclosed by the ellipse), which is relatively
hard to predict. In both WRF-4 and WRF-12, the northern portion of the
rainband with heavy precipitation is predicted quite well, with about
the right orientations and the maximum precipitation locations. The
precipitation near the southwestern end is much over-predicted in both
coverage and intensity in WRF-12, however, and the center location is
also off to the south by about 100 km (Fig. 3b). In comparison, the
structure and size of this area of precipitation are predicted quite well
in WRF-4, although the location is displaced northeastward somewhat
(Fig. 3c). Moreover WRF-4 is able to capture some of the precipitation
associated with the after convection over the hilly southern China (in
the north part of the ellipse in Fig. 3c) while WRF-12 misses essentially
all of the heavy precipitation there (Fig. 3b), presumably due to the
relatively poor performance of cumulus parameterization scheme for
capturing convective precipitation (Qiao and Liang, 2015).

Using the original ISS, both WRF-12 and WRF-4 show positive
scores for spatial scales from 192 km and up (except for a low threshold
of WRF-12) but mostly negative scores for spatial scales below 96 km
(Fig. 4). For scales at and above 192 km, WRF-4 clearly performs better
than WRF-12, having higher or perfect scores. Similar to the findings of
Mittermaier (2006) comparing 4 and 12 km forecasts, the negative
region of WRF-4 is smaller than that of WRF-12, suggesting that WRF-4
has better forecast guidance. However, both forecasts have negative
values for small scales, making it hard to tell which one is better.

To understand the behaviors of the ISS as applied to the current
case, we plot in Fig. 5 the wavelet components of different thresholds
for observation and forecasts. Here, only spatial scale 12 km is shown.
The summed patterns of different thresholds are close to their corre-
sponding observation and forecasts in Fig. 3, i.e., 4 mm mainly corre-
sponds to the outer boundary of the rainband (Fig. 5a-c) while 60 mm
corresponds to the heavy-rain center (Fig. 5i-l). In general, the results of
WRF-4 appear closer to the observation. For all thresholds, the wavelet
components of WRF-4 get a similar number of nonzero points (colored)
as observed, suggesting that WRF-4 has smaller bias than WRF-12,
consistent with the subjective assessment of Fig. 3. Take the 13 mm
threshold for an example (Fig. 5d-f), the number of nonzero points of
WRF-4 is closer to the observation while WRF-12 significantly under-
estimates the points not only for the main rainband but also for the
convection south of the main rainband (compare the circled area in
Fig. 3). WRF-12 fails to predict the southern convection entirely.

Given that ISS measures agreement between forecasts and ob-
servations, it is still a “point-to-point” verification. The observation and
forecast pairs usually have serious “double-penalty” issues which will
significantly lower the ISS score. The negative ISS of WRF-4 is mainly
due to the position error. Even for the smallest threshold of 4 mm per
6 h (Fig. 5a, c), a perfect match between forecast and observation pairs
(corresponding mainly to the rain band boundary) is not possible at the
12 km scale. For this case, owing to position errors, WRF-4 produces
larger negative ISS scores than WRF-12 because of the “double-penalty”
issue. In comparison, WRF-12 also suffers from position biases but at
fewer points, the “double-penalty” impact is therefore less, leading to
less negative ISS scores than that of WRF-4. The fewer number of points
exceeding the threshold is because WRF-12 has significant intensity low
biases. The energy for different thresholds at the 12 km scale is clearly
underestimated for WRF-12 (see first and second columns in Fig. 5).
Scales from 24 km to 96 km have similar behaviors except that the
bigger the scale the less the effect of position error (not shown). In all,
ISS at small spatial scales is likely to be strongly affected by position
error, which is a major cause of negative ISS. In this case, the intensity
bias is another major error of WRF-12. These above analyses suggest

Fig. 3. The 6-h accumulated rainfall from 1400 LST to 2000 LST on 1 July 2016
from (a) observations, (b) WRF-12, and (c) WRF-4 forecasts.

B. Yu, et al. Atmospheric Research 246 (2020) 105117

5



that scores allowing for position and intensity errors are needed when
the predicted pattern is a major concern.

4.2. IS_FSS and ISP_FSS results

In this subsection, the alterative fractions skill score FSS-based
scores, as described in sections 2.2 and 2.3, are evaluated. With this
approach, the binary field determination and wavelet decomposition
remain the same as with the original intensity-scale approach, while the
ISS is replaced with the widely used probability evaluation score, the
FSS. Because FSS considers occurrence of events within a given radius
or neighborhood, the displacement can be considered. The IS_FSS and
ISP_FSS can be regarded as the probability forecast evaluation at dif-
ferent spatial scales.

Fig. 6 shows the IS_FSSs for 6-h precipitation forecasts with FSS
neighborhood widths of 1, 3, and 9 grid intervals. Note that the ver-
ification domain is 1536 × 1536 km (128 grids × 12 km grid spacing),
therefore the wavelets of spatial scales above 96 km only have a few
pixels of data. For example, for the spatial scale of 192 km, there are
only 8 × 8 wavelet pixel blocks, it is therefore unsuitable for using a
neighborhood width of 9. Therefore, only spatial scales from 12 to
96 km are shown in Fig. 6. For the neighborhood width of 1 grid point,
the overall pattern is similar to that of original ISS, with mostly nega-
tive IS_FSSs for both WRF-12 and WRF-4 forecasts, suggesting no useful
forecasting skill for most spatial scales and thresholds (Fig. 6a, b). WRF-
4 has a slightly smaller negative region than WRF-12. The increase in
neighborhood width greatly increases the verification score. For the
neighborhood width of 3 grid points, more than half of the WRF-4
scores at different spatial scales and thresholds are positive (Fig. 6d).
For a neighborhood width of 9 grid points, only two values are negative
for WRF-4 (in Fig. 6e), corresponding to large thresholds of 25 mm and
60 mm and small spatial scale of 12 km. In comparison, the IS_FSSs of
WRF-12 are also improved, but not as much as for WRF-4. As discussed
earlier, WRF-4 better predicts some small-scale precipitation features
while WRF-12 misses many of them. WRF-12 suffers from significant
intensity and position errors while the errors of WRF-4 are mainly in
position. Compared with the original ISS in Fig. 4, which shows mostly
negative scores for both WRF-4 and WRF-12 at spatial scales below
96 km, the IS_FSS gives a greater proportion of positive areas as the
neighborhood width increases for both WRF-4 and WRF-12. Mean-
while, qualitative differences between WRF-4 and WRF-12 are much
better reflected through IS_FSS than through the original ISS.

Intensity error can affect evaluation scores also, and in some cases in
undesirable ways. For example, the GSS can be artificially inflated by
over-forecasting (Hamill, 1999). To better assess the predicted patterns
and structures of, for example, precipitation, it is often desirable to
remove the forecast intensity bias first, at least to separate the effects of
bias on skill scores (Hamill, 1999). One of the ways to alleviate the
effects of intensity bias is to use percentile-based thresholds instead of
fixed threshold values (e.g., Zhu et al., 2015). In Fig. 7, percentile-based
thresholds are employed to obtain the initial binary observation and
forecast fields to obtain ISP_FSSs for the WRF forecasts with neigh-
borhood widths of 1, 3 and 9 grid points. Compared to fixed-threshold
IS_FSS, ISP_FSS greatly increases the FSSs of WRF-12 for neighborhood
widths of 3 and 9 grid points. It can be seen that most patches in Fig. 7c
and e turn positive, especially for low thresholds. For the observation,
the 75th, 90th, 95th and 99th percentiles of this case correspond to 8.8,
20.4, 28.9 and 56.8 mm, respectively, while for the WRF-12 forecasts
they are 3.2, 14.3, 31.0 and 61.4 mm, respectively. The light rains
(75th, 90th) are underestimated, while heavy rains (95th, 99th) are
overestimated. The use of a percentile-based threshold reduces the ef-
fects of intensity bias for both light and heavy rains. Note that the area
coverage of light rain is much larger than that of heavy rain. Therefore,
it is unsurprising that the ISP_FSS increases more for low thresholds
than high thresholds for WRF-12. For WRF-4, the corresponding
thresholds are 8.0, 21.1, 32.9 and 61.2 mm respectively. The light rains
are very close to observations while the heavier rains are over-
estimated. With the use of a percentile-based threshold, the FSS is
further improved for most thresholds and scales, especially for WRF-12.
Comparing the two resolutions, WRF-4 is still better than WRF-12 in
terms of ISP_FSS. However, the latter benefits more from the use of a
percentile-based threshold because it has more intensity biases.

Overall, without a neighborhood, i.e., with a width of one grid in-
terval, both IS_FSS and ISP_FSS are mostly negative for most spatial
scales and thresholds. Increasing the neighborhood width turns mostly
negative FSSs to positive, suggesting that the position error significantly
affects the verification score. The use of a percentile-based threshold
further reduces the contribution of intensity bias. In this case, WRF-12
forecasts benefit considerably because of its larger intensity bias, while
for WRF-4 lower thresholds see a benefit. Based on the above results,
IS_FSS is a good choice in distinguishing the quality of WRF forecasts at
4 and 12 km grid spacings, while ISP_FSS better reflects the quality of
predicted rainfall pattern and structure without being affected sig-
nificantly by intensity biases. In the next section, we further examine

Fig. 4. Original ISS scores of the 6-h accumulated rainfall from 1400 LST to 2000 LST on 1 July 2016 for (a) WRF-12 and (b) WRF-4 forecasts. ISS ≤0 no forecast
skill; 1 perfect.
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Fig. 5. Wavelet scale component at the 12 km of 6-h accumulated rainfall from 1400 LST to 2000 LST on 1 July 2016 for observations (left column) and forecasts
(middle column for WRF-12 and right column for WRF-4) at different thresholds: (a–c) 4 mm, (d–f) 13 mm, (g–i) 25 mm, and (j–l) 60 mm.
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IS_FSS and ISP_FSS by applying them to precipitation forecasts of a full
Meiyu season.

5. Verification scores for an entire Meiyu season

In this section, we apply ISS, IS_FSS and ISP_FSS to an entire 2016
Meiyu season in China, from June 11 to July 20. Within this period,
5 days are influenced by typhoon and are excluded.

Fig. 8 displays the time series of observed and simulated hourly
rainfall averaged over the entire Meiyu season within the verification

domain. All forecasts begin from 1200 UTC on each day. The first 12-h
forecasts are not evaluated because of the spin-up of model forecast.
The observation shows a clear bimodal pattern, with an afternoon peak
at around 1600 LST and a morning peak at 0800 LST. For the WRF-4
forecasts, the diurnal variation is reproduced well, but the afternoon
peak is underestimated and the morning peak overestimated. The
former corresponds to afternoon thermal convection that is harder to
predict. The early morning peak is explained by Xue et al. (2018) as
being caused by boundary layer inertial oscillations that produce the
strongest low-level convergence forcing along the Meiyu front in early

Fig. 6. IS_FSSs of 6-h accumulated rainfall from 1400 LST to 2000 LST on 1 July 2016 for (a) WRF-12 forecast and (b) WRF-4 forecast, for neighborhood widths of 1
(upper row), 3 (middle row) and 9 (bottom row) grid points. IS_FSS ≤0 no forecast skill; 1 perfect.
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morning hours. In the WRF-12 forecasts, the afternoon peak is mostly
missing. Earlier studies, such as Clark et al. (2009), have also shown
that convection-permitting forecasts have much better skill in capturing
precipitation diurnal cycles than forecasts that rely on cumulus para-
meterization. In the following, the afternoon period (1400–2000 LST),
when the two forecasts show the greatest difference, is focused on.

Fig. 9 shows the original ISSs for the entire Meiyu period. Here, the
ISS score for each spatial scale is calculated using the summed com-
ponents of all cases (Ebert, 2009). As in the case study, although we can
clearly see better forecasts in WRF-4, it is hard to state in terms of the
ISS that WRF-4 is better than WRF-12, since most of the patches at the
spatial scales from 12 km to 96 km are negative. For larger thresholds

and smaller spatial scales (right-bottom corner), similar to the case
study, WRF-4 shows larger negative ISS scores than WRF-12, indicative
of larger forecast error. Fig. 10 shows the IS_FSS results. Note that we
only display the spatial scales from 12 km to 96 km. Most of the
afternoon precipitation is from scattered afternoon thermal convection
of relatively small spatial scales. Without consideration of a neighbor-
hood width, the IS_FSSs of WRF-4 and WRF-12 are all negative, in-
dicating no useful forecast skill. Similar to the case study, increasing the
neighborhood width increases IS_FSS. It can be seen that for a neigh-
borhood width of 9 grid points, most of the WRF-4 patches turn posi-
tive. Again, as in the case study, WRF-4 produces clearly higher IS_FSSs
than WRF-12, suggesting better prediction skills of the former.

Fig. 7. As in Fig. 6 but for ISP_FSS. The numbers on the x-axis represent the percentile thresholds. ISP_FSS ≤0 no forecast skill; 1 perfect.
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Fig. 11 displays the ISP_FSS results. For all forecasts and observa-
tions, the 75th, 90th, 95th and 99th percentiles are calculated from all
the precipitation data points during the Meiyu season. They are:
(5.9 mm, 14.2 mm, 21.8 mm, 43.7 mm), (2.6 mm, 10.6 mm, 21.4 mm,
54.4 mm) and (7.4 mm, 19.9 mm, 31.5 mm, 65.3 mm) for the ob-
servation and WRF-12 and WRF-4 forecasts, respectively. Compared to
IS_FSS, ISP_FSS reduces the effects of intensity bias, and therefore in-
creases the FSSs at most patches, especially for WRF-12. For both WRF-
4 and WRF-12, increasing the neighborhood width further increases the
FSS. The change of WRF-12 is more obvious because it significantly
underestimates the precipitation intensity in the afternoon (also see
Fig. 8). Comparing the forecasts at the two different resolutions, using a

neighborhood width of 9 grid points, again WRF-4 performs better than
WRF-12 for all spatial scales and thresholds.

6. Summary

In 2016, the WRF model was run at Nanjing University, China, at
grid spacings of 12 km and 4 km (WRF-12 and WRF-4 respectively)
during the summer period from June through August, in realtime for
the 4 km grid. Subjective assessment suggests that WRF-4 performs
better than WRF-12 in predicting precipitation, especially for smaller-
scale afternoon convection. In this paper, a wavelet-based multi-scale
intensity-scale skill (ISS) score is first applied to a representative Meiyu
precipitation case to check if such an objective verification can give
similar conclusions as subjective assessment. It turns out that the ISS
scores do not show better performance of WRF-4 compared to WRF-12
at small spatial scales where WRF-4 should have clear advantage based
on subjective evaluations. The ISSs at scales from 12 to 96 km are
mostly negative for both WRF-4 and WRF-12. For higher precipitation
thresholds and smaller spatial scales, WRF-4 even shows larger error
than WRF-12. This is because ISS is a point-to-point verification method
where position error will lead to a serious “double-penalty” for high
resolution forecasts. Because the gridded precipitation data lack full
power below 40 km based on power spectra analysis, all objective
verifications are performed for scales at and above 12 km in this paper.

For practical purpose, we care about whether a model has the ability
to correctly predict detailed structures of precipitation fields, including
small-scale features associated with localized convection. At such
scales, position biases are almost unavoidable but do not necessarily
deem the forecasts useless. In fact, correct prediction of the spatial
extent, structure and intensity of localized intense precipitation can be
very useful even with position errors. Two methods are proposed for the
purpose of reducing the negative impacts of position error on the ver-
ification score. Here, the neighborhood fuzzy matching idea is bor-
rowed. The first method involves replacing the ISS with the widely used
fractions skill score-based neighborhood verification score, or FSS,
while all other steps of the original ISS remain the same. We name this
score IS_FSS. The second method is similar to IS_FSS, except that in the
step to obtain the initial binary fields, the threshold as a fixed value is
replaced by a percentile-based threshold. In doing so, the impact of
forecast intensity bias can be reduced. We name this score percentile-
based IS_FSS or ISP_FSS. These two new scores can be interpreted as
probability forecast skills within a neighborhood range for different
spatial scales.

Fig. 8. Diurnal variation of hourly precipitation for the observation and 12-h to
36-h WRF forecasts starting from 12 UTC, averaged over verification domain
(gray-shaded area) in Fig. 1 for the entire Meiyu season from June 11 to July
20, 2016. Here, about 5 days under the influence of typhoon are excluded for
the calculation. All the verification scores bellow are also calculated without
typhoon days.

Fig. 9. As in Fig. 4 but for 6-h (1400–2000 LST) accumulated rainfall forecasts of WRF-12 and WRF-4, of the entire Meiyu period of 2016.
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A Meiyu front case is first used to test the newly developed ver-
ification scores. For IS_FSS, a notable difference is that we apply the
neighborhood idea in the skill score calculation (by using FSS instead of
ISS). The overall pattern (the larger the spatial scale, the higher the
score) is similar to that in the original ISS. With the tolerance of dis-
placement error, WRF-4 shows positive scores at most spatial scales and
thresholds. The fraction of useful forecast skill across scales and
thresholds also improves for WRF-12, but not as much as that of WRF-4.
For ISP_FSS, WRF-12 benefits more because the original forecast has
larger intensity biases. Nonetheless, WRF-4 still performs better than
WRF-12 for nearly all spatial scales and thresholds.

Finally, we apply IS_FSS and ISP_FSS to the entire Meiyu season of
2016, and similar conclusions are obtained. Compared to the original
ISS, both IS_FSS or ISP_FSS show a greater fraction of useful forecast
skill, suggesting that verification scores at small scales are sensitive to

position and intensity errors. Based on either IS_FSS or ISP_FSS, WRF-4
performs better than WRF-12, agreeing with subjective assessment.
Finally, we point out that the Haar wavelet decomposition is used to
evaluate scale-dependent precipitation forecast skills in this paper for
all metrics used. Other approaches for scale decompositions should also
be exploited and compared in future studies.
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