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ABSTRACT: A new approach to dealing with attenuated radar reflectivity data in the data assimilation process is proposed
and tested with simulated data using the ensemble square-root Kalman filter. This approach differs from the traditional
method where attenuation is corrected in observation space first before observations are assimilated into numerical models.
We build attenuation correction into the data assimilation system by calculating the expected attenuation within the forward
observation operators using the estimated atmospheric state. Such a procedure does not require prior assumption about the
types of hydrometeor species along the radar beams, and allows us to take advantage of knowledge about the hydrometeors
obtained through data assimilation and state estimation. Being based on optimal estimation theory, error and uncertainty
information on the observations and prior estimate can be effectively utilized, and additional observed parameters, such as
those from polarimetric radar, can potentially be incorporated into the system. Tests with simulated reflectivity data of an
X-band 3 cm wavelength radar for a supercell storm show that the attenuation correction procedure is very effective — the
analyses obtained using attenuated data are almost as good as those obtained using unattenuated data. The procedure is
also robust in the presence of moderate dropsize-distribution-related observation operator error and when systematic radar
calibration error exists. The analysis errors are very large if no attenuation correction is applied. The effect of attenuation
and its correction when radial velocity data are also assimilated is discussed as well. In general, attenuation correction is
equally important when quality radial velocity data are also assimilated. Copyright © 2009 Royal Meteorological Society
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1. Introduction km~! for a rain rate of 50 mm hr~!, yielding a total
two-way attenuation of more than 40 dB over 20 km. To
successfully use reflectivity data from X-band radars for
quantitative precipitation estimation and storm-scale data
assimilation, the effect of attenuation must be properly
accounted for. In fact, attenuation correction is a signifi-
cant area of research in utilizing reflectivity observations
from X-band and other shorter-wavelength radars.
Existing attenuation correction techniques include

(i) the Hitschfeld and Bordan (H-B) solution/algorithm

Compared to 10 cm wavelength S-band weather radars,
3 cm wavelength X-band radars have smaller anten-
nae and lower construction costs. X-band radars are
also more suitable for airborne deployment and can be
more cost-effectively deployed in high-density networks
providing high spatial resolutions. The latter include
the experimental X-band networks of CASA (Center
for Collaborative Adaptive Sensing of the Atmosphere;
McLaughlin et al., 2007), a National Science Founda-

tion Engineering Research Center. The Observing System
Simulation Experiments (OSSEs) of Xue et al. (2006;
hereafter XTDO06) using simulated data have shown that
the assimilation of additional data from CASA-type
radars improves the analysis of a supercell storm. How-
ever, in that study, simulated radar data were assumed to
be unattenuated. Compared to S-band, attenuation poses
an additional challenge at X-band for radar data assim-
ilation and other applications. For example, the specific
rain attenuation for a typical X-band radar is about 1 dB
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and its modified versions for correcting single polariza-
tion radar reflectivity (Hitschfeld and Bordan, 1954), and
(ii) the methods based on differential phase measurement
from dual-polarization radar (Jameson, 1992; Bringi and
Chandrasekar, 2000). Smyth and Illingworth (1998) uti-
lized the information of negative differential reflectivity
(Zpr) on the far side of heavy precipitation for attenua-
tion correction. In addition, dropsize distribution (DSD)
retrieval can be performed using dual-frequency or dual-
polarization observations (Meneghini and Liao, 2007) to
improve attenuation correction.

The H-B method uses a reflectivity-attenuation rela-
tion to solve for true reflectivity from attenuated
reflectivity. Its solution is sensitive to error accumulation
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and the procedure can become unstable when attenua-
tion is large, when an improper relation is used (Johnson
and Brandes, 1987) or when systematic error associated
with, e.g. radar calibration, exists. The H-B solution can
be made stable by using total path-integrated attenuation
(PIA) as a constraint; such a method has been applied
successfully to the space/air-borne radar measurement of
rain in the TRMM project (Meneghini and Kozu, 1990)
where the PIA is determined using the surface reference
method. Independent estimate of PIA is, however, not
available in general. Also, in our case with multiple co-
existing species, typical attenuation correction methods,
including that of H-B, usually have difficulties.

A dual-polarization radar provides more measurements
and, at the same time, more constraints that allow for
more reliable attenuation correction. It has been found
that the specific differential phase is almost linearly
related to specific attenuation (Bringi and Chandrasekar,
2000, section 7.4). Hence, the differential propagation
phase is more directly related to PIA and has been used
in attenuation correction (Jameson, 1992; Ryzhkov and
Zrnic, 1995). The correction is done either by directly
adding to reflectivity and differential reflectivity using
correction amounts determined from the measured differ-
ential propagation phase (Matrosov et al., 2002; Anag-
nostou et al., 2006) or by adjusting coefficients in the
attenuation-reflectivity and attenuation-differential phase
relations used in the attenuation correction procedure,
such that the system is self consistent (Bringi et al., 2001;
Park et al., 2005).

All of the above techniques are applied in observation
space, based on directly observed data. Such an approach
usually requires prior assumptions about the hydrometeor
species and/or their DSDs, especially when polarimetric
radar measurements are not available. Even when polari-
metric measurements are available, it is difficult for these
methods to deal with more than two coexisting hydrom-
eteor species (e.g. rain, snow and hail). The presence of
wet ice particles, such as melting or water-coated hail
or graupel, can significantly complicate the problem; in
such cases, observation-based correction methods often
become ineffective. In addition, these traditional methods
do not effectively utilize the error or uncertainty informa-
tion associated with different measurements.

Most past research on attenuation correction has
focused on quantitative precipitation estimation, where
accurate attenuation correction at higher elevations is
less of a concern. In recent years, significant progress
has been made in assimilating radar reflectivity data
into storm-scale numerical weather prediction (NWP)
models (e.g. Xue et al., 2003; Tong and Xue, 2005; Hu
et al., 2006a). For this purpose, accurate treatment of
attenuation, including the presence of mixed phases, is
important at all height levels.

The optimal estimation theory, in which different
sources of information together with their error or uncer-
tainty are optimally combined (usually in the least-
square sense) to obtain the best estimate of the state
and/or parameters, has found applications in many fields.
The optimal estimation theory is also the foundation
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of modern data assimilation for the atmosphere (Daley,
1991; Kalnay, 2002). The variational technique and
the ensemble Kalman filter (EnKF, Evensen 1994) are
advanced data assimilation methods based on optimal
estimation theory and have been effectively applied to
convective-scale model initialization with (S-band) radar
data (e.g. Sun and Crook, 1997; Snyder and Zhang, 2003;
Tong and Xue, 2005; Hu et al., 2006b).

With variational and EnKF approaches, observations
in their original form can be directly used as long as
proper forward observation operators to convert the state
variables and/or parameters to the observed quantities
can be developed. In the case of satellite observations,
the observation operators convert atmospheric state vari-
ables, including temperature, pressure and water vapour,
into observed radiances. For radar, the operators con-
vert the atmospheric state variables, including veloc-
ity, temperature, moisture and hydrometeor species and
amount, into observed radial velocity, reflectivity, dif-
ferential reflectivity and phase, as well as other derived
parameters. Accurate observational operators should take
into account radar beam propagation (e.g. Gao et al.,
2006), beam pattern weighting (e.g. Xue et al., 20006,
2007a), thermodynamic effects such as melting (e.g. Jung
et al., 2008) and attenuation. Error propagation through
the measurement and data processing can be estimated
using properly constructed observation operators (Xue
et al., 2007b). With proper observation operators, varia-
tional and EnKF methods seek to minimize the difference
between the observed quantities, which may be atten-
vated, and the model presentation of those quantities,
subject to their respective uncertainties. Information with
smaller uncertainty will be weighted more in the mini-
mization/estimation process, and prior estimate together
with its uncertainty information can also be readily used.

The variational approach has been employed by Hogan
(2007) for estimating rain rate using dual-polarization
radar data, where attenuation correction is built directly
into the observation operator. Several advantages for
using the variational approach for the intended application
were quoted in that study. They include the explicit
treatment of errors, the straightforward inclusion of
attenuation without the instability problem encountered
by H-B, the direct use of differential phase shift ¢q,
instead of the usually very noisy specific differential
phase Kgp, and the ease of building spatial smoothing into
the analysis procedure. However, with such standalone
analysis procedures, it is difficult to directly couple rain-
rate estimation with precipitation microphysics employed
in numerical models, assuming the model microphysics
is accurate enough to benefit such coupling.

For purpose of data assimilation, an alternative to
performing attenuation correction first is to build the
attenuation into the observation operators and assimilate
the attenuated observations directly. With this approach,
attenuation correction is performed simultaneously
with the state estimation. Since radar measurements
are closely linked to microphysics, a data assimilation
method that is capable of dealing with mixed-phase
microphysics is most desirable.
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EnKEF is particularly useful for radar data assimilation,
because the flow-dependent background-error covari-
ances derived from the forecast ensemble can be used to
‘retrieve’ state variables not directly observed. Recently,
Tong and Xue (2005; TXO05 hereafter) show that EnKF
is able to accurately ‘retrieve’ microphysical species
associated with a mixed-phase microphysics parametriza-
tion scheme when assimilating (unattenuated) single-
polarization reflectivity data. For these reasons, EnKF is
chosen to test simultaneous state estimation and atten-
uation correction in this study. The Doppler radar con-
sidered is assumed to have single polarization, and only
the storm environment as defined by a single sounding
is assumed known at the beginning of state estimation.
Because reflectivity is a function of several hydrometeor
species, which themselves are unknown in the begin-
ning, it is not obvious whether simultaneous state estima-
tion and attenuation correction can be successful. As the
first study to evaluate the proposed concept, we employ
OSSE:s that use simulated data. For the general philoso-
phy behind OSSEs, readers are referred to discussions in
Lord et al. (1997).

The rest of this paper is organized as follows. The
attenuation equations together with the equations for
equivalent reflectivity factor Z. and attenuation coeffi-
cient k as functions of hydrometeor state are described
in section 2. The simulation of attenuated observations
using a radar emulator is also described. The experimen-
tal set-up and data assimilation configuration are given
in section 3. The results of the OSSEs with and without
attenuation correction, and additional sensitivity exper-
iments testing the effect of observation operator error
and systematic radar calibration error are discussed in
section 4. A summary is given in section 5.

2. Reflectivity and attenuation equations and simu-
lation of observations

Microphysics parametrization schemes that predict only
a single moment of the hydrometeor DSDs (e.g. Lin
et al., 1983; Hong and Lim, 2006) continue to be the
schemes most commonly used in both research and opera-
tional NWP applications. Such schemes typically assume
exponential DSDs with prescribed intercept parameters,
and predict the third moment of DSD, the mixing ratios
of hydrometeors. Multi-moment microphysics schemes,
in which additional prognostic equations are solved to
determine certain parameters in the DSD functions, have
gained more attention in recent years (e.g. Milbrandt and
Yau, 2005, 2006; Dawson et al., 2009). No research has
been published so far, however, involving assimilation of
radar data using a multi-moment microphysics scheme.
In principle, the reflectivity and attenuation formulae are
dependent on the DSDs, and in the case of exponen-
tial DSD, on the assumed intercept parameters. As initial
studies of Tong and Xue (2008a) and Jung ef al. (2009)
have shown, it is possible to perform simultaneous DSD
parameter retrieval and state estimation using radar data.
In the control set of experiments in this paper, we assume
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that the intercept parameters of the hydrometeors are
known. We test the effect of DSD uncertainty in a set
of sensitivity experiments.

In this section, we present the equations for X-band
reflectivity and attenuation, which form part of the for-
ward observation operator for radar reflectivity data.
These equations are used in both radar data simulation
and assimilation. The relations between equivalent reflec-
tivity factor Z., attenuation coefficient k and the state of
hydrometeors are derived for each species. These rela-
tions, combined with the radar emulator introduced in
XTDO06 and briefly described here, form the complete
forward observation operator.

2.1. The attenuation equation

The measured equivalent reflectivity factor in the pres-
ence of attenuation at a given range r can be expressed as

Z/(r) = Ze(n)A(r), ey
where Z.(r) is the equivalent reflectivity factor before
attenuation,

A(r) = exp (—0.46 /r k(s) ds)
0

is the two-way PIA factor for equivalent reflectivity, and
k is the attenuation coefficient (dB km~!). The atten-
uated reflectivity in dBZ can be obtained by applying
101log;, () to Equation (1), so that

Z'(r)=Z(r) — Z/rk(s) ds, 2)
0

where Z(r) and Z'(r) are reflectivity in dBZ before
and after attenuation, i.e. the intrinsic reflectivity and
attenuated reflectivity, respectively. It can be seen that
the total PIA in dB, i.e. PIA = —101log,;, A(r), is equal
to twice the integral of k between range 0 and r, reflect-
ing the effects of two-way attenuation. For the purpose
of data assimilation, the effect of attenuation and its
correction can be achieved by including Equation (1) as
part of the observation operator for reflectivity. The
radar reflectivity factor Z. and attenuation coefficient k
are directly related to the state of the hydrometeors. In
the following, we will derive the relations between Z,
k and the water mass content of hydrometeors.

2.2. Z-W and k—W relations for X-band radar

Z. and k are linked to hydrometeor mass content (W, in
mass per unit volume of air) through DSDs. Consistent
with the DSD assumptions in the 5-class single-moment
microphysics scheme of Lin er al. (1983, hereafter
LFO83) used in the prediction model of this study, the
DSDs of rain, snow and hail/graupel are assumed to have
an exponential form:

N(D) = Noexp(—AD), 3)
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where Ny is the intercept parameter and A is the slope
parameter. The intercept Ny is a fixed constant, and the
slope parameter is then uniquely linked to W (= p.q,
where p, is air density and g is the mixing ratio), given
assumptions about the DSD and hydrometeor density.
The hydrometeor content and radar variables are rep-
resented by weighted integrals over the DSDs as follows:

W= %pf D3N(D)dD, )
4
Ze= —— D)N(D)dD, 5
k =4.343 / 0.(D)N(D)dD, ©6)
where p is the density of hydrometeors, Kyw = i’jré is the

dielectric factor of water, &, is the relative dielectric con-
stant of water, oy, is the backscattering radar cross-section
and o, the extinction cross-section for hydrometeor par-
ticles. The cross-sections are calculated using Mie theory
or T-matrix method, depending experiments.

In practice, during data assimilation, we want to avoid
direct scattering calculation and integration over DSD for
efficiency reasons. Instead, we perform the calculations
within the possible range of water content beforehand,
and use curve fitting to obtain formulae that can be
used efficiently within data assimilation. Because the
formulae will be used for every observation assimilated,
computational efficiency is important. The alternative is
to use look-up tables. The fitted curves are attractive
because they can be more easily documented; we use
them whenever relatively simple yet accurate enough
curves can be obtained.

We derive the parametrized relations between model-
predicted W with Z. and k using the following procedure:

1) Use (3) in (4) and solve for A as a function of W,
Ny /4
W .
2) Let W vary in its possible range and calculate A
then the corresponding Z. and k using (5) and
(6). The Mie theory or T-matrix method is used
to calculate the backscattering radar cross-sections
and the attenuation or extinction cross-sections
here.
3) Performing least-square fitting to the data for
Z.—W and k—W in log domain, leading to power-
law relations

yielding the slope parameter A = (

Ze = azWPZ and k = a W, (7

6 3

The units for W, Z. and k are g m~3, mm® m3 and
dB km™~!, respectively. The above procedure is applied to
all hydrometeor species and the results are given below.

2.2.1. Rainwater

In this paper, the calculations for Z. and k in the
observation operators within the data assimilation process
are based on Equations (7), assuming Mie scattering
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Figure 1. Reflectivity (a) and attenuation (b) as function of rain water

content, calculated using T-matrix method for three different values of

rain intercept parameter No,, and for the diagnostic Np,, and those

obtained using Mie scattering method for the default value of Ny,

(= 8 x 10%). The temperature is assumed to be 10 °C. The curves fitted
to the data are also plotted.

and a 10 °C temperature. The relative dielectric constant
used is & = 55.43 — 37.85i, a complex number. Rain
intercept parameter assumes the default value, Ny =
8 x 10° m—*, of the Marshall-Palmer DSD used in
LFO83. The resulting parameters in (7) are oz = 2.53 %
104, Bz = 1.84, oy = 0.319 and By = 1.38 (Table I)
where subscript r denotes rain. The calculations and fitted
curves are plotted against water content in Figure 1. The
calculated points are almost completely aligned in straight
lines in the log—log plot (Z. and A are in log space),
suggesting relations close to the power law.

The reflectivity and attenuation are dependent on the
DSD, and on the temperature to a lesser extent. In the
above, we assumed spherical rain drop shapes so that the
Mie scattering theory can be applied. In a set of sensitivity
experiments, we test the effects of DSD uncertainty
and of approximating the raindrops as spherical in
the assimilation by simulating the observations using
different intercept parameter values and using T-matrix

Q. J. R. Meteorol. Soc. 135: 1409-1423 (2009)
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§ I x § It 2.2.2. Dry snow and hail

Q = | o

= . The calculation and fitting procedures for dry hail and

% °SeTex dry snow are the same as those for rain. Mie scattering

g X o I theory is used for hail and snow because they have

= ¥ little polarization signatures. For snow, Ny, = 3 x 10°

3 m~*, py=0.1 g cm3 (s is for snow), and for hail

) Non =4 x 10* m™, p, =0.917 g cm™ (h is for hail),

_:"g Q and they are the default values used in LFO83 scheme.

g 2 © The resultant formulae for dry snow and dry hail are

= US89

kS TlrEEaa 31171.66 6 -3

= = °>O<Q~o~ Zes =348 x 10°W, ™ (mm” m™"), (8)

o

P l ks = 0.00483W)2  (dB km™"), 9)

=]

2 Zen = 8.18 x 10* W50 (mm® m™3), (10)

=

“§ kn = 0.159W,*  (dB km™"). (11)

8|5 .

— g IE In the later experiments that use Nog and Ny, that are

= s ; T twice or half of the default values, instead of recalculating

£ £z §R &K the o and B values through scattering calculation, we keep
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B unchanged (whose dependency on N is small) and set
o according to

(81
Onew = default (N O,new/ N O,default) =D

because o o Ny %=1 For the sensitivity experiments, the
exact values of o and § are not important (the purpose
is to introduce uncertainty to these variables).

2.2.3. Melting snow and hail

The melting ice model of Jung et al. (2008) is used
to derive the formulae for melting or wet snow and
hail. The coefficients are derived as functions of melting
percentage fy, calculated following Equations (2) and
(3) of Jung et al. (2008). The density of melting snow
is also diagnosed from f,, (Equation (4) of Jung et al.,
2008). Using the same procedure as above, we can obtain
the coefficients for the power-law relations. For wet snow:

azs = (0.00491 4 5.75 fis — 5.58 £2) x 10°,  (12)
bzs = 1.67 — 0.202 fiys + 0.398 f2,, (13)
ags = 0.0413 +22.7 fys — 50.5fa +28.6fs,  (14)
brs = 1.06 — 0.579 fuys +2.03 f2, — 1.24 3, (15)
and for wet hail:
azn = (0.809 4 10.13 fiun — 5.98 %) x 10°, (16)
bzn = 1.48 +0.0448 fo,, — 0.0313 £, (17)
arn = 0.256 + 6.28 fun — 11.36 f2, + 6.01 £,  (18)
bin = 1.26 — 0.659 fun + 1.44 £ — 0.817f3,.  (19)

3. OSSE Experiments

3.1. The truth storm simulation

We test our attenuation correction procedure based on
the EnKF assimilation system using simulated data for
a classic 20 May 1977 Del City, Oklahoma supercell
storm case (Ray et al., 1981) through OSSEs (e.g. Lord
et al., 1997). In the experiments, radar radial velocity and
reflectivity data are sampled from a truth simulation using
a radar emulator, which is based on the reflectivity and
attenuation formula discussed earlier.

The forecast model used is the Advanced Regional
Prediction System (Xue et al., 2000, 2001, 2003). As
in TX05, the ARPS is used in a 3D cloud model
mode and the prognostic variables include three velocity
components u, v, w, potential temperature 8, pressure p,
and six categories of water substances, i.e. water vapour
specific humidity ¢y, and mixing ratios for cloud water ¢,
rainwater ¢, cloud ice gj, snow g5 and hail gy,. In addition,
turbulence kinetic energy is also predicted which is used
to determine turbulent mixing coefficients based on a
1.5-order turbulence closure scheme. The microphysical
processes are parametrized using the three-category ice
scheme of Lin et al. (1983).

Copyright © 2009 Royal Meteorological Society
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As in TXO05, for all experiments, the physical model
domain is 64 x 64 x 16 km? in size and has horizontal
grid spacing of 2 km and a vertical spacing of 0.5 km.
The initially homogeneous storm environment is defined
by a modified Del City sounding as used in Xue et al.
(2001) and the storm is triggered by a 4 K thermal bubble
having an ellipsoidal bubble that is centred at x = 48,
y = 16 and z = 1.5 km, with radii of 10 km in x and y
and 1.5 km in the z direction. Open conditions are used
at the lateral boundaries. A wave radiation condition is
also applied at the top boundary. Free-slip conditions are
applied to the bottom boundary. The length of simulation
is up to three hours. A constant wind of # =3 m s~! and
v =14 m s~! is subtracted from the observed sounding
to keep the primary (right-moving) storm cell near the
centre of the model grid.

3.2.  Simulation of radar observations

An X-band polarimetric radar is assumed to be located
at the southwest corner of the model domain with a
maximum range large enough to cover the entire storm.
The simulation of radar data follows XTDO06, using a
Gaussian power weighting function in the vertical for
observations simulated on radar elevation levels (plan
position indicator planes). In the horizontal, the data
are assumed to have been interpolated to the model
Cartesian coordinates (the horizontal locations of model
grid columns). The effects of Earth curvature and beam
bending due to vertical change of refractivity are taken
into account using the 4/3 effective Earth radius model
discussed in Doviak and Zrnic (1993). The velocity is
projected to the direction of radar beam locally to give
the simulated radial velocity. The radar is assumed to
operate in the standard US operational WSR-88D radar
precipitation scan mode, having 14 elevations with one
volume scan every 5 minutes and a 1 ° beam width.
The attenuated reflectivity is calculated by integrating
along the path of each radar beam using Equation (2),
where the reflectivity before attenuation (in dBZ) is
given by Z = 10logy[Zer + Zes + Zews + Zen + Zewn]s
(where subscripts ws and wh denote wet snow and
wet hail, respectively) and the unattenuated equivalent
reflectivity for different species are given in section 2.2.

As an example, Figure 2 shows the simulated radar
reflectivity (before simulated errors are added) at an
elevation of 4.3 © with and without attenuation at 70 and
100 min of model time. In the unattenuated fields shown
in Figure 2(a) and (c), high reflectivity (Z > 45 dBZ) is
found in the core precipitation regions of the two split
cells (called the left and right movers after cell splitting),
mainly associated with high mixing ratios of rainwater
and hail, including melting hail. The most significant
effect of attenuation is found on the far side of high
reflectivity regions from the observing radar. As shown in
Figure 2(b) and (d), the reflectivity to the northeast of the
precipitation core of the right-moving cell (near the centre
of the domain) is completely attenuated, resulting in a
wedge where no reflectivity is observed. The maximum
reflectivity in the core region is reduced by more than 10
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Figure 2. Simulated Z observations at (a, b) 70 and (c, d) 100 minutes of model time at an elevation angle of 4.3 °, (a, c) without and (b, d)
with attenuation effect in the Z simulation. The radar is located at the lower left corner of the domain.

dBZ. The pattern and magnitude of attenuation appear
realistic.

In the standard experiments, Gaussian-distributed ran-
dom errors of zero mean and 1 m s~! and 2 dB standard
deviations, respectively, are added to the simulated radial
velocity, V,, and reflectivity, Z, data sampled from the
truth storm simulation. These values are also used to spec-
ify the observation error variances during data assimila-
tion, except in some special experiments to be discussed
later. In one experiment, additional systematic error rep-
resenting radar calibration error is introduced into the data
to test the robustness of the algorithm in the present of
calibration error.

3.3. The EnSRF data assimilation procedure

The EnKF data assimilation algorithm used is based
on the ensemble square-root Kalman filter (EnSRF) of
Whitaker and Hamill (2002), and the filter configurations
follow the control experiment (CNTL) of Tong and Xue
(2008b) closely. Following Whitaker and Hamill (2002),
the serial EnSRF algorithm for analyzing uncorrelated
observations, one after another, is summarized here. With
the serial analysis, the observations are analyzed one at a
time. Therefore, the observation error covariance matrix
R reduces to a scalar, so does matrix HPPHT, which is the

Copyright © 2009 Royal Meteorological Society

background-error covariance between observation points.
The analysis equations for ensemble mean state vector,
X, and the ensemble deviation from the mean, X';, are,
respectively:

X' =x"+ K[y} — HX")], (20)
xX* = ud — 2AKH)X?, 1)

where
K = PPH'T(HP'H" + R) !, (22)

is the Kalman gain matrix, P® is the background or
prior error covariance matrix, H is the linearized version
of the observation operator that projects state variable
x to the jth observation y;.’. Here, superscripts a, b
and o denote analysis, background and observation,
respectively. The ensemble mean analysis, X, is obtained
first from Equation (20), the deviation from the mean by
the ith ensemble member is then given by Equation (21),
in which u is a covariance inflation factor that is usually
slightly larger than 1, and

=]+ \/R(HPbHT + R (23)

Equation (23) is only valid for single observation anal-
ysis and therefore both the numerator and denominator
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inside the square root are scalars and the evaluation of A
is easy. In the above, the background-error covariances
P°HT and HP’HT are estimated from the background
ensemble, according to

K
PPHT = ﬁ DX — XH D) — HE)T,

(24)
HP°HT =

1 & —_ —
7 QIHG) = HEOIH ) — HOI,
' (25)

where K is the ensemble size, H is the observation
operator which can be nonlinear (true for reflectivity).
For a single observation, PPH" is a vector having the
length of vector x and HP°H" is a scalar. In practice,
because of covariance localization, all elements in PPHT
are not calculated; those outside the influence range of
a given observation are assumed to be zero. After the
analysis of one observation is completed, the analysis
becomes the new background (x* becomes x°) for the
next observation and the analysis is repeated. After all
observations at a given time are analyzed, an ensemble of
forecasts proceeds from the analysis ensemble until the
time of new observation(s), at which time the analysis
cycle is repeated.

In our system, the analysis variables contained in state
vector x include the grid point values of u, v, w, 6,
P> 4vs qc» qr» qi» qs and gn. The observation vector
y° contains radar radial velocity V; and reflectivity Z.
The observation operator H contains that for attenuated
reflectivity Z’ given by Equation (2), and that for radial
velocity, mapping velocity at the grid points to radial
velocity on the radar elevations. Following Tong and Xue
(2008b), the terminal velocity effect is explicitly included
in the radial velocity observation operator.

Closely following the control experiment of Tong and
Xue (2008b), we start the initial ensemble forecast at
20 min of model time when the first storm cell devel-
oping out of an initial bubble reaches peak intensity.
The ensemble is initialized by adding smoothed random
perturbations to a horizontally homogeneous ensemble
mean defined by the environmental sounding. The per-
turbation smoothing procedure is described in Tong and
Xue (2008b) and the standard deviations of the smoothed
perturbations are, respectively, 2 m s~! for velocity com-
ponents, 2 K for potential temperature, and 0.6 g kg~!
for gv., gc. 4. gi, s and gn.

Forty ensemble members are used in all experiments.
Radar observation volumes are assimilated every 5 min
from 25 min to 100 min. The same background-error
covariance localization procedure as in Tong and Xue
(2008b) is used, with a localization radius of 6 km in all
direction. Covariance inflation is not applied for reasons
stated in that paper. Briefly, the effect of covariance
inflation is small in this case. Additional details on the
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assimilation configurations can be found in Tong and Xue
(2008b). We point out here that, because the first guess
for the first cycle is simply given by the environmental
sounding, the initial model state has no idea about the
storm. The state of the storm, including that of all
microphysical species, must be estimated by the filter,
using information contained in (attenuated) radar data.

3.4. Assimilation experiments

Two sets of standard experiments are first performed, one
assimilating Z data only and the other assimilating both
V: and Z. Both sets of experiments contain four runs;
designated by names starting with one of NA, NAC,
NACLE or AC, and ending with either ZV or Z (e.g.
NAZV). NA stands for no attenuation and is used to
denote runs which assume that the radar data are not
attenuated at all and accordingly no attenuation correction
is applied. Such cases serve as baselines for comparison.
Attenuated radar data are assimilated in experiments
whose names start with NAC, NACLE or AC. NAC
indicates that attenuation correction is not performed even
through the data used are attenuated, while AC denotes
that attenuation correction is performed. In experiments
starting with NACLE, a larger error variance of (10 dB)?
is specified within the EnKF assimilation for reflectivity,
in an attempt to reflect the larger attenuation-related error
in the data. We note here that the (10 dB)? is not intended
to be a precise estimate of the actual error including
attenuation, but a rough guess for testing the impact. In
practice, attenuation correction should be performed one
way or another.

As mentioned earlier, we performed additional sensi-
tivity experiments where observations are simulated using
formulations and/or parameters that are different from
those in the observation operators used during data assim-
ilation. Here the differences include the use of T-matrix
instead of Mie scattering calculations, and the use of
rainwater, snow, and hail intercept parameters that are
half or twice of their default values, and the rainwater
intercept parameter diagnosed from rainwater content W
(Equation (12), Table I and Figure 1 in Zhang et al,
2008). Such data are assimilated the same way as in
earlier experiments, assuming Mie scattering and default
values of Ny, Ngs, and Ng, in the observation opera-
tor. We perform the experiments using Z data only, and
using both Z and V, data. These experiments are named
ACZhalf, ACZVhalf, ACZdouble, ACZVdouble, ACZdi-
agNOr, and ACZVdiagNOr (Table II). This serves to test
the robustness of our assimilation and attenuation cor-
rection procedure in the presence of observation operator
error, and in particular error due to DSD uncertainties.
Finally, we test the effect of systematic radar calibration
error that has the potential to break the attenuation correc-
tion through error accumulation; we perform experiments
ACZ1dB and ACZV1dB in which 1 dB constant error
is added to all attenuated reflectivity observations while
the assimilation system assumes the same unbiased 2 dB
error observation error standard deviation (Table II). The
results of these experiments are presented next.
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Table II. List of experiments.
N()rs N()ry N()r,
Observations Attenuation Observation in observation

Experiment Observations assimilated correction error simulation
NAZV No attenuation Z and V, N.A. Gaussian default

NAZ No attenuation Z N.A. Gaussian default
ACZV Attenuated Z and V, Yes Gaussian default

ACZ Attenuated Z Yes Gaussian default
NACZV Attenuated Z and V, No Gaussian default
NACZ Attenuated Z No Gaussian default
NACLEZV Attenuated Z and V, No Gaussian default
NACLEZ Attenuated Z No Gaussian default
ACZhalf Attenuated Z Yes Gaussian halved
ACZdouble Attenuated Z Yes Gaussian doubled
ACZdiagNOr Attenuated z Yes Gaussian diagnosed
ACZ1dB Attenuated Z Yes Gaussian + 1dB default
ACZVhalf Attenuated Z and V, Yes Gaussian halved
ACZVdouble Attenuated Z and V, Yes Gaussian doubled
ACZVdiagNOr Attenuated Z and V, Yes Gaussian diagnosed
ACZV1dB Attenuated Z and V, Yes Gaussian + 1dB default

4. Results of experiments

Similar to our earlier papers, we examine the quality
of state estimation, i.e. the analyzed individual model
state variables by looking at the root-mean-square (RMS)
errors of ensemble mean analyses during the analysis
cycles. As in our earlier papers, these RMS errors are
calculated against the truth fields in regions where the
truth reflectivity is greater than 10 dBZ only, i.e. the
verification is performed for storm-scale features. For
clarity, we show the RMS errors for the analyses only,
not for the background forecasts.

Figure 3 compares the RMS errors from the first set
of four standard experiments (NAZ, ACZ, NACZ, and
NACLEZ) that assimilate reflectivity data only, while
Figure 4 compares the errors for NAZV, ACZV, NACZV,
and NACLEZV that assimilate both Z and V, data.
Similar to the results of our earlier studies (TXO05 and
XTDO06) without attenuation, the ensemble mean analysis
RMS errors of NAZ and NAZV (thick solid curves in
Figure 3 and 4) are very low during the later cycles for
all state variables. For example, the errors of u and v
are less than 1 m s~!, that of w is below 0.5 m s~!
and those of hydrometeors are close to or below 0.05 g
kg~!. Between them, the errors of NAVZ, with the help
of V, data, are consistently lower than those of NAZ,
particularly in earlier cycles.

It can be seen that when attenuated data are assimilated
in NACZ and NACZV as if they were not attenuated,
the analysis errors (thin dashed curves in Figure 3
and 4) are rather large, especially during later data
assimilation cycles when attenuation is more severe with
large hydrometeor production in the storm system. The
errors of u and v remain above 1.5 m s~! throughout
the period and are significantly above 2 m s~! at the
end of assimilation. The errors of hydrometeor fields
are many times larger than those of corresponding cases
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without attenuation or with attenuation correction. It is
also interesting to note that the errors of NACZV are in
general only slightly lower than those of NACZ, despite
the inclusion of V, data. This indicates a significant
negative impact from using attenuated reflectivity data
when no correction is applied, even when good V, data
are available.

In ACZ and ACZV, the attenuated data are assimilated
with the attenuation correction procedure applied, the
error levels of all variables (thick dashed curves in
Figure 3 and 4) during the intermediate and later cycles
are in fact very close to those of the corresponding
cases without attenuation at all (thick solid curves),
indicating that the attenuation correction procedure works
very effectively. There is more difference in early cycles
between the cases with attenuation correction and those
with no attenuation at all, because at this time the state
estimation is poor, thus attenuation calculations based on
the estimated state are not very accurate either.

In NACZ and NACZV, the error variance specified for
the attenuated reflectivity data still has a low value of
(2 dB)?2, which is actually too low when the attenuation
is part of the reflectivity error, i.e. when its effect is not
accounted for in the observation operator. In NACLEZ
and NACLEZYV, this error variance is increased to a more
appropriate value of (10 dB)? to reflect larger errors in
the presence of attenuation but without correction. It turns
out that the analyses of NACLEZ (thin solid curves in
Figure 3) are significantly worse than those of NACZ
(thin dashed curves in Figure 3), particularly in later
cycles. Apparently, when only reflectivity is assimilated,
specifying a rather larger error variance for the reflectivity
data further decreases the constraint of the observations
on the model solution, resulting in worse storm analyses.
When a larger error variance of (10 dB)? is specified
for the reflectivity data in NACLEZV (thin solid curves,
Figure 4), the analyses are noticeably improved over
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Figure 3. Ensemble mean analysis RMS errors averaged over points where true Z is greater than 10 dBZ for (a) u, (b) v, (¢) w, (d) 6, () G0,
® g, (&) gr, (h) gi, () gs, and (j) gy, for experiments NAZ (thick solid), ACZ (thick dashed), NACZ (thin dashed) and NACLEZ (thin solid).
Units are shown in the plots.

those of NACZV (thin dashed curves, Figure 4) during
later cycles, rather than becoming worse as in NACLEZ.
Apparently, reflectivity data receive a reduced weight in
the assimilation in this case, allowing high-quality V, data
to have a larger positive impact.

The above findings are further corroborated by the
comparison of analyzed low-level model fields (6" associ-
ated with cold pool, reflectivity Z and perturbation wind
vectors) shown in Figure 5 at the end of assimilation
(100 min). Immediately clear is that the analyses of ACZ
and ACZV (Figure 5(d) and (h)) with attenuation correc-
tion are very close to the truth (a), while those of NACZ
and NACZV (Figure 5(b) and (f)) are similarly poor, with
reflectivity patterns similar to those of attenuated truth
in Figure 5(e). There are clear differences in the ana-
lyzed wind fields of these two runs from truth, although
NACZV is better due to the inclusion of V, data.

When a large error variance is specified for reflectivity
data in NACLEZV (Figure 5(g)), the analysis is much
better than that of NACZV, due to the increased impact of
V, data. In fact, despite the use of attenuated reflectivity
data without correction in NACLEZV, the analyzed
reflectivity field looks closer to the truth in Figure 5(a)
than to the attenuated truth in Figure 5(e). The analysis
of NACLEZ is the worst among all experiments; in this
case the impact of available attenuated reflectivity data

Copyright © 2009 Royal Meteorological Society

is further reduced by large specified error. The analyzed
cold pool is the weakest in this case (Figure 5(c)) while
that of NACLEZV is rather good (Figure 5(g)).

Figure 6 plots the RMS errors from ACZhalf, ACZ-
double and ACZdiagNOr that include effective DSD-
related reflectivity observation operator error, and those
of ACZ1dB that include a constant 1 dB radar calibra-
tion error in reflectivity. Also plotted are the error curves
from NAZ and NACZ for reference. It can be seen that,
despite the error in the reflectivity observation operator
that affects reflectivity and attenuation calculations, the
analysis error levels of ACZhalf, ACZdouble and ACZdi-
agNOr are all very close to those of NAZ that has a perfect
observation operator and no attenuation. The error level
of ACZdiagNOr is the largest among the three, which
is consistent with the fact that the reflectivity and atten-
uation curves differ more from those of Mie scattering
calculation with default Ny,. Overall, their error levels are
much lower than those of NACZV, where no attenuation
correct was performed. The analysis in the presence of
an additional 1 dB constant calibration error, from exper-
iment ACZ1dB, also has error levels that are very close
to those of NAZ, indicating the robustness of our atten-
uation correction algorithm to systematic error. We note
that these results are obtained without the assistance of
V, data in this case; i.e. the state estimation of the storm
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Figure 4. As Figure 3, but for experiments NAZV (thick solid), ACZV (thick dashed), NACZV (thin dashed) and NACLEZV (thin solid).

relied completely on the attenuated reflectivity data. The
attenuation correction has to be effective for the state
estimation to be successful.

The next set of experiments parallels those just
reported, except for the inclusion of V, data, which are
not affected by reflectivity attenuation in our experiments.
With the help of additional V, data, the analysis results
are improved over the already excellent results. For exam-
ple, at the end of the assimilation, # RMS error is about
I m s~! in ACZVdiagNOr while that in ACZdiagNOr is
about 1.5 m s~! (Figure 7). Similar relative differences
can be found in the errors of v, gy, and ¢c.

For those who are interested in precipitation estimate,
the error in ¢; is most relevant. We note that at the end
of assimilation cycles, the RMS errors of ¢; in the cases
with observation operator or radar calibration error are no
more than 0.05 g kg~! greater that those of no attenuation
cases. Assuming that such an error persists over one hour,
and near-surface g, is about 15 g kg~!, and rainwater falls
at about 8 m s—!, the accumulated rainfall error over one
hour will be about 2 mm, a rather small error.

The results of the above experiments indicate that our
attenuation correction procedure as part of the EnKF
data assimilation system is robust and appears to be
much less sensitive to DSD model or radar calibration
error than conventional methods. The ability of an EnKF
system to make use of information from multiple sources,
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including information on their error, is believed to be a
key distinguishing factor.

5. Summary

In this article, we examined an alternative approach to
dealing with attenuation in short-wavelength radar reflec-
tivity data, when they are used to initialize storm-scale
NWP models. Unlike the traditional approach, where
attenuation correction is performed in observation space
before assimilating data into NWP models, we build
the attenuation effect into the data assimilation system
by calculating the expected attenuation within the for-
ward observation operators. The attenuation is based on
the current estimate of the atmospheric state, including
the hydrometeor species. The estimated state is obtained
through an ensemble-based data assimilation system,
using attenuated data. For this reason, we perform simul-
taneous attenuation correction and state estimation. Such
a procedure has similar advantages to those discussed
by Hogan (2007) in his variational procedure for precip-
itation estimation from attenuated radar data. Our pro-
cedure does not require any prior assumption about the
specific hydrometeor types at particular grid points (in
fact, it allows for mixed types at any grid point) and
it is possible to include error or uncertainty from all
sources of information in the assimilation framework
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Z (thin solid contours and shading at intervals of 5 dB) at z = 250 m of (a) the truth simulation, (e) attenuated truth, and ensemble mean analyses
from experiments labeled in the figure, at 100 min (the end of assimilation).

and to allow for a close coupling of attenuation cor-
rection with the dynamic model. As the model state
estimation improves through data assimilation, the esti-
mate and correction of attenuation also improve. With
traditional observation-based methods, dual-polarization
or dual-frequency measurements have to be available in
order to infer any information about the DSD or hydrome-
teor species. In this study, only single-polarization reflec-
tivity data are assumed available, while some experiments
assume the availability of additional radial velocity data.

Copyright © 2009 Royal Meteorological Society

The effectiveness of our procedure is demonstrated
using a set of observing system simulation experiments
(OSSEs), in this proof-of-concept study, the first of its
kind. Simulated radar observations are first collected from
a model-simulated supercell thunderstorm using a radar
emulator. The simulated data show complete attenuation
of X-band reflectivity behind the precipitation core of the
supercell. Without attenuation correction, the analyzed
storm and precipitation core are much weaker. The RMS
errors of the analyzed model fields are 4 to 10 times larger

Q. J. R. Meteorol. Soc. 135: 1409-1423 (2009)
DOI: 10.1002/qj



CORRECTIONS TO RADAR DATA USING ENKF 1421
60 (b) v (m/s) © w (m/s) (d) pt (K) (O] qv (g/kg)
20t
11.6
1.2}
0.8t
i 04}
0.0 L L L oo 0.0 L L L oo L L L L
®  qc(gky) (€9) qr (grkg) 04 () qi (g/kg) 06 @ qs (g/kg) () qh(gkg)
: 0.8}
03t 05¢r
03¢}
0.6 041
021 losl
04}
02F
0.1p 1
L102F
0.1f
0.0 1 1 1 1 0.0 .0 1 1 1 1 0.0 1 1 1 1 0.0 1 1 1 1
20 40 60 8 100 20 40 60 80 100 20 40 60 8 100 20 40 60 8 100 20 40 60 80 100
time (min) time (min) time (min) time (min) time (min)

Figure 6. As Figure 3, but for experiment NACZ (thick grey), NAZ (thick black), ACZ1dB (thin solid black), ACZdiagNOr (thin dashed black),
ACZhalf (thin solid grey), and ACZdouble (thin dashed grey).

than those of the baseline case using unattenuated data.
With our procedure of simultaneous state estimation and
attenuation correction, the analysis obtained is almost as
good as the corresponding case with no attenuation. It is
also shown that, when high-quality radial velocity data
are assimilated together with attenuated reflectivity data,
the attenuation in the reflectivity data still has a similar
negative impact on the analysis if the attenuation effect
is not included in the observation operator. When the
reflectivity data are weighted less by specifying a larger
error variance, the negative impact is reduced if radial
velocity data are also assimilated, but is further increased
if only reflectivity data are available. In the latter case,
the available reflectivity data become even less effective
because of their reduced weight in the assimilation system
relative to the background or prior estimate.

The robustness of our attenuation correction proce-
dure was further tested by introducing significant error
to the rain, snow and hail intercept parameters that are
involved in the reflectivity and attenuation calculations.
It was shown that when the parameters were halved or
doubled, or when a diagnostic formula for the rain inter-
cept parameter was used instead in the data generation
while the original observation operator is used in the
data assimilation, the analyses are still very successful.
Neglecting the effect of non-spherical raindrop shapes in

Copyright © 2009 Royal Meteorological Society

the observation operator is found to have minimal impact.
Further, the procedure is not sensitive to moderate-sized
systematic radar calibration error.

Still, our procedure assumes some knowledge about
the DSDs of the hydrometeors, even though it does not
need to know, a priori, the composition of hydromete-
ors at each grid cell. Our recent study (Tong and Xue,
2008a) has shown that it is possible to estimate uncertain
DSD-related parameters through simultaneous state and
parameter estimation with the EnKF method. Simultane-
ous state and parameter estimation, together with atten-
uation correction, where the uncertain parameters to be
estimated are involved in the reflectivity and attenuation
calculations, are interesting research topics for the future.
The use and benefit of additional polarimetric radar data
in such a setting should be investigated. Our recent study
that includes the effect of DSD parameters in reflec-
tivity calculations has shown encouraging results (Jung
et al., 2009). We also plan to apply this new approach to
real X-band observations collected in the CASA project,
and compare the results against traditional attenuation
correction methods. Given the general challenges facing
storm-scale data assimilation using radar data, much
research is still needed in these areas. Because there
are many possible sources of uncertainty, experimenta-
tion using simulated data is a natural first step for testing
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Figure 7. As Figure 3, but for experiment NACZV (thick grey), NAZV (thick black), ACZV1dB (thin solid black), ACZVdiagNOr (thin dashed
black), ACZVhalf (thin solid grey), and ACZVdouble (thin dashed grey).

a new approach and its value should not be discounted.
Finally, we point out that in our procedure, the end prod-
ucts are the analyses of the three-dimensional fields of
hydrometeors and all other model state variables; this task
is generally much more challenging than estimating two-
dimensional reflectivity or rain-rate fields as is typically
the case in quantitative precipitation estimation studies.
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