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The ability of the ensemble Kalman filter method to estimate an increased number
of state variables associated with a double-moment (DM) microphysics scheme is
examined for the first time through observing system simulation experiments,
assuming either a perfect or imperfect prediction model and/or observation
operators. With the DM scheme, mixing ratios and total number concentrations of
hydrometeor species are predicted.

It is found that the increased number of state variables can be reasonably well
estimated when both radial velocity (Vr) and reflectivity (ZH) observations are
used and when the prediction model is assumed to be perfect. However, the errors
increase significantly when ZH is used alone. In this case, the filter has difficulty in
estimating independently-varying mixing ratios and number concentrations, which
are both directly involved in the calculation of ZH. The addition of Vr data helps
alleviate a problem associated with the solution not being sufficiently constrained
by observations.

With the DM scheme, the correlations between ZH and model state variables
exhibit complex spatial structures that depend on the location of the ZH observation.
Collocated ZH and vertical velocity show negative correlation when the observation
is taken where ice phase hydrometeors are dominant, but positive correlation when
it is taken where large quantities of liquid hydrometeors exist. Further study is
needed to fully understand the complex correlation structures.

Imperfect model experiments were performed, with two types of model errors:
(1) microphysical parametrization error due to incorrectly assumed shape parameter
of the gamma particle size distribution (PSD), and (2) different ways of calculating
hydrometeor scattering. The results show that the model error degrades the state
estimation in general. Nevertheless, the estimated states are still reasonably good
when both Vr and ZH are assimilated. Perturbing the shape parameter of gamma
PSDs within the forecast ensemble improves the overall state estimation. Copyright
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1. Introduction

Numerical weather prediction (NWP) is an initial and
boundary value problem: the accuracy of the model
solution depends on the accuracy of the initial condition,
given appropriate boundary conditions. Therefore, extensive
efforts have been devoted to developing advanced data
assimilation methods that seek to minimize errors in the
initial condition (e.g. Le Dimet and Talagrand, 1986;
Courtier and Talagrand, 1987; Talagrand and Courtier, 1987;
Evensen, 1994; Houtekamer and Mitchell, 1998; Whitaker
and Hamill, 2002).

Several past studies have shown that the ensemble Kalman
filter (EnKF) techniques can be successfully applied to the
convective scale through both Observing System Simulation
Experiments (OSSEs) and real-data experiments (e.g. Snyder
and Zhang, 2003; Dowell et al., 2004; Tong and Xue, 2005,
hereafter TX05; Xue et al., 2006, hereafter XTD06). With
OSSEs, realistic observations are simulated, usually from
model output, and assimilated back into the model to
test data assimilation capabilities and study data impact
(Lord et al., 1997). The fact that the EnKF technique is
capable of handling complex and highly nonlinear processes
involved in the data assimilation (DA) makes it attractive
for convective-scale applications, where nonlinearity tends
to be strong.

However, the model forecast can also be hampered by
model errors that can arise from many sources, including
those due to insufficient spatial and/or temporal resolution,
and misrepresentation of the physical and subgrid-scale
processes. It is suggested that the model error can dominate
the error growth in NWP forecasts, even if they start from
rather accurate initial conditions (Zhu and Navon, 1999;
Houtekamer et al., 2005). Therefore, reducing the prediction
model error is equally important.

The structure and time evolution of model-simulated
convective storms have been found to be highly sensitive
to the particle size distributions (PSDs) of the hydromete-
ors involved in the microphysics parametrization schemes
(McCumber et al., 1991; Ferrier et al., 1995; Gilmore
et al., 2004; van den Heever and Cotton, 2004; Tong
and Xue, 2008a). Different microphysical species interact
with each other through complex microphysical processes
including condensation/deposition, collision and coales-
cence, break-up, freezing/melting, evaporation/sublimation,
and precipitation sedimentation. The commonly used bulk
microphysics parametrization (BMP) schemes (or simply
‘scheme’) try to model the integrated effects of such micro-
physical processes involving species having their own PSDs.
As a result, PSD-related parameters explicitly appear in the
equations of most microphysical processes and influence the
magnitude and relative importance of those processes. For
example, many small raindrops in the downdraught area
will evaporate faster than fewer larger drops, hence inducing
a stronger cold pool which can alter the dynamic behaviour
of model thunderstorms (Snook and Xue, 2008). There-
fore, accurate modelling of microphysical PSDs can have
a profound impact on simulated/predicted precipitating
systems.

The so-called gamma distribution is often used to model
the PSDs of microphysical species. With this distribution,
the equation for the number concentration is

Nx(D) = N0xDαx e−λxD, (1)

where N(D) is the number density as a function of particle
diameter D, N0 is the intercept parameter, λ the slope
parameter and α the shape parameter of the PSD. Subscript
x refers to one of the species. When αx = 0, (1) reduces to
the commonly used exponential PSD

Nx(D) = N0x exp(−λxD), (2)

that was introduced by Marshall and Palmer (1948).
Ulbrich (1983) suggested that the gamma distribution better
characterizes many observed raindrop size distributions,
and indeed the additional free parameter allows for more
flexibility in describing the relative number concentrations
of large vs. small drops in a given distribution.

The pth moment of this PSD is given by:

Mx(p) = NTx

λ
p
x

�(1 + αx + p)

�(1 + αx)
. (3)

The zeroth moment of the PSD is equal to the total number
concentration, while the third and sixth moments of the
PSD are proportional to the mass (mixing ratio) and radar
reflectivity factor, respectively. For gamma distribution,
when three moments are known (e.g. predicted), all three
free parameters of the PSD are uniquely determined. This is
the basis of multi-moment (MM) BMP schemes.

Single-moment (SM) BMP schemes, such as the
commonly used Lin et al. (1983) and Hong and Lim (2006)
schemes, usually assume an exponential PSD with specified
intercept parameters for most species. Such schemes predict
mixing ratios that are proportional to the third moment. SM
schemes are widely used in research and operational NWP
models because of their relatively low computational cost.
When the intercept parameters of the PSDs are specified,
the scheme does not allow for independent variations in
the shape or intercept parameters that can result from
differential conversion, differential sedimentation, shear
motion of the atmosphere or other processes. Kumjian and
Ryzhkov (2008) argue that size sorting due to unidirectional
and directional shears is primarily responsible for the unique
ZDR arc signature found in the polarimetric data collected
from many supercell storms, while the size sorting process
cannot be properly handled with SM schemes (Milbrandt
and Yau, 2005a). Many other studies have also shown that the
PSD parameters, in particular the intercept parameters, can
assume a wide range of values within observed precipitation
systems (e.g. Joss and Waldvogel, 1969; Houze et al., 1979;
Lo and Passarelli, 1982; Cifelli et al., 2000; Gilmore et al.,
2004).

The rapid increase in computing capabilities is enabling
the use of finer-resolution models and more complex micro-
physics schemes for explicit convective storm prediction.
MM schemes have been developed since the mid-nineties
that predict additional moments, allowing more parameters
in the PSD functions to change freely so as to overcome cer-
tain fundamental limitations of SM schemes (e.g. Koenig and
Murray, 1976; Ferrier, 1994; Ferrier et al., 1995; Milbrandt
and Yau, 2005a, 2005b; Morrison et al., 2005). The sensitivity
experiments of Milbrandt and Yau (2006) and the studies of
Dawson et al.. (2007, 2010) using the MM schemes of Mil-
brandt and Yau (2005a, 2005b) (the MY scheme hereafter)
suggest that the double-moment (DM) and triple-moment
(TM) schemes produce much more realistic storm struc-
tures than SM schemes, and most improvement is obtained
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when moving from the SM to the DM scheme. This is
substantiated by the results of Jung et al.. (2010b, JXZ10b
hereafter) that showed that the SM option of the MY scheme
fails to simulate polarimetric signatures such as ZDR arc and
mid-level ZDR and ρhv rings, which are, however, repro-
duced well by a radar simulator using DM model output.
These studies suggest that MM simulations are much more
realistic.

A full DM/TM scheme doubles/triples the number of
microphysical state variables that a forecast model predicts.
In the MY scheme, there are six cloud microphysical
species, i.e. the cloud water, rain water, pristine ice crystals
(ice), large crystals/aggregates (snow), graupel and hail.
For the TM option, total number concentration, mass
mixing ratio and reflectivity factor are predicted for each
species except for cloud water where only the first two
moments are predicted; there are therefore 17 prognostic
microphysical variables. The increased number of state
variables makes the initialization of a prediction model
much more challenging while with conventional Doppler
radars reflectivity is the only measured parameter that is
directly related to microphysical state. Polarimetric radars
provide additional parameters but the areal coverage of
significant polarimetric signatures can be limited. While
perfect-model OSSEs of TX05 showed that the EnKF method
is able to accurately estimate the mixing ratios associated
with a SM ice microphysics scheme, and additional OSSE
studies (Tong and Xue, 2008b; Jung et al., 2010a, JXZ10a
hereafter) further demonstrated certain success estimating
uncertain PSD parameters, it is not clear if EnKF is capable
of estimating from radar observations multiple moments of
microphysical PSDs that are needed for model initialization.
As the first step towards answering the above question,
we perform OSSEs with the MY DM scheme during data
assimilation. The truth simulation uses either the DM or
the TM scheme. Different forms of prediction model and
observation operator errors are also considered.

The rest of this paper is organized as follows. The
prediction model and the experimental design are first briefly
described in section 2. The choice of the analysis quantity for
number concentration and the simulation of observations
for both perfect and imperfect model experiments are then
discussed. Section 3 presents the OSSE results obtained
with a perfect prediction model while section 4 discusses
the results in the presence of forecast model error with
or without observation operator error. A summary and
conclusions are given in section 5.

2. Model and experimental design

2.1. Prediction model and data assimilation procedure

The prediction model used in both simulation and analysis
in this study is the Advanced Regional Prediction System
(ARPS: Xue et al., 2000, 2001, 2003), which was also used
in the aforementioned EnKF OSSE studies (with an SM
scheme). With the DM option of the MY scheme, ARPS
predicts three velocity components u, v and w; potential
temperature θ , pressure p, mixing ratios of water vapour qv,
and mixing ratios of cloud water, rain water, ice, snow and
hail (qc, qr, qi, qs and qh, respectively) and their total number
concentrations (Ntc, Ntr, Nti, Nts and Nth, respectively). The
shape parameter in the gamma PSDs used in the MY scheme
is assumed to be zero for all categories in this study for the

DM scheme; the PSDs then become the exponential PSDs
used in SM schemes. The graupel category in the original
MY package is turned off to maintain consistency with our
earlier studies based on the Lin et al.. (1983) microphysics
scheme (Jung et al., 2008b, hereinafter JXZS08; JXZ10a);
this suppresses the conversion from snow to graupel by
riming and from graupel to hail. The direct riming of snow
to hail could be added for more accuracy, but it is not done
in this study. We believe this should not affect the main
proof-of-concept goal of this paper, that is, to estimate state
variables associated with a MM scheme.

The configurations of the OSSEs are largely inherited
from JXZS08 and JXZ10a, with some modifications to be
presented later in this section. A truth simulation is created
for a supercell storm whose environment is defined by the
sounding of the 20 May 1977 Del City, Oklahoma, supercell
storm (Ray et al., 1981) and the storm in the simulation is
triggered by a thermal bubble. The ensemble square-root
filter (EnSRF) algorithm after Whitaker and Hamill (2002)
is employed as in all of our previous EnKF studies except
for TX05. A full description of the filter implementation
can be found in XTD06 (see section 2). The assimilation
of reflectivity at horizontal polarization (ZH) and radial
velocity (Vr) starts at 25 min of model time and is repeated
at 5 min intervals until 100 min.

Some modifications to the configurations of the
prediction model and assimilation system were made to
accommodate the use of the DM scheme. First of all,
the forward observation operator developed in Jung et al..
(2008a, hereinafter JZX08) for ZH (see Eqs. (10) and (12))
is modified to use both mixing ratios and total number
concentrations of rain water, snow and hail as input variables
while in the original operator the number concentration
depends on the specified fixed intercept parameters. The
horizontal grid spacing is 1.5 km instead of the 2 km used
in some of our earlier experiments, to improve the realism
of storm splitting with the DM scheme. The model domain
size is adjusted to 63 km × 63 km × 16 km. Constant
winds of u = 1 m s−1 and v = 13 m s−1 are subtracted
from the original sounding to keep the primary storm
cell near the domain centre. Eighty ensemble members
are used in all experiments. Our earlier OSSE studies
with an SM scheme typically use fewer ensemble members
(e.g. XTD06 and JXZS08); the larger ensemble is deemed
necessary when estimating many more state variables. The
filter uses a covariance localization radius of 4.5 km,
determined based on experience with earlier experiments.
The multiplicative inflation initially proposed by Anderson
(2001) and modified by TX05 is used, which increases the
ensemble spread by multiplying the ensemble perturbations
by a factor greater than 1 in regions within and close to
observed precipitation echo. The covariance inflation factor
used in each experiment is shown in Table I.

Table I. List of OSSEs assuming a perfect model.

Experiment Observation(s) assimilated Covariance
inflation

EXP-Vr Vr (ZH > 10 dBZ) 7%
EXP-Zh ZH (everywhere) 20%
EXP-VrZh Vr (ZH > 10 dBZ) and ZH 20%
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Using a procedure described in Tong and Xue
(2008a), spatially smoothed stochastic perturbations with
a horizontal correlation scale of 4.5 km are added to the
initially horizontally homogeneous first guess defined by
the Del City sounding to initialize the initial ensemble at
20 min model time. Perturbations are added to u, v, w, θ

and qv in the entire domain and to mixing ratios qc, qr,
qi, qs and qh at the grid points located within 6 km of
significant observed reflectivity (where ZH exceeds 10 dBZ).
The standard deviations of those perturbations are 2 m s−1,
2 K and 0.6 g kg−1, and 0.6 g kg−1, respectively.

To maintain a degree of consistency with the mixing ratios,
the initial total number concentrations of rain water, snow
and hail are diagnosed from their perturbed mixing ratios
using the default intercept parameter values of the MY SM
scheme (1.0 × 106 m−4, 1.0 × 107 m−4, and 1.0 × 105 m−4,
respectively) while the initial Ntc is set to 1.0 × 108 m−4, and
the initial Nti is a function of temperature following Cooper
(1986),

Nti,Cooper = 0.005 exp{0.304(T0 − T)}, (4)

where T0 = 273.15 K and T is the ambient temperature
in K.

The fields of the truth storm at 250 m altitude are shown in
Figure 1(a)–(d). Briefly, the updraught quickly intensifies
during the first 20 min (not shown), and the forward
flank reflectivity region continues to expand with time.
Storm splitting starts at around 1 hour in the simulation
(Figure 1(b)), later than the SM case, presumably related to
the weaker cold pool associated with the DM scheme. The
left-moving cell (relative to the environmental shear vector)
becomes completely separated from the right-moving cell
at the low levels by 80 min, when the storm system is at its
mature stage. The left-moving cell continues to grow in size
and propagates towards the northwest of the right-moving
cell, while the right-moving cell maintains its intensity for the
next few hours. The time evolution of this truth simulation
is somewhat different from that obtained using the Lin et al..
(1983) SM scheme employed in our previous studies.

2.2. Transform of the total number concentration in the filter

A logarithmic transform such as 10log(x) or ln(x) has
been used in data assimilation to reduce the dynamic
range of data and/or to avoid creating negative values for
positive-definite variable x in the final analysis (e.g. Hogan,
2007; Tong and Xue, 2008a; JXZ10a). The drawback of
the logarithmic transform is that it decreases its sensitivity
with increasing value. As a result, a small overestimation
(or underestimation) in the log domain can lead to a large
error in the physical domain when the value of a variable
subject to the estimation is very large. This necessitated the
application of upper and lower bounds in the parameter
estimation in JXZ10a to prevent large deviations in the early
assimilation cycles that can lead to solution divergence.
However, applying the upper and lower bounds is not
appropriate in the estimation of Nt because they can be
as small as zero and their exact upper limit is unknown.
Therefore, we choose to use the power of Nt where the
power is smaller than 1 so that the sensitivity at large values
is retained while reducing the dynamic range of data. The
choice of the power is experimentally determined and is
set to 0.4 for all species in this study. The control variables

estimated in the filter are therefore (Ntx)0.4, where x denotes
one of the microphysical species.

2.3. Simulation of observations

Two sets of simulated reflectivity observations are created
in this study. For the perfect model experiments, model
state variables of the truth simulation are first converted
to reflectivity at model grid points using the forward
observation operator of JZX08 modified to use the total
number concentrations available with the DM scheme. For
efficiency, this operator combines the power-law fitting
of the scattering amplitudes of rain calculated using the
T-matrix method (Waterman, 1969; Vivekanandan et al.,
1991); the scattering amplitudes of rain computed using
T-matrix codes at a uniform drop size interval is fitted to a
power-law function of the drop size. For ice, the Rayleigh
scattering approximation is used.

Vertical beam pattern weighting (XTD06) is then
performed to obtain observations on the radar elevation
level. The effective Earth radius model (Doviak and Zrnić,
1993) is used to determine the beam elevation at different
radar ranges. Finally, simulated errors following Xue et al..
(2007) are added to error-free observations. As in JXZ10a,
we discard error samples larger than 10 dBZ (in practice,
such observations are usually discarded by quality-control
procedure). The standard deviation (SD) of the relative error
in equivalent reflectivity (cf. Xue et al., 2007) is set to 42.7%,
resulting in an effective error SD of about 2 dBZ for ZH.
We lower the maximum fraction of rain water existing in
the rain–hail mixture form, Fmax, to 0.3 from the 0.5 used
in JZX08 to mitigate unrealistically high reflectivity due to
the Rayleigh scattering assumptions. Gaussian errors with
zero mean and SDs of 1 m s−1 are added to the truth Vr

calculated following (3) of JXZS08.
To examine the effect of model error, we create another

set of observations from a storm simulation that uses the MY
TM scheme and with a more sophisticated radar simulator
developed in JXZ10b. Briefly, this simulator numerically
integrates over size the scattering amplitudes calculated
using the T-matrix method for both rain and ice, instead
of using power-law fitting of scattering amplitudes for rain
and Rayleigh assumptions for ice. Also, a revised axis-ratio
relation based on the observations for rain (Brandes et al.,
2002) is used in the simulator, but the observation operator
used in the filter uses the ratio based on the equilibrium
model of Green (1975). When this set of observations
are assimilated using the DM scheme in the filter, we
are therefore dealing with two sources of model error:
(1) error originating from misrepresentation of PSDs in the
prediction model and observation operator and the different
treatment of associated processes in the prediction model,
and (2) error in the forward observation operator due to the
differences in the scattering calculation method.

3. Perfect-model experiments

3.1. Root-mean-square errors of analyses

Table I lists the set of the assimilation experiments presented
in this subsection. Three experiments, which assimilate ZH

and Vr individually or together, are conducted under the
perfect-model assumption. The experiment names are self-
descriptive. For example, experiment EXP-VrZh assimilates
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Figure 1. The perturbation (from environmental sounding) horizontal wind vectors (m s−1, plotted every fourth grid point), perturbation potential
temperature (thick black lines for 0 K and dotted contours at 0.5 K intervals for negative values) and simulated reflectivity (shaded solid contours
at 10 dBZ interval, starting from 10 dBZ) at z = 250 m at 40, 60, 80 and 100 min of a supercell storm: (a)–(d) truth simulation, EnKF analyses of
(e)–(h) EXP-Vr, (i)–(l) EXP-Zh; and (m)–(p) EXP-VrZh.

both Vr and ZH data, while EXP-Vr assimilates only
Vr data. TX05 showed that the assimilation of clear-air
reflectivity helps suppress spurious cells in echo-free regions.
Therefore, reflectivity data within the entire radar coverage
are assimilated, while radial velocity data are assimilated
only where Z � 10 dBZ, as in the previous studies (e.g.
TX05; XTD06; JXZS08; JXZ10a). All model state variables
are updated by the filter when we assimilate ZH and/or Vr.
The multiplicative inflation factors are 7%, 20% and 20%
for EXP-Vr, EXP-Zh and EXP-VrZh, respectively and they
were found to be optimal through experimentation.

In Figure 1, the analysed near-surface horizontal winds
and potential temperature, together with the simulated
reflectivity from analysed hydrometeors, from EXP-Vr,
EXP-Zh and EXP-VrZh, are compared with their truth at
20-minute intervals, starting from 40 min. The fields shown
are the ensemble mean. When radial velocity is assimilated
alone (Figure 1(e)–(h)), spurious echoes are widespread and
cannot be suppressed by the radial velocity data which are
only available where the truth ZH � 10 dBZ. These spurious
echoes quickly develop in the model integration from the

initial perturbations and they survive through assimilation
cycles. With a DM scheme, a low mixing ratio can produce
high reflectivity if the total number concentration is low
enough. In fact, the relatively high reflectivity values in the
echo-free regions in Figure 1(e)–(h) are mostly associated
with very low mixing ratios (see Figure 4). In EXP-Vr, the
reflectivity and cold-pool structures are poorly estimated
in the echo-free region throughout the analysis cycles.
However, the structure of reflectivity near the core and
forward-flank precipitation regions is analysed reasonably
well at the later times of the assimilation (Figure 1(g)–(h)).
The shape and strength of estimated cold-pool cores of both
left- and right-moving cells and the location and orientation
of the gust front generally agree with those of the truth at
100 min.

When reflectivity is assimilated alone (Figure 1(i)–(l)),
reflectivity data in the clear-air region effectively suppresses
the spurious echoes in the first couple of cycles (not
shown). The analysed reflectivity pattern is almost as
good as that of EXP-VrZh which uses both Vr and
ZH data (Figure 1(m)–(p)) and is very close to the
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truth (Figure 1(a)–(d)). The general cold-pool pattern
matches that of truth, although the strength tends to be
overestimated, and the centre of the cold pool is off by a
couple of kilometres for each of the cells.

The analysed cold pool and wind fields of EXP-VrZh
(Figure 1(m)–(p)) show the best match to the truth among
EXP-Vr, EXP-Zh and EXP-VrZh. Improvement over EXP-
Zh is clear in and around the left-moving storm in the wind
fields and in the location and strength of the cold pool after
80 min.

In general, surface convergence in the updraught
region and divergence in the forward-flank downdraught
(FFD) region are well captured in all three experiments.
The analysed wind directions and speeds are reasonable
compared to the truth in the echo region, while the
wind analysis at the northwest and southwest corners of
the domain is rather poor, where no wind observation is
available.

Figure 2 shows the ensemble mean forecast and analysis
root-mean-square errors (RMSEs) of model state variables
during the assimilation cycles of EXP-Vr, EXP-Zh and EXP-
VrZh, averaged over the grid points where truth reflectivity
is greater than 10 dBZ. In other words, the echo-free region
is not included in the RMSE calculations because we are
most interested in the analysis of the storm itself. For total
number concentrations, RMSEs are expressed in terms of
the control variables, (Ntx)0.4, where x can be c, r, i, s or
h. Under the perfect model assumption, the solid curves in
Figure 2 show that the filter successfully reduces the RMSEs
when using both reflectivity and radial velocity data. These
results suggest that the filter is able to develop reliable error
covariance among the large number of state variables in this
situation. The final RMSE levels are comparable to those
shown in Fig. 3 of JXZS08, which used an SM scheme with
40 ensemble members, although the error reduction rates
are generally slower than those of Fig. 3 of JXZS08. The
RMSEs of u and v drop below 1 m s−1 around t = 50 min
and reach below 0.7 m s−1 at the end, while the RMSE
of w reaches about 0.3 m s−1. The final RMSEs of mixing
ratios are below 0.05 g kg−1 for qc, qr, qi and qs, about
0.08 g kg−1 for qh, and around 0.26 g kg−1 for qv. The
RMSEs for Ntc, Ntr, Nti, Nts and Nth in the linear domain
are at the end about 4.6 × 105, 0.186, 6.89 × 103, 91.9,
and 0.177 m−3, respectively. These are all several orders
of magnitude smaller than their dynamic ranges; they are
O(3), O(4), O(5), O(2), and O(4) smaller for Ntc, Ntr, Nti,
Nts and Nth, respectively. The rain water reaps the largest
benefit from the assimilation for both mixing ratio and total
number concentration.

When reflectivity is assimilated alone, the filter is still able
to effectively estimate the state variables in the DM case
(Figure 2), although the RMSEs at the end of assimilation
cycles are larger than those of a similar SM experiment
reported in JXZS08 (solid black in their Fig. 3). The lower
accuracy is expected due to the increased degree of freedom.
In the DM case, even when only one hydrometeor species
exists, reflectivity alone cannot uniquely determine both
mixing ratio and total number concentration. Additional Vr

observations are apparently very helpful. Figure 1 shows that
the analysed reflectivity (which is the assimilated quantity)
in EXP-Zh is almost as good as that of EXP-VrZh, but
the RMSEs of state variables in EXP-Zh (dashed line in
Figure 2) are generally two or three times larger than those
of EXP-VrZh.

Radial velocity alone results in smaller RMSEs in wind
variables (u, v and w), and in qv, qc and Ntc than reflectivity
alone does (Figure 2). The fact that the Vr observation
operator is independent of the PSD may be part of the
reason. At the end of the assimilation window, the analysis
RMSEs of u and v are around 1.1 m s−1 and that of w is about
0.7 m s−1. Ice category is not involved in the observation
operators; its estimation, therefore, solely depends on the
cross-covariance of state variables and on thermodynamic
and microphysical adjustments within the prediction model.
Reflectivity clearly performs better than Vr for the estimation
of qs, Ntr, Nts and Nth, which are all directly linked to the
reflectivity. These results suggest that the reflectivity data
are more effective in estimating variables directly linked to
reflectivity while radial velocity data are more effective for
other state variables, especially for the wind components.

To examine the height dependency of the errors,
Figure 3 shows the vertical profiles of the RMSEs averaged
horizontally over points at which the truth reflectivity is
greater than 10 dBZ for experiments EXP-Vr (dotted), EXP-
Zh (dashed), and EXP-VrZh (solid) at 100 min. EXP-Vr
generally outperforms EXP-Zh in terms of u, v, w, qv, qc,
qr and Ntc at the middle to lower levels (Figure 3(a)–(c),
(e)–(g), (k)). Improvements are found at all levels in all state
variables when both Vr and ZH are assimilated, compared
to EXP-Zh or EXP-Vr, except for u and qr at some limited
levels.

3.2. Problem associated with underconstrained solution

We pointed out earlier that even though the analysed
reflectivity is of similar quality in EXP-Zh and EXP-VrZh,
the errors in state variables such as qr, Ntr, qs, Nts, qh and Nth

are much larger in EXP-Zh. These state variables are directly
involved in the reflectivity calculations. Given Vr or ZH

observations alone, the state estimation is underconstrained
by the observations. Reflectivity is a function of the mass
as well as the size distributions of rain, snow and hailstones
in the atmosphere and it is used to estimate multiple
hydrometeor types that often coexist. In such a case, the
error in one state variable may compensate the error in other
state variables, leading to larger errors in all fields involved.
For illustration purposes, we assume that the atmosphere
contains raindrops only. When a SM scheme is used in the
OSSEs, reflectivity is solely determined by the rain mixing
ratio under the assumption that the PSD of the raindrops is
known. In such a case, a good fit of the analysed reflectivity
to observations usually means an accurate analysis of the
rain mass also in an OSSE framework. When a DM scheme is
used, both rain mixing ratio and total number concentration
of raindrops have to be determined from the observations;
the same reflectivity can correspond to virtually unlimited
pairs of qr and Ntr unless other observation and/or model
constraints play significant roles. While large errors may
exist in qr and Ntr, the filter may not see them as long as the
fit of reflectivity to observations is good.

This problem is illustrated in Figure 4, which shows
the qr and Ntr error fields, calculated against the truth at
500 m height for EXP-Vr, EXP-Zh and EXP-VrZh. At this
level, rain water is dominant, so the estimation problem
is actually simpler. When reflectivity is assimilated alone
(Figure 4(b)), the rain water mixing ratio at the precipitation
core is overestimated in both left- and right-moving storms.
There is also significant error in Ntr; yet, the analysed
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Figure 2. The ensemble mean forecast and analysis RMSEs averaged over points at which the true reflectivity is greater than 10 dBZ for (a) u, (b) v, (c) w,
(d) perturbation potential temperature θ ′, (e) qv, (f) qc, (g) qr, (h) qi, (i) qs, (j) qh, (k) Ntc, (l) Ntr, (m) Nti, (n) Nts and (o) Nth, for EXP-VrZh (solid),
EXP-Vr (dotted), and EXP-Zh (dashed). The vertical straight-line segments in the curves correspond to the reduction or increase in RMSEs by the filter.

reflectivity (thick solid contours) matches the truth very
well (Figure 1(d)). In comparison, EXP-VrZh produces
better estimates of qr and Ntr than EXP-Zh (Figure 4(c)).
In EXP-Vr, both qr and Ntr errors are smaller than those
of EXP-Zh near the reflectivity core in the right-moving
cell while qr is underestimated in the left-moving cell. The
uncertainty increases when multiple species coexist. These
results suggest that additional information beyond ZH is
needed to obtain good state estimation associated with
MM schemes. The radial velocity data are helpful, while
additional information from polarimetric radars may also
help.

3.3. Impact of ensemble size

The use of rather small ensemble sizes relative to the total
degrees of freedom of the system causes rank deficiency
with the estimated covariance matrix and underestimation
of error variance that can lead to filter divergence. In this
study, an ensemble size of 80 is used in most experiments
considering more degrees of freedom in the DM case,
while earlier studies with SM schemes often use smaller
ensembles (e.g. XTD06). To examine the impact of ensemble
size, experiments shown in Figure 2 are repeated using 40
ensemble members.

Figure 5 shows the RMSEs and ensemble spreads of select
state variables from experiment EXP-Zh run with 80 and
40 members. The degradation of the filter performance

with the smaller ensemble is observed in essentially all state
variables starting from the intermediate cycles around 50
minutes. Rapid error increases are found with θ ′, qv, qc,
Ntc, qr and Ntr in the later cycles (Figure 5(c)–(h)), which
implies filter divergence. In Figure 5, ensemble spreads of
experiment with 40 members (thin dashed) are consistently
smaller than those with 80 members (thin solid). Both of
the above experiments used multiplicative inflation with
an inflation factor of 20% (see Table I). When the inflation
factor is increased to 25% in the 40-member case, the analysis
quality is improved to be close to that of 80 members.

On the other hand, when Vr alone or both Vr and
ZH are assimilated with 40 ensemble members, the RMSE
curves show similar error reduction trends with somewhat
slower convergence rates (not shown). At the end of the
assimilation window, the RMSEs are slightly larger than
those of corresponding runs with 80 members but the
difference between the two runs are small. These results
indicate that Vr in addition to ZH can lead to the stable
estimations with 40 ensemble members when the prediction
model is perfect. However, this may not be true in real-case
scenarios where significant model error often exists.

3.4. Ensemble correlation analysis

In an EnKF system, a successful estimation of model state
variables from a very limited set of observed parameters, as
with radar data, depends to a larger extent on the ability of the
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Figure 3. The horizontally averaged ensemble mean analysis RMSEs averaged over points at which the truth reflectivity is greater than 10 dBZ for (a) u,
(b) v, (c) w, (d) θ ′, (e) qv, (f) qc, (g) qr, (h) qi , (i) qs, (j) qh, (k) Ntc, (l) Ntr, (m) Nti, (n) Nts and (o) Nth, for EXP-VrZh (solid), EXP-Vr (dotted), and
EXP-Zh (dashed) at 100 min.

filter to develop reliable multivariate covariance through the
assimilation cycles. This makes the EnKF method attractive
for radar data assimilation because the variables that are
not directly observed can be ‘retrieved’ based on the cross-
covariance between the state variables and the prior estimates
of observations. As an example, we show in Figure 6 the
forecast error correlations between the prior estimate of
reflectivity at point x = 38.5 km and z = 8 km and model
variables at each grid point in an x–z plane through the
maximum updraught at y = 33 km and 100 min.

With the assumed observation located near the updraught
core, significant correlations are found through much of
the deep updraught. Figure 6(c) shows that large negative
correlation is found between ZH and w in essentially the
entire updraught region, extending from the surface up to
the model top. The correlations between ZH and qr, qh, Ntr

and Nth also show negative correlations in a considerably
deep layer, which includes the location of the chosen ZH

(Figure 6(a)–(b), (d)–(e)). This contrasts with the almost
entirely positive correlation found in TX05 between w, qr

and qh, and an assumed reflectivity observation located
at a 6 km height (see Fig. 5 of TX05). In both cases,
the freezing level locates around 4 km altitude. Therefore,
reflectivity observations are taken from where hydrometeors
are mostly in the ice phase for both cases. In TX05, an SM
scheme is used in the model simulations, where a stronger

updraught is expected to produce more condensation and
higher reflectivity; a positive correlation between ZH and
w is expected. The negative correlation between ZH and w
found in the current case appears counter-intuitive.

This negative correlation appears to be related to the more
complex and also more realistic microphysical processes
that can be represented by DM schemes. The non-unique
mapping between reflectivity and hydrometeor content is
another factor to consider. When a DM scheme is used,
the water/ice content and their total number concentrations
can vary independently. The calculated reflectivity is not
necessarily large when the condensate content is greater;
it also depends on the number concentration. When the
updraught intensity increases, supersaturation tends to
increase. In this case, more cloud condensation nuclei (CCN)
are activated to decrease the supersaturation and, therefore,
qc and Ntc increase (Figure 7(b) and (e)) (Rogers and Yau,
1989). The number of ice nuclei (IN) to be activated is also a
function of supersaturation; the same theory can be applied
to ice at the upper level (not shown).

With more cloud drops that can grow into rain drops at
the lower to middle levels, more supercooled water qr and
Ntr are carried upwards by a stronger updraught (Figure 7(a)
and (d)), and the number of hailstones that are converted
from raindrops through freezing when temperature is below
0◦C increases. The increase in the number concentration
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Figure 4. Rain water mixing ratio error (g kg−1, solid contours with shading
for positive and dotted contours with shading for negative), total rain water
number concentration error (dashed contours at intervals of 30 m−3,
starting from 0 m−3), and simulated reflectivity (thick solid contours at 20
dBZ intervals, starting from 20 dBZ), at z = 500 m and t = 100 min for
(a) EXP-Vr, (b) EXP-Zh and (c) EXP-VrZh.

of hail is also promoted by the increase in the number
concentration of ice through spontaneous particle growth
processes from ice to snow, snow to hail, ice to hail, etc.
This is consistent with the fact that qh and Nth show positive
correlations with w at the upper levels (Figure 7(c) and
(f)). Furthermore, an increase in the updraught speed
decreases the time the ice particles have to grow as they
are carried more quickly to the upper levels, and the growth
by collection/coalescence is likely to be less efficient among

ice particles. For these reasons, the size spectrum of ice
hydrometeors is likely shifted toward smaller sizes in a deep
layer than that of weaker updraught cases. The increase in
the number concentration can offset the increased amount
of suspended water/ice, leading to a lower reflectivity hence
negative correlation between w and Z in the updraught
core region. This is consistent with the correlation patterns
shown in Figure 6(a)–(b), (d)–(e). We offer this as our
hypothesis for the negative correlations observed here. A
detailed validation of this hypothesis would require further
study.

The correlation pattern for θ ′ is similar to that of w
(Figure 6(f)) because they are positively correlated: the
positive buoyancy is associated with stronger updraughts.
The θ ′ is also positively correlated with mixing ratios at this
level because of the latent heat release where the mixing
ratio is negatively correlated with reflectivity, as discussed
above.

The correlation patterns show complex three-
dimensional structures depending on the locations of
observations. When the observation is taken at 4 km (Fig-
ure 8), where a significant amount of liquid exists, the
correlation fields show very different patterns compared to
those shown in Figure 6. The correlation for qr is positive,
while the correlation for Ntr is negative at the location of the
observation (Figure 8(a) and (c)). This is an indication that
the PSD shift toward larger particle sizes increases ZH and
that the PSD shift toward smaller particle size decreases ZH.
Stronger updraughts can sustain larger raindrops where col-
lision and coalescence processes are more effective in drop
growth than they are at upper levels, which may effectively
reduce the total number concentration in the atmosphere.
Therefore, the reflectivity and w show positive correlation
at this level while Ntr and ZH show negative correlation
(Figure 8(b) and (c)). As discussed above, θ ′ is positively
correlated with w and qr. Because of the complexity and
nonlinear nature of microphysical processes, a full under-
standing of the behaviours of the SM and DM schemes will
require further study.

4. Imperfect-model experiment

The results of perfect-model OSSEs reported earlier can be
considered rather successful, especially when both Vr and ZH

data are assimilated. In reality, numerical models and their
parametrization schemes are never perfect. In the case of
convective-storm simulation, microphysics parametrization
is likely one of the largest sources of error. To examine
the impact of model error, we performed six additional
experiments as listed in Table II. In the first two experiments
(VrZh ptrα IM and VrZh cstα IM), model error exists
because of the use of incorrect α (the shape parameter)
values in the gamma PSDs for rain and hail in the prediction
model, although the perfect α value is used in the observation
operator. In the experiment names, ‘ptrα’ stands for
‘perturbed α’ and ‘cstα’ for ‘constant α’. Suffix ‘IM’ denotes
‘imperfect forecast model’. In experiment VrZh ptrα IM,
‘perturbed’ values of α for rain and hail are used in the
ensemble members. The α for rain increases from −1 to 3
at a constant interval of 0.05, while that for hail decreases
from 3 to 1 at intervals of 0.025 sequentially for each
ensemble member, while the correct α value used in the truth
simulation is 0 for both species. The assumed uncertainty
ranges are chosen based on our limited knowledge of PSDs.
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Figure 5. As in Figure 2 but for (a) u, (b) w, (c) θ ′, (d) qv, (e) qc, (f) qr, (g) Ntc and (h) Ntr, for EXP-Zh run with 80 ensemble members (solid) and with
40 ensemble members (dashed). The thin curves are for the RMSEs and the thick curves are for the ensemble spread.
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The negative α for rain is less frequent but still observed in
some, such as orographic, precipitation systems. Therefore,
we included negative α for rain. For hail, we intentionally
choose a range of the perturbed α values that does not
include the truth value to see if perturbing α can still help.
In VrZh cstα IM, α is set to constant/fixed but incorrect
values of 3 and 2 for rain and hail, respectively. Rain and hail

are chosen because they affect the reflectivity measurements
most. These experiments assimilate both reflectivity and
radial velocity, and use the same covariance inflation factors
as the corresponding perfect-model experiments discussed
in section 3.

In the next four imperfect-model experiments, both
forecast model and observation operator errors are
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Table II. List of OSSEs with forecast model error.

Error type Experiments Values/configuration in DA Truth simulation

In shape parameter (α) of
gamma PSDs in forecast
model

VrZh ptrα IM αr = −1 − 3, αh = 3 − 1 αr = 0, αh = 0

VrZh cstα IM αr = 3, αh = 2
In PSDs of both forecast model
and observation operator, and
in the representation of the
scattering properties in obser-
vation operator

Vr obs IM Exponential PSDs, Power-law
fitting of T-matrix scattering
for rain, Rayleigh approx. for
ice species

Gamma PSDs, T-matrix
scattering for all species

Zh obs IM
VrZh obs IM
VrZh ptrα obs IM As in VrZh obs IM but with

αr = −1 − 3, αh = 3 − 0

In the experiment names, ‘ptrα’ stands for ‘perturbed α’ and ‘cstα’ for ‘constant α.’ Suffix ‘IM’ denotes ‘imperfect forecast model’.
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Figure 7. As in Figure 6, but between forecast w and (a) qr, (b) qc, (c) qh, (d) Ntr, (e) Ntc and (h) Nth.

introduced. In this case, the truth simulation is created
using the MY TM scheme, which effectively allows the
intercept, shape and slope parameters of gamma PSDs to
vary independently in time and space. Because the shape
parameter is assumed zero in both prediction model and
observation operators during the data assimilation, this
mismatch represents a significant PSD-related model error.
Furthermore, as described in section 2.3, the reflectivity
observations are simulated by the radar simulator of JXZ10b
with the T-matrix method for all species and a revised rain
axis ratio after Brandes et al.. (2002). The use of different
scattering calculation methods represents another source
of observation operator error. These four experiments
assimilate Vr or ZH only or both (Table II). Characters ‘obs’
in the experiment names denote ‘imperfect-observation
operator’. These experiments are otherwise the same as
those listed in Table I that use the perfect-observation
operator.

4.1. Experiments with forecast model error only

Figure 9 shows the ensemble mean forecast and analysis
RMSEs of state variables during the assimilation cycles of
experiments VrZh cstα IM and VrZh ptrα IM. The RMSEs
show rapid reduction in the first few cycles, at rates very
similar to those of the control experiment without model
error. When each ensemble member uses the same incorrect
α values in VrZh cstα IM (thick solid grey), the error
reduction is generally slower than the control between 40 to
60 min, and the errors stay noticeably higher than those of
the control experiment for all state variables except for qv,
whose error is similar to that of control. The state variables
directly related to the incorrect PSD parameters show far
larger errors than the rest of the variables: the errors in qr,
Ntr, qh and Nth are about 135%–500% larger than those of
the control experiment, while errors of other variables are
about 10%–110% larger.
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Figure 9. As in Figure 2, but for experiments VrZh ptrα IM (thin dotted black) and VrZh cstα IM (thick solid grey). The RMSEs of control run
EXP-VrZh, with αr = αh = 0, are shown in thin solid black for comparison.
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In VrZh cstα IM, the RMSEs of u, v and w are less than
1 m s−1, and those of qc, qi and qs are less than 0.1 g kg−1,
with that of θ ′ being less than 0.5 K. The RMSEs of Ntc,
Nti and Nts are also 2–4 orders of magnitude smaller than
their respective dynamic ranges. Considering the generally
low errors in the later cycles after the RMSEs stabilize, the
10%–110% increase in error may be insignificant. This result
suggests that the impact of incorrect shape parameters on
those state variables not directly related to these parameters
is relatively small.

When each member is assigned an α value in a certain
range that does not centre on the true value, for both rain
and hail, the state estimation is actually rather close to that
of control (dotted line in Figure 9); the RMSEs of most state
variables are almost as low as those of control experiment
EXP-VrZh (black solid line in Figure 9). Those of qr and qi

are two exceptions; they are about two times larger than in
control. It is interesting that qh and Nth are estimated rather
accurately, even though the true value of 0 for αh is outside
the range of 1 and 3 used in the ensemble members.

Several past studies showed that employing different
parametrization schemes in different ensemble members
improves analysis (e.g. Meng and Zhang, 2007). When
αr and αh are perturbed in the ensemble members, the
ensemble spreads of qr, Ntr, qh and Nth increase compared
with those of the control experiment. In the later cycles,
the ensemble spreads of Ntr, qh and Nth are close to the
level of their RMSEs, while the spreads in VrZh cstα IM
are found to be even lower than their corresponding ones
in control (not shown). The results suggest that when faced
with model parameter uncertainty, using perturbed values
is much better than using a single incorrect value in the
ensemble members, even though the perturbed values might
not centre on the right value.

4.2. Experiments with both forecast model and observation
operator errors

In this subsection, we examine the impact of observation
operator error and a different form of model error on the
EnKF analysis. In experiments VrZh obs IM, Vr obs IM
and Zh obs IM that assimilate Vr and ZH, Vr alone and ZH

alone, respectively, the truth simulation uses the MY TM
scheme and the data are simulated using an independent
radar emulator; this scenario is more realistic than those of
earlier experiments. The RMSEs of the state variables shown
in Figure 10 are calculated against the truth simulation.

Although the reflectivity data in Zh obs IM noticeably
reduce the errors in most state variables (Figure 10), the
final errors are much higher than those obtained in the
perfect-model scenarios (Figure 2). For example, the RMSEs
of u and v are about 3 m s−1, that of w around 2 m s−1, and
those of mixing ratios all greater than 0.1 g kg−1. A tendency
of rapid RMSE decrease in the first 4–6 cycles, followed
by error increase, is found in many of the microphysical
variables, including qc, qr, qi, Ntc, Ntr, Nti, Nts and Nth. In
the current OSSE framework, only microphysical variables
are directly involved in the observation operators; the
RMSEs of the microphysical variables of Zh obs IM in the
later cycles are therefore higher than those of Vr obs IM,
except for qs, where Vr alone is very poor in estimating qs

(Figure 10(e)–(o)).
Experiment Vr obs IM (dotted line in Figure 10)

produced much better analyses than did Zh obs IM in

general. In the early cycles, Vr is more beneficial than ZH

to u and v, while ZH is more helpful than Vr to most
microphysical variables except qv, qh and Nti. Although
the error reduction rates of qc, qr, qi, Ntc, Ntr, Nts and
Nth in the early cycles of Vr obs IM are slower than those
of Zh obs IM, error increase in the later cycles is weak
or absent in these variables. Considering the fact that the
wind variables are not directly affected by the PSD-related
observation operator error, the better performance with Vr

data compared to ZH is reasonable.
When ZH is assimilated in addition to Vr, its positive

impact on θ ′, qr, qi, qs, qh, Ntr, Nti, Nts and Nth (Figure 10(d),
(g)–(j), (l)–(o)) is clear. Because of the model error, the
overall RMSEs of state variables in VrZh obs IM (thin solid
black) are larger than those in EXP-VrZh (thick dotted grey).
A larger deterioration of state estimation is found in w, qh,
Ntr, Nth and qr, with errors that are 150% to 500% larger.
This result suggests that the model microphysical processes
are more sensitive to the PSDs of rain and hail than to the
PSDs of cloud water, ice, and snow. To see if perturbing
α helps improve the results given the use of different
microphysics schemes, experiment VrZh ptrα obs IM is
performed, which is the same as VrZh obs IM except that
αr values ranging from −1 to 3 and αh values ranging
from 4 to 0 at a constant interval of 0.05 are specified for
the ensemble members. The use of such perturbed values
is found to help reduce the analysis error (thin solid grey
in Figure 10) except for qi, although the improvement is
relatively small.

At 40 min or after four analysis cycles, the basic pattern of
reflectivity and surface cold pool structure of VrZh obs IM
is estimated reasonably well, but the intensities of reflectivity
and cold pool are weaker than those of truth (Figure 11(a)
and (e)). The low-level winds are not well analysed by this
time; there exist too-strong southerly flows north of the
main storm. Significant microphysics errors must be at least
partially responsible while the lack of direct Vr data there
makes it difficult to correct wind error quickly. During the
later cycles, such wind errors are gradually corrected, and
by 100 min the general wind pattern becomes close to the
truth, with the southerly flow bias essentially gone.

5. Summary and conclusions

In this study, the ability of an ensemble Kalman filter
(EnKF) in estimating two moments (mixing ratios and total
number concentrations) of the microphysics particle size
distributions (PSDs) for various species as well as all other
state variables describing a supercell storm is examined
through observing system simulation experiments (OSSEs).
Three general scenarios are examined. The first scenario
assumes a perfect prediction model and perfect observation
operators; the same two-moment (DM) microphysics
scheme is used in the truth simulation and in the data
assimilation and the same exponential PSD is assumed in
both also. The second scenario introduces error in the shape
parameter of the gamma PSD within the prediction model
while the observation operators remain perfect. In these
cases, the reflectivity observation operator of JZX08 is used.
In the third scenario, the truth is simulated using a three-
moment (TM) microphysics scheme and the reflectivity
calculation employs a T-matrix method when simulating
the data while the data assimilation uses a DM scheme in the
prediction model and the observation operator of JZX08.
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Figure 10. As in Figure 2, but for experiments VrZh obs IM (solid black), Vr obs IM (dotted black), Zh obs IM (dashed black), and VrZh ptrα obs IM
(thin solid grey). The RMSEs are computed with respect to the truth simulation using the MY three-moment microphysics scheme. The RMSEs of
EXP-VrZh (thick dotted grey) are shown for comparison.
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Significant model errors associated with the PSD shape and
microphysics scheme, and with the scattering calculation
in the observation operator, are present in this case. The
individual and combined impacts of radial velocity (Vr) and
reflectivity (ZH) data are examined for these three scenarios.

In a perfect-model scenario, when both Vr and ZH data
are assimilated, the EnKF system employing a DM scheme
is able to accurately estimate the increased number of state
variables. Error levels close to those of single-moment (SM)
cases are obtained. This finding is significant given the much
larger degrees of freedom in the estimation system when a
DM scheme is used.

However, when only reflectivity is assimilated, a
significant deterioration in the state estimation is found.
The non-unique link between state variables and observed
reflectivity is believed to be at least part of the cause.
The reflectivity corresponding to a hydrometeor category
is dependent on its mixing ratio q and total number
concentration Nt, two independently predicted state
variables. A good fit of the analysed reflectivity to the
observation does not guarantee good analyses of q and
Nt. Due to the complex nonlinear microphysical processes
involved, the prediction model does not seem to be providing
sufficient constraint through the ensemble system. The
addition of Vr data, whose observation operator is not
directly affected by microphysics, is very helpful; the Vr data
provide additional constraints to reduce the error in the
final solution.

The forecast error correlations between model state
variables and simulated reflectivity in the updraught core
show differences between the SM and DM cases. Positive
correlation is found in the SM case in an earlier study while
negative correlation is found in our current DM case. A
hypothesis for this negative correlation is proposed; but its
actual validation would require further study.

The EnKF performance in the presence of forecast
model error and/or observation operator error is also
investigated. The results show that model error can cause
noticeable deterioration in the estimation of microphysical
state variables when the prediction model is subject to the
microphysical parametrization error related to assumed PSD
shape and/or to radar scattering calculation. Nevertheless,
the estimated dynamic, thermodynamic and microphysical
fields are still reasonable even in the presence of such errors,
especially when both ZH and Vr data are assimilated. Not
affected by the PSD error, Vr data are able to produce
relatively accurate wind analyses with or without ZH data.
However, ZH data are necessary to suppress spurious cells in
the otherwise echo-free regions. When the shape parameter
α of a gamma PSD is uncertain, using perturbed values
within a reasonable range in the ensemble is found to
alleviate the impact of parameter error, resulting in much
better estimates of the relevant state variables than using a
single incorrect value.

In real scenarios, we may encounter model errors arising
from different sources, such as insufficient spatial resolution
and misrepresentation of other physical processes. These
model errors can dominate the error growth during the
assimilation cycles and lead to filter divergence (Houtekamer
et al., 2005). To account for model error in ensemble data
assimilation systems, various methods have been proposed,
such as performing simultaneous parameter estimation.
However, using more-accurate parametrization schemes is
a more direct, better solution. The use of multi-moment

microphysics schemes is a step towards this direction, while,
at the same time, the need to initialize more model state
variables poses additional challenges. The latter is the focus
of this paper. It is our plan to apply this system to real-data
cases in the near future.
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