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[1] The impact of two different ways of modeling errors in
simulated radar reflectivity data for observing system
simulation experiments (OSSEs) with an ensemble
Kalman filter is investigated. An error model different
from the one used in earlier studies is introduced, and it
specifies relative Gaussian-distributed errors in the linear
domain of the equivalent radar reflectivity factor. This
model is consistent with the processes of error propagation
in real radar data. When the error variances specified in the
filter and in the data are consistently smaller or larger, the
analysis is more accurate, but when these values do not
match, poorer analyses result. Such behaviors agree with
expectation but are not observed when errors are directly
added to the reflectivity in the log domain. These results
point to the importance of properly modeling observation
errors in OSSEs when the observation operator is nonlinear.
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1. Introduction

[2] The ensemble Kalman filter (EnKF) data assimilation
method [Evensen, 1994; Houtekamer and Mitchell, 1998;
Whitaker and Hamill, 2002; Evensen, 2003] as well as other
modern data assimilation methods, including 3DVAR and
4DVAR, are all based on the basic assumptions of Gaussian
distributions of both background forecast and observation
errors and linear observation operators [Kalnay, 2002].
Therefore, an EnKF analysis is optimal only when both
forecast and observation error probability density functions
(PDFs) are Gaussian and the relations between the model
state variables and the observed quantities are linear. In
reality, observations, especially those of remote-sensing
platforms whose observation operators are nonlinear, often
have non-Gaussian error PDFs. This is the case with the
radar reflectivity factor in logarithmic form, which is often
referred to simply as the reflectivity, or reflectivity in the log
domain or logarithmic reflectivity (in units of dBZ). Despite
this fact, studies that assimilate simulated reflectivity data
directly using the EnKF methods usually assume Gaussian-
distributed error in the log domain. For example, Tong
and Xue [2005] (hereinafter referred to as TX05) and Xue
et al. [2006] (hereinafter referred to as XTD06) both
simulated reflectivity observation errors by adding noise

to the simulated reflectivity that has a Gaussian distribution
of zero mean and a standard deviation (SD) of 5 dBZ. In the
4DVAR OSSE (Observing System Simulation Experiment)
study of Sun and Crook [1997], SD errors of 3 dBZ were
added to the reflectivity in a sensitivity experiment, while in
most other experiments, rainwater mixing ratio derived
from reflectivity was assimilated. A larger sensitivity of
the 4DVAR analysis to reflectivity errors is reported by
them when the errors are added this way. In the OSSE study
of Caya et al. [2005] that involved warm rain microphysics
only, rain water mixing ratio was directly assimilated
instead of reflectivity, and no error was added to the
simulated observations.
[3] The equivalent radar reflectivity factor, Ze (with units

of mm6 m�3) from which the logarithmic reflectivity is
derived, represents the power return of electromagnetic
waves from hydrometeor scatters. The reflectivity factor is
estimated from the mean power averaged over a sequence
of pulses, containing sampling error. The error PDF
approaches Gaussian when there are sufficient independent
samples [Doviak and Zrnic, 1993, sections 4.3 and 6.3] and
its standard deviation is proportional to the expected value.
The reflectivity in dBZ value, a logarithmic function of Ze,
however, does not have the above error statistics. Therefore,
assuming a Gaussian error distribution in dBZ unit and
adding such errors when simulating reflectivity data may
not be appropriate.
[4] In this paper, we investigate the effects of different

ways of simulating error for reflectivity on the EnKF
behavior. This is accomplished by comparing twin experi-
ments in which the errors of Gaussian distribution are
specified in the linear or log domain. In section 2, the
design of the experiments and the observational error
models are introduced. The impact of different ways of
modeling error on the EnKF analysis in OSSEs is discussed
in section 3 and summarized in section 4.

2. Error Models and Experimental Design

[5] In this study, the 20 May 1977 Del City, Oklahoma
supercell storm [Ray et al., 1981] is simulated using the
Advanced Regional Prediction System (ARPS [Xue et al.,
2000, 2001]) to serve as the truth for OSSEs. The model
grid configuration and radar location follow TX05 exactly.
The model domain is 64 � 64 � 16 km3 with a horizontal
spacing of 2 km and a vertical resolution of 0.5 km. The
radar is located at the southwest corner of this grid. The
simulation of radar data follows XTD06 by using a Gaussian
power weighting function in the vertical for observations
simulated on radar elevation levels. Fourteen elevation
levels are used, using the WSR-88D precipitation scan
mode (see XTD06). The ensemble square-root filter
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(EnSRF [Whitaker and Hamill, 2002]) procedure of XTD06
is used as well.
[6] As in TX05 and XTD06, simulated radar observa-

tions are assimilated every 5 min. until 100 min. starting
from 25 min. of model time. The filter uses 40 ensemble
members and a covariance localization radius of 6 km as in
XTD06. No covariance inflation is employed because the
ensemble spread was found to match the RMS error well
and additional inflation did not significantly impact on the
results. Only reflectivity is assimilated in this study to allow
us to focus on the impact of reflectivity error modeling. For
more details on the filter algorithm and experiment config-
urations, please refer to XTD06 and TX05.

2.1. Error Models

[7] For the OSSEs, simulated observations are created by
adding random noise to the error-free observations. The
latter are created using the observation operators with the
state variables of the truth simulation as the input. In this
study, the formula that links the model hydrometeors,
including the rainwater, snow and hail mixing ratios, with
reflectivity is the observation operator, and is described by
Y. Jung et al. (Assimilation of simulated polarimetric radar
data for a convective storm using ensemble Kalman filter.
Part I: Observation operators for reflectivity and polarimetric
variables, submitted toMonthly Weather Review, 2007). It is
somewhat more sophisticated than that described in TX05
because of the inclusion of Mie scattering and the melting
processes for snow and hail but the key components of the
formulation are similar. For this study, the exact formulation
of the observation operators is less important than the
way the observation error is modeled.
[8] A realistic way of modeling the sampling error of

reflectivity measurements is to add random errors to uncon-
taminated reflectivity in the linear domain or the equivalent
radar reflectivity factor, Ze

t, before converting it into the log
domain to obtain Z in dBZ:

Zo
e;lin ¼ 10 log10 Zt

e þ ee
� �

; ð1Þ

where t and o denote the uncontaminated (truth) and error-
containing simulated observations, respectively. ee repre-
sents equivalent reflectivity errors (in units of mm6m�3)
whose SD is proportional toZe

t [Doviak and Zrnic, 1993,
section 6.3] and this relative error is assumed to be
Gaussian-distributed with zero mean. Mathematically, ee =
arZe

t , where a is a specified percentage factor and r is a
Gaussian-distributed random number with zero mean and
SD of 1. In this study, a values of 25%, 38% and 75% are
found to yield effective error SDs of 1.2, 2.0, 3.5 dBZ,
respectively, for Ze,lin

o , when numerically calculated for
Ze,lin
o data exceeding 0 dBZ at all data assimilation times.

These are values that we will examine in later experiments
(see Table 1).With this model, (relative) errors haveGaussian
distributions in the linear domain but become non-Gaussian
after they are transformed to the log domain (Figure 1).
[9] With the error model used in earlier studies (e.g.,

TX05), Gaussian random errors are directly added to the
logarithmic reflectivity in dBZ:

Zo
e;log ¼ 10 log10 Zt

e

� �
þ elog; ð2Þ

where elog has a zero mean and an SD of a specified dBZ
value.

2.2. Experimental Design

[10] For the purposes discussed earlier, we designed
10 experiments as listed in Table 1. In the experiment
names, LG stands for ‘‘(Gaussian) error specified in the
logarithmic domain of reflectivity’’, LN for ‘‘(Gaussian)
relative error specified in the linear domain of reflectivity’’
and the two-digit number represents the effective error SD
of assimilated observations with the decimal point between
the digits omitted. ‘W’ in the names denotes ‘wrong value’,
as will be explained in the next section.

3. Results of Experiments

[11] As shown in Table 1, in LG20, Gaussian errors of
2.0 dBZ SD are added directly to the reflectivity while in
LN20 relative errors of 38% SD are added in the linear
domain yielding an effective SD of also 2.0 dBZ in Z.
Compared to the more realistic error distribution in LN20
(solid curve in Figure 1), the error model of LG20 (dashed
curve) yields more large positive errors but fewer large
negative errors. In LN20, the error distribution is non-
Gaussian in terms of the final assimilated reflectivity. The
classic optimal Kalman filter solution assumes that all error
distributions are Gaussian, and that all processes, including
the observation operators, are linear. The ensemble Kalman
filter implementation permits nonlinearity of the prediction
model and observation operators, but the under-pinning
linear and Gaussian error assumptions used to derive the
optimal solution are implicitly present. In the case of LG20,
even though the PDF of the added error is Gaussian,
because the observation operator is nonlinear, the distribu-
tion of the resulting analysis increments (i.e., the effect of
observations on analysis variables) is still non-Gaussian.
Because all practical data assimilation methods used in the
field of meteorology, including variational, Kalman filter and
ensemble-based methods, are based on linear and Gaussian
assumptions, the behaviors of these assimilation methods
for non-Gaussian errors require further investigation. We
seek to understand the behaviors of the ensemble Kalman
filter in one of such cases and to understand the effects of
different error models on the assimilation results.
[12] In each of the experiments LG12W, LG35W,

LN12W, and LN35W, we examine the filter behavior by
specifying an observational error variance in the assimila-
tion that is different (or wrong) from the effective error
variance (squared SD) of the actual data. For instance, in
LG12W and LG35W, the effective observation error SDs
are 1.2 and 3.5 dBZ respectively, but 3.5 and 1.2 dBZ
respectively are specified for the reflectivity observations in
the filter. In other experiments, consistent SDs are used.
Figures 2 and 3 compare the analysis RMS errors of model
state variables from LG12, LG12W, LG35, and LG35W
with the corresponding set of LN experiments (see figure
captions and TX05 for details on the plots). For Figure 2, it
can be seen that the analysis errors from LG12 and LG35W
are close while those from LG35 and LG12W show rather
similar behaviors even though LG12W errors are smaller
than those of LG35 at the end of the assimilation cycles.
The specified error SDs for LG12 and LG35W are both
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1.2 dBZ, although the effective reflectivity errors for them
are 1.2 and 3.5 dBZ, respectively. These two runs produced
lower analysis errors overall than LG35 and LG12W, which
specified a 3.5 dBZ error SD in the filter while their
effective error SDs in Z are 3.5 and 1.2 dBZ, respectively.
These results suggest that when the errors are modeled in
the log domain, it is the SD specified in the assimilation that
to a large extent determines the quality of analysis while the
effective error plays a much smaller role. This is obviously
not the expected behavior of an optimal filter, where a
consistency should exist between the effective error in
the assimilated observations and the specified error in the
assimilation system. In fact, in LG35W in which the
observation error is underestimated (a wrong observation
error variance is used), the analyses are actually much better
than in LG35. Such a ‘wrong’ behavior is probably an
indication that adding Gaussian errors to the reflectivity in
the log domain is not the correct way. We note here that the
errors in some of the experiments (e.g., LG35 and LG12W
and LN12W in Figure 3) see increase in their magnitude
between 60 and 80 min. This is believed to be because that
during this period, the truth storm goes through a rapid
storm splitting phase [see Tong and Xue, 2005, Figure 2] so
that the forecast error has a tendency to grow faster. Such a
period of error increase is prevented in the experiments in
which the filter is better behaved and able to produce more
accurate state estimations.
[13] The filter behavior is much more consistent when the

errors are modeled in the linear domain (Figure 3). Exper-
iment LN12, in which both effective and specified error SDs
are 1.2 dBZ, produces, as expected, the lowest analysis
errors (solid black curves in Figure 3) overall. Experiment
LN12W, in which the error SD is wrongly specified to be
3.5 dBZ, yields analyses with larger errors (black dotted
curves). Overall, the worst analysis is produced by LN35W,
in which the effective error SD is large at 3.5 dBZ and the
error in assimilation is specified wrongly at 1.2 dBZ; in this
case the smaller specified error does not lead to a better
analysis as in LG35W. In fact, the underestimated error used
in the filer must have over-weighted the observations,
causing large increases (instead of the expected decreases)
of error by the analysis in many variables during the first
two cycles. The remaining errors at the end of cycles are
higher than the other cases.
[14] The analysis errors in LN35 at the end of the

assimilation cycles are larger than those of LN12 and
LN12W apparently because of the larger effective errors,
but are smaller than those of LN35W which again agrees

with expectations. The errors of LN12W increase during the
intermediate cycles (around 70 min. of model time) to the
level of those of LN35 and are even larger in qc even though
its effective error is relatively low, which suggests that
specifying the wrong error SD in the filter is harmful.
Another experiment, named LN27 (not listed in Table 1),
produced RMS error curves that lie between those of LN12
and LN35. This behavior further confirms our conclusions.
In reality, the Gaussian error added in the log domain does
not reflect the right SD and PDF of the reflectivity sampling
errors. When we examine the actual analyzed model fields
(not shown due to space limit), the cases with larger RMS
errors usually show nosier fields. For example, the reflec-
tivity fields are noisier in LN35W than those in LN35 at all
analysis times (not shown), apparently because too much
weight is given to inaccurate observations. At 100 min., the
end of the assimilation window, the analysis in LN35 agrees
with the truth in the extent of the low-level cold pool and in
the intensity and pattern of reflectivity better than in
LN35W, in which the cold pool is too warm but its extent
is too large (not shown).
[15] We performed an additional set of experiments

assimilating only radial velocity which has an observation
operator that is linear. The filter behaves much like the cases
of LN, where correctly specified error SD in the filter
produces the best results, and the analysis with smaller
observation error is more accurate.

4. Summary and Discussion

[16] With OSSEs, one of the challenges is to create
observations that have realistic error characteristics. An
error model different from the previously used one is
examined for radar reflectivity data which adds Gaussian-
distributed relative error in the linear domain to equivalent
reflectivity factor. This model is physically more accurate
than adding Gaussian errors to the reflectivity in the log
domain, and allows for larger error variances in strong echo

Figure 1. Frequency distributions of effective non-Gaussian
reflectivity observation errors in LN20 (solid), and Gaussian
reflectivity observation errors in LG20 (dashed), calculated
from the data at all observation points and all analysis times.

Table 1. List of OSS Experiments

Experiment
Domain in Which Gaussian

Error is Specified
Effective Error

SD,a dBZ
Error SD Used
in EnKF, dBZ

LG20 log domain 2.0 2.0
LN20 linear domain 2.0 (38) 2.0
LG12 log domain 1.2 1.2
LG12W log domain 1.2 3.5
LG35 log domain 3.5 3.5
LG35W log domain 3.5 1.2
LN12 linear domain 1.2 (25) 1.2
LN12W linear domain 1.2 (25) 3.5
LN35 linear domain 3.5 (75) 3.5
LN35W linear domain 3.5 (75) 1.2
aThe a values in parentheses are given as percentages.
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regions and smaller error variances in weak echo regions as
expected for real radar sampling error.
[17] It is shown that when the new error model is used

and the resultant observations are assimilated using the
EnKF method, proper behaviors of the filter are obtained.
In such a case, a smaller effective error variance in the
reflectivity with a corresponding correct specification of
error variance in the filter yields the best analysis and vice
versa, while a mismatch between the two error variances
leads to larger analysis errors. The same behavior is not

found, however, when the error is added to the reflectivity
in the logarithmic domain. In that case, a smaller mis-
matched error variance used in the filter actually results in a
lower analysis error than when a correct, larger, value is
used. These results point to the importance of properly
modeling observation errors for OSSEs when the observa-
tion operator is nonlinear. Since the modeling of reflectivity
error in the linear domain is more physically correct, we
should expect that the errors in the real reflectivity data
behave more similar to those simulated by the linear-domain

Figure 2. Ensemble-mean forecast and analysis RMS errors averaged over points at which the true reflectivity is greater
than 10 dBZ for velocities (a) u, (b) v, (c) w, and (d) perturbation potential temperature q0, (e) perturbation pressure p0,
(f) cloud water qc, (g) rainwater qr, (h) water vapor qv (larger values), cloud ice qi (smaller values), (i) snow qs, and (j) hail
qh; for experiments LG12 (solid black), LG12W (short dashed black), LG35 (solid gray), and LG35W (short dashed gray).
Sharp drops in the curves correspond to the reduction (occasionally increase) in RMS errors by the EnKF analysis.

Figure 3. As in Figure 2 but for experiments LN12 (solid black), LN12W (short dashed black), LN35 (solid gray), and
LN35W (short dashed gray). Note the difference in the vertical axis scale from Figure 2.
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model. The understanding of the expected error distribution
and magnitude should provide us guidance with the spec-
ification of error variance when we assimilate real reflec-
tivity data.
[18] Finally, we note that the error model proposed in this

study is more suitable for representing typical radar sam-
pling errors. Gross errors associated with, e.g., ground
clutter and anonymous propagation may require different
treatment. Ideally these problems are eliminated through
quality control or bias correction procedures before the data
enter the assimilation system.
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