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ABSTRACT

A nonhydrostatic numerical model suitable for simulating mesoscale meteorological phenomena is developed
and described here. The model is the first to exploit the nonhydrostatic equation system in o (normalized
pressure) coordinates. In addition to the commonly recognized advantages of ¢-coordinate models, this model
is potentially advantageous in nesting with large-scale o-coordinate models. The equation system does not
support sound waves but it presents the internal gravity waves accurately. External gravity waves are the fastest
wave modes in the system that limit the integration time step. However, since short nonhydrostatic externat
waves are much slower than the speed of shallow-water waves and because fast hydrostatic long waves imposes
less severe restriction on the time step when they are resolved by many grid points, a large time step (compared
to that determined by the speed of hydrostatic shallow-water waves) can be used when horizontal grid spacing
is on the order of 1 km.

The system is solved in a way analogous to the anelastic system in terrain-following height coordinates. The
geopotential height perturbation is diagnosed from an elliptic equation, Conventional finite-differencing techniques
are used based on Arakawa C grid. The flux-corrected transport (FCT) scheme is included as an option for
scalar advection.

The model has been used to study a variety of problems and here the simulations of dry mountain waves are
presented. The results of simulations of the 11 January 1972 Boulder severe downslope windstorm are reported
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A Mesoscale Numerical Model Using the Nonhydrostatic Pressure-based Sigma-

and the wave development mechanism discussed.

1. Introduction

Pressure has been widely used as a vertical coordinate
in modeling and theoretical studies of large-scale hy-
drostatic flows ever since the pioneering work of Elias-
sen (1949), the difficulties with the lower boundary is
circumvented by using the normalized pressure o as
the vertical coordinate (Phillips 1957). Pressure-based
coordinate systems are employed in essentially all cur-
rent limited-area and global-scale numerical models
for meteorological applications. The advantages of this
are generally recognized. Using pressure as an inde-
pendent variable eliminates the not routinely observed
air density from the governing equations and simplifies
thermodynamic calculations. Furthermore, numerical
models in such a coordinate system can easily incor-
porate observational data that are generally available
at pressure levels. The g-coordinate system is also used
in certain mesoscale numerical models (e.g., Anthes
and Warner 1978), but they are all hydrostatic.
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On the other hand, almost all nonhydrostatic me-
teorological models use height as the vertical coordi-
nate. Most of such models (e.g., Wilhelmson and Ogura
1972; Clark, 1977) are based on the anelastic equation
system as derived by Ogura and Phillips (1962). The
fully compressible equation set in height coordinates
is also used in small-to-mesoscale models (e.g., Klemp
and Wilhelmson 1978; Tapp and White 1976). In the
former, a mode-splitting technique is used to deal with
sound waves. But still the overall performance is limited
by the small time steps required by fast sound waves.

In the mid-seventies, Miller (1974) derived a set of
equations that is nonhydrostatic but uses pressure as
the vertical coordinate. A three-dimensional cloud
model was developed based on this equation system
(Miller and Pearce 1974), which was successfully used
in many modeling studies on convective systems (e.g.,
Moncrieff and Miller 1976; Thorpe et al. 1982). Re-
cently, Miller and White (1984, MW84 hereafter) pre-
sented a more rigorous derivation of that equation set
based on a systematic scale analysis and power series
expansion. An equation set in ¢ coordinates was ob-
tained by direct transformation from the pressure co-
ordinate system. The work of MW84 lays the foun-
dation for the numerical model to be described in this
paper.

A nonhydrostatic model in pressure-based o coor-
dinates bears all the advantages of its hydrostatic coun-
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terpart, and further it has the potential advantage in
internesting with hydrostatic regional or global scale
a-coordinate models. The nonhydrostatic s-coordinate
system is also soundproof.

In this paper, a new mesoscale numerical model
based on this equation system is described. The model
is capable of dealing with an irregular terrain and has
been used to study convective processes. In section 2,
a brief introduction to the g-coordinate nonhydrostatic
equations is presented, and in section 3 the numerical
formulation of the model is described. In section 4 the
model solutions of dry mountain waves are shown, as
well as the results of the simulations of the 11 January
1972 Boulder, Colorado, severe downslope windstorm.
A summary is given in section 5.

2. The nonhydrostatic equation system in o coordinates
a. The equations

A nonhydrostatic approximate equation set in pres-
sure coordinates was devised by Miller (1974) and used
successfully by Miller and Pearce (1974) to formulate
a 3D numerical cloud model. The feasibility of non-
hydrostatic equations in a pressure-based vertical co-
ordinate can be briefly illustrated. We define a quantity

L d (dcb)
€= — — = g _— —
g dt de\ dt
where ¢ = gz is the geopotential height and g the ac-
celeration due to gravity, so that the vertical momen-
tum equation can be written as:

9  RT

dp p(l +¢)

Equation (2.1) (R is the gas constant for dry air, T the
temperature, and p the pressure ) establishes a relation
between the height and pressure and is used for the
coordinate transformation. This relation also implies
that the nonhydrostatic system is feasible in p coor-
dinates as long as |¢| < 1 so that pressure remains a
monotonic function of height in spite of the nonhy-
drostatic contributions.

Miller and White (1984 ) presented a more rigorous
derivation of the equation set in both pressure and o
coordinates. The derivation is based on a systematic
scaling and power series expansion in a parameter that
is the fractional change in the potential temperature
of a reference atmosphere over a typical convective
scale depth. The assumption that this parameter is
small (<1) is nearly always valid in the troposphere.
The approximate nonhydrostatic equation set is ob-
tained as the zero-order balance of the original equa-
tions expanded in this small parameter. For a friction-
less, adiabatic atmosphere without Coriolis force, the
a-coordinate equations in two dimensions are

du 3% | o 9y 0¥

d_t__ax Dx 0x Oc

(2.1)

(2.2)
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%=—$stw (2.5)
WE—(p*&+a%)% (2.6)
where
R AR

is the static stability of the reference atmosphere.

The above equations are, respectively, those for the
horizontal and vertical momentum, mass continuity,
and entropy conservation. Equation (2.6) is a definition
of the vertical momentum in the ¢ coordinates. The
vertical coordinate ¢ is defined as

bp—p _P—D
Dsurt — Dt Dy

g =

where pq,.¢is the surface pressure, p, the constant pres-
sure at the top boundary, and p, = ps.r — p;. In the
above equations, u is the x component of velocity, ¢
= do /dt the vertical velocity in ¢ coordinates. The total
derivative is defined as d/dt = d/dt + ud/dx + ¢d/dv;
all the partial differentiations with respect to x and ¢
are carried out at constant ¢. The variable W is the
approximated vertical velocity that is shown by MW84
to contribute to the kinetic energy in a consistent
manner.

In obtaining the above equations, the original equa-
tions are expanded around a reference state, which is
similar to the way that the anelastic equation set is
obtained (Ogura and Phillips 1962). Therefore

@ = d(p) + ¥(x,0,1)
0 = 0,(p) + 0'(x, 0, 1), (2.7)

where ® is the geopotential height and 6 the potential
temperature. Here “s”” denotes the reference state, and
the prime denotes the deviations. Potential temperature
is defined as

0 =T(po/p)" =T/ (2.8)

. where T is the temperature, Il = (p/py)* the Exner

pressure, k = R/C, and R is the gas constant for dry
air, C, the specific heat of dry air at constant pressure,
and py = 1000 hPa.

The reference state is required to be in a hydrostatic
balance, therefore

dd,

42 _ _ RO (ﬂ)K : (2.9)
dp P \Do
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It should be noted that the reference state is not only
a function of ¢, it also depends on the horizontal co-
ordinate x in the o-coordinate system. To ensure the
hydrostatic balance of the reference state, the following
relations must be satisfied:

_ 9%, - — a;{)s +£@i%_o
dx » dx [ ps 0x do
T
6;§>S+_R__p_i=0 (2.10)
do

where &, = ®,(p) = ®,(x, o, t). These relations will
be used later to determine &, and ¥’ at ¢ = 1, which
are required as the lower boundary conditions for the
elliptic equation for ¥'. The ¥’ equation is obtained by
applying the divergence operator on the momentum
equations and is formally expressed as

E(@)="F,

its detailed form will be given later.

In the above system, there are five independent
equations, Eqgs. (2.2)-(2.6), but six variables, u, W,
s, 0, &, and p,. Since p, is a boundary variable, a
relation is obtained from the continuity equation using
boundary conditions ¢ = 0 at ¢ = 0 and 1 so that

Ops _ _ (' Opsu
ot 0o OX

Equation (2.12) states that the surface pressure vari-
ation results from the mass convergence/divergence
in the column directly above, the direct nonhydrostatic
contribution is neglected. The nonhydrostatic contri-
bution to the mass continuity is of higher order ac-
cording to MW84’s scaling analysis, and its neglect is
Jjustified.

Without extra sources or sinks, or with these terms
being known, Egs. (2.2)-(2.3), (2.5)-(2.6), and
(2.11)-(2.12) constitute a closed system. There are
two ways to solve it: one solves the continuity Eq. (2.4)
explicitly for the vertical motion without integrating
vertical momentum Eq. (2.3); the other directly solves
the vertical momentum equation with the mass con-
tinuity being implicitly ensured by Eq. (2.11). The
former procedure is in line with that used in hydrostatic
models, while the latter treats the horizontal and ver-
tical components of momentum in a more consistent
way and is similar to the way other nonhydrostatic
equation systems are solved (e.g., Clark 1977). We use
the later approach. The general procedure of time in-
tegration is: first predict u, w, ', and p, from Egs.
(2.2), (2.3), (2.5), and (2.12), then calculate ¢ from
Eq. (2.6) and finally diagnose ¢ from elliptic Eq.
(2.11).

b. Some properties of the equation system

(2.11)

do. (2.12)

MW284 showed that the o-coordinate nonhydrostatic
equation system is dynamically consistent in terms of
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energy conservation. The equation for the total energy
is;

OsE) _ _[ap*u(E + @)

at ax
L Opuo(E+ @) _ 90% py
do do dt
with the total energy defined as

(2.13)

EE%(M +w?) + C,T.

An energy budget within a given domain can be ob-
tained by integrating Eq. (2.13) over this domain,
which will show that the change in the total energy is
a result of energy fluxes through the lateral boundaries
and the work done to the domain atmosphere by the
ground surface forcing.

Miller (1974) and MW 84 also performed a detailed
linear analysis on the QNH equation system. It is found
that vertically propagating sound waves are not sup-
ported in either the p-coordinate or the s-coordinate
system. The structure and phase speed of internal
gravity waves are accurately represented. Lamb waves,
i.e., the horizontally propagating sound waves, can be
eliminated by imposing appropriate boundary condi-
tions such as ¢ = 0 at p = p,,, < 0 in the o-coordinate
system.

3. The numerical formulation of the model
a. Model equations and finite differencing

The equation set given in the last section is extended
to include diabatic and frictional processes and Coriolis
effect. It includes three water categories, i.e., the water
vapor, cloud water, and rain water. The conservation
equations for them are coupled together through Kes-
ler’s (1969) microphysics parameterizations. The
model described here is two-dimensional (independent
of y) for simplicity, the extension into the third di-
mension is straightforward.

The Arakawa C grid is used in the model. This grid
has a good representation of inertial gravity waves, and
the variable arrangement facilitates conservative
schemes for the advection terms. On a C-grid cell, state
variables 8, ', and g; ( g; stands for the specific content
of water vapor, cloud water, or rain water) are defined
at the cell center and the normal velocity components
are defined on the corresponding sides.

The second-order centered-difference scheme is used
for all spatial finite differencing, except when the flux-
corrected transport (FCT) scheme (Zalesak 1979) is
used to advect scalar quantities. Since implicit or semi-
implicit time integration techniques used in hydrostatic
g-coordinates system (e.g., Hoskins and Simmons
1975) are not practical for the current equation system,
the explicit leapfrog time integration scheme is used
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with respect to all processes except for the diffusion
terms, which are evaluated one time step earlier to re-
sult in a forward scheme in time.

Adopting the notation of Shuman (1962), the full
set of model equations in finite-difference form {except
Eq. (3.10)] is as follows:

t
8(p.u) = —UFLUX" — 7, 6%
+ 06,0:8,8 " + DN (DS T+ DT (3.1)

3(psV) = —VFLUX" — p, fi* + p, D, (3.2)
3(pew)' = —~WFLUX " + p, §"5,%'
0’ ’ w4 —a -—0 —1
+ Dy 0. +0.61g, ~q. — g, |+ pD,"
(3.3)

5.(px8)' = ~TFLUX " — p,8.NW"/g
+ DeMy" + pe D" + p0/(C,I1)  (3.4)
80y =~ 2 8(Pau)Ac (3.5)

J
5 (P+d)’ = ~QFLUX " + p,(M™ + D2)
(3.6),(3.7), and (3.8)

§=—Sw—~— [E“&xp* - 5x(7):u)Aa] (3.9)
j

Dx

x? Dy Ox Ixds6  do

dlnp,\*> 8 ( , 0% o 8%p, o
+[—2) == | -—=2 = F,.
( ox )aa(" 30 ) e ox® 00 1®

(3.10)

The above system includes the effects of diffusion, dia-
batic heating, and earth rotation. There are three ad-
ditional equations for the conservation of water vapor
(gv), cloud water (q.), and rain water (g,). Here D,
(¥ denotes ¢’ or ¢;) represents subgrid-scale mixing and/
or numerical diffusion, which can be referred to as
diffusion in general. Term M, represents the moisture
and cloud microphysical processes that are given by
the Kessler-type parameterizations, their detailed for-
mulations are not given here. Term O represents heat
source or sink. The “tilde” in W is omitted here and in
the rest of this paper for convenience. The third term
on the right-hand side of Eq. (3.3) is the full buoyancy
in the presence of water-vapor and liquid-water loading.
In Egs. (3.5) and (3.9) the summation is done through
the u levels between the top and bottom model bound-
aries.
The conservation equations are all formulated in
flux form. For u and w, the advection (flux ) terms are

¥ 20 op, 3% +i( zgg)

do
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UFLUX" = 8(B%u %)+ 8.(ope. 1°)
WFLUX " = 6,(py 7" W") + 8 psc w°); (3.11)
for v, #', and g, they are written in a general form:
QFLUX " = 8.(psuq”) + 8, pe6q”). (3.12)

In the above, the second-order centered-difference
scheme is used. The advection terms thus formulated
conserve the first and second moment of the quantity
being advected (Lilly 1964; Arakawa and Lamb 1977).
The kinetic energy and the potential temperature vari-
ance are therefore conserved in the advective processes,
which ensures that nonlinear computational instability
is effectively suppressed. When the flux-corrected
transport scheme is used, QFLUX " then represents
the fluxes corrected in such a way as to eliminate the
short wavelength numerical oscillations associated with
high-order schemes, the positivity of the advected water
quantities is then strictly maintained.

Equation (3.9) is a relation used to calculate o.
Equation (3.10) corresponds to Eq. (2.11) and is an
elliptic diagnostic equation for the geopotential height
perturbation &'. It is obtained by performing divergence
operation 8/8x(3.1) + 8/30]—S(3.3)] where S = gp/
(RTp,) is a parameter having a dimension of inverse
scale height. Here only the differential form of the ¢’
equation is given and its finite differencing is straight-
forward. The right-hand side of this equation is given
in the appendix.

The time integration procedure is explicit; Eqgs.
(3.1)-(3.8) are first integrated forward one time step
for py, u, v, w, 8, and g;; o and &’ are then diagnosed
from Egs. (3.9) and (3.10). The condensation and mi-
crophysics processes are incorporated in an adjustment
step. Since the reference state defined on the ¢ levels
is dependent on the pressure, in principle it needs to
be updated every time step. However, experiments
show that one update every a few time steps is sufficient.

The Robert-Asselin time filter (Robert 1966; Asselin
1972) is used to suppress the computational mode as-
sociated with the leapfrog scheme. A coefficient 0of 0.01
is used and the filter is applied at every time step to
variables explicitly predicted by this scheme. The leap-
frog scheme is stable under the well known Courant-
Friedrichs-Lewy (CFL) condition. The removal of
vertical sound waves in the current system greatly al-
leviates the restriction on time steps, especially when
high vertical resolution is required.

b. Boundary conditions

At the lateral boundary, the radiative boundary con-
dition (RBC) due to Orlanski (1976) is applied, in a
way similar to Miller and Thorpe (1981), to the normal
velocity component u, y-velocity v, potential temper-
ature §', and surface pressure p,. It is also applied to
the variables for water substance. The vertical velocity
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o at the boundary is calculated from the continuity
equation. In some cases (when the domain size is small)
it is necessary to adjust the normal velocity determined
by the radiative boundary conditions to ensure the total
mass conservation.

At the top and bottom boundaries the o-coordinate
vertical velocity o vanishes by definition. The top
boundary is a free surface where external gravity waves
are supported but only long hydrostatic modes have
fast propagation speed (Miller 1974). The bottom
boundary is the ground surface z = A(x). Free-slip
boundary condition is assumed there, i.e., the normal
gradient of tangential velocity vanishes. These condi-
tions are expressed as ¢ = w = 0 and du/dc = 0 at ¢
=0,0=0,w=—dp,/di(p,S)”", and du/do = 0 at
6=1 Ato=~Acand 6 = 1 + Ag, o is diagnosed
from the continuity equation and w is calculated ac-
cording to its relation with ¢. This procedure will re-
duce to the mirror-type symmetry boundary condition
if the pressure at the boundary is constant. Zero gra-
dient condition is also assumed for 8 and ¢; at the top
and bottom boundaries, but this is relevant only when
calculating the cross-boundary turbulent fluxes.

¢. Solution of the elliptic diagnostic equation for &'

As was pointed earlier, the elliptic diagnostic Eq.
(3.10) is solved to obtain the geopotential height field.
For a standard Poisson equation defined on a regular
grid, many efficient direct solvers exist. However for
more complicated elliptic equations such as Eq. (3.10),
no general direct solver is available. Here the “block
iteration” method is used, which combines a direct
Poisson solver with the iteration technique. In Eq.
(3.10) we move the terms that are relatively small
[terms with coefficient proportional to (1/p«)(9ps/
dx)] to the right-hand side and solve the resultant
standard Poisson equation using a direct FFT solver.
A sufficient accuracy can be achieved very quickly (de-
pending on the relative variations in the surface pres-
sure) after only a few iterations, each time with the
terms on the right-hand side being updated using new
values of ®. The details can be found in Xue (1989).
In tests with dry convection, two iterations are sufficient
on average without topography, a few more are oth-
erwise required depending on the aspect ratio of orog-
raphy slope.

At the lateral boundaries, Neumann boundary con-
ditions are specified by calculating d®'/dx from the
horizontal momentum equation [ the differential form
of Eq. (3.1)] applied at the lateral boundaries. The
local time derivative of p,u is given by the RBC. On
the top boundary, ¢ = 0, the Neumann boundary con-
dition is obtained by calculating %'/ ds from the ver-
tical momentum equation. The bottom of the model
is a physical boundary, where the geopotential height
is related to the surface topography z = hA(x):

(plu=l = q)s|p=psu.-( + q>,(o'=l = gh' (3'13)

MONTHLY WEATHER REVIEW

VOLUME 119

Since the geopotential height of the reference state &,
is defined as a function of pressure p, its value at ¢ = 1
remains to be found. By combining the two relations
in Eq. (2.10) and differentiating the resulting equation
with respect to x at constant ¢ = 1, we obtain

3%®, @ [ RT, dp,
6x2 Dsurf ax )

(3.14)

o=1 ax
The differentiation raises the order of the equation so
that conditions of ®; at both x = 0 and x = XL are
used, this reduces the error accumulation when solving
for &;.

Assume for a reference atmosphere in a hydrostatic
balance, the pressure is pO. at ®; = gh. To find &, at
Dsurs, We have from the hydrostatic relation

'Dsusf
RTd(Inp)

Psurf

= gh + RTS ln(pgurf/psurf) (315)

where T is the average of T, at ¢ = 1 and T, of the
reference atmosphere at pS,¢. Equation (3.15) is eval-
uated at boundaries x = 0 and x = XL to obtain (¢
=1,x=0)®(0c = 1, x = XL), which serve as the
boundary conditions for Eq. (3.14). The discrete ap-
proximation to Eq. (3.14) is a tridiagonal linear equa-
tion set and is solved directly. In three-dimensional
cases the corresponding equation becomes a Poisson
equation, which can also be directly solved. With &;
being known, Eq. (3.13) then gives the value of ¢’ at
o = 1. This condition is crucially important in the
model—it is this that relates the geopotential height at
the surface to the surface pressure and therefore to the
mass field in the interior.

Although & at ¢ = 1 is known, the grid staggering
requires ' at 0 = | 4+ Ag/2 as the Dirichlet condition.
To extrapolate ®' to this level, 3%'/de is derived from
the vertical momentum equation. The local time ten-
dency of w is not readily available, but the stability of
the model solution is found to be very sensitive to its
calculation. The model tests show it is best to omit this
local tendency term, which is justified partly because
its magnitude is small. Then the lower boundary con-
dition for the ¥ equation is given by

Ao 9%
2 9o _,
It should be noted that &’ at the surface is directly re-
lated to pq.r, therefore the nonhydrostatic contribution
is not present there. On the other hand, the numerical
model thus formulated produces accurate mountain
flow solutions. The numerical simulations of squall
lines where the propagation of the cold outflow strongly
depends on the surface pressure also produce consistent
results (Xue 1989). This approximation is therefore
justified at least for the cases considered here.
At the early stage of model development, attempts
were made to apply the normal gradient-type condition

q)s(p = psurf) = (ps(p = pgurf) -

Y| mirao2 = ¥lo=r + (3.16)
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at the lower boundary. This practice results in a de-
coupling between the geopotential height at the surface
and the interior mass field, the solution obtained is
physically inconsistent and mostly unstable.

d. Subgrid-scale mixing and numerical diffusion

Smagorinsky (1963) suggested a formulation of
subgrid-scale mixing for use in a general circulation
model that depends on the magnitude of deformation
tensor and the grid spacing. This formulation is ex-
tended by Lilly (1962) to include the contribution of
convective available potential energy through the de-
pendency on Richardson number, and it has since been
widely used (e.g., Clark 1977; Durran and Klemp 1983,
DKS83 hereafter). The mixing coefficient for momen-
tum is

K,, = (kA)?|Def|[max(1 — Ri/Pr, 0)]'? (3.17)
where |Def] is the magnitude of deformation and Ri
the Richardson number. Here Pr = K,,,/ K, is the tur-
bulence Prandtl number whose value is to be deter-
mined for particular experiment, & = 0.21 after Dear-
dorff (1971) and A = (AxAz)'/2.

In our model the mixing formulas are transformed
into (x, o) coordinates based on

Wy () o

2 z=const —\ax o=const D% Ox do
o Y
o =T 18
dz Saa (3.18)

where y is any dependent variable. The approximations
in the transformation are consistent with those made
to obtain the nonhydrostatic system. The mixing terms
are finite differenced using centered differencing.

In practice, a constant numerical diffusion is nec-
essary to remove numerical noise. Since diffusion on
the full variables tends to destroy the nonconstant fields
of the initial or reference state, the background diffusion
is formulated so that it operates only on the pertur-
bations from the base state.

An absorbing layer with enhanced damping is in-
cluded near the top boundary to simulate a radiative
top boundary condition. Two options of damping are
available, one is the viscous type of damping and the
other the Rayleigh damping. The damping is applied
to the perturbation variables and incorporated to the
right-hand side of the equations for u#, v, w, 6, and g;.
The damping coefficient profile of the cosine-squared
form is specified after Klemp and Lilly (1978), which
increases smoothly from a certain height to the model
top. Klemp and Lilly (1978) suggested that, for linear
hydrostatic waves, the minimum depth of the absorbing
layer is approximately one vertical wavenumber. In
this o-coordinate model the vertical levels are stretched
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with height, an absorbing layer of a given depth there-
fore contains fewer levels so that the use of the ab-
sorbing technique is relatively economic. In this aspect,
the applicability of the radiative upper boundary con-
dition of Klemp and Durran (1983, KD83 hereafter)
to the current model is worth exploring.

4. Model experiments with dry flows over a mountain
ridge

In this section the numerical model is verified against
linear and nonlinear analytical solutions of 2D flows
over a bell-shaped mountain. The model is later used
to simulate the 11 January, 1972 Boulder severe
downslope windstorm and the results are compared
with those of previous studies. The comparison estab-
lishes the credibility of the model in large-amplitude
nonlinear wave regimes and the simulation demon-
strates the development mechanism of the severe
downslope winds in the Boulder event.

a. Mountain gravity waves in a uniform flow

Linear analyses on mountain gravity waves have
been done by many authors and excellent reviews have
been given by Alaka (1960) and Smith (1979). In an
anelastic, uniformly stratified (N? = const), constant
(U = const) rotational flow in x and z plane, steady-
state gravity waves have the dispersion relation:

m? = [(k? — k*)k? + D221/ (K2 — k) (4.1)

where k and m are the horizontal and vertical wave-
number, respectively, k; = | = (N?/U* — T'?)!/? is the
Scorer parameter, which represents the intrinsic vertical
scale of a given flow and determines whether a partic-
ular wave mode can propagate in the vertical (T
= 1/2dInp (dz is a stratification parameter that van-
ishes for a Boussinesq flow); and &k, = f/ U gives the
inertial scale of the flow. Consider a bell-shaped moun-
tain profile 2(x) = h,/(1 + x?/a?), the dominant
horizontal wavenumber forced by the ridge is ko = 1/
a. Using typical values of k; (107> m™") and k(107>
m™!), Queney (1948) exemplified the wave solutions
in different regimes depending on the horizontal scale
of the mountain.

In the case where a ~ 1/1, i.e., ko ~ k;, the moun-
tain scale is comparable to the intrinsic vertical scale
of the flow and the solution is nonhydrostatic. This
solution is characterized by the ““trailing waves™ at the
upper levels to the lee of the mountain. The wave en-
ergy propagates upwards from the mountain source
and disperses downstream. When a > 1// the flow be-
comes hydrostatic, the waves become nondispersive in
the horizontal and propagate only in the vertical. For
a very broad mountain with a ~ U/f. ie., ko ~ k;
< k;, the waves are hydrostatic and rotational and are
dispersive in the horizontal due to rotational effects.
The wave patterns for these three regimes are shown
respectively in Figs. 1, 2, and 3 of Queney (1948).



1174

The model solutions of mountain waves over a bell-
shaped mountain of different horizontal scales are pre-
sented in the following. These waves are respectively
in the nonhydrostatic, hydrostatic irrotational, and hy-
drostatic rotational regime. The atmosphere is assumed
isothermal with T, = 250 K, and the basic flow has a
constant speed U = 20 m s™'. As a result, N* = g7/
(C,T), I = g/(2RT)are both constant and the Scorer
parameter / = 0.977 X 103 m™'. Unlike in the solution
shown in Queney (1948), the Boussinesq approxi-
mation is not assumed, i.e., the vertical density vari-
ation is retained in the model solutions. This will only
modify the amplitude of the waves but not the wave
structure for a given constant Scorer parameter. The
model solutions can still be qualitatively compared with
Queney’s solutions when the mountain height is small.
The parameters of model experiments are listed in Ta-
ble ! in which NX and NS are the number of grid
- points in x and ¢ direction, respectively. In the first
three experiments, mountain height is small (4,,/a < 1)
so that the waves are essentially linear and the results
can be verified against linear analytical solutions.

The reference atmosphere is assumed to be in a bal-
anced state. In this o-coordinate model, the surface
pressure, the pressure at the o levels, and the state vari-
ables at these levels are interrelated, so that a procedure
is needed to set up the initial state of the model. For
the following experiments reference state temperature
is specified as a function of height. To initialize the
model, temperature is first given an initial guess on the
model grid and iterations are performed based on the
hydrostatic relation until a reasonable convergence is
reached. A similar iterative step is taken in Anthes and
Warner (1978) for a hydrostatic o-coordinate model.
The flow speed is initially specified as a function of
height, the mountain is introduced at the beginning
and flow is allowed to adjust to the presence of moun-
tain.

The solutions for these experiments are smooth, the
leapfrog-centered scheme is accurate enough so that
FCT is not used for § advection. The average surface
pressure is 1000 hPa, and p,, = 100 hPa. The time
steps listed in Table 1 are close to the maximum pos-
sible values under the CFL condition. It can be seen
that the relation between At and AXx is not linear— At
is relatively large for small Ax. For waves represented
on C grid, 2Ax wave modes impose the strongest lim-
itation on the time step (Haltiner and Williams 1980)
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and the largest possible time step for staggered C grid

is half of that for nonstaggered grid. Table 1 suggests

that the speed of fastest 2Ax waves is less than 100 m
s ! when Ax = 0.4 km, this significantly alleviates the
restriction on the time step. When Ax = 20.0 km, even
the shortest external waves become hydrostatic, whose
speed is about 250 m s~! so that a relatively small At
has to be used.

The restriction by external gravity waves on the time
step becomes serious when the horizontal grid length
is of the order of 10 km. Fully implicit time integration
is not practical for the given equation set, but the mode-
splitting technique may be feasible. If implemented,
the model efficiency would be improved a lot when
Ax is of the order of 10 km. When Ax is of the order
of 1 km the time step is already relatively large without
mode-splitting.

Only a weak background diffusion is included in
these experiments. A Rayleigh damping type absorbing
layer occupies levels between 12 and 18 km. The e-
folding time of damping at the top of this layer is re-
spectively 1, 5, and 50 min for LMW1, LMW2, and
LMW3. The w and 4 fields from these experiments are
shown in a nondimensionalized horizontal scale (X
= x/a), at nondimensional time 7" = tU/a = 30, when
the solutions are nearly steady. The perturbations are
scaled to correspond to the solutions over a 500-m
height mountain ridge.

Figure 1 depicts the fields of w and 8 for LMW,
These waves, being forced by a narrow ridge with 2-
km half-width, exhibit clearly a trailing nonhydrostatic
lee wave pattern at higher levels. The wave amplitude
increases with height due to the decrease in air density.
The airflow is displayed by the isentropes that are very
close to the trajectories. The isentropes compare very
closely to the streamlines shown in Queney’s solution
(Fig. 1 in Queney 1948). Figure 2 shows the solutions
from LMW2. Given the breadth of the mountain, the
waves are essentially nondispersive and hydrostatic.
The waves are located directly over the ridge, the phase
lines tilt upstream implying an upward wave energy
propagation. The model solution displays a vertical
wavelength of about 6.6 km, which is close to the pre-
dicted value L, = 27/l =~ 6.45 km. The flow pattern
in Fig. 2b closely resembles the corresponding solution
of Queney (1948).

In experiment LMW3 the mountain half-width is
100 km so that the mountain waves are hydrostatic

TABLE 1. Experiments of mountain waves in a uniform flow.

Experiment Wave regime Scale a (km) by (m) (NX, NS) Ax (km) At (s) f6™h
LMWI nonhydrostatic 20 1.0 (257, 41) 0.4 3.0 0.0
LMW2 hydrostatic, nonrotational 10.0 1.0 (129, 41) 2.0 8.0 0.0
LMW3 rotational, hydrostatic 100.0 10.0 (129, 41) 20.0 25.0 107*
NLMW2 nonhydrostatic 20 500.0 (257, 41) 0.4 3.0 0.0
NLMW2 hydrostatic, nonrotational 10.0 500.0 (129, 41) 2.0 8.0 0.0
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FIG. 1. The model solutions of (a) vertical velocity w and (b) isentropes (6 contours) from linear mountain wave experiment LMW1, at
ND-time 7" = 30. Dimensional parameters in this runare a = 2km, U=20ms™",and N ~ 2 X 10~2 s the flow is in the nonhydrostatic
wave regime. The solutions are amplified to correspond to a solution over a 500-m mountain ridge.

and rotational. The w field in Fig. 3 shows the existence
of a trailing wave train downstream of the mountain
range due to the inertial effect. The horizontal wave-
length of the inertial oscillations at the downstream
surface is close to the prediction of L, = 2z U/ f~ 1256
km. The downstream dispersion of wave energy results
in a decrease in the wave amplitude upwards despite
the counter effect of density scaling. The wave pattern
shown by the isentropes in Fig. 3b qualitatively agrees
with that of the analytical solution of Queney (1948).

The vertical flux of horizontal momentum due to
wave motion is defined as

— 0
M= f ou'w'dx. (4.2)
Eliassen and Palm (1960) showed that for linear steady
mountain waves, M is constant with height except at
levels where U = 0. The pressure drag that the flow
imposes on the mountain surface is

D= f (4.3)
and for small amplitude waves M = —D.

Miles and Huppert (1969) showed that for irrota-
tional hydrostatic waves over a finite-amplitude bell-
shaped mountain, the momentum flux is to the first

approximation
7 { h,\?
1+—=(—]|. 4

When the mountain is sufficiently low, i.e, /I < 1,
the above formula reduces to that for linear mountain
waves

dh
pp(z = h)adx

M=~ EpoNUhm2 [

My = — § poNTh,2 (4.5)

as is given in Eliassen and Palm (1960). Bretherton
(1969) showed that among all the wave regimes the
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FIG. 2. As in Fig. 1 but are solutions from experiment LMW2. In this experiment, the mountain half-width is 10 km,
so that the flow is in the hydrostatic irrotational wave regime.
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FIG. 3. As in Fig. 1 but are solutions from experiment LMW3. The mountain is broad in this case
with a = 100 km, the waves are hydrostatic rotational.

hydrostatic irrotational mountain waves is most effec-
tive in transferring the horizontal momentum verti-
cally.

The vertical flux of horizontal momentum is cal-
culated according to Eq. (4.2) for experiment LMW1
and LMW2. The vertical profiles at various ND-time
are shown in Fig. 4a for LMW1 and in Fig. 4b for
LMW?2. These fluxes are scaled by the analytical value
for linear waves given by Eq. (4.5) (shown as the bold
line in the figure). Figure 4b shows that for the hydro-
static waves in LMW?2, the flux at higher levels grad-
ually converges towards the analytical value with time
and reaches 95% at the height of one vertical wave-
length (~6.4 km) by 7" = 40. A similar convergence
rate and accuracy were reported by DK83 in their tests
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with a compressible mountain wave model. The flux
at lower levels is within 99% of the analytical value. A
time dependent evolution of the momentum profiles
is given analytically by Klemp and Lilly (1980), which
have similar shapes to our profiles except the model
solution develops somewhat more slowly. The profiles
of momentum flux for the nonhydrostatic waves in
LMW1 (Fig. 4a) show a similar convergence rate, but
the magnitude is about 0.8 of the hydrostatic flux. This
agrees with analytical prediction well (see, e.g., Fig. 3
of KD83 for Na/U = 2).

If the vertical acceleration term is dropped from the
vertical momentum equation, the equation set reduces
to the usual hydrostatic system and can then be solved
in a standard way (e.g., as in Anthes and Warner 1978).
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F1G. 4. The profiles of the vertical flux of horizontal momentum transported by (a) nonhydrostatic mountain waves in experiment
LMW1 and (b) hydrostatic waves in LMW2, at ND-time 7 = 10 through 50. The fluxes are normalized by the analytical flux for
linear hydrostatic waves, which is shown in bold line.
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®' is obtained from the hydrostatic relation and o is
diagnosed from the continuity equation. A 3-s time
step is required for a hydrostatic model version run of
L.MW?2, this is because now the shortest external gravity
waves are hydrostatic. The solution appears essentially
the same as that from LMW?2. However, when the hy-
drostatic version of the model is used to solve for wave
solution over a narrow ridge (¢ = 2 km) as in LMW1,
the obtained waves are rendered hydrostatic so that
they are similar to those in LMW?2 instead of those in
LMW!1. Figure 5 shows the profiles of vertical flux of
momentum in this experiment, the magnitude of flux
is now very close to the hydrostatic value. Clearly the
nonhydrostatic nature of waves on this scale is com-
pletely distorted.

All the foregoing experiments are nearly linear,
which constitute only a weak test on the model in terms
of the lower boundary forcing. The comparison of the
nonlinear model solutions with known analytical so-
lutions would be a more rigorous test. Long (1953)
showed that for constant mean flow speed and static
stability, the steady-state equation of motion become
linear with nonlinear boundary conditions and may
be solved for vertically propagating waves (e.g., Lilly
and Klemp 1979; Laprise and Peltier 1989¢). Since
our model does not make the Boussinesq approxi-
mation, only qualitative comparison can be made with
Long’s solution; however, a quantitative comparison
can be made of the vertical momentum fluxes.

NLMWI1 and NLMW?2 are two experiments corre-
sponding to LMW1 and LMW2, except that the
mountains are of finite amplitude. Figures 6 and 7 show
the solution from NLMW 1 and NLMW?2, respectively,
for a 500-m height ridge. In both cases, the wave mag-
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FIG. 5. The profiles of the vertical flux of horizontal momentum
transferred by the mountain waves over a narrow ridge (@ = 2 km)
as in LMW1 but obtained using the hydrostatic version of the nu-
merical model. The flux profiles appear very similar to those in LMW2
instead of LMW 1, the nonhydrostatic effects are lost.
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FI1G. 6. As in Fig. 1 but are solutions from NLMW 1, in which the
mountain is of finite amplitude (500 m). The files are shown at T
= 40, since the initial flow is set up over a T = 5 time period. The
isentrope field shows that the flow near the lower boundary is better
treated in this true nonlinear run.

nitude is larger than that obtained by amplifying linear
solutions (see Figs. | and 2). This is consistent with
the analytical result that linear boundary condition
underestimates the true mountain height (Lilly and
Klemp 1979).

The momentum flux transported by nonlinear
mountain waves, as given in Eq. (4.4), is a factor of 1
+ 7i6(hm/1)? greater than the linear value. For
NLMW?2, this factor is approximately 1.1. Figure 8b
shows the profiles of vertical momentum fluxes from
NLMW?2, as scaled by the linear hydrostatic value given
in Eq. (4.5). The fluxes are obtained by first interpo-
lating the local flux to a constant height level then in-
tegrating horizontally according to Eq. (4.2). In
NLMW]1 and NLMW?2, the flow is gradually acceler-
ated to its full speed over a period of T = § since the
shock model startup used earlier tends to produce high-
frequency oscillations initially in the surface pressure
drag. The profiles of momentum flux for these two
cases are shown in Fig. 8. Figure 8b shows that the flux
in NLMW?2 overshoots at the low levels at around T
= 10 (the maximum is at 7 =~ 9), which may be at-
tributed to the initiating procedure. By 7" = 20 the



1178

10.0

Mins -1.80 Max= 1.60 Interval= 0.200
T v

T
80 3
£ o0 ~eeld
£
=
=
@
T o .
20 -
]
00 Z= J
50 100
W (mss) Ura= 40
Min=252 00 Max«358 00 Intorvaie 4 000
100 T M T
L(b) =
80
e
£
E W
o
3
I e ————
0 E—
00 !
50 00 s0 0o
Pot. Tem. Xa Wia= 40

F1G. 7. As in Fig. 2 but are solutions from NLMW?2, in which the
mountain is of finite amplitude (500 m). The fields are shown at T
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magnitude of the flux is close to 1.1 over the one wave-
length depth. The flux is roughly constant with height
at later times, but a tendency to drift away from the
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predicted 1.1 is seen from 7 = 50. The trend of drifting
is dependent on the height of absorbing layer and is
believed to be related to the imperfect radiative upper
boundary conditions. A similar phenomenon of drift-
ing was also found by KD83 when they were testing
their radiative upper boundary condition. The profiles
of momentum flux for nonlinear, nonhydrostatic waves
in NLMW1 are shown in Fig. 8a. The flux is nearly
constant with height after 7" = 30. Although there are
oscillations in the magnitude of these fluxes, overall
they are higher than the linear values (c.f. Fig. 4a) but
Iower than the corresponding hydrostatic ones.

We conclude therefore that in the experiments with
dry mountain waves over a mountain ridge of different
heights and horizontal scales, the model using new
nonhydrostatic s-coordinate equations is successful in
producing reasonably accurate solutions.

b. Simulation of the 11 January 1972 Boulder severe
downslope windstorm

Severe downslope windstorm has been subject to ex-
tensive studies in recent literature, especially after the
well-documented event of 11 January 1972 that oc-
curred over the Continental Divide of the Rocky Range
(Lilly and Zipser 1972; Lilly 1978). On that day
Boulder Colorado experienced one of its most severe
downslope windstorms with surface winds gusting as
high as 55 m s,

Many studies have been carried out on this particular
event. An early study of Klemp and Lilly (1975) based
on linear analyses showed that the vertical structure of
the atmosphere has a strong influence on the wave am-
plitude on the lee slope. A strong wind was obtained
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FIG. 8. The profiles of the vertical flux of horizontal momentum transported by finite amplitude (a) nonhydrostatic mountain
waves in experiment NLMW 1 and (b) hydrostatic waves in NLMW?2, at ND-time 10 through 50. The fluxes are normalized by the
analytical flux for linear hydrostatic waves. The fluxes are higher than the corresponding linear model results shown in Fig. 4.
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in a nonlinear numerical simulation of the Boulder
event in Klemp and Lilly (1978) using an isentropic
coordinate model. Peltier and Clark (1979, PC79 here-
after) studied the same event using a 2D nonhydro-
static numerical model in terrain-following z coordi-
nates and obtained a state that appeared very close to
the observed one. In this case strong downslope winds
develop after the topographically forced waves break
near the tropopause, after this time, the surface pressure
drag increases rapidly. Based on linear concept, PC79
proposed a mechanism that leads to the amplification
after wavebreaking-——the well-mixed region of wave-
breaking is to act as a self-induced critical level that
reflects waves incident onto it from below, forming a
cavity between it and the ground in which wave dis-
turbances amplify by wave resonance. Peltier and Clark
(1983) showed for uniform flow and constant strati-
fication case that wave energy is indeed confined to
levels below the wave breaking region. The mechanism
of PC79 is further supported by most recent studies of
Laprise and Peltier (1989a, 1989b, LP89a,b hereafter).
A stability analysis of the nonlinear steady state solution
to Long’s model is carried out (LP89a). An unstable
deep resonant mode is found that is trapped in the
cavity between the ground and the level of maximum
streamline overturning; this mode extracts its energy
from the mean sheared flow. This finding is also con-
firmed by the transient analysis of nonlinear solutions
of numerical model (LP89b). Therefore, at least ini-
tially this unstable mode is responsible for the wave
amplification below the wave breaking layer that leads
to the onset of strong downslope winds.

Along a different line, Smith (1985) exploited the
mechanism that views the severe downslope winds as
an internal wave analogue of the hydraulic jump in a
flow with a free surface over an obstacle. Under certain
parameter setting, the steady-state solution to Long’s
equation is obtained, an assumed free surface between
a stagnant well-mixed region and the flow underneath
deflects downwards, and the flow undergoes a transition
from a subcritical to a supercritical state. With a set of
properly chosen parameters, the obtained transitional
flow is qualitatively similar to the Boulder storm ob-
servation. Durran (1986) further exploited the hy-
draulic analogue in a continuously stratified flow and
showed that the flow transition can occur in the pres-
ence of an interface between layers of different static
stability. In the Boulder case, a stable layer at the low
level is responsible for the inijtial low-level flow accel-
eration, which in turn forces the waves at the tropo-
pause to break. After the wave breaking, an interface
is created between the well-mixed neutral stability layer
and the stable layer below, and this interface is anal-
ogous to the free surface of a hydraulic flow. With en-
ergy confined below this interface, the flow beneath
undergoes a transition from a subcritical state to a su-
percritical state, producing strong wind on the lee slope.
However, there are certain limitations in this theory—
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the theory itself does not predict the formation of the
assumed interface, neither does it present a physical
picture of the transition from an internal wave-domi-
nated state to a state that resembles the hydraulic jump
type of flow.

In the following a simulation the Boulder storm us-
ing our model is presented. The simulation is carried
out for a longer time than those reported by previous
authors (e.g., PC79; and Durran 1986), although most
recently Scinocca and Peltier (1989, SP89 hereafter)
also performed a series of extended period simulations.
While the amplification after the wave breaking can
be explained by PC79 and LP8%a’s resonant growth
mechanism, the ultimate state of flow is very similar
to that given by the hydraulic theory (Smith 1985),
suggesting the validity of this theory in the fully non-
linear limit. The comparison with other model’s sim-
ulations also serves as the model verification in the
severe nonlinear regime.

The profiles of upstream potential temperature and
wind speed are plotted in Fig. 9. The atmospheric
structure has an unusually strong upper-tropospheric
jetand a relatively weak static stability except in a shal-
low layer just above the mountain peak. Figure 9d
shows, except in the shallow stable layer, a rapid de-
crease in the Scorer parameter from the ground level
upwards to much smaller values above 4-km height.
Short waves are therefore expected to be trapped at low
levels to form lee waves. For longer hydrostatic moun-
tain waves there will be a three-quarter wavelength
phase shift across the depth of troposphere so that the
first overturning of isentropes is expected to be at the
tropopause (PC79).

The control simulation of the Boulder severe wind-
storm uses 193 points in horizontal with grid length
Ax = 1 km, and 41 levels in the vertical with py,r (2
= () = 850 hPa and p,,, = 30 hPa. The time step At
is 4 s. Following previous investigators, a symmetric
bell-shaped mountain (2(x) = h,,/[1 + (x/a)?]) with
half-width ¢ = 10 km is used and is located at the
center of the model domain. The mountain height 4,
is 2 km. The top of the model domain is about 22 km
above the ground level, from which a sponge layer ex-
tends down to 15-km height. Rayleigh type damping
is employed, with the shortest e-folding time of damp-
ing being 5 min at the top of the domain. A full for-
mulation of turbulence mixing with the deformation
and Richardson number dependent mixing coefficients
is used, and the eddy Prantl number Pr = K,,,/Ky = 1
is assumed. A weak constant background diffusion is
included to remove numerical noise and it operates
only on the deviations from the initial state. A coeffi-
cient Kz = 200 m? s™! is used for the control run,
with other values being used in sensitivity experiments
where only slight changes in the timing of the wave
development are found. On the lateral boundaries, the
radiative conditions described in section 3 are used.
The initial temperature and wind fields are only height
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FIG. 9. The upstream potential temperature (a) and wind (b) profiles for the 11 January 1972 Boulder windstorm.
In (¢) and (d) are respectively the Brunt-Viisila frequency and the Scorer parameter squared corresponding to

the given sounding.

dependent and the flow is allowed to evolve from this
state. Qur model configuration for these experiments
are similar to that in PC79 and Durran (1986).

The model integral is extended to over 7 h when the
waves in the entire troposphere are amplified to a max-
imum intensity. The time evolution of the surface
pressure drag as defined by Eq. (4.3) is plotted in Fig.
10, together with the linear analytical value shown in
dashed line. The drag curve is smoothed in time there-
fore fast transients are removed. The time evolution
of the surface pressure drag reported by PC79 (dashed
line) and by DK83 (solid line) are reproduced in Fig.
11. It can be seen that the magnitude of drag obtained
in these three different simulations agree fairly well
within the early period when results are all available.
During the period that follows, the surface drag triples
again, becoming an order of magnitude greater than
the linear prediction (3.8 X 10° kg s~2 versus 3.04 X 10°
kg s72). A similar result is also found by SP89 in their

extended period simulations. Shown in Fig. 12 are the
isentrope fields and in Fig. 13 the horizontal and ver-
tical velocity fields at selected times. Only part of the
model domain is displayed.

During the initial 1.5 h, the tropospheric flow, in
response to the presence of mountain ridge, develops
a deep wave pattern that indicates isentrope overturn-
ing at the tropopause (Fig. 12b). The height of over-
turning level agrees well with the linear prediction of
PC79. The low-level flow response is very strong even
before the tropopause wavebreaking occurs and the
surface wave drag is already three times that of linear
prediction, nonlinearity clearly plays an important role
even in this early stage. In our model simulation, the
isentrope overturning is first seen at 1.5 h at the tro-
popause (figures not shown). As this occurs, the wave
breaks and a well-mixed region of air is created that,
as is argued in PC79, acts to reflect wave energy from
below. LP89a showed the unstable resonant mode ex-



MAY 1991
4
3
&
\
[}
o
~
w
2 2
X
Q
i
1
o i 1 n 1 i I n 1 1 1 1 i 2
0 60 120 180 240 300 360 420
Time(min)

FIG. 10. The time evolution of surface pressure drag (X10° kg s?)
from the our model simulation of the Boulder windstorm.

i1sting between the ground, and the mixed layer is, at
least immediately after the overturning, responsible for
the downslope flow amplification. Our isentrope field
at 2.5 h (Fig. 12¢) is very similar to that at the ending
time of PC79. After 2.5 h, the downslope flow continues
to accelerate, while the flow originating at the tropo-
pause deflects further downwards, forming a progres-
sively larger well-mixed region (Fig. 12e,f). After this
time when an interface between the well-mixed layer
and the flow below is formed, the hydraulic theory can
be invoked to explain the nonlinear behavior of the
downslope flow. The downslope flow (Fig. 12b) is rel-
atively weak at 2 h. This follows the onset of wave
breaking and reflects the transition from a regime
dominated by low-level flow acceleration into the one
in which the entire tropospheric flow behaves like a
hydraulic jump. The surface wave drag curve (Fig. 10)
displays a dip near 4 h, and this may be caused by the
onset of a secondary wave breaking at the tropopause
(Fig. 12d). Relating to this breaking, secondary reso-
nant mode forms and interacts with the primary one
s0 as to change the resultant wave drag on the mountain
surface. The secondary wave breaking is also evident
in the simulation of SP89 (see Fig. 7c of the paper)
though not as pronounced. This difference may be
partly due to the reflection from the top boundary,
however, changing the magnitude of damping and the
height of the sponge layer did not show great sensitivity.
Further tests may be needed that involve raising the
height of the top boundary and increasing the resolu-
tion at the upper levels in this s-coordinate model.
Figure 13 shows that the horizontal flow speed along
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the downslope is as high as 72 m s™! at 7 h. Though it
is higher than the observed value (55 ms™'), it indicates
the possibility of such a strong wind given the envi-
ronmental condition. In the real situation, surface fric-
tion should have limited the maximum surface wind,
and the upstream condition may not have been main-
tained long enough for the flow to fully develop. The
final simulated flow pattern is very similar to the ob-
served one (Lilly 1978). Compared with the simula-
tions of earlier studies (e.g., PC79 and Durran 1986),
the deep trapped wave modes to the lee of the mountain
are more prominent in our solution, these modes are
related to the successive wave breaking regions at the
tropopause and are similar in nature to the resonant
mode found by LP89a.

Given the current model configuration, our model
simulation did not reach a final state of saturation as
in SP89. To obtain such a final state, a large model
domain of the order of 360 X 50 km? with a mesh size
of 720 X 144 was found necessary by SP89. The very
large horizontal domain was required to minimize the
upstream influence, while in the vertical a deep
smoothly changing absorbing layer was needed to
minimize downward reflection. However, given the
domain size used in the current simulation, the model
is delivering a solution that is very realistic in com-
parison with both the observation and the results from
other different types of models. This is a major point
we intend to demonstrate here.

A number of sensitivity experiments were also car-
ried out. They include increasing the spatial resolution,
decreasing the integration time step, repositioning the
lateral boundaries relative to the mountain, altering
the top boundary pressure level and reducing the back-
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FIG. 11. The time evolution of surface pressure drag obtained by
PC79 (dashed line) and by Durran and Klemp (1983) (solid line)
in their simulations of the Boulder windstorm (reproduced from
DK83).
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FIG. 13. The fields of horizontal velocity (left panel) and vertical velocity (right panel)
from the Boulder windstorm simulation using the s-coordinate model.

ground diffusion, but none of these was found to pro-
duce fundamental changes to the overall time evolution
of the windstorm, though the timing of the develop-
ment varies slightly. These results lead us to a conclu-
sion that the development of the severe downslope wind
in our model is deterministic given the upstream
sounding, and the development mechanisms are well
understood.

5. Conclusions

A nonhydrostatic mesoscale model is developed that
makes the first practical use of the nonhydrostatic o-
coordinate equations devised by MW84. The procedure

of integration is similar to that used for the anelastic
terrain-following height-coordinate equations, in the
sense that an elliptic equation is solved for the geo-
potential height. The multidimensional flux-corrected
transport (FCT) scheme of Zalesak (1979) is imple-
mented in the model to advect the potential temper-
ature and water quantities, although its superiority over
conventional schemes is not demonstrated in this pa-
per. Here, the numerical model is verified against the
linear and nonlinear analytical solutions of dry moun-
tain waves, and an accuracy comparable to those of
other established models is demonstrated. The model
is also used to simulate the 11 January 1972 Boulder
severe downslope wind storm and the results agree well
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with current understanding and recent findings on this
problem. The results of model simulations also confirm
the validity of the equation system as suggested by
MW284, and also its potential for mesoscale modeling.
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APPENDIX
The Right-Hand Side of Elliptic Eq. (3.10).

0
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