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SUMMARY

An earlier two-fluid model of an idealized density-current in low-level shear is extended to include variable
upper-level shear. Far-field solutions are determined, based on the conservation of mass, momentum and vorticity,
and the conservation of Bernoulli function (energy) along streamlines for inviscid flows. It is found that the upper-
level and low-level shears play similar roles in controlling the depth of steady-state density-currents. In most
cases, large positive upper-level shear supports a deeper density-current and steeper front, and therefore a stronger
updraught. It is also found that when the low-level shear is weak and upper-level shear occupies about half the
domain depth, larger positive shear can result in a shallower rather than a deeper density-current. This behaviour
was not found for either constant shear flow or flows with only low-level shear. The behaviour is understood by
examining the flow structure and flow-force components as a function of the upper-level shear. Furthermore, by
allowing the upper-level shear to vary, an overturning flow is permitted ahead of the density current. This was not
possible in the earlier model in which the upper-level flow was assumed to be constant. The present extension
allows us to draw closer analogues between the model solutions and the circulation patterns found in typical
squall-lines in sheared enviromnents.

Time-dependent numerical experiments are conducted for a range of upper- and low-level shears. The depth
and the propagation speed of simulated density-currents are found to agree very well with predictions by the
idealized theoretical model. This verifies the validity of the theoretical model. In addition, numerical experiments
with identically zero low-level shear but differing upper-level shears suggest that the deeper shear is as important
as the low-level shear in determining the uprightness of the upward branch of inflow. In fact, the presence of
positive low-level inflow shear may not be essential. Such results are also supported by the theoretical model, and
may have important implications for our understanding of squall-line dynamics.
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1. INTRODUCTION

It is commonly accepted that the interaction between environmental shear and the
cold pool of a thunderstorm oﬁ;ﬂow (density current) may play an important role in
producing long-lived squall-lines (Moncrieff 1978, 1992; Thorpe et al. 1982 [called
from here on TMMS82]; Xu and Chang 1987; Rotunno er al. 1988 [RKW88]; Fovell
and Ogura 1988; Xue 1990). Density currents also occur in the atmosphere in other
forms, such as sea-breeze fronts (e.g. Simpson et al. 1977) and those associated with
cold frontal rain-bands (e.g. Carbone 1982). Detailed observational studies have also
revealed the importance of density-current-type sea-breeze and cold-outflow fronts in
the initiation and organization of convection (e.g. Weckworth and Wakimoto 1992;
Atkins er al. 1995).

To improve our understanding of the interaction between density currents and their
environment, simple nonlinear, two-fluid steady-state models were developed by Xu
(1992) [X921, Xu and Moncrieff (1994) [XM94], and Liu and Moncrieff (1996a). These
models include four more elements than the classic inviscid density-current theory of
Benjamin (1968), namely constant environmental shear, internal cold-pool circulation,
negative-vorticity generation associated with energy loss along the interfacial layer
between the density current and its environment, and density stratification and latent
heating. These idealized models show, through mathematical analyses, how the depth,
propagation speed and shape of the density current are controlled or influenced by the
environmental shear and cold-pool strength.
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Laboratory experiments (e.g. Simpson 1969), observations (e.g. Wakimoto, 1982;
Mueller and Carbone 1987) and numerical simulations (e.g. Droegemeier and
Wilhelmson 1987) all indicate that Kelvin—-Helmholtz (KH) waves and turbulent mix-
ing often develop along the density-current interface. Therefore, one may question to
what extent the idealized models of inviscid flows are valid for more realistic situations,
where transient turbulent eddies are allowed to develop. Xu et al. (1996) [XXD96] an-
swered this question, at least partially, using carefully designed numerical experiments.
The head-depth and propagation speed of the simulated density-currents in constant
shear flows were found to agree very well with theoretical predictions, and a reduced
current-depth was found to the rear of the current head where active turbulence ex-
isted. The dependence of the density-current depth on the environmental shear was also
examined numerically by Chen (1995) and Liu and Moncrieff (1996b). Their results
support the theoretical results of X92, XM94 and Liu and Moncrieff (1996a) in gen-
eral.

Xue et al. (1997) [XXD97] extended X92’s theoretical density-current model for a
constant shear flow to one in which the inflow shear is confined to the lower levels (see
their Fig. 1) while the inflow above is uniform. Such a configuration possesses greater
relevance to squall-line models in which strong environtgental shear is often confined to
the lowest few kilometres of the troposphere (TMM82; RKW88).

XXD97 found that a low-level shear controls the depth of a steady-state density-
current in much the same way as a uniform vertical shear. When the shear enhances
the low-level flow against the density-current propagation (shear vector pointing in the
direction of propagation), the current is deeper than half of the domain depth. They
conducted time-dependent numerical experiments or a variety of parameter settings,
including various depths and strengths of the shear layer; the results confirm the
theoretical analyses.

There are, however, a few important limitations in XXD97’s model for low-level
constant shears. As discussed in subsection 2(b) of their paper, for large positive
(assuming the current propagates in the positive x direction) values of low-level inflow
shear, solution ceases to exist as the shear depth approaches the domain depth, so that
the limiting solution for a uniform shear in the entire depth can not be reached. In fact,
some solution curves terminate in the middle of the figure for large positive and deep
low-level shear. This behaviour stems from the upper-level flow having zero shear. To
ensure the velocity continuity across the interface between the lower and upper layers,
the upper-level flow has to have the same sign as the low-level flow, i.e. no flow reversal
is allowed at the upstream boundary. This is not true, however, for the model of uniform
shear, where flow reversal is permitted.

XXD97 hypothesized that upper-level flow reversal at the upstream boundary was
possible only when the upper-level flow had non-zero shear. It should be possible to
obtain steady-state far-field solution for a flow containing two shear-layers, and the
solution should lie between the solutions from the constant shear and the low-level
shear case. It is the purpose of the present paper to show that this hypothesis is indeed
true.

In the following, we shall first develop a theoretical model of density currents in a
two-layer shear flow. The far-field solutions away from the density-current head are
obtained by applying the conservation laws of mass, momentum and vorticity and
the conservation of Bernoulli function (energy) along streamlines, just as X92 and
XXD97 did for constant and low-level shear. The theoretical results are supported by
numerical experiments in sections 3 and 4. Discussions and conclusions are given in
section 5.
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Figure 1. Schematic of the steady-state model of a density-current circulation in an environmental flow with
two layers of constant shear. The remote system-relative inflow and outflow are indicated by uxo(z) and u_ 50 (2)
respectively, and 4 is the depth of the density current. Other variables are defined in the text.

2. DENSITY CURRENT IN A TWO-LAYER SHEAR-FLOW

(@) Flow configuration and scaling

Consider an idealized steady-state density-current propagating in an environmental
flow with two constant-shear layers. The model is illustrated in Fig. 1. It has one more
control parameter than the constant low-level-shear model of XXD97: the magnitude of
the upper-level shear, S.

The independent and dependent variables in this model are nondimensionalized
using the scaling

(x,2) < (x, 2)/H, (u, w) < (u, w)/U, p' < p'/(poU?, ey

where the variables on the left-hand side of the arrows are nondimensional.

In (1), x and z are the horizéntal and vertical co-ordinates, u and w are the horizontal
and vertical velocities, respectively, H is the depth of the domain bounded by two
rigid boundaries, U = (g H Ap/po)'/? is the velocity scale, g is the acceleration under
gravity; Ap = p; — po is the density difference between the denser fluid inside the
cold pool p; and the lighter fluid outside pg, and p’ = P — Py is the perturbation
pressure, which is the difference between total pressure P and reference pressure Pjp.
The reference pressure Py is the unperturbed pressure in the upstream inflow associated
with constant density pg, where pg satisfies the hydrostatic relation Py = goo(H — z).

In the following subsections, steady-state far-field solutions are sought for this flow
configuration. The results will show how the propagation speed and cold-pool depth
depend on the inflow shear. The local structure of the front will also be briefly discussed.

(b) Model for far-field solutions

In Fig. 1, the shaded area indicates the cold pool of an idealized density-current.
Viewed in a framework moving with the density-current front, the low-level environ-
mental flow moves towards the head from the right (upstream). The shaded area rep-
resents a semi-infinitely long cold-pool with zero internal circulation. The flow outside
the cold pool is separated into two layers, each with a constant vorticity. This constant
vorticity dictates that the horizontal flow far down stream has the same shear as that far
upstream in both the upper and lower layer.
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According to Fig. 1, the inflow profile (horizontal wind speed) is

—co+adop+ B(z—dy) fordy<z<1
UookZ) = (2)
—cg+ ady + a(z —dy) for0 < z<dp.

The outflow profile is given by

3)
—ci+adi+a(z—h—dy) forh<z<h+d.

—c14+adi+B(z—h—d)) forh+d <z<1
U_oo(2) = {
Here, « and B are, respectively, the constant lower- and upper-level shears of the
environmental inflow. The quantity dy (0 < dp < 1) is the depth of the lower layer far
upstream and cg (>0) the constant inflow speed (absolute value) at the lower boundary.
The depth d is that of the lower shear-layer above the cold pool far downstream, and
c¢1 (>0) is the speed of outflow atop the cold pool. Finally, & (0 < h < 1) is the depth of
the density-current head.
It can be seen from (2) and (3) that the flow is fquy described by a set of seven
nondimensional control parameters .

{a, B, do, co, di, c1, h} 4

whose definitions are given above.

Following the discussion by Benjamin (1968), the remote system-relative environ-
mental inflow and outflow are constrained by mass continuity, vorticity conservation,
and flow-force balance and the conservation of Bernoulli energy along streamlines. It
can be shown that only three of the seven parameters in (4) are independent, and physical
solutions can be found given any three of them. In the present paper, we shall discuss
only the cases where the shears of inflow (@ and §) and the height of the inflow-layer
interface (dy) are prescribed. The ground-level inflow speed (cp), the depth of density
current (h), and the outflow speed (c1) and layer depth (d;) will be determined by the
theoretical model.

Mass continuity requires that the inflow mass flux equal the outflow mass flux, for
each of the two shear layers. Using the u profiles in (2) and (3), we can obtain the
following two mass-continuity constraints for the lower and upper layers, respectively:

do(co — adp/2) = di(c1 — ady/2), &)
and

(1 —do){co — ado — (1 —do)B/2} = (1 —di — W){c1 —ady — (1 —dy — h),B/Z}-(é)

Furthermore, for a steady-state flow, the Bernoulli energy (p’ + v?/2) is constant
along a streamline. Applying this theorem along the interfacial streamline from the
frontal nose B to the downstream point D, and along the lower boundary from B to
C, noting that the flow speed is zero at B (stagnation point) and C (no flow inside the
cold pool), and making use of the hydrostatic equation between D and C (see XXD97
for more details), we obtain another constraint among the control parameters

c1 = V2h. )
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Integrating the steady-state horizontal-momentum equation over the entire domain
and making use of mass continuity, as did XXD97, we obtain the flow-force (pressure—
momentum force integral, see Benjamin 1968) balance

i ]
f (P, +ul) dz = f (P o + Uy dz. (8)
0 0

By applying the Bernoulli theorem again along the lower boundary streamline through
point A and point B, one can obtain

Pl =ph+ci/2=c5/2 9)
where we have assumed p), =0. Given that Ape, =0, we have, according to the
hydrostatic relation dp’/dz = 0:

Poo(@) = pa=0. (10)

On the outflow boundary, p’ is again obtained by integrating the hydrostatic relation
vertically, making use of (9)

, 32—z forO<z<h
P_oo(2) = 5 (1)
c0/2—h forh<z< 1.

Substituting velocity profiles in (2) and (3) and pressure profiles in (10) and (11) into
(8), we obtain the flow-force balance constraint

—(co — ado)® + 2(c1 — ad))* (1 — h)
— 2 — bk + 2ct — ady)d2a — {d3(2do — 3) — 2d}}a/3
— 2(c; — ady)(1 —di — h)*B + 2(co — ado)(1 — do)(doar + B — dop)

+2(do — dy — ){d3 —2do+ (3 —do)(1 —di —h) + (di + n)?182%/3 = 0.
(12)

Now we have four constraints, given in (5), (6), (7) and (12), for seven control parame-
ters, only three of which are free.-We now eliminate co among (5) and (6) and obtain

N
2e1{dy — do(1 — h)} = {d? — d + d} — dod\(2 — di — 2h)}ex
—do(do — di — h)(2 — do —d1 — B)B,
which can be re-written as a quadratic equation in dj

Ayd? + Aydy + Ag=0 (13a)
where
Ay ={a +dola — B)}/2, (13b)
A1 = —cy — ado(l — h) + Bdo(1 — h), (13c)
Ao =dof2c1(1 — h) +do(a — B)(1 —do) — B(do — 2h + h?)}/2. (13d)

It can be verified that when B = 0, the above equation reduces to that for the low-level
shear case discussed by XXD97.

We seek to find sets of the seven parameters that satisfy all four constraints. Since
we are most interested in how the environmental flow profile affects the density current,
including its depth and propagation speed, we choose to specify the three parameters «,
B and dy, that define the upstream flow profile. Note that these three parameters define
only the shape of the profile. The speed, represented by co, remains to be determined.
We seek the solutions of the other four parameters numerically. The procedure is as
follows. For given values of «, 8 and dp, (1 > dp > 0), we solve for (cg, c1, h, d1):
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1. loop over all physical values of h (1 > h > 0);
2. compute ¢y from (7);
3. solve for dy from (13a-d):

dix =—0.5A1/A2 £ 0.5(A% — 44240)'/%/ A, (14)

and keep only root(s) in the range 1 — h > d) = 0;
4. check to see if (2) is satisfied;
5. finally obtain ¢g from either (5) or (6).

(¢) Far-field solutions

This procedure gives only one set of physical solutions that satisfies the four
constraints. It corresponds to the second root of d; (d;—) in (14) and reduces, in the limit
of constant inflow (¢ = B = 0), to the energy-conserving solution of Benjamin (1968),
to that of X92 in the limit of constant inflow shear (¢ = B # 0), and to the solution of
XXD97 when only the low-level shear is non-zero (@ # 0, B = 0). Selected solutions
are plotted in Figs. 2, 3 and 4. N

In Fig. 2, the cold-pool depth A and the ground- level (density-current) front-relative
inflow speed ¢ are plotted against the low-level inflow shear « for the values of depth
dp ranging between 0.1 and 0.9 and for a fixed value of 8 = —0.5. Figure 3 shows the
same parameters, except that 8 = +0.5, and Fig. 4 shows how the density-current depth
h varies with B for the various values of dy and two different values of .

Figures 2(a) and 3(a) correspond to Fig. 2 of XXD97 and Figs. 2(b) and 3(b)
correspond to Fig. 3 of that paper where 8 = 0. (Note that co there is defined as the
upper-level rather than the surface flow speed.) The dependency of the density-current
depth and propagation speed on the low-level shear is in general agreement with both the
uniform shear and the low-level shear cases discussed in X92 and XXD97. The density
current becomes deeper and propagates faster relative to the surface environmental flow
as the low-level inflow shear increases from negative to positive values.

Combination of the present results with those of XXD97 shows that negative upper-
level shear (8) gives a shallower current (Fig. 2 of the present paper) than low-level shear
alone (B = 0, Figs. 2 and 3 of XXD97), and that relatively small positive upper-level
shears have the opposite effect (Fig. 3 of the present paper). For « =0 and dp = 0.2,
for example, the value of 4 increases from +0.42 when 8 = —0.5 (Fig. 2 of the present
paper), to +0.5 when 8 = 0 (Fig. 2 of XXD97) and to +0.58 when g = +0.5 (Fig. 3
of the present paper). For the second case (¢ = B = 0) the inflow is constant, and the
solution degenerates to the classic inviscid density-current solution (h = 0.5, ¢o = 0.5)
of Benjamin (1968).

Now consider Fig. 4, where & is plotted against 8 for various values of the upper-
level shear (1 —dp) and for « =1 and o =0. When o =1 (Fig. 4(2)), and B is
in the range where valid solutions may be found, 4 increases monotonically with
B for all depths of the upper-level shear, and the effect of shear is enhanced for
successively deeper depth. When o =0 (Fig. 4(b)), the relationship becomes less
simple. For intermediate values of shear depth, A begins to decrease with increasing
positive shear and a peak value of h occurs around B = 2. This behaviour is most
pronounced for intermediate values of shear depth. The non-monotonic relationship
between h and B also occurs for negative values of a (not shown), and the general
behaviour is similar to the previous example. The ground-level inflow speed cgp (not
shown), however, increases with increased upper-level shear in all cases.
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Figure 2. Variation with inflow shear « for values of lower-layer-shear depth dj in the range 0.1 to 0.9 according
to the steady-state theoretical model: (a) cold-pool depth £; (b) front-relative ground-level inflow speed cg (i.e.,
the current-propagation speed). The upper-layer shear g is negative and equal to —0.5.

The non-monotonic relationship between A and 8 for intermediate values of do and
small or negative values of o« may be understood by examining the flow structures for
different values of 8. When B is positive and large, strong overturning flow develops
upstream so that a significant portion of the inflow in the lower part of the upper shear
layer leaves via the upper-level upstream boundary. The low-level weakly-sheared flow
decelerates as it passes over the cold pool, resulting in positive pressure-anomalies (as
a result of the Bernoulli effect). The positive pressure-anomalies push down the cold
pool, resulting in shallower density-currents. A set of numerical experiments has been
conducted that confirms this behaviour.

To see when overturning occurs, consider Fig. 5 which shows the flow speed at
the upstream top boundary {—uc(z = 1)} as a function of upper-level shear B and its
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Figure 3. As Fig. 2, but with upper-level shear 8 equal to +0.5.

depth (1 — dp) for a fixed positive value of low-level shear (a = 1). For a typical value
of (1 —dyp), 0.9 say, upper-level overturning flow (—uo < 0) starts to appear in the
upstream inflow when g8 exceeds about 0.8 and the overturning is stronger for larger .
We shall see later that this agrees with the numerical results (see section 4).

So, moderately strong upper-level shear plays a role similar to that of the low-level
shear in raising the density-current head whereas negative upper-level shear reduces it.
Moreover, when the assumption of constant upper-level flow is removed, the flow at both
the top and the bottom of the upper-layer can be directed inward as well as outward at the
right boundary for certain values of « and B, so removing a limitation of the low-level
shear model of XXD97.



DENSITY CURRENTS IN SHEAR FLOWS 1309

Wwr—————

)

-5.0 -30 -1.0 1.0 3.0 5.0

0.0 4 1 N 1 i 1 " i o

Figure 4. The density-current depth 4 from the theoretical model for different depths of the upper shear layer
plotted against the upper-level shear 8: (a) for low-level shear a = 1; (b) for low-level shear @ = 0. The depth of
the upper layer (1 — dp) is labelled on the corresponding curves.

Further physical understanding of these solutions may be gained by analysing the
behaviour of flow-force balance under the conditions of mass, vorticity and Bernoulli
energy conservation, as was done by X92.

(d) Local and global structures of the front

The flow structure near the front is as important as the far-field solutions discussed
carlier. The shape of the front of a thunderstorm outflow, for instance, has a direct
influence on the vertical orientation of the low-level updraught. An upshear-tilted
updraught allows condensed water to be downloaded underneath the updraught without
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Figure 5. The flow speed —uq at the upstream top boundary (z = k) as a function of the shear B and depth
(1 — dp) of the upper-level low. Negative values of —Uco, below the pecked line, indicate outflow.

interrupting the low-level inflow, allowing long-lived squall-line-type convection to be
maintained (e.g. TMM82; RKW88).

Von Kédrman (1940) and Benjamin (1968) showed analytically that the angle at the
stagnation point between the density front and the horizontal is 60° for an idealized
inviscid density-current in a uniform (non-sheared) environmental flow with a free-
slip lower boundary condition. X92 and XM94 showed, further, that this 60° angle is
independent of the inflow shear and cold-pool circulation.

The shape of the frontal interface is determined by the continuity condition of
pressure across the interface and the solution can be obtained numerically. According
to X92 and XM94, when the positive inflow shear is very strong, the frontal interface
slope can become steeper than 60° at the mid-depth (z = h/2) location. We may expect
that these findings can be extended to the two-layer shear-flow model discussed in the
present paper.

The next section presents the results from the numerical experiments and discusses
them.

3. THE NUMERICAL MODEL AND EXPERIMENT DESIGN

(a) The numerical model

A modified version of the Advanced Regional Prediction System (ARPS) (Xue et al.
1995) is used for our numerical experiments, as it was by XXD97. It is used in its
simplest dry two-dimensional mode, with no ‘physics’. To facilitate direct comparison
of numerical results with the theoretical solutions, the Boussinesq approximation is
assumed. The base-state density pg and potential temperature 6y, are set to constant
values. At the top and bottom boundaries, rigid free-slip conditions are applied. Wave-
radiation conditions are used at the lateral boundaries. Further details were given by
XXD97.

Following XXD97, sub-grid scale turbulence parametrization is not included. In-
stead, high spatial resolution is relied upon to resolve the turbulent eddies often found
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to the rear of the current head. Only a small amount of horizontal computational mix-
ing/diffusion is applied, and on the velocity fields only. Vertical mixing is not used for
fear of affecting the vertical wind profile.

To improve the accuracy of numerical solution further, in the present paper the
monotonic flux-corrected transport (FCT) scheme of Zalesak (1979) is applied to the
advection of potential temperature field. This scheme prevents spurious extrema from
developing near sharp gradient (across the cold-pool interface) and therefore removes
the need for explicit numerical diffusion of potential temperature.

() Model scaling and initial conditions

The equations solved by the model are those for horizontal velocity u, vertical
velocity w, perturbation pressure p’ and perturbation buoyancy b in nondimensional
form, as given by XXD97 in their Eq. (3.1). The scaling parameters used by XXD97
are also used here in nondimensionalizing the model equations, viz., length scale H
(the domain depth), velocity scale U = (gHAp/po)l/z, pressure scale P = poU? =
gHAp, time scale T = H/U and buoyancy scale B =gAp/py = gAb /6. In the di-
mensional ARPS model, we choose for convenience H = 1 km, A8 =3 K, 6y = 300K,
g=10m s 2. The other derived scaling parameters are U = 10 ms~!, P = 120 Paand
T = 100 s. Since our results will be presented and discussed in nondimensional space,
the results are not limited to the applications of shallow domain.

The density current in the numerical model is generated by placing an initially static
block of cold air (b = —1) in the middle portion of an elongated computational domain
of size 40 x 1 nondimensional units consisting of 767 x 81 grid points. Therefore, the
grid spacings are Ax = 0.05 and Az = 0.0125 in the horizontal and vertical directions
respectively. This domain is long enough for the upstream boundary flow to remain
undisturbed throughout the integration period, while disturbances that reach the down-
stream boundary can propagate freely out of the domain. The cold pool thus specified is,
in most cases, able to supply sufficient cold air for achieving and maintaining a quasi-
steady density-current. The initial shape of the cold pool is that specified by XXD97 (cf.
their Eq. (3.3)). The interface has aslope of 60° at the frontal nose.

The initial flow at the far upstream and downstream boundaries is specified accord-
ing to (2) and (3). This automatically ensures the flow-force balance between the two
boundaries at the initial time. The upstream shears « and 8 and the lower-layer depth dy
are specified as the control parameters. The corresponding density-current depth 4 and
the ground-level inflow speed cq for a steady-state current can be found from Figs. 2, 3
and 4.

The initial flow in the interior is obtained by solving a vorticity equation numerically.
Because the vorticity distribution depends on the solution of the stream function, the
right-hand side of the equation is adjusted in an iterative procedure. More details of
the solution procedure were given by XXD97 and an example of the initial flow for
positive low-level and negative upper-level shear is given in Fig. 6 of the present paper,
corresponding to one of the experiments presented later.

Finally, let us specify the initial cold block to be wider than 8 nondimensional units,
so that the cold-air supply may be sufficient for a steady-state solution to evolve and be
maintained. This was discussed further by XXD97.

(¢) Experimental design

The main purpose of the present numerical experiments is to examine the validity
of the theoretical results obtained in the previous section; in particular, to see if a
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Figure 6. Initial configuration of cold pool and outside flow for @ = 1, g = —0.5, dop = 0.2 and h = 0.51. The

far-field flow satisfies the theoretical steady-state solution for the given set of parameters. The right and left

portions of the initial cold-pool have horizontal and vertical scales chosen to present a physically correct shape.

The mid-portion of the cold pool is omitted. Note that the domain is nondimensional. The x-axis origin is located

at the right frontal nose at the initial time. The horizontal- and vertical-velocity scales (w = u = 1) are shown by
the arrow at the lower left-hand corner.

A\

quasi-steady-state density-current circulation can be established in a time-dependent
numerical model, and if so, how well the numerical result agrees with the theoretical
solution. In addition, the numerical model provides a solution in the current-head region.
For these purposes, the seven experiments listed in Table 1 were carried out.

The experiments are named according to the lower and upper-level shear in the
environmental inflow. For example, experiment LIUM2 has a low-level shear « = 1 and
an upper-level shear 8 = —2. Here character M denotes the minus sign. As discussed
earlier, the interaction between density current/cold outflow and low-level shear is an
important issue for storm initiation and evolution. Consequently, all experiments assume
an inflow-layer interface that is at 0.2 of the domain depth, i.c. dy = 0.2. If the top
boundary is at the tropopause, the interface is at about 2 km. If the rigid top represents
an inversion cap of a planetary boundary-layer of 2 km deep, 0.2 represents a 400 m
low-level shear-layer, which is often present as a result of surface friction. The dp = 0.2
setting is also used in most of the experiments reported by XDD97.

In the first set of (five) experiments, the low-level shear « is +1, while the upper-
level shear B varies from +2 to —2 by increments of one. In another word, the shear
changes from being moderately strong positive to moderately strong negative. For
L1U1, the inflow has a uniform shear of one, corresponding to the situations examined
by XXD96. In L1UO, the inflow has a low-level shear only, corresponding to one of the
low-level shear cases examined by XXD97 (their experiment LS 1).

In the second set of (two) experiments, the low-level shear is set at zero while the
upper-level shear is 2 and —2, corresponding to the moderately strong positive and
negative upper-level shears in the first set. This second set allows examination of the
relative role of low-level shear in determining the head depth and the slope of the frontal
zone, and hence the orientation of the updraught at the front.

In all cases, the initial inflow profiles are set according the theoretical steady-state
model, as are the initial cold-pool depths. XXD96 and XXD97 showed that the final
quasi-steady state of the numerical solutions is independent of the initial depth of the
cold pool, as long as sufficient cold air mass is available.

The initial flow is set up using the procedure discussed earlier so that it matches the
theoretical model solution closely. The initial flow adjustment is therefore minimized
and we may expect the upstream front to remain quasi-stationary and the cold-pool
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TABLE 1. INITIAL SETTINGS AND SIMULATED PARAMETER VALUES FOR
THE NUMERICAL EXPERIMENTS

Experiment  Model specified Theoretical Model simulated
settings values values
] B do h co h co
1. L1U2 1 2 02 079 1.06 0.76 1.04
2.L1U1 1 1 0.2 0.72 0.80 0.68 0.79
3. L1UO 1 0 02 059 0.59 0.53 0.58
4. L1UM1 | | 0.2 043 0.46 0.39 0.45
5. L1UM2 1 -2 02 032 040 0.29 0.38
6. LOU2 0 2 02 072 097 0.68 0.95
7. LOUM2 0 -2 02 025 032 0.20 0.30

depth to maintain its initial height throughout the simulation. Transient activities may
be expected behind the current head because of KH instability.

To compare the simulated density-currents with the idealized model, choose the left
boundary of the control volume at a location where the flow interface becomes more
or less horizontal and KH eddies are insignificant. This choice is dictated mainly by
the constraint of the conservation of Bernoulli function which is valid only for inviscid
flows. As shown by XXD97, however, the flow-force balance is insensitive to the choice
of the control volume—the total flow-force is essentially constant for all values of x in
all numerical solutions.

4. COMPARISON OF NUMERICALLY SIMULATED DENSITY-CURRENTS WITH THEORY

All numerical simulations reported in the present paper are carried out to a non-
dimensional time T = 36. Ensemble time-averages are produced, for simulated fields
over the period T =12 to T =18 at a sampling interval of 0.5. To avoid spatial
smoothing caused by current propagation, the instantaneous fields are translated in x
before averaging, so that their frontal noses collocate with the nose at time T = 12. The
instantaneous fields at 7 = 12 and the time-averaged fields from selected experiments
will be shown. In general, the simulated flow in the head region is already rather steady

by T = 12.

(@) Cases with positive low-level shear and varying upper-level shear

The results from the first five experiments listed in Table 1 are discussed in this
section. The shear of the upper-layer varies from +2 to —2 by intervals of one. The
theoretical model predicts that the depth of the steady-state density-current (k) increases
monotonically with the increase in the upper-level shear (Fig. 4(a)). The density-current
depth is 0.32 for 8 = —2, for example, but 0.79 for § = +2 (see Table 1).

Figure 7 shows the wind vector and buoyancy fields at 7 = 12 from the five
experiments. Since the initial flows and density currents are configured to reflect the
theoretical far-field solutions, the simulated density-currents are expected to remain
quasi-stationary relative to the model grid so that the front locations remain close to
x = 0.0. This is indeed true in all five cases. Between T =0 and T = 12, in five cases,
the front retreats for distances between 0.010 and 0.019. The distance is generally larger
for shallower currents, and, therefore, the retreat faster. The retreat of the front reduces
the flow-relative propagation-speed, and the relative errors are between 1% and 4.7% for
the five experiments, with the error being largest for experiment L1UM2. The absolute
error is also largest for LIUM2 (Table 1). This seems to be due to the relatively large
frictional effect imposed on the density current by the upper-level rearward flow.
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Figure 7. Instantaneous nondimensional velocity and buoyancy (density) fields at 7 = 12 (20 minutes model

time) in a nondimensional co-ordinate for the first five experiments (see Table 1), with constant positive low-level

shear (« = 1) and five different values of upper-layer shear f: (a) LIU2, § = 2, (b) LIUL, = 1; (c) LIUO, B = O;

(d) LIUMLI, B = —1; (e) LIUM2, f = —2. The contour interval for buoyancy is 0.1. Other plotting conventions
are as in Fig. 6.
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Figure 8. Ensembles of wind and buoyancy fields averaged over the interval 7 = 12 to T = 18, for experiments

one and five (see Table 1), with constant positive low-level shear (@ = 1) and two different values of upper-layer

shear f: (a) L1U2, g =2; (b) LIUM2, f = —2. For the ensemble average, the fields are sampled at intervals

of T'=0.5, and the frontal nose is at all times shifted to the nose location at T = 12 before averaging. As in

Fig. 6, the plots are in nondimensional space. Panels (a) and (b) are the time-averaged counterparts of Fig. 7(a)
and Fig. 7(e) respectively.

Measured from the —0.5 buoyancy contours, the height of the simulated density-
current head for each of the experiments is given in Table 1. To compare the modelling
results with those of the theoretical model, the control volume is chosen between a
location upstream where the flow is little influenced by the density current and another
in the head region where the flow is more or less horizontal and the turbulent activity is
weak. The general dependency 6Pthe height on the upper-level shear is well reproduced,
and the relative errors are in the range of 4% to 11%. In all cases, the numerical model
gives a lower value for the height of the current than the theoretical value. This under-
prediction was also observed in the numerical experiments of XXD96 and XXD97, and
is believed to be caused by eddy viscosity in the simulated flows and consequent energy
loss.

Strong shear at the density-current interface causes pronounced KH billows in
the instantaneous fields. These eddies originate from the head region, where strong
baroclinicity resulting from the strong horizontal density-gradient generates positive
vorticity. However, these eddies remain small when they are advected rearward along
the interface in the head region, but grow large to the rear of the head and result in
significant density mixing. The behaviour of these eddies has been discussed in more
detail by XXD97.

The steady-state flow is better depicted by the time-averaged fields for experiments
L1U2 and LIUM2 (Fig. 8). The time-averaged shape of the current head and the
sharpness the frontal interface in the region are very close to those at instantaneous
times (Fig. 7). This again suggests that the flow in the head region is very steady. The
interface behind the head region appears diffused due to the effects of transient eddies.

In Fig. 8(a), an overturning branch exists at the upper-levels ahead of the density
current, while in Fig. 8(b), there is only one front-to-rear jump branch. The overturning
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is also seen in the instantaneous fields for experiments L1U2 and L1U1 (Fig. 7(a,b)).
As discussed in section 1, flow overturning is not permitted when the upper-level flow is
constant. It is an added and often-observed feature with the introduction of upper-level
shear, and it agrees with results from our idealized model discussed in subsection 2(c).

Figures 7 and 8 have axes which are scaled to represent the correct physical
proportions of the density current in nondimensional space. They show that the slopes
of the simulated fronts at the nose are close to 60°, in agreement with theory (X92,
XM94). Away from the surface, the slope of the front generally becomes steeper with
increasing upper-level shear. In this respect, upper-level shear and low-level shear play
similar roles.

(b) Cases with zero low-level shear

In experiments LOU2 and LOUM2 (Table 1), the low-level shear is zero while
the upper-level shears are 2 and —2, respectively. These two experiments differ from
L1U2 and L1IMU2 only in the value of low-level shear. According to the theoretical
model (Fig. 4), for the same upper-level shear, the steady-state current is deeper for
positive than for zero low-level shear (0.79 versus 0.72 for 8 =2, and 0.32 versus
0.25 for B =—2 when dy=0.2, see Table 1). These results are supported by our
numerical experiments (compare Fig. 9 with Fig. 8). Table 1 gives the simulated current-
heights and propagation speeds for these two experiments, again agreeing well with the
theoretical model.

Note, too, the considerable difference in density-current depth between LOU2 and
LOUM?2 (Fig. 9), even though, in both cases, the shear is zero in the lower 0.2H depth
where the flow interacts directly with the leading edge of the current. In LOU2, where the
upper-level shear is positive, the current head is deep and the frontal interface steep with
overturning ahead of it, whereas in LOMU?2, where the upper-level shear is negative, the
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current head is shallow and the vertical circulation at the front much weaker. This result
is important for our understanding of the role of low-level versus deeper-layer shear in
supporting long-lasting convective systems such as squall lines (TMM78; RKW88). The
presence of positive shear in the flow at the lowest levels may not be essential (although
undoubtedly helpful) in supporting deep updraughts. The speed difference between the
sub-cloud and cloud-layer flows may be more important (TMM78; Xue 1990). Such
inferences are relevant because, in mature squall-line systems (e.g. Houze et al. 1989),
the interaction between the warm upward branch of circulation (updraught) and the
potentially cold (in terms of equivalent potential temperature) downward branch (rear-
to-front flow and downdraught) should be governed by dynamics similar to those in our
density-current model.

(c) The effect of low-level shear

We saw in section 1 and subsection 4(b) that the interaction between the density
current (thunderstorm outflow) and the environmental shear is important for long-lasting
convective systems such as the squall line. It is so because, to a large extent, the cold-
pool strength and inflow shear control the strength and orientation of the updraught
forced at the frontal zone. For these reasons, consider further the vertical-velocity fields
from experiments with different upper- and low-level shear.

We have seen that the density current is deeper for larger positive low-level shear; at
the same time, the frontal slope is also steeper. Figure 10 shows that for the same positive
upper-level shear (8 = 2), the updraught is about 24% stronger when o = 1 than when
o — 0. Similar behaviour is also observed with negative upper-level shear (8 = —2 in
Fig. 11). The difference is about 42% between o = 1 and @ =0, when 8 = —2. In the
latter case, the density currents are much shallower and, so, more strongly affected by
the magnitude of the low-level shear. In short, a more vigorous and erect updraught is
favoured when the low-level shear is positive and large, irrespective of the sign of the
upper-level shear. Positive shear therefore provides strong forcing that may trigger or
sustain convection.

N
5. CONCLUSION AND DISCUSSIONS

In the present paper, the two-fluid model of idealized density-current in low-level
shear (Xue et al. 1997) has been further extended to include variable upper-level
shear. This extension gives more flexibility in the specification of inflow profiles. Far-
field solutions are determined from the conservation of mass, momentum {(flow force),
vorticity and the conservation of Bernoulli energy (function) along streamlines for
steady-state inviscid flows. It is found that the upper-level shear plays a role similar
to the low-level shear in controlling the depth of steady-state density-currents. In most
cases, larger positive upper-level shear supports deeper density-current and steeper
frontal slope. It is also found that when the low-level shear is weak and upper-level
shear occupies about half the domain depth, larger positive shear can result in shallower
density-currents (Fig. 4(b)). This behaviour was not found in earlier models for flows
with either constant shear or with shear only at low levels. Furthermore, when the upper-
level shear varies, overturning flow develops ahead of the density current. This was not
possible in the model of XXD97, in which the upper-level flow was assumed to be
constant.

Time-dependent numerical experiments are conducted for a range of upper- and
low-level shears. The depth and propagation speed of the simulated density-currents
are found to agree very well (typically to within a few per cent) with predictions by the
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idealized theoretical model in spite of the presence of transient eddies behind the current
head in the numerical simulations.

Both theoretical and numerical results show that when the shear in the lowest layer
is identically zero, the density-current depth is much greater when the upper-level shear
is positive and large. This result may have important implications for understanding
the role of low-level versus deeper layer shear in supporting long-lasting squall-lines.
The presence of positive shear in the flow at the lowest levels may not be essential in
supporting deep updraughts. The difference in the flow speeds between the sub-cloud
and cloud layers may be more important.

As pointed out in section 1, the density currents studied here are subject to the
limitation that the flow is restricted by a rigid upper boundary. Typically, the presence
of this rigid lid forces the flow above the density current to run through a narrow
channel, therefore reducing the pressure (based on Bernoulli energy-conservation) in
the region. As a result, a deep density current is supported. It is envisaged that, in the
real atmosphere, a strong inversion layer or the tropopause act to some extent like a rigid
lid in channelling the flow underneath. Indeed, a set of experiments has been completed
in which a stable layer with varying degrees of stability replaces the rigid lid. For a
stability typical of an isothermal layer, the flow solution below is only quantitatively
different from those under a rigid lid. The detailed results will be reported elsewhere.

If we do regard the rigid lid as the tropopause, the atmospheric density-current
in the form of thunderstorm outflow can almost never reach more than a third of the
tropospheric depth, because of the limitations of the vertical thermodynamic structure
and hence of the cold-air supply. The real atmospheric density-current has to be highly
turbulent. To address this issue partly, XXD97 conducted an experiment (SLSA), where
the environmental shear was strong enough to support a deep current with a steep frontal
slope while the cold air supply was insufficient for it to reach the steady-state depth.
Even though the flow was highly turbulent and the cold pool was shallow, the numerical
solution still showed a branch of deep jump-flow, with the envelope of cold air and
frontal slope more or less agreeing with the steady-state solution (see XXD97, Fig. 12).
Although, such a single numerical experiment cannot substitute for theoretical solutions
with vigorous treatment of energy loss, it provides guidance for problems in less than
idealized settings.

In addition, if one extends the definition of density currents to include any flows that
include fluids of different densities, one can regard the colder (in terms of equivalent
potential temperature in this case) rear-to-front branch of inflow in a well-established
squall-line system to be a density current. The density in the colder current does not
have to be uniform. The density difference and the dynamic-force balance, together with
Bernoulli energy-conservation along the streamlines, determine the overall solution. In
this sense, the results from our simple density-current model can be extended to explain
squall-line dynamics.
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