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ABSTRACT

Linear mountain wave theory is used to derive the general formulas of the gravity wave momentum flux

(WMF) and its vertical divergence that develop in directionally sheared flows with constant vertical shear.

Height variations of theWMF and its vertical divergence are studied for a circular bell-shapedmountain. The

results show that the magnitude of the WMF decreases with height owing to variable critical-level height for

different wave components. This leads to continuous—rather than abrupt—absorption of surface-forced

gravity waves, and the rate of absorption is largely determined by themaximum turning angle of the windwith

height. For flows turning substantially with height, the wave momentum is primarily trapped in the lower

atmosphere. Otherwise, it can be transported to the upper levels. The vertical divergence ofWMF is oriented

perpendicularly to the right (left) of the mean flow that veers (backs) with height except at the surface, where

it vanishes. First, the magnitude of the WMF divergence increases with height until reaching its peak value.

Then, it decreases toward zero above that height. The altitude of peakWMF divergence is proportional to the

surface wind speed and inversely proportional to the vertical wind shear magnitude, increasing as the max-

imum wind turning angle increases. The magnitude of the peak WMF divergence also increases with the

maximum wind turning angle, but it in general decreases as the ambient flow Richardson number increases.

Implications of the findings for treating mountain gravity waves in numerical models are discussed.

1. Introduction

Terrain-induced or mountain gravity waves are ca-

pable of vertically transporting horizontal momentum

(Bretherton 1966). Once becoming unstable, these waves

break up and deposit the momentum carried by them

onto the ambient flow. Wave–mean flow interaction is

enacted in associationwith the vertical divergenceofwave

momentum flux (WMF) (Fritts and Dunkerton 1984;

Scinocca and Sutherland 2010). It has been recognized

that gravity wave breaking plays an important role in

balancing the momentum and thermal budgets of the

atmospheric general circulation (Holton 1983; Palmer

et al. 1986; McFarlane 1987).

Momentum transport by gravity waves in unidirec-

tional flows has been studied extensively for several

decades. Gravity waves can conserve their wave or per-

turbation momentum until encountering a preexisting or

wave-induced critical level where the intrinsic wave

frequency vanishes (Eliassen and Palm 1961; Booker

and Bretherton 1967). For linear waves, the wave mo-

mentum is absorbed into a thin layer beneath the critical
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level, exerting a force on critical layer flow (Bretherton

1969; Lindzen 1981; Grubi�si�c and Smolarkiewicz 1997).

This force is known as gravity wave drag (GWD) (e.g.,

Kim et al. 2003), as it is directed in the opposite di-

rection as basic wind except in the case of anisotropic

obstacle (Phillips 1984; Teixeira and Miranda 2006).

For gravity waves generated in directional shear flows,

however, the vertical wave momentum transport differs

notably from the unidirectional flow case. The wave

momentum is continuously absorbed by the mean flow

over a range of height (Shutts andGadian 1999) because a

critical layer exists in the presence of directional wind

shear (Shutts 1995). Doyle and Jiang (2006) studied a real

mountain wave case in the southwestern Alps using ob-

servational data and numerical simulations, and confirmed

the importance of directional wind shear on the upward

propagation of mountain waves. Moreover, the vertical

divergence of theWMF was shown to be perpendicular to

the directional flow by Broad (1995). It is therefore more

appropriate to call it a ‘‘lift’’ force (Smith 1979; Lott 1999),

which acts to rotate the flow without changing its speed,

physically different from the conventional GWD that acts

to decelerate the mean flow (Fritts 1984).

Shutts (1995) studied the vertical distribution of the

WMF divergence produced in directional shear flows

using linear theory, but he only considered the situation

of backing winds of limited rotation angles. The turning

direction of the wind can have an important influence.

Martin and Lott (2007) examined the synoptic response

to the directional critical-level absorption of mountain

waves triggered in cold and warm fronts. Their results

show that a trough is produced over the mountain for

cold fronts, whereas a ridge occurs in the case of warm

fronts. Recently, Teixeira and Miranda (2009) derived

expressions for the WMF and its vertical divergence

for arbitrary directional shear flows varying relatively

slowly with height, by using the Wentzel–Kramers–

Brillouin (WKB) approximation. Height variations of

theWMF were studied by them for some idealized wind

profiles, but the WMF divergence for these profiles

was not specifically addressed. This study extends the

earlier studies by deriving general linear solutions of

the mountain gravity waves, WMF, and WMF diver-

gence for linear sheared flows of arbitrary degrees of

rotation, and discusses the specific properties of the

WMF divergence for several wind profiles with dif-

ferent shear magnitudes and degrees of rotation, and

for waves over a circular bell-shaped mountain.

The rest of this paper is organized as follows. In sec-

tion 2, the linearized wave equation is solved for flows

varying linearly with height, using exact linear theory. In

section 3, generic formulas are derived for theWMF and

its vertical divergence. The formulas are then applied to

an idealized three-dimensional (3D) circular bell-shaped

mountain. Subsequently, height variations of the WMF

and its vertical divergence are examined for six idealized

wind profiles in section 4. Further discussions and con-

clusions are given in sections 5 and 6, respectively.

2. Analytic solution of wave equations

For a steady, inviscid, nonrotating, adiabatic, and

hydrostatic Boussinesq flow, the linearized governing

equations are of the form

U
›u

›x
1V

›u

›y
1Uzw52

1

r

›p

›x
, (1)

U
›y

›x
1V

›y

›y
1Vzw52

1

r

›p

›y
, (2)

1

r

›p

›z
5 b , (3)

›u

›x
1

›y

›y
1

›w

›z
5 0, (4)

U
›b

›x
1V

›b

›y
1N2w5 0. (5)

Here, V(z) 5 [U(z), V(z)] is a horizontally homoge-

neous base-state wind with vertical wind shear Vz 5
(Uz,Vz) (the subscript denotes a partial derivative with

respect to the variable), v 5 (u, y, w) is perturbation

velocity from base velocity V, r is the constant refer-

ence density, and p is the perturbation pressure from

base-state pressure p0; b 5 gu/u0 represents the net

buoyancy force with g being the gravitational accel-

eration, u is the perturbation potential temperature

from the base-state profile u0, and N2 5 gd(lnu0)/dz is

the Brunt–Väisälä frequency squared. Note that the

base-state variables are dependent on height z, while

all the perturbation variables are functions of the po-

sition vector r 5 (x, y, z).

Eliminating all perturbation variables except for ver-

tical perturbation w from Eqs. (1)–(5) leads to a single

partial differential equation for w as shown:

›2w

›z2
1

N2=2
H 2DDzz

D2
w5 0, (6)

where D 5 U›/›x 1 V›/›y denotes the horizontal ad-

vection by the base-state wind, with $H [ (›/›x, ›/›y)

and =2
H [ ›2/›x2 1 ›2/›y2 being the horizontal gradient

and Laplace operators, respectively. Substituting the

two-dimensional (2D) Fourier transform pairs of the

vertical velocity, namely,
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w(x, y, z)5

ð1‘

2‘

ð1‘

2‘
ŵ(k, l, z) exp[i(kx1 ly)]dk dl , (7)

ŵ(k, l, z)5
1

4p2

ð1‘

2‘

ð1‘

2‘
w(x, y, z)exp[2i(kx1 ly)] dx dy,

(8)

into Eq. (6) results in the well-known Taylor–Goldstein

equation (Teixeira et al. 2004) as shown:

›2ŵ

›z2
1

N2K2 2 D̂D̂zz

D̂
2

ŵ5 0, (9)

where K 5 (k, l) is the horizontal wave vector, K 5
jKj, and D̂(z)5V(z) �K. For linear gravity waves, Eq. (9)

is subjected to free-slip condition at the bottom boundary

ŵ(k, l, 0)5 iD̂0ĥ(k, l) , (10)

where D̂0 5V0 �K and ĥ(k, l) is the 2DFourier transform

of terrain height h(x, y). Moreover, it obeys the radiation

condition aloft, so that only upward energy propagation is

allowed as z /1‘ (Booker and Bretherton 1967).

In this study, an idealized wind profile varying linearly

with height is adopted as shown:

V(z)5 (U01Uzz,V01Vzz) , (11)

whereV05 (U0,V0) is the base-state wind at the surface

(z 5 0). Using this linearly sheared wind, the curvature

effect of the wind can be a priori excluded from Eq. (9)

asVzz5 0. For convenience of calculation, the following

polar coordinates are introduced:

K5K(cosu, sinu) , (12)

V(z)5 jV(z)j[cosc(z), sinc(z)] , (13)

where c(z) is the azimuth of base-state wind at height

z. By virtue of Eqs. (10)–(13), the analytic, physically

meaningful solution of Eq. (9) can be obtained using the

Frobenius method (Booker and Bretherton 1967;

Grubi�si�c and Smolarkiewicz 1997) as shown:

ŵ(K,u,z)5 iD̂0ĥ(K,u)j12z/zcj1/21isgn[D̂
z
(z

c
)]m(u)

3exp(pH(z2zc)fisgn[D̂z(zc)]/22m(u)g) ,
(14)

where

zc(u)52
D̂0

D̂z

52
jV0j cos(c02u)

jVzj cos(x0 2u)
, (15)

m(u)5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ri/cos2(x02u)2 0:25

q
. (16)

In Eqs. (14)–(16), zc(u) is the critical-level height cor-

responding to the wave vector oriented in direction u,
satisfying the general critical-level conditionV(zc) �K 5 0;

c0 and x0 represent the direction of V0 and Vz, re-

spectively; Ri[N2/jVzj2 is the ambient flowRichardson

number and is greater than 0.25 for stably stratified

flows; sgn(�) is the sign function; andH(x) designates the

Heaviside function, which is equal to zero and unity for

negative and positive argument x, respectively.

The exponential term on the right-hand side of Eq.

(14) represents the fraction of a wave component that

can pass through its critical level, because H(z 2 zc) is

equal to unity above zc and zero below zc. The attenu-

ation of the wave amplitude is exp(2pm) on passing

through the critical level. Since transmitted waves have

to cross the critical level again from above to influence

the flow below, the double-attenuated waves can retain

at most about 0.04 of their initial amplitude at Ri as low

as 0.5 (Teixeira et al. 2005). Accordingly, wave trans-

mission through the critical level is omitted by dropping

the exponential term in Eq. (14), so that it is simplified to

ŵ(K,u, z)5 iD̂0ĥ(K,u)j12 z/zcj1/21isgn[D̂
z
(z

c
)]m(u) .

(17)

3. Formulas of wavemomentum flux and its vertical
divergence

a. General formulas

According to Lin (2007), the negative of the vertical

flux of horizontal wave momentum at the surface is

equal to the pressure force exerted on the mountain by

the airflow [see Eqs. (5.1.24) and (5.1.25) of Lin (2007)].

Following the convention, a minus sign is included in the

definition of the WMF, as in Teixeira and Miranda

(2009), to make it generally positive. Accordingly, the

WMF at the surface, written in the Fourier space [see

Eq. (16) of Teixeira et al. (2004)], is

F054p2i

ð1‘

2‘

ð1‘

2‘
(cosu, sinu)K2p̂*(z50)ĥ(K,u)dKdu ,

(18)

where the asterisk denotes a complex conjugate.

The pressure perturbation can be readily obtained by

eliminating u and y from Eqs. (1), (2), and (4) so that

p̂5 i
r

K2

�
D̂z2 D̂

›

›z

�
ŵ . (19)

Substituting the above equation and Eqs. (15)–(17) into

Eq. (18) yields
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F05 8rNp2jV0j
ð‘
0

ðp
0
(cosu, sinu) cos(u2c0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

cos2(x0 2u)

4Ri

s
jĥ(K, u)j2K2 dK du , (20)

where ŵ (K, u) 5 ŵ* (K, u 6 p) has been used.

As mentioned earlier, the WMF in directional shear

flows varies with height. Figure 1 schematically shows the

directional critical-level filtering of WMF. The WMF at

the surface comprises the contribution of all wave com-

ponents with wavenumber vectors in the azimuth range

of (c0 2 p/2, c0 1 p/2). [Note that wave components in

the range of (c0 1 p/2, c0 1 3p/2) have a contribution

equivalent to that of their conjugate.] When moving

upward from surface to z, the basic wind turns with height

fromdirectionc0 toc(z) (as covered by the hatched sector

in Fig. 1). Thewave components withwavenumber vectors

in the azimuth range of (c02 p/2, c[z]2 p/2) (blackened

sector in Fig. 1a), or (c[z] 1 p/2, c0 1 p/2) (blackened

sector in Fig. 1b), depending on whether the wind backs or

veers with height, encounter their own critical levels con-

secutively and hence are removed from the wave packet.

In consequence, the remaining WMF at z becomes

F(z)5 8rNp2jV0j
ð‘
0

ðu
U

u
L

(cosu, sinu) cos(u2c0)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

cos2(x02u)

4Ri

s
jĥj2K2 dK du , (21)

whereuL5 c(z)2p/2,uU5c01p/2 for backing winds

and uL 5 c0 2 p/2, uU 5 c(z) 1 p/2 for veering winds.

Differentiating Eq. (21) with respect to z immediately

gives the vertical divergence of the WMF as shown:

L(z)5 6

�
k3

V(z)

jV(z)j
�
8rN2p2jV0j

3
sinjc(z)2c0j

jV(z)j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

(
12

sin2[x0 2c(z)]

2Ri

)2
vuut

3

ð‘
0
K2jĥ[K, c(z)]j2dK , (22)

where k is the vertical unit vector, and the plus and

minus signs apply to backing and veering winds,

respectively. It is evident thatL(z) is only nonzero above

ground because sinjc(z) 2 c0j is trivially zero at z 5 0.

Additionally, L(z) is always perpendicular to base-state

wind vector V(z). It is directed to the left of the wind

that backs with height but to the right of veering wind. A

schematic illustration of L(z) for linearly sheared

backing and veering wind profiles is given in Fig. 2.

b. WMF and its vertical divergence for a circular
bell-shaped mountain

In theoretical studies of terrain-generated gravity

waves, three-dimensional circular bell-shaped moun-

tains are commonly used as the forcing topography

(Crapper 1959; Smith 1980; Shutts and Gadian 1999;

Teixeira et al. 2004). It is defined by

FIG. 1. Schematic diagram for continuous critical-level filtering of WMF with height, for

(a) backing winds and (b) veering winds. From the surface to height z, base-state winds rotate

from the azimuth of c0 to c(z) (hatched region); the wave components with the wavenumber

vector in the blackened sector are filtered (their wave momentum fluxes vanish).

3736 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 69



h(x, y)5 h0[11 (x/a)21 (y/a)2]23/2 , (23)

where h0 and a are the mountain height and half-width,

respectively. This circularmountain is isotropic, whose 2D

Fourier transform is independent of azimuth u; that is,

ĥ(k, l)5 ĥ(K)5 (1/2p)h0a
2e2aK . (24)

Substituting the above equation into Eqs. (21) and (22)

yields

F(z)5 0:5rNah20jV0j
ðu

U

u
L

(cosu, sinu) cos(c02u)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 cos2(x0 2u)/(4Ri)

q
du , (25)

L(z)5 6

�
k3

V(z)

jV(z)j
�
0:5rN2ah20jV0j

3
sinjc(z)2c0j

jV(z)j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

(
12

sin2[x02c(z)]

2Ri

)2
vuut .

(26)

For unidirectional shear flows where x0 56c0, Eq. (25)

reduces to the result of Grubi�si�c and Smolarkiewicz

(1997) as shown:

Funi 5 0:5rNah20V0

ðp
0
cos2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 cos2u/4Ri

q
du , (27)

which further reduces to that of Teixeira et al. (2004) as

follows:

Fcons 5 0:25prNah20V0 , (28)

for constant flows with Vz 5 0 (i.e., Ri5 ‘). Obviously,

theWMFs in both Eqs. (27) and (28) are independent of

height. Moreover, they are parallel to the base-state

wind vector, which is ascribed not only to the isotropy of

the circular mountain but also to the unidirectionality of

the mean flow, as will be shown in section 4a. In the

situation of directional shear wind, the WMF given by

Eq. (25) is height dependent, thus giving rise to nonzero

vertical divergence of WMF as given by Eq. (26). Ac-

cording to our knowledge, the above-mentioned general

formulas have not been documented in meteorological

literature before.

4. WMF and its vertical divergence for various wind
profiles

In the preceding section, the general formulas for the

WMF and its vertical divergence were derived and the

special solution for a 3D circular bell-shaped mountain

was obtained. This section will examine the properties of

these formulas in more detail for specific wind profiles.

Six wind profiles will be examined; they have the same

surface wind speed of jV0j5 8 m s21 but distinct surface

wind direction and vertical wind shear (Table 1). Be-

cause the direction of the wind is asymptotic to that

of the vertical wind shear as z / 1‘, the maximum

turning angle of the wind with height is given by

FIG. 2. Schematic diagram of the WMF divergence produced by (a) backing and (b) veering

base-state horizontal winds over a circular bell-shaped mountain (illustrated by the solid

circle). Thick arrow denotes the direction of the vertical wind shear. Variables V0, V(z1),

and V(z2) represent the base-state winds at the heights of z 5 0, z1, and z2, respectively,

while L(z1) and L(z2) designate the WMF divergence at z 5 z1 and z2, respectively; L(z1)

and L(z2) are perpendicular to V(z1) and V(z2), respectively.
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F5 jx02c0j . (29)

Accordingly, the first three winds turn counterclockwise

with height byF5 458, 908, and 1358, while the other three
undergo an identical clockwise rotation of F 5 1358.
Moreover, the vertical wind shear magnitudes are the same

for the first four wind profiles, while the final two have

shear magnitudes 2 and 2
ffiffiffi
2

p
times larger, respectively.

These ambient wind profiles along withN25 1024 s22

are substituted into Eqs. (25) and (26) to obtain the

WMF and its vertical divergence. While Eq. (26) can

be easily calculated, evaluating the nonelementary in-

tegral in Eq. (25) is much more difficult so we perform

it numerically.

a. Wave momentum flux

Figures 3a and 3d display the normalized WMFs as

a function of height. The normalization is with respect to

the WMF produced in a constant flow having the same

surface speed, as given by Eq. (28). As expected, the

magnitude of the WMF decreases with height (Shutts

and Gadian 1999), in particular for those winds with

a large asymptotic turning angle F. For instance, while

the WMF is decreased by only about 6.5% at z 5 8 km

for the wind W1 (dotted line in Fig. 3a and Table 1),

wind W3 has a reduction of about 74% at the same

height (solid line in Fig. 3a). The WMFs for the latter

three winds undergo a similar decrease at z 5 8 km

(Fig. 3d), despite their distinctly different magnitudes

of vertical wind shear. This is not surprising since the

more the wind turns with height, the more the gravity

waves are absorbed. Therefore, the total turning angle

determines much of the total WMF reduction. By 8 km

height, most of the angle turning has been realized for

W1–W6 (see F8km in Table 1).

In addition to the decay in magnitude with height,

the WMF vector also changes its direction with height,

as shown in Figs. 3b and 3e. The azimuth of the WMF

increases with height for backing winds (Fig. 3b)

but decreases with height for veering winds (Fig. 3e),

indicating that the WMF vector turns with height in the

same sense as the base-state wind. However, the WMF

turns with height at a much smaller rate than the wind,

which is in agreement with Shutts (1998). For example,

theWMF vector rotates by less than 108 from the surface

to 8 km for W1 (thin dotted line in Fig. 3b), while the

wind itself experiences a rotation of about 408 (thick

dotted line in Fig. 3b). Therefore, the WMF vector will

be misaligned with the mean flow at high altitudes.

The magnitude of the WMF at the surface jF0j is also
of great importance since it determines the maximum

wave momentum that can be deposited onto the mean

flow. Figure 4a shows jF0j as a function of F and inverse

Ri. It is clear that jF0j is symmetric about F 5 908, and
peaks at F 5 908 for a given Ri, consistent with Fig. 3a;

jF0j increases with Ri, but it is always smaller than in

the constant flow case, also discussed in Grubi�si�c and

Smolarkiewicz (1997). The reduction of the surfaceWMF

herein is more likely related to the linear type of vertical

wind shear rather than the turning of the wind with

height, because WMF values greater than that of con-

stant flows have been obtained when taking into account

wind curvature effects (Teixeira et al. 2004).

Misalignment of WMF with the basic wind at the

surface has also been reported by Teixeira et al. (2004).

Yet this is not always the case. Figure 4b is akin to Fig. 4a

except for the azimuth bias between F0 and V0, that is,

jC0 2 c0j. This azimuth bias, which vanishes atF5 908,
is also symmetric with respect to F 5 908, with two

maxima near F 5 458 and 1358. jC0 2 c0j decreases as
the mean flow Richardson number increases. At Ri 5
0.25, the maximum misalignment is about 178 near F 5
458 and 1358. Figure 4b reveals that for theWMF induced

in directional shear flows, it may be misaligned with the

ambient flow on the ground even when forced by an

isotropic mountain, although the misalignment is gen-

erally no more than 178.

b. Vertical divergence of the wave momentum flux

Figures 3c and 3f display the variation in the magni-

tude of the WMF divergence with height. Evidently, the

vertical divergence of WMF vanishes in all cases at the

surface, as analytically shown earlier. Unlike that of

WMF, the magnitude of WMF divergence does not vary

monotonously with height. Instead, it first increases with

height, reaching a peak value at a certain altitude z* and

then decreases with height again to near-zero values.

This height variation of the WMF divergence is quali-

tatively similar to that of Shutts (1995). In addition, it

appears that the WMF divergence would be greater for

winds with larger values ofF (Fig. 3c) and smaller values

of Ri (larger vertical shear, Fig. 3f). However, it is not

always the case, as can be seen below.

TABLE 1. Parameters of six directional shear wind profiles with

constant vertical wind shear magnitude jVzj. Symbols are defined

in the text. Ri is obtained by supposing a constant Brunt–Väisälä

frequency of N2 5 1024 s22.

jV0j jVzj (s21) Ri c0 x0 F (8) F8km (8)

W1

8 m s21

5 3 1023 4 p/4 p/2 45 37.9

W2 5 3 1023 4 0 p/2 90 78.7

W3 5 3 1023 4 2p/4 p/2 135 125.6

W4 5 3 1023 4 p/4 2p/2 135 125.6

W5 1022 1 p/4 2p/2 135 128.7

W6
ffiffiffi
2

p
3 1022 0.5 p/4 2p/2 135 130.6
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From Eq. (26), the vertical derivative of jL(z)j is
given by

djL(z)j
dz

5 60:5 rNah20
jVzj2
jV0j

Q(d,F, Ri) sin(d)

sin2
h
F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 sin2d/4Ri

p i ,
(30)

where

d(z)5 jc(z)2 x0j5F2 jc(z)2c0j , (31)

Q(d,F, Ri)5 sin(2d2F)

�
12

sin2(d)

4Ri

�

1 sin(d2F) cosd

�
12

sin2(d)

2Ri

�
. (32)

It is feasible to writeL(z) asL[d(z)] since d(z) is a single-

valued monotonic function of z. According to Eq. (30),

the maximum WMF divergence, that is jL(z*)j, appears
at ‘‘height’’ d0, whereQ(d0,F, Ri)5 0. Unfortunately, it

is hard to obtain the analytic solution for Q to Eq. (30),

so we solve it using numerical integration.

FIG. 3. Height variations of the (a),(d)magnitude and (b),(e) azimuth of theWMFand (c),(f) its vertical divergence

for the wind profiles in Table 1. Thick lines in (b) and (e) correspond to the azimuths of the base-state winds. The

magnitude of the WMF is normalized with respect to Eq. (28); i.e., the analytical value of WMF of a constant flow

having the same surface wind speed.
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Figures 5a and 5b are the counterplots of Q as a

function of F and d for fixed Ri 5 4 and 0.5, respec-

tively. In each case, there are two zero-value contours

of Q(d, F) 5 0 (dashed lines). Nevertheless, only the

upper one (thick dashed line) is physically feasible, since

d should be smaller than F from Eq. (31). This upper

solution curve is roughly asymptotic at large F to the

straight line given by

d5F/2: (33)

Substituting Eq. (33) along with Eq. (29) into the ex-

pressions of the wind profile and WMF divergence, that

is, Eqs. (11) and (26), one can obtain estimates for the

altitude and magnitude of the maximum WMF diver-

gence, as shown:

zmax5 jV0j/jVzj , (34)

jL(zmax)j5
rah20N

2

4
tan

F

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

�
12

1

2Ri
sin2

F

2

�2
s

.

(35)

It should be emphasized again that zmax and jL(zmax)j
are only estimates for their true value because Eq. (33)

is not the exact solution to djL(z)j/dz 5 0.

From Eq. (34), zmax is independent of the maximum

turning angle of the wind with height. However, the

peak WMF divergence indeed occurs at different

heights for winds with various F (see Fig. 3c). Figure 6

shows the altitude of the maximum WMF divergence

obtained numerically from Eq. (26), which is considered

FIG. 4. Contour plots of (a) the magnitude of normalized WMF at the surface and (b) the

azimuth difference between surface wind and surface WMF as a function of F and inverse Ri.

Intervals are (a) 0.048 and (b) 1.78.

FIG. 5. Contour plots ofQ(d,F) as a function ofF and d for (a) Ri5 4 and (b) Ri5 0.5. Dashed

lines denote zero-value contours.
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as the true value of z*. It is apparent that z* is asymp-

totic to zmax at F 5 1808, yet decreases gradually as F
decreases, eventually halved at F 5 08. This actual

variation of z* with F shown in Fig. 6 suggests a modi-

fied empirical form of equation

Zmax5 0:25(32 cosF)zmax5 0:25(32 cosF)jV0j/jVzj
(36)

to account for the influence of F. Plotted in Fig. 6, the

Zmax given by the equation agrees with z* very well, even

at Ri as low as 0.5 (see thick solid and thick dashed lines).

Despite the discrepancy between zmax and z*, jL(zmax)j
still provides an accurate estimate for jL(z*)j, as shown
in Fig. 7. The simplicity and computational ease of Eqs.

(35) and (36) make them very attractive. From Eq. (36),

the altitude corresponding to the maximum WMF di-

vergence is proportional to the ratio of surface wind

speed to vertical wind shear intensity, and it increases as

the maximum wind turning angle increases. Taking de-

rivative of Eq. (35) with respect to F yields

djL(zmax)j
dF

5
2rah20jVzj2 tan2(F/2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 [12 sin2(F/2)/(2Ri)]2
q

3

�
sin2

F

2

�
12

1

4Ri

�

1 2 cos2
F

2

�
12

sin2(F/2)

4Ri

��
, (37)

which is always positive for any Ri larger than 0.25.

Therefore, jL(zmax)j increases with F, consistent with

that of jL(z*)j (see symbols in Fig. 7a). Similarly, by

differentiating Eq. (35) with respect to Ri, the greatest

jL(zmax)j for a given F is at

Rimax5 0:25(12 cosF) . (38)

ForF, 908, Rimax falls below 0.25, indicating an overall

decrease of the peak WMF divergence with Ri (see tri-

angles and dashed line in Fig. 7b). On the contrary when

F . 908, Rimax is greater than 0.25, such that the peak

WMF divergence first increases and then decreases

with Ri (see circles and solid line in Fig. 7b). However,

the increase in the peak WMF divergence with Ri is

restricted within a narrow range of Ri because Rimax is

no more than 0.5 even in the extreme limit of F 5 1808.
Therefore, the magnitude of the peak WMF diver-

gence will almost always decrease as the ambient flow

Richardson number increases.

FIG. 6. Altitudes of the maximum WMF divergence for fixed

Ri 5 4 (solid lines and circles) and Ri 5 0.5 (dashed lines and

triangles). Symbols represent the true value obtained from Eq.

(26). Thin lines and thick lines are estimates given by Eqs. (34) and

(36), respectively.

FIG. 7. Magnitude of the maximum WMF divergence (kg m22 s22) as a function of (a) F and (b) Ri. Symbols

represent the true value obtained from Eq. (26); lines denote estimates given by Eq. (35). Solid (dashed) line and

circles (triangles) in (a) are for Ri 5 4 (0.5), while they are for F 5 1358 (458) in (b).
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5. Further discussion

The presence of the directional wind shear places

constraints on the vertical propagation of gravity waves,

such that the wave momentum might be trapped in the

lower atmosphere. While in unidirectional flows, gravity

waves are capable of freely transporting the wave mo-

mentum upward until a single critical level is encoun-

tered or when wave breaking takes place in the upper

atmosphere due to the density effect on wave amplitude

(Lindzen 1981).

According to linear theory, gravity waves in unidi-

rectional flows deposit wave momentum onto the air-

flow at a single level. Mathematically, there will be an

exceedingly large vertical divergence of the WMF at

that level. Under this situation, the influence of gravity

waves on the mean flow is difficult to represent in nu-

merical models and ought to be parameterized (Palmer

et al. 1986; Scinocca and McFarlane 2000; Kim et al.

2003). In contrast, the wave momentum produced in

directional shear flows is continuously deposited onto

the mean flow over a deep layer. The vertical divergence

of the WMF tends to be smaller and can be better rep-

resented by numerical models with sufficient horizontal

(and reasonably high vertical) resolutions. This may be

an important difference for the numerical weather pre-

diction purposes.

The formula of the WMF divergence obtained here is

exact (to the extent that the problem is nearly linear)

and can be readily implemented in the governing equa-

tions of numerical models. However, in reality, the

height variation of the ambient air density (Smith 1979)

and anisotropy of mountains (Gregory et al. 1998) should

be taken into account. The assumption of hydrostatic

waves also requires careful consideration. As studied

by Keller (1994), in case of strongly sheared flows, the

hydrostatic assumption may not be justified even for

relatively large-scale topographic forcing. The nonhy-

drostatic effect can lead to a downstream shift of the

WMF. Moreover, by neglecting the rotation of the

Earth, inertial gravity waves (e.g., Jones 1967; Shen and

Lin 1999; Shutts 2003) are a priori excluded, which may

play an important role in the geostrophic adjustment

process (Holton 2004).

This study is based on linear wave theory, such that it

is least valid for large-amplitude gravity waves. Some

weather phenomena related to nonlinear waves—for

instance, severe downslope windstorms (Smith 1985),

lee vortices (Smolarkiewicz and Rotunno 1989), and

lee vortex shedding (Schär and Durran 1997)—can mod-

ify the WMF significantly (Miranda and James 1992;

Eckermann et al. 2010). The wave momentum transport

by nonlinear mountain waves generated in directionally

sheared flowswill be investigated in the future, primarily

through numerical means.

6. Conclusions

Using linear, hydrostatic mountain wave theory, gen-

eral expressions are derived for the wave momentum

flux (WMF) and its vertical divergence induced in di-

rectional shear flows over three-dimensional obstacles.

The inviscid ambient flow is horizontally uniform and

varies linearly with height, such that the wind profile

curvature effect is neglected. The rotation of the Earth,

diabatic heating, and surface friction are also omitted.

Properties of the WMF and its vertical divergence are

studied by applying the deduced formulas to a specific,

circular bell-shaped mountain for several idealized wind

profiles. Major results are summarized as follows.

In the presence of directional wind shear, there exist

an infinite number of critical levels at different heights.

Terrain-forced gravity waves are thus continuously

absorbed by the mean flow during their upward propa-

gation. As a consequence of this directional shear criti-

cal layer absorption, the WMF decreases in magnitude

with height. The maximum turning angle of the base-

state wind with height (F) is found playing a crucial role

in causing the decay of WMF with height. The wave

momentum can be freely transported to the upper at-

mosphere with very little attenuation when the basic

flow turns with height by fewer degrees. On the contrary,

for flows turning substantially with height, the wave

momentum is prone to being trapped in the lower at-

mosphere. Moreover, the WMF vector also rotates with

height in the same sense as the background wind but at a

much slower rate, thus becoming misaligned with the

wind at high altitudes.

The vertical divergence of WMF is found to always

vanish at the surface. Aloft, it points perpendicularly to

the left (right) of the mean flow that backs (veers) with

height. The magnitude of the WMF divergence first in-

creases with height until reaching its maximum value.

Thence, it begins to decrease with height, toward zero

value. The altitude where the WMF divergence peaks

increases as the maximum wind turning angle increases.

It is proportional to the wind speed at the surface but

inversely proportional to the vertical wind shear in-

tensity. The magnitude of the maximum WMF diver-

gence also shows an increase with the maximum wind

turning angle, whereas it in general decreases as the

environmental flow Richardson number (Ri) increases.

The WMF at the surface was also studied. It increases

as the ambient flow Richardson number increases.

However, it is always smaller than that in the constant

flow case due to the linear vertical shear. For a given Ri,

3742 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 69



the surfaceWMF peaks atF5 908. Only in this situation

is the WMF aligned with the wind at the surface. The

maximum misalignment between the azimuths of sur-

face WMF and surface wind, which decreases as the Ri

increases, appears at about F 5 458 and 1358.
Gravity waves that develop in directionally sheared

flows are common in the real atmosphere. For example,

in a case of cold-air outbreak, northerly flows at the low

levels will back with height, eventually becoming west-

erlies at the upper levels. Orographic gravity waves are

expected to form when the northerly flow encounters

a mountain and will propagate upward in a directionally

sheared flow. We believe the results of this study have

important implications on gravity wave drag parame-

terization in coarser-resolution numerical models and

on the possible explicit representation of mountain

gravity wave in high-resolution numerical models, and

improving our understanding of such waves in the real

world and in numerical models. Although the gravity

wave drag parameterization associated with the wave

momentum flux divergence in directionally sheared

flowsmay be different from the drag due to the breaking

of finite amplitude waves below critical levels, that is the

subject of commonly used gravity wave drag parame-

terization schemes. Further discussions on some of these

points are found in section 5.
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