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ABSTRACT 
 A two-dimensional form of cross-covariance function between the radar radial- and 
tangential-components (with respect to the direction of radar beam) of background wind errors is 
derived. Like the previously derived auto-covariance function for the radial-component, this 
cross-covariance function is homogeneous but non-isotropic in the horizontal. The auto- and 
cross-covariance functions are used with the statistical interpolation technique to perform a 
vector wind analysis from Doppler radial-velocity observations on a conical surface of low-
elevation radar scans. The structures of the two covariance functions are compared and 
interpreted in terms of the influence of a single-point radial-velocity observation on the analyzed 
vector wind field. The utility and value of these covariance functions are demonstrated through 
analysis experiments that use either simulated radial-velocity data from idealized flows or real 
radar observations. The results of the statistical interpolation scheme utilizing the proposed 
covariance functions are shown to be superior to the results of traditional VAD technique. The 
proposed technique can actually be considered a generalization of the traditional VAD 
technique. 
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1. Introduction 
 Many weather forecast offices, especially those of the U.S. National Weather Service, make 
extensive use of Doppler radar observations for severe storm detection and nowcasting. Based on 
single radial component of velocity observations by radar, low-level wind conditions and related 
fine features (such as convergence and rotation) are usually subjectively assessed by forecasters. 
Timely and accurate analyses of low-level wind conditions at high resolutions are critical for 
severe weather warning and monitoring. Analysis tools that quantitatively estimate the 
unobserved cross-beam wind component are still lacking at individual forecasting offices. To 
meet this need, a storm-targeted radar wind retrieval (STWR) system is being developed (Zhang 
et al. 2005) based on the two-dimensional simple adjoint (2dSA) technique (Qiu and Xu 1992; 
Xu et al. 1994, 1995, 2001a). In this system, the 2dSA is used to retrieve high-resolution storm 
winds directly on each conical surface of low-elevation radar scans. In comparison with existing 
four-dimensional and three-dimensional adjoint techniques for high-resolution single-Doppler 
wind retrievals (e.g., Sun and Crook 1994, 2001; Gao et al. 2001; Xu et al 2001b), the 2dSA is 
more suitable for the purpose of our STWR system, because vector winds need to be retrieved 
directly on each two-dimensional conical surface and overlaid with the radar reflectivity (or 
radial-velocity) image on the corresponding conical surface for easy and direct use by the 
forecasters (see, e.g., Fig. 6 of Zhang et al. 2005). To effectively track the targeted storm,  
mesocyclone or tornado at very high resolutions (up to 250 m) with a computational efficiency 
required by real-time applications, the 2dSA uses a small domain (~ 20×20 km2) in a moving 
frame following the tracked feature (Gal-Chen 1982; Zhang and Gal-Chen 1996; Liou 1999; Liu 
et al. 2004). Because the 2dSA has a small retrieval domain, it requires suitable analyses of 
winds at the meso-β and meso-γ scales, or scales larger than those handled by the small domain 
of 2dSA analysis,  to provide background and boundary constraints. 
 The 2dSA method retrieves the unobserved cross-beam winds by tracking, using a system 
involving the time integration of a two-dimensional advection equation and its adjoint, the 
movement of high-resolution radar echoes and/or radial velocity patterns. Due to this nature, the 
2dSA requires a high-resolution grid for it to work properly. In principle, the 2dSA can be 
applied directly to a high-resolution grid over the entire mesoscale domain, but the retrieval 
tends to be severely impacted by the presence of large data holes in the analysis domain and the 
computational cost is much higher. Further, a single large domain also prevents us from 
following multiple storm cells using moving coordinate frame (as we do with the 2dSA 
analysis). For this reason, we seek to develop an alternative technique that will provide efficient 
analysis at the meso-β and meso-γ scales, and to use it to drive the nested small-domain 2dSA 
analysis. Such mesoscale analyses can also be used directly by forecasters for broader scale 
applications. 
 Among the existing, relatively simple and efficient, techniques, various least-squares 
methods had been proposed for three-dimensional wind analyses from single-Doppler 
observations (Laroche and Zawadzki 1994; Shapiro et al. 1995; Qiu and Xu 1996; Zhang and 
Gal-Chen 1996; Liou and Luo 2001; Weygandt et al. 2002). These least-squares methods, while 
relatively simple and efficient, are, however, not particularly suitable for our purpose because the 
vector wind retrievals are not performed directly on the two-dimensional conical surfaces of 
radar scans.  
 The radar observations are usually much denser on the conical surfaces of radar scan than in 
the vertical between conical surfaces. Performing the wind analyses directly on the conical 
surfaces allows us to retain the observation information at the highest resolution possible. For 
our purpose of providing boundary information for the nested conical-surface 2dSA analysis, the 
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use of the conical surface is a natural choice, for both accuracy and efficiency considerations. 
Performing the analysis directly on the conical surfaces also removes us from the need to worry 
about the possible inaccuracy in the height determination of the radar beams affected by the 
atmospheric refractivity gradients especially in the presence of a strong temperature and/or 
humidity inversion (Gao et al. 2006). 
 In this paper, we develop a method for performing the desired wind analysis on the radar 
conical surfaces, based on the statistical interpolation technique (Daley 1991). The statistical 
interpolation, also commonly referred to as the optimal interpolation, was a widely used method 
in operational atmospheric data assimilation (Lorenc 1981; Parrish and Derber 1992; Barker 
1992). In the standard statistical interpolation, the analysis adds an increment or correction to the 
background (typically provided by a model prediction from the previous assimilation cycle) on 
the model grid. For our purpose, the analysis is performed on the conical surface. For this reason, 
the background error covariance functions need to be formulated in the polar coordinates on the 
conical surface. As will be shown in sections 3 and 4 of this paper, formulating the background 
error covariance functions in the polar coordinates on the conical surface will not only simplify 
the covariance computation and improve the analysis accuracy but also facilitate direct 
examination of the correlation structures represented by the error covariance functions on the 
conical surface. 
 In the previous study of Xu and Gong (2003, henceforth referred to as XG03), an auto-
covariance function was derived for the radial component of the background wind projected onto 
the radar beam direction at a low elevation. As shown in XG03, the derived auto-covariance 
function can be used with the statistical interpolation for radial-velocity analysis on the conical 
surface. As a sequel to XG03, this paper will derive the cross-covariance function between the 
radial and cross-beam tangential components of the background wind errors and then combine it 
with the previously derived auto-covariance function to form a complete set of covariance 
functions, which are used to perform vector wind analysis on the conical surface.  
 Our method can be considered an extension of the traditional VAD method (Lhermitte and 
Atlas 1961; Browning and Wexler 1968), which is a least-squares method in the one-
dimensional periodic space along a constant-range circle. Owing to its simplicity, the VAD is 
extremely efficient but assumes that the vector wind field is horizontally uniform at the level of 
range circle. Our extension allows the analyzed vector wind to vary along the circle therefore 
relaxes the uniform wind assumption in the VAD. Furthermore, our method provides a two-
dimensional wind analysis instead of one VAD vector wind on each range circle. 
 The rest of this paper is organized as follows. The cross-covariance function is first derived 
in section 2 and the method of analysis based on the covariance functions is described in section 
3. The structures of the auto- and cross-covariance functions are compared and interpreted in 
section 4 in terms of the influence of a single-point radial-velocity observation on the analyzed 
vector wind field. The utilities of these covariance functions are further demonstrated for the 
vector wind analyses with idealized as well as real radar data in section 5. Conclusions follow in 
section 6. 
 
2. Background error covariance functions for radial and tangential velocities 
 As in XG03, the random vector fields of background wind errors are assumed to be unbiased, 
homogeneous and isotropic in the horizontal (see section 2 of Xu and Wei 2001; Part I of 
Panchev 1971) or, approximately, on a conical surface of low-elevation radar scans (with the 
elevation angle < 5o). The projection of a vector field of background wind error onto the conical 
surface is denoted by v(x, y) = (u(x, y), v(x, y))T  or, simply, v = (u, v)T where (•)T is the transpose 
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of (•). The symbol vi (i = 1, 2) denotes the value of v at point xi = (xi, yi)T. The covariance of v 
between any two points (i = 1, 2)  is a second-order tensor defined by Cvv = <v1v2T>, where 
<(•)> denotes the expectation (statistical mean) of (•). The velocity vector vi can be projected 
onto the l-direction (that is, the direction from point x1 to point x2) and onto the t-direction that is 
perpendicular to the l-direction with the positive direction pointing to the left. The resulting 
components are denoted by vli and vti, respectively. These two components are related to vi = (ui, 
vi)T by (vli, vti)T = Rvi where R = R(α) is the rotational matrix that rotates the x-axis to the l-
direction and α = tan-1[(y2 - y1)/(x2 - x1)] is the angle of vector x2 - x1 with respect to the x-axis, 
measured positive counterclockwise (see Fig. 1 of XG03). Note that R-1 = R(-α) = RT and thus vi 
= RT(vli, vti)T. Substituting this into Cvv = <v1v2T> gives Cvv = RTCR or, as in (2.2)-(2.4) of 
XG03, 
 
  <u1u2> = Cll(r)cos2α + Ctt(r)sin2α, (2.1a) 
  <v1v2> = Cll(r)sin2α + Ctt(r)cos2α, (2.1b) 
  <u1v2> = <v1, u2> = [Cll(r) - Ctt(r)]sinα cosα. (2.1c) 
 
Here, Cll(r) and Ctt(r) are the diagonal components of C, r = |x2 - x1| = [(x2 - x1)2 + (y2 - y1)2]1/2, 
and the isotropy is assumed in the strict sense for both rotations and mirror reflections, so Clt(r) 
= Ctl(r) = 0 for non-diagonal components of C (see section 2 and Fig. 3c of Xu and Wei 2001).  
 The radial and tangential components of vi viewed from the radar located at the origin (x = y 
= 0) can be expressed, respectively, as 

 
  vri = ui cosβi + vi sinβi ,                                                                                        (2.2a)  
  vτi = -ui sinβi + vi cosβi,                                                                                        (2.2b)  
 
where βi = tan-1(yi /xi). As shown in (2.6) of XG03, the covariance function of vr is defined by 
Crr(x1, x2) = <vr1vr2> and can be expressed in terms of Cll(r) and Ctt(r). The cross-covariance 
functions between vr and vτ are defined by Crτ(x1, x2) = <vr1vτ2> and Cτr(x1, x2) = <vτ1vr2>. For 
the vector wind analyses developed in this paper, these functions also need to be expressed in 
terms of Cll(r) and Ctt(r). By using (2.1)-(2.2), one can verify that 
 
  Crτ(x1, x2) = Cτr(x2, x1) = <vr1vτ2>   
  = <(u1cosβ1 + v1sinβ1)(- u2sinβ2 + v2cosβ2)> 
  = 0.5[Cll(r) + Ctt(r)]sin(∆β1 - ∆β2) - 0.5[Cll(r) - Ctt(r)]sin(∆β1 + ∆β2),            (2.3)  
 
where ∆β1 = β1 - α and ∆β2 = β2 - α are the angles of vectors x1 and x2, respectively, with 
respect to vector x2 - x1 (measured positive counterclockwise). It is also easy to verify the 
following limiting cases of (2.3):  
 
  Crτ(x1, x2) = 0     as ∆β1 and ∆β2 = 0 or π;  
  Crτ(x1, x2) = -Cll(r)sin(∆β2)    as ∆β1 = 0;  
  Crτ(x1, x2) = Ctt(r)sin(∆β1)     as ∆β2 = 0;  
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  Crτ(x1, x2) = Ctt(r)cos(∆β2)    as ∆β1 = π/2;  
  Crτ(x1, x2) = -Cll(r)cos(∆β1)   as ∆β2 = π/2.   
 
 The error covariance functions estimated for the background winds at 850 hPa in Fig. 1 of 
Xu and Wei (2001) can be approximated by the following analytical forms (see Fig. 2 of XG03): 
 
  Cll(r) + Ctt(r) = 2σ2exp[-r2/(2L2)], (2.4a) 
  Cll(r) - Ctt(r) = 2aσ2r2(bL2)-1exp[-r2/(2bL2)], (2.4b) 
 
where 2σ2 is the variance of v, L is the decorrelation length scale for the random vector field v, 
and a and b are, respectively, the non-dimensional parameters related to the variance ratio 
(σdiv/σrot)2 and decorrelation length ratio Ldiv/Lrot between the divergent and rotational parts of 
v (see section 3 of XG03). Substituting (2.4) into (2.6) of XG03 and (2.3) gives  
 
  Crr(x1, x2) = σ2exp[-r2/(2L2)][cos(∆β1 - ∆β2) - ar2(bL2)-1cos(∆β1 + ∆β2)], (2.5a) 
Crτ(x1, x2) = Cτr(x2, x1) = σ2exp[-r2/(2L2)][sin(∆β1 - ∆β2) - ar2(bL2)-1sin(∆β1 + ∆β2)]. (2.5b) 
 
According to (3.5)-(3.7) of XG03, a = 0 and b =1 correspond to σdiv/σrot = 1 and Ldiv/Lrot = 1.  
These parameter values will be used for the analyses in this paper. This choice of parameter 
values assumes that the divergent and rotational parts of the background wind have about the 
same error variance and decorrelation length scale, so it should be acceptable for wind analyses 
at the mesoscale and even smaller scales. 
 
3. Method of analysis 
 The analysis is performed on the conical surface of the radar scans and the analysis domain 
(on the conical surface) is discretized in the same way as a regular horizontal grid used by the 
background field. On this discretized conical surface, the analyzed (or background) radial- and 
tangential-wind fields are represented by their associated state vectors. We denote by br and bτ 
the state vectors for the background radial and tangential velocities, respectively; and by ar and 
aτ the state vectors for the analyzed radial and tangential velocities, respectively. The state 
vectors for the analyzed radial- and tangential-velocity increments are then given by ∆ar = ar - br 
and ∆aτ = aτ - bτ, respectively. Consider the analysis space composed of two subspaces: one for 
∆ar and the other for ∆aτ. The state vector for the analyzed incremental vector wind field can be 
then denoted by ∆a = (∆arT, ∆aτT)T. Similarly, the state vector for the background vector wind 
field can be denoted by b = (brT, bτT)T.   
 As in XG03, the radar radial-velocity observation errors are assumed to be Gaussian random 
with zero mean (unbiased) and to be uncorrelated in space, so the observation error covariance 
matrix is simply given by σob2I where σob2 is the observation error variance and I is the identity 
matrix in the observation space. The observation errors are not correlated with the background 
errors either. Under the above assumptions (including those for the background errors mentioned 
in section 2), the optimal estimate of the true vector wind field is given by the minimizer of the 
following cost function: 
 
  J = ∆aTB-1∆a + σob-2(H∆a - d)T(H∆a - d),                                                         (3.1) 
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where B is the background error covariance matrix, d = y - H(b) is the observation innovation 
vector, y is the state vector of the radial-velocity observations, H is the observation operator that 
maps state vectors from the analysis space to the observation space, and H is the linearization of 
H. As the state vector is formulated in the polar coordinates with b = (brT, bτT)T, H is simply a 
spatial interpolator of (vr, vτ) from the analysis grid to the observation points, it is linear and 
therefore is the same as H.  As the observations are limited to radial velocities only, we have 
H∆aτ = 0 and thus H∆a = H∆ar in (3.1).  
 The minimizer of J can be obtained by solving the linear system of algebraic equations 
derived from ∂J/∂∆a = 0. By using the matrix equality in (7B.6) of Jazwinski (1970), the solution 
of the derived linear system can be cast into the following form: 
 
  ∆a = BHT(HBHT + σob2I)-1d. (3.2) 
 
As in (4.5) of XG03, the solution in (3.2) is computed in the following two steps: 
 
  (HBHT + σob2I)z = d,  (3.3a) 
  ∆a = BHTz,  (3.3b) 
 
where HBHT is a M×Μ matrix in the observation space of dimension Μ, and BHT is a 2Ν×Μ 
matrix that represents a linear transformation from the observation space to the analysis space of 
dimension 2N. The analysis space composes of two subspaces of dimension N: one for ∆ar and 
the other for ∆aτ. This two-step solution procedure belongs to the statistical interpolation (see 
Chapters 4-5 of Daley 1991). If the observation space is too large to allow (3.3a) be solved 
directly, then the approach often used in the statistical interpolation is to partition the observation 
space into partially overlapping subspaces so that HBHT and BHT become small enough in each 
subspace. The final solution is not truly global as it is pieced together by local solutions 
(minimizers in subspaces). In this case, to obtain a truly global solution, it is necessary to use an 
iterative approach with a descending algorithm to find the minimum of the cost function (Cohn 
et al. 1998; Daley and Barker 2001). The procedure is commonly referred to as variational which 
gives the same solution if Eqs. (3.3a,b) are solved directly. In this paper, (3.3a) is solved directly 
in the observation space without partitioning.  
 In the limit of vanishing grid spacing (with infinitely high resolution), the analysis field 
becomes continuous. In this case, by using the similar derivations as presented in section 4b of 
XG03, one can show that the solution is continuous and can be obtained from the following 
equations: 
 
  (C + σob2I)z = d,  (3.4a) 
  ∆vr(x) = ∑Crr(x, xm)zm, (3.4b) 
  ∆vτ(x) = ∑Cτr(x, xm)zm, (3.4c) 
 
where C is a M×M matrix in the observation space with its (m, n)-th component given directly 
by Crr(xm, xn), xm (or xn) denotes the m-th (or n-th) observation point, the summation ∑ is over 
m from 1 to M, and zm is the m-th element of vector z. Here, (3.4a) has the same form as (3.3a) 
except that C is directly given by Crr(xm, xn) while HBHT requires formally an additional step of 
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operation for the spatial interpolation represented by H. Thus, (3.4a) is simpler than (3.3a), 
although both can be solved directly by using the Cholesky decomposition. Since the covariance 
functions are given analytically in (2.5), HBHT can also be directly given by Crr(xm, xn) to avoid 
any accuracy loss caused by the interpolation. This treatment has been commonly used in the 
standard statistical interpolation. Once the intermediate state vector z is obtained, the optimal 
estimate of (∆vr, ∆vτ) can be easily obtained from (3.4b,c). This solution is the continuous limit 
of the discrete solution in (3.3b,c), and as an analysis increment can be easily added back to the 
background field (only necessary when the background is nonzero) on the same grid used by the 
background field on the conical surface. This procedure will be used with (3.4) to produce the 
solutions in the subsequent sections. 
 If B is formulated based on the covariance tenser function Cvv given by (2.1) in the Cartesian 
coordinates, then HBHT will require two additional steps of operation, first for the spatial 
interpolation to the Cartesian coordinates and then for the projection from the Cartesian 
coordinate system to the polar coordinate system. This two-step operation will compute the same 
matrix HBHT as in (3.3a) but the computed matrix will be less accurate than that in (3.3a) while 
the latter is less accurate than that in (3.4a). Thus, as mentioned in the introduction, it is useful to 
formulate the background error covariance functions in the polar coordinates on the conical 
surface for the intended application of this paper. The derived error covariance functions will not 
only simplify the construction of the equation system and related computations but also facilitate 
direct inspections of the correlation structures, which will be discussed in the next section.  
 
4. The structure of cross-covariance function as revealed by analysis of a single observation  
 The standard approach to examining the effective correlation structure in an analysis scheme 
is to analyze a single observation. When there is only a single radial-velocity observation at 
point x1, the observation space becomes one-dimensional. In this case, the matrix C + σob2I, and 
the vectors z and d in (3.4) degenerate into scalars σ2 + σob2, z and d, respectively, where Crr(x1, 
x1) = σ2 is used according to (2.5a). The solution of (3.4a) is simply z = d/(σ2 + σob2). The 
solutions of (3.4b) and (3.4c) yield  
 
  ∆vr(x) = Crr(x, x1)d/(σ2 + σob2),  (4.1a) 
and  ∆vτ(x) = Cτr(x, x1)d/(σ2 + σob2), (4.1b) 
 
for the radial-velocity and tangential-velocity increment fields, respectively, with x being 
discretized onto the analysis grid. These two solutions are identical to the covariance functions 
Crr(x, x1) and Cτr(x, x1), respectively, except for the factor of d/(σ2 + σob2). Thus, the two 
correlation functions, Crr(x, x1)/σ2 and Cτr(x, x1)/σ2, can be viewed as the radial- and tangential-
component fields of the vector increment field produced by a single radial-velocity observation 
with an innovation of d = 1 + σob2/σ2 at point x1. The structure of the auto-correlation function, 
Crr(x, x1)/σ2, was analyzed in section 5 of XG03. Here, we only need to analyze the structure of 
the cross-correlation function, Cτr(x, x1)/σ2.  
 As in the first case selected in XG03, a = 0 and b = 1 can be selected for simplicity in (2.4). 
In this case, the rotational and divergent parts of the background wind error are assumed to have 
the same variance (σrot2 = σdiv2 = σ2) and the same decorrelation length scale (Lrot = Ldiv = L), 
as this leads to a = 0 and b = 1 [see (3.5)-(3.7) of XG03]. Substituting these parameter values 
into (2.5) and then into (4.1) gives  
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  ∆vr(x) = Crr(x, x1)/σ2 = exp[-r2/(2L2)]cos(β1 - β),  (4.2a) 
  ∆vτ(x) = Cτr(x, x1)/σ2 = exp[-r2/(2L2)]sin(β1 - β),  (4.2b) 
 
where r = |x - x1| = [(x - x1)2 + (y - y1)2]1/2 and β = tan-1(y/x). It is easy to see Cτr(x, x1) = -
Crτ(x, x1) = Crτ(x1, x). An example of Cτr(x, x1)/σ2 or ∆vτ(x) in (4.2b) is plotted in Fig. 1a for x1 
= (x1, y1) = (-15, -15) km and L = 30 km, where the coordinate system is radar-relative (with the 
origin at the radar) and the plotting domain covers an area of 120×120 km2 centered at the radar. 
It is easy to see from (4.2b) and Fig. 1a that sin(β1 - β) = sin(π/4 - β) is anti-symmetric with 
respect to the southwest-northeast diagonal line defined by y = x, as is ∆vτ(x). Along y = x, we 
have sin(β1 - β) = 0 and thus ∆vτ(x) = Cτr(x, x1)/σ2 = 0 as shown by the straight zero contour 
along the southwest-northeast diagonal in Fig. 1a. On the upper-left (or lower-right) side of this 
diagonal line, ∆vτ(x) is positive (or negative). Note that the observed radial velocity (with d = 1 
+ σob2/σ2 > 0) at x1 has a positive (or negative) projection in the tangential direction at point x if 
this point is on the upper-left (or lower-right) side of the diagonal line. This explains why the 
tangential-velocity increment ∆vτ(x) inferred from the single radial-velocity observation at x1 is 
positive (or negative) on the upper-left (or lower-right) side of the diagonal line. 
 If the decorrelation length scale L becomes infinitely large, then ∆vr(x) = cos(β - β1) and 
∆vτ(x) = sin(β - β1) according to (4.2) or (2.5). In this case, the vector wind field inferred from 
the single radial-velocity observation at x1 is uniformly northeastward (parallel to vector x1), 
while β1 - β, the angle of vector x1 with respect to vector x (positive for a counterclockwise 
rotation from x to x1), is also the angle of the inferred vector wind (parallel to vector x1) with 
respect to vector x. For a finite L (such as L = 30 km in Fig. 1a), the amplitude of the above 
uniform vector velocity field (inferred with infinitely large L) is masked by exp[-r2/(2L2)]. This 
masked vector velocity field is plotted in Fig. 1b. It is easy to verify that the projections of the 
masked vector velocity onto the radial and tangential directions at a given point x gives exactly 
the radial component ∆vr(x) in (4.2a) and tangential component ∆vτ(x) in (4.2b), respectively.  
 If the rotational and divergent parts of the background wind error do not have the same 
variance, then a ≠ 0 and the full function forms of Crr(x, x1) and Cτr(x, x1) need to used in (4.2) 
with (x1, x2), ∆β1 and ∆β2 in (2.5) replaced by (x, x1), ∆β and ∆β1, respectively. Note that ∆β1 - 
∆β = β1 - β is the angle of vector x1 with respect to vector x, while ∆β1 = α - β1 and ∆β = α - β 
are the angles of vector x - x1 with respect to vectors x1 and x, respectively (see Fig. 1 in XG03 
but with x2 viewed as x). Thus, for a mirror reflection of x with respect to vector x1, ∆β1 and ∆β 
change their signs but not their absolute values. For this mirror reflection, cos(∆β1 - ∆β) and 
cos(∆β1 + ∆β) are invariant while sin(∆β1 - ∆β) and sin(∆β1 + ∆β) change their signs only. This 
implies that the auto-correlation function is always symmetric (see Figs. 3a-b of XG03) and the 
cross-correlation function is always anti-symmetric (Fig. 1a) with respect to the straight line 
along vector x1. The observed radial wind at x1 always has zero projection in the tangential 
direction at point x if this point is on the straight line along vector x1. This explains why the zero 
contour of the cross-correlation function is always along vector x1, as shown by the simple 
example in Fig. 1a. This is also simply the limiting case of ∆β1 and ∆β2 → 0 or π, as discussed 
for (2.3) in section 2.  
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5. Analysis experiments with simulated and real radar observations 
a. Analyses of simulated radar observations with incomplete coverage for an idealized flow 
 Radar radial-velocity observations are dense but the coverage is often incomplete within the 
analysis domain, partly because there are usually only available in precipitation regions. The 
impact of data void areas on the radial-velocity analysis was examined by an idealized example 
in XG03. Here, we examine the impact of data void areas on the tangential wind analysis by a 
similar idealized example. In this idealized case, the true wind field is assumed to be uniformly 
northeastward with U = 10 m s-1 and V = 10 m s-1, so the true radial and tangential velocities are 
given by Ucosβ + Vsinβ and -Usinβ + Vcosβ, respectively, as plotted in Fig. 2a and Fig. 2b. The 
simulated radial-velocity observations are generated by adding random errors with σob = 1 m s-1 
to the true field on a polar grid centered at the radar with resolutions of 1 km in the radial 
direction and 2o in the azimuthal direction (to mimic thinned radar radial-velocity observations); 
but the observations cover only the left half of the domain. As shown by the shaded area in Fig. 
2a, observations within 10 km of the radar are also removed to mimic the removal of ground 
clutter in the real situation. The analysis domain is set to 120×120 km2 centered at the radar.  
 For the type of mesoscale wind analysis that we desire, operational numerical weather 
prediction models rarely provide reliable enough prediction for use as the analysis background; 
the forecast low-level winds often contain significant biases and/or large phase errors. In the 
absence of a bias-free or bias-corrected background with reliable background error estimates, a 
background with zero mean but non-zero error covariance can be the best alternative. In this 
case, the analysis can still be interpreted as a Bayes estimate of the true field based on the 
observations but the true wind field is assumed to be Gaussian random with zero mean and non-
zero covariance (see section 1.5 of Wahba 1990 and related remarks in the last two paragraphs of 
Xu 2005).  
 Based on the above considerations, here we assume that the background field is zero with the 
standard deviation of the background error given by σ = 10 m s-1. The parameter settings for the 
correlation functions are a = 0 and b = 1 (corresponding to σdiv/σrot = 1 and Ldiv/Lrot = 1, as 
explained at the end of section 2) with different values of L (≥ 30 km). Since zero background is 
used, the actual background error is equal to the true wind. In this case, the wind field in Fig. 2 is 
considered to be a statistical sample of the true random field that is spatially uniform, so the 
decorrelation length scale is infinitely large. With this setting (L = ∞), the analyzed vector wind 
field almost exactly recovers the true wind field in Fig. 2, and the root-mean-square (rms) 
differences between the analyzed and true winds are 0.0357 and 0.0358 m s-1 for the radial- and 
tangential-component fields, respectively. This nearly perfect result is not surprising because the 
error covariance structure is precisely known and specified (with L = ∞) for this idealized case.  
 For the purpose of comparison, we also performed an analysis by using the traditional VAD 
method (Browning and Wexler 1968). In contrast, the VAD analysis is far less accurate; the rms 
differences between the VAD and true winds are 0.27 and 0.12 m s-1 for the radial and tangential 
components, respectively. Thus, if the decorrelation length scale is precisely set for this idealized 
uniform-wind case, then the current method can be more accurate than the VAD method in the 
presence of random observation errors, even when the horizontally-uniform-flow assumption of 
VAD is valid. This is mainly because the current method uses all the observations on the conical 
surface to simultaneously estimate the vector winds and thus can filter observation noise more 
effectively than the VAD analysis.  
 Now consider that the decorrelation length scale, L, is unknown but subjectively set to, for 
example, 60 km or even smaller. The radial- and tangential-component fields obtained with L = 
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60 km are shown in Figs. 3a and 3b, respectively. As shown, the analyzed radial-velocity field in 
Fig. 3a is very close to the true one given in Fig. 2a in the data dense area in the left half of the 
domain, except for the northeast corner area where the radial wind is underestimated due to the 
lack of observation. The analyzed tangential-wind field in Fig. 3b is also very close to the true 
one in Fig. 2b in the immediate vicinity of the radar and in the northeast and southwest sectors. 
However, the tangential winds are underestimated by the analysis in the northwest and southeast 
corner areas and the largest difference is seen at the southeast corner point. Unlike the true 
tangential-wind field, the analyzed tangential-wind field is not exactly anti-symmetric with 
respect to the southwest-northeast diagonal line. This deviation from the anti-symmetry is caused 
by the asymmetry in the data coverage. The underestimated tangential winds in the northwest 
and southeast corner areas are mainly due to the finite decorrelation length scale specified (L = 
60 km). The situation becomes slightly worse as the decorrelation length scale is reduced further 
to 30 km (not shown, see Fig. 5 of XG03 for the analysis of radial-velocity).  
 From the structure analysis of the cross-covariance function in section 4, we know that no 
tangential-wind information can be obtained for a radial-velocity observation at the observation 
point and this is indicated simply by Cτr(x1, x1) = 0 according to (2.5b). Thus, a piece of 
information on the tangential wind at a given point x can be inferred only from a radial-velocity 
observation at a neighboring point, say, x1, where the observed radial wind has non-zero 
projection on the tangential direction at the given point x. However, the inferred information 
diminishes significantly as the distance between the two points (measured by r/L where r = |x - 
x1|) increases beyond the decorrelation length scale or as the angle of vector x1 with respect to 
vector x (measured by ∆β1 - ∆β = β1 - β) diminishes. These properties of statistical interpretation 
are tied up with the mathematical form of the cross-correlation function in (4.2b). Based on these 
properties, we can easily understand why the true tangential winds are captured by the analysis 
reasonably well in the immediate vicinity of the radar and in the northeast and southwest sectors 
even though the decorrelation length scale is subjectively set to a finite value in the mesoscale 
range (rather than accurately set to infinity).  
 
b. Experiments with idealized convergent and circular flows 
  This subsection presents two additional idealized-flow experiments to examine the 
capability and limitations of our method for our intended application, that is, to estimate the 
mesoscale environmental vector wind field on the conical surface of low-elevation radar scans. 
The first experiment considers an idealized convergent flow. As shown in Fig. 4a, this idealized 
flow converges sharply along a southwest-northeast oriented straight line located to the 
northwest of the radar (at the domain center). The true vector winds have constant values of (U, 
V) =  (0, 20) and (15, -15) m s-1 on the southeast and northwest sides, respectively, of the 
convergence line. The radial-velocity observations are generated from the true winds by adding 
random errors with σob = 1 m s-1 in the same way as in the previous subsection. The parameter 
settings for the background error covariance are also the same as in the previous subsection, and 
the analysis is performed with a decorrelation length scale of 30 km. This setting of L is rather 
subjective but is roughly consistent with the mesoscale feature of the concerned flow field 
(which is also the background error field for a zero-mean background).  
 Strictly speaking, especially for real-data applications, the decorrelation length scale needs to 
be estimated statistically together with other covariance parameters (σ, a and b) from, e.g., time 
series of radar radial-velocity innovation (observation minus background) fields. The estimation 
can be done in the same way as in Xu et al. (2003, 2006) except that the background covariance 
functions are modeled by (2.4) here (instead of the truncated spectral expansions used in the 
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cited studies); thus the above parameters can be estimated by fitting (2.5a) to radar radial-
velocity innovation covariance data. This problem deserves further studies but the topic is 
beyond the scope of the current paper.  
 With the decorrelation length scale, L, set to 30 km, the analyzed vector wind field is shown 
in Fig. 4b. As shown, the method is able to estimate the convergent winds on the mesoscale but 
cannot resolve the small-scale sharp convergence line found in the true field. Clearly, the method 
is limited to the mesoscale as the decorrelation length scale is set to 30 km in the mesoscale 
range. For the reason explained at the end of the previous subsection, the decorrelation length 
scale cannot be set to too small a value (with respect to the radial distance from the radar) and 
thus the method is not expected to be able to retrieve or resolve small-scale features. Regardless 
of this limitation, the method is satisfactory in capturing the mesoscale convergent winds in this 
case. The rms differences between the analyzed and true winds are 4.3 and 6.8 m s-1 for the 
radial- and tangential-component fields, respectively, and the differences are caused mainly by 
the discrepancies (not shown) within ±20 km along the front. When the VAD method is used, the 
rms differences increase to 12.5 and 12 m s-1, respectively, and the VAD wind field (not shown) 
bears little resemblance to the true convergent flow. Our method is clearly superior to VAD in 
this case. 
 The second experiment considers an idealized circular flow associated with an axisymmetric 
vortex centered at the northeast corner (x = 60 km and y = 60 km) of the domain as shown in Fig. 
5a. The flow is described by a modified Rankine vortex (Brown et al. 2002): V = Vmax(r/R)n, 
where V is the rotational velocity at radius r (from the vortex center), Vmax = 30 m s-1 is the 
maximum velocity at r = R = 30 km, and n = 1 for r ≤ R and n = - 0.6 for r > R. The radial-
velocity observations are again generated by adding random errors with σob = 1 m s-1. The 
parameter settings for the background error covariance are the same as in the previous 
subsection, and again the analysis is performed with the decorrelation length scale set to 30 km.  
 The analyzed vector wind field is shown in Fig. 5b; clearly it bears a close resemblance to 
the true flow pattern in Fig. 5a. The rms differences between the analyzed and true winds are 1.8 
and 4.7 m s-1 for the radial- and tangential-component fields, respectively. When the VAD 
analysis is used, the rms differences increase to 5.7 and 5.6 m s-1, respectively. As shown in 
Figs. 5a and 5b, although the true winds are perpendicular to the radar beam along the 
southwest-northeast diagonal line, the circular flow pattern can be partially captured by the 
analysis of the current method but not by the VAD analysis (not shown). However, if the vortex 
moves from the northeast corner into the domain, then the reversed wind on the far side of the 
vortex center away from the radar will not be captured by our method. This limitation is 
understandable based on the reasons explained at the end of previous subsection. Such a 
limitation is tolerable because the current method only needs to analyze the mesoscale 
environmental flow while small-scale vortices are expected to be retrieved by the nested 2dSA, 
as discussed in the introduction. 
 
c. Analyses of real radar observations 
 The level-II radial velocity observations collected by the Oklahoma City WSR-88D (KTLX) 
radar on 16 June 2002 for a surface cold front over the state of Oklahoma are analyzed to 
demonstrate the performance of our method. The data have a radial resolution of 250 m while the 
azimuthal resolution is about 1 degree. The dealiased radial velocities on the conical surface of 
0.5 degree elevation at 0040 UTC are plotted in Fig. 6 for an area of 120×120 km2 centered at 
the radar. As can be seen, the radial velocity observations are negative in the northwest corner 
area and in the southwest sector of the analysis domain. Between these two areas, there is hardly 
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any data available. The observed negative radial winds in those two areas suggest that the vector 
wind field should converge in this data void zone. The existence of such a convergence zone is 
consistent with the presence of a surface cold front in the operational surface analysis (not 
shown). In association with this cold front, there was a precipitation band stretching in the 
southwestward-northeastward direction and moving southeastwards. The dealiased radial 
velocity data are thinned by selecting one observation every four gates and from every other 
radial. The thinned observations therefore have the reduced resolutions of 1 km in the radial 
direction and 2o in the azimuthal direction. In this space of thinned observations, the radial-
velocity observation errors can be safely assumed to be uncorrelated (Xu et al. 2003, 2006). 
 The analysis is again performed with a zero background.  The background error standard 
deviation is again set to σ = 10 m s-1. The results are shown in Figs. 7a-c. As shown in Fig. 7c, 
the analyzed vector winds converge along a curved zone stretching along the line of y = 5 km 
near the west boundary that then turns northeastward along the diagonal line of x = y. As 
mentioned earlier, the actual existence of this wind convergence zone is confirmed by the 
presence at the same location of a cold front in the operational surface analysis (not shown). In 
the northeast corner area, the analyzed vector winds are largely southwesterly, which is 
somewhat similar to that in the idealized case in section 5a and the convergent flow case in 
section 5b. Because of this, the analyzed radial and tangential winds in the northeast corner area 
in Figs. 7a and 7b have similar patterns as those in Figs. 3a and 3b, respectively. However, since 
the vector wind field is neither uniform nor unidirectional as estimated in Fig. 7c, the overall 
patterns of the analyzed radial and tangential winds in Figs. 7a and 7b are quite different from 
those for the idealized case in Figs. 3a and 3b. These results suggest that the method can be used 
to analyze mesocale non-uniform and non-unidirectional vector winds from radar radial-velocity 
observations and thus to serve the purpose discussed in the introduction.  
 
6. Conclusions 
 In this paper, the cross-covariance function between the background radial (along the radar 
beam) and tangential (perpendicular to the beam) wind errors is derived. The derived cross-
covariance function is combined with the auto-covariance function derived in XG03 for the 
background radial-velocity errors to form a complete set of covariance functions. This set of 
covariance functions is formulated analytically, as in XG03, by downscaling the error covariance 
functions estimated for the background winds at 850 hPa in Xu and Wei (2001), while the 
analytical function forms allow flexible specifications of error variances and decorrelation length 
scales for the rotational and divergent parts of background wind error statistics. This set of 
analytical covariance functions can be used within the statistical interpolation framework for 
mesoscale vector wind analyses from radar-observed radial velocities on a conical surface of 
low-elevation radar scans.  
 The structures of the auto- and cross-correlation functions are examined in terms of the 
influence of a single radial-velocity observation on the analyzed radial- and tangential-velocity 
increment fields, respectively. In particular, it is shown how the geometric features in the auto-
correlation and cross-correlation functions are related to the analyzed vector wind increment 
field when analyzing a single radial-velocity observation. When no good estimate of the 
background wind is available and a zero background is assumed, the derived covariance 
functions can be used as influence functions for the vector-wind analysis. As in XG03, the 
choice of a zero background is a practical treatment in the absence of a better background field; 
in such a case, the error of the background is equal to the true wind field itself and the 
background error covariance is just the covariance of the true wind perturbations with respect to 
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the statistical mean of the true total wind. The utility of the derived covariance functions is 
demonstrated in this paper by numerical experiments using both simulated data from idealized 
flows and real radar observations. In particular, the results obtained with real radar observations 
show that the derived covariance functions can be used to analyze mesoscale non-uniform and 
non-unidirectional vector winds, on the conical surface of radar scans at a low elevation angle 
(see Figs. 6-7).  
 The derived covariance functions can be also used for a vector wind analysis in the one-
dimensional periodic space along a circle of a fixed range on the conical surface of radar scans at 
any elevation angle. When the decorrelation length scale is set to be infinitely large, this one-
dimensional analysis produces essentially the same results as the VAD analysis. In this sense, the 
method developed in this paper is an extension of the traditional VAD wind analysis from a one-
dimensional to a two-dimensional domain and from the application to uniform and unidirectional 
vector wind fields (assumed by the VAD method) to non-uniform and non-unidirectional vector 
wind fields. In principle, the one-dimensional analysis (as an extension of the VAD analysis) 
may be applied to radial-velocity observations at any elevation angle but this application is not 
examined in this paper. With the current method, the two-dimensional analysis is limited to 
radial-velocity observations at a low-elevation angle. To apply the analysis to radar scans at a 
relatively high elevation angle (> 5o), the covariance functions derived in this paper should be 
extended to consider background wind error correlation in the vertical also. This problem is 
under investigation. 
 The statistical interpolation used in this paper cannot be truly optimal unless the observation 
and background error statistics are accurately represented for the concerned flow. It is thus 
desirable and important to estimate these error statistics accurately in an objective way. This 
problem was examined in Xu et al. (2003, 2006), and the results show that these error statistics 
can be estimated objectively from time series of radar radial-velocity innovation (observation 
minus background) fields. As explained in section 5b, the covariance parameters considered in 
this paper can be estimated in the same way as in above cited studies except that the background 
covariance functions are modeled in analytical forms as given in (2.4) of this paper. The 
estimated error covariance parameters can be then directly used by the method presented in this 
paper. Likewise, the method presented in this paper can be modified to use the spectral-form 
background covariance functions used for the error covariance estimation in above cited studies. 
Thus, the vector wind analysis can be combined with error covariance estimation in different 
ways to produce the desired mesoscale environmental wind analysis for our intended purpose. 
Developing such an approach that combines the wind analysis with error covariance estimation 
and yet still can be implemented efficiently in real time within our storm targeted radar wind 
retrieval system remains a challenging task and requires continued research efforts. 
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Fig. 1. Cross-correlation function (a), and masked vector velocity field composed of the 
auto-correlation function and cross-correlation function (b). The two correlation functions 
are given by (4.2a) and (4.2b) with x  = (x , y ) = (-15, -15) km and L = 30 km. In panel (a), 
contours are plotted every 0.1 with solid for non-negative and dotted for negative values.

111



-60.0 -36.0 -12.0 12.0 36.0 60.0
-60.0

-36.0

-12.0

12.0

36.0

60.0

-14
.0

-1
2.

0

-1
0.

0

-4.0

-2.0 0.0

4.0

6.0
8.0

14.0

X (km)

Y 
(k

m
)

(a)

-60.0 -36.0 -12.0 12.0 36.0 60.0
-60.0

-36.0

-12.0

12.0

36.0

60.0

-8.0 -6.0

-4.0 0.0

2.0
4.

0

10
.0

12.0

14.0

X (km)

Y 
(k

m
)

(b)

Fig. 2. Idealized true radial-wind field given by Ucosß + Vsinß (a), and true tangential-wind field 
given by -Ucosß + Vsinß (b). Contours are plotted every 2 m s    with solid for non-negative and 
dotted for negative values. Shaded area in (a) shows the coverage of observations.
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Fig. 3. As in Fig. 2 but for analyzed radial-wind field (a), and tangent-wind field (b)
 with L = 60 km.
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Fig. 4. True vector wind field (a) and analyzed vector wind field (b) in the idealized case 
of convergent flow. The true winds in (a) have constant values of (U, V) =  (0, 2) and 
(15, -15) m s   on the southeast and northwest sides, respectively, of the convergence line.-1
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Fig. 5. True vector wind field (a) and analyzed vector wind field (b) in the idealized case 
of curvy flow. See text for details.
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0040 UTC on16 June 2002 for a surface cold front over the area of Oklahoma state.
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Fig. 7. Analyzed radial-wind field (a), tangent-wind field (b), and vector winds (c) 
for the real case.




