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ABSTRACT

A time-expanded sampling approach is proposed for the ensemble Kalman filter (EnKF). This approach
samples a series of perturbed state vectors from each prediction run not only at the analysis time (as the
conventional approach does) but also at other time levels in the vicinity of the analysis time. Since all the
sampled state vectors are used to construct the ensemble, the number of required prediction runs can be
much smaller than the ensemble size and this can reduce the computational cost. Since the sampling time
interval can be adjusted to optimize the ensemble spread and enrich the ensemble structures, the proposed
approach can improve the EnKF performance even though the number of prediction runs is greatly
reduced. The potential merits of the time-expanded sampling approach are demonstrated by assimilation
experiments with simulated radar observations for a supercell storm case.

1. Introduction

Since the ensemble Kalman filter (EnKF) was pro-
posed by Evensen (1994) as an alternative data assim-
ilation strategy, the EnKF technique has been refined
in many aspects (see, e.g., Burgers et al. 1998; Anderson
2001; Bishop et al. 2001; Houtekamer and Mitchell
2001; Mitchell et al. 2002; Whitaker and Hamill 2002;

Tippett et al. 2003; Evensen 2003) and applied to data
assimilation with not only larger-scale models but also
storm-scale models (Snyder and Zhang 2003; Zhang et
al. 2004; Dowell et al. 2004; Tong and Xue 2005; Xue et
al. 2006, hereafter XTD06). The traditional (extended)
Kalman filter (KF) propagates and updates not only the
mean state vector but also the covariance matrix for a
complete description of the assumed normal probabil-
ity density function (pdf) of the model state (Jazwinski
1970; Cohn 1997). As the prognostic equation for the
covariance matrix involves tangent linearization, it can
be very complex to code and very expensive to inte-
grate if the model state vector is of high dimensions,
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and the KF can become problematic when the model
physics contain parameterized discontinuities (Xu 1996,
1997). Unlike the traditional KF, the EnKF propagates
and updates an ensemble of state vectors based on the
Monte Carlo method. As a prior estimate of the covari-
ance matrix is directly computed from the ensemble
and used for the analysis, the algorithm is simple and
easy to code. Computationally, however, the EnKF is
still very expensive because of large ensemble sizes re-
quired by the Monte Carlo method. Thus, how to re-
duce the computation cost of the EnKF is a major prob-
lem for its operational applications. This has motivated
this study.

Another very challenging problem encountered by
the EnKF concerns how to deal with model errors, es-
pecially model biases. The problem is notorious for all
advanced assimilation techniques. Model errors are of-
ten closely linked to nonlinearities of the true pro-
cesses, and they are usually unknown and difficult to
estimate. The presence of unknown model errors can
cause the filter (KF or EnKF) to diverge, that is, to
cause the ensemble mean analysis to drift away from
the observations and thus away from the true state as
the assimilation proceeds through a large number of
cycles. To prevent the EnKF from filter divergence as a
result of unknown model errors as well as other rea-
sons, some empirical treatments, such as the covariance
inflation (Anderson 2001) and model error parameter-
ization (Mitchell and Houtekamer 2000), have been
used. The original model error problem, however, re-
mains largely unsolved. It is thus desirable to explore
other possible approaches to address or alleviate this
problem perhaps more effectively from different per-
spectives. This is another motivation of this study, even
though the attempted effort does not directly deal with
model errors.

For an ensemble of size N, the EnKF updates N en-
semble members at each analysis step to initialize N
prediction runs and then propagates the ensemble to
the next analysis time. For each analysis step, N pre-
dicted state vectors are sampled at the analysis time to
compute prior mean and covariance. The computed co-
variance is then localized to eliminate spurious long-
range correlation caused by limited ensemble size
(Houtekamer and Mitchell 2001). In this study, we pro-
pose and test a new approach in which a series of per-
turbed state vectors are sampled from each prediction
run not only at the analysis time but also at other time
levels properly selected in the vicinity of the analysis
time. As all the above sampled state vectors are used to
compute the background covariance for the analysis,
the ensemble size is increased without increasing the
number of prediction runs. Thus, for a given ensemble

size, the number of prediction runs is reduced, and this
can reduce the computational cost significantly.

The above time-expanded sampling is motivated by
the consideration of timing errors in model predictions.
This type of error occurs when the model predicted
system develops or propagates faster (or slower) than
the true system. Timing errors can be significant or
even pervasive with considerable uncertainties in
model predictions as suggested by many model verifi-
cation studies (Manobianco and Nutter 1999; Colle et
al. 2001; Mass et al. 2002; Colle and Charles 2007; Greg-
ory and Grumm 2007). According to S. Weiss 2007,
personal communication), Science and Operations Of-
ficer at the National Oceanic and Atmospheric Admin-
istration (NOAA)/National Weather Service (NWS)
Storm Prediction Center, timing errors and timing-
related spatial displacement errors were often distinct
in operational model predictions, including those pro-
duced by the experimental convection-allowing
Weather Research and Forecasting (WRF) models
(Weiss et al. 2007; Xue et al. 2007), especially when
considering the movement/location of precipitation sys-
tems. In the presence of timing error, the predicted
field at a time before (or after) the analysis time may
represent the true field better than the predicted field
at the analysis time, at least, over the area covered by
the weather system. Without a prior estimation, how-
ever, the timing error may be assumed to be statistically
random with a zero mean. In this case, the localized
forecast error covariance may be better estimated by
the above proposed time-expanded sampling, that is, by
sampling ensemble members not only at the analysis
time but also at properly selected times before and after
the analysis time.

Although the proposed time-expanded sampling is
motivated by the consideration of timing errors, its ap-
plicability is not necessarily limited by this consider-
ation. As will be demonstrated by the assimilation ex-
periments performed in this paper, the proposed ap-
proach can reduce the computational cost and improve
the filter performance even though the ensemble pre-
dictions are initialized with no systematic timing error.
The potential merits of the proposed approach will be
explored in this paper.

The paper is organized as follows: The next section
describes the model-simulated radar observations and
assimilation system. Section 3 designs assimilation ex-
periments with the proposed time-expanded sampling.
Assimilation experiments are performed with perfect
model and imperfect model settings in sections 4 and 5,
respectively, to explore and demonstrate the merits of
the proposed approach. Conclusions follow in section 6.
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2. Simulated observations and assimilation system

a. Prediction model and simulated storm

Tong and Xue (2005, hereafter TX05) demonstrated
the ability of the EnKF method in retrieving not only
the wind and thermodynamic variables but also mul-
tiple microphysical species associated with a multiclass
ice microphysics scheme by using the Advanced Re-
gional Prediction System (ARPS) model (Xue et al.
2001). They also discussed the relative role of radial
velocity and reflectivity data as well as their spatial cov-
erage in recovering the full flow and cloud fields. The
current study uses the same ARPS configurations for
the same storm case in TX05, that is, the 20 May 1977
Del City, Oklahoma, supercell (Ray et al. 1981). The
model configuration contains 12 prognostic state vari-
ables, including wind components u, �, and w; pertur-
bation potential temperature ��; perturbation pressure
p�; turbulence kinetic energy (TKE); and the mixing
ratios for water vapor q�, cloud water qc, rainwater qr,
cloud ice qi, snow qs, and hail qh. As in TX05, all of
these prognostic state variables except for TKE are
subject to updating at each analysis step of assimilation.

The “true” state for our observing system simulation
experiments (OSSEs) is generated by a model simula-
tion initialized from a modified Del City sounding as in
TX05. The CAPE of the sounding is about 3300 J kg�1,
and a 4-K ellipsoidal thermal bubble centered at x � 48,
y � 16, and z � 1.5 km, with a radius of 10 km in
horizontal directions and 1.5 km in vertical directions, is
used to initiate the storm. As in TX05, for all experi-
ments, the physical domain is 64 � 64 � 16 km3 and is
covered by a 35 � 35 � 35 grid with horizontal grid
spacings �x � �y � 2 km and vertical grid spacing
�z � 0.5 km. The true state, however, is generated in
two ways: (i) by using the same 35 � 35 � 35 grid for
the perfect model assimilation experiments (in section
4) and (ii) by using a 131 � 131 � 35 grid (with the
horizontal resolution enhanced to �x � �y � 0.5 km)
for the imperfect model assimilation experiments (in
section 5).

b. Simulated radar observations

The radar volumetric observations are assumed to be
available every 5 min, and this observation time inter-
val, denoted by T � 5 min, is consistent with the storm
scan mode of the operational Weather Surveillance Ra-
dar-1988 Doppler (WSR-88D). Each radial velocity ob-
servation, Vr, is simulated by

Vr � u cos� sin� � � cos� cos� � w sin� � �, 	1


where � is the elevation angle and � is the azimuth
angle of the radar beam, and (u, �, w) are the three
components of the true velocity at the observation
point obtained via trilinear interpolation from the true
state grid. The  represents random errors that are
drawn from a normal distribution with zero mean and
standard deviation of 1 m s�1.

In this study, we will assimilate radial velocity data
only, as in experiment VrP of TX05 (see their Table 1).
The radial velocity data are assumed to be available
only in precipitation regions where the reflectivity ex-
ceeds 10 dBZ and the reflectivity is calculated from the
hydrometeor mixing ratios from the true simulation. As
in TX05, the ground-based radar is located at the south-
west corner of the computational domain, that is, at the
x–y coordinate origin, for all experiments.

For the perfect model assimilation experiments, all
observations are given on the scalar points of the stag-
gered ARPS grid as in TX05. For the imperfect model
assimilation experiments, the observations are given,
via trilinear interpolation from the true state grid, on
the polar coordinates according to the WSR-88D radar
storm-mode scan configuration, which contains 14 tilts
at the elevation angles of 0.48°, 1.45°, 2.4°, 3.3°, 4.3°,
5.2°, 6.2°, 7.5°, 8.7°, 10.0°, 12°, 14.0°, 16.7°, and 19.5°.
On each tilt, the horizontal resolutions are 1° in the
azimuthal direction and 2 km in the radial range direc-
tion for the radial velocity. Here, the range gate reso-
lution is coarser than the real WSR-88D velocity reso-
lution of 0.25 km. According to our additional experi-
ments (not shown), making the range gate resolution
for the (simulated) radar observations higher than the
model resolution does not improve the EnKF perfor-
mance and subsequent model predictions. Because of
this, the range gate resolution is simply set to be the
same as the model grid resolution.

c. Data assimilation procedure

The observation errors are assumed to be uncorre-
lated, so the serial algorithm of ensemble square root
filter (EnSRF; Whitaker and Hamill 2002) can be con-
veniently used in this study. A compactly supported
smooth correlation function (Gaspari and Cohn 1999)
is used to localize the background covariance computed
from the ensemble as in TX05 and XTD06.

With the EnSRF, the model state estimates are up-
dated as follows:

xa � xb � W � K	yo � Hxb
 and 	2


xn�
a � xn�

b � W � K�yn�
b, 	3
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where x denotes the model state vector, the overbar
denotes the ensemble mean, the prime denotes the de-
viation from the mean, superscripts a and b denote the
analysis and background (or prior estimate), respec-
tively, n is the index that identifies a particular en-
semble member, yo is the observation vector, H is the
observation operator, � denotes the Schur (element-
wise) product, and W is the weight computed from the
Eq. (4.10) of Gaspari and Cohn (1999), which depends
on the distance from the observation to the model grid
points. In Eq. (3),

yn�
b � Hxn

b � Hxb 	4


is the deviation of ensemble member n from the en-
semble mean of the background projected to the ob-
servation space by observation operator H.

For the serial algorithm used here that assimilates
one observation at a time, the Kalman gain K, which
reduces to a column vector, and the � factor are com-
puted as follows:

K � �xn�
byn�

b�	�2 � �yn�
byn�

bT�
�1 and 	5


� � �1 � �	�2 � �y �b
n yn�

bT�
�1�2��1, 	6


where

�	 
� �
1

N � 1 �
n�1

N

	 
,

N is the ensemble size, and �2 is the observation error
variance.

The ensemble size is constrained by the available
computational capabilities and resources. Mitchell et al.
(2002) used 64 members in their perturbed observation
EnKF assimilation experiments and the analyses con-
verged reasonably well. Snyder and Zhang (2003) and
Dowell et al. (2004) used 50 members, and Zhang et al.
(2004) even tried as few as 20 members in their EnSRF
assimilation experiments. TX05 obtained very good re-
sults with 100 members and the perturbed observation
EnKF algorithm while in XTD06, 40 members were
used with EnSRF and the ARPS model. In this study,
by applying the time-expanded sampling to the EnSRF,
we seek to further reduce the ensemble sample size to
30 and take the samples out of only 10 prediction runs.

3. Experiment design and evaluation parameters

a. Experiment design and related considerations

With the time-expanded sampling proposed in this
paper, the ensemble consists of the standard members
and time-expanded members. The standard members
are sampled at the analysis time from Ns perturbed runs
in the same way as in TX05. The time-expanded mem-
bers are sampled at equally separated time levels be-
fore and after the analysis time. We denote t � tj as the

jth analysis time (for j � 1, 2, . . . , 16 in each experi-
ment). If we denote � as the sampling time interval,
then 2M� is the sampling time window, and the sam-
pling time levels centered at the jth analysis time are
t � tj � m� for m � 0, �1, �2, . . . , �M. Clearly, with
the time-expanded sampling, the ensemble size is in-
creased by a factor of 2M � 1, that is, from N � Ns to
N � Ns(2M � 1).

Assimilation experiments can be designed with dif-
ferent settings of M and �, while the sampling time
window is confined between the previous and next
analysis times, that is, 2M� � 2T, where T � 5 min is the
assimilation cycle time length, which is the same as the
observation time interval. In principle, the sampling
time window can be extended beyond 2T, but the sam-
pling time must go back beyond t � tj � T to sample
either the forecast initialized at t � tj�2 from the pre-
vious cycle (without using observations at t � tj � T) or
the analysis obtained by a Kalman smoother (that uses
the observations at t � tj � T). These complications as
well as increased cost are undesirable and therefore not
considered in this study. In terms of the selection of M
and �, the experimental designs for the perfect model
and imperfect model cases are similar. In each case, we
have two control experiments, C30 and C10, designed
with M � 0, and with N � Ns � 30 and 10, respectively.
Clearly, since M � 0, these control experiments reduce
to use of the conventional approach without time ex-
pansion.

For the perfect model case, the two control experi-
ments, C30 and C10, are similar to the VrP experiment
in TX05, except that the EnSRF is used and the en-
semble sizes are reduced from 100 to 30 and 10, respec-
tively. As in TX05, the initial ensemble forecasts are
started at the 20 min of model time by adding random
noise to a prior background state that is horizontally
homogeneous and described by the environmental
sounding in the vertical. The random noise is sampled
from normal distribution with zero mean and standard
deviation of 3 m s�1 for u, �, and w and 3 K for potential
temperature; the pressure, moisture, and microphysical
variables are not perturbed. The observations are as-
similated every T � 5 min. The first analysis is per-
formed at t � 25 min. After a total of 16 assimilation
cycles, the model prediction is launched at t � 100 min.
For C30 with either the perfect or imperfect model, the
covariance localization radius and inflation factor are
set to 8 km and 1.07, respectively, which are the same as
those used in TX05. For C10 with the perfect model,
the covariance localization radius is tuned in 1-km in-
crements to obtain an optimal value of 5 km and the
inflation factor is tuned in 0.05 increments to arrive at
an optimal value of 1.10. These parameter values are
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also used as nearly optimal settings in C10 with the
imperfect model. For all the test experiments with the
time-expanded sampling, the covariance localization
radius and inflation factor are simply set to 8 km and
1.07, respectively, that is, to be the same as in C30 with
no further tuning.

To examine the effectiveness of the time-expanded
sampling in comparisons with the conventional ap-
proach used in C10 and C30, test experiments are de-
signed by setting Ns � 10 (which is the same as in C10)
but with M � 0. As explained earlier, the sampling time
window is constrained by 2M� � 2T in this study. The
sampling time interval is thus confined by �t � � �

T/M, where �t (�6 s) is the time step of ARPS inte-
gration and T (�300 s) is the length of each assimilation
cycle, which is the same as the radar volume scan time
interval here. Since T is short, large M will give rise to
small � so that the time expanded samples may be too
similar or strongly correlated to provide much benefit.
As we will see later, when M is increased from 0 to 1
with a fixed Ns (�10), the analyses and subsequent pre-
dictions are improved significantly (compared with
those obtained with M � 0 in C10 without using the
time-expanded sampling). However, when M is in-
creased further (from 1 to 2 and beyond), it is found
that the analyses and subsequent predictions are barely
improved (see section 4d). Besides, large M will in-
crease the computational cost. We therefore will only
consider small values of, for example, M � 1 and 2, in
this study. For the test experiments with Ns � 10 and
M � 1, the initial 10 standard ensemble members are
generated by adding random perturbations in the same
way as in C10, but the total ensemble size for each
analysis is expanded to N � Ns(2M � 1) � 30 by time-
expanded sampling. In this case (with Ns � 10 and N �
30), the test experiment can be denoted by E10�3�90
(or E10�3�120, . . .) for � � 90 (or 120 s, . . .).

b. Evaluation parameters

To evaluate the performances of the test experiments
in comparison with that of C30, we need to introduce
and precisely define the following terms:

• The first term is the rms error of the expanded-
ensemble mean (immediately before or after each
analysis time) averaged over regions covered by the
Vr observations (where reflectivity exceeds 10 dBZ).
For the ith variable, denoted by xi, this term is de-
fined by

�i	tj�
 � ��xik	tj� � m	

mk

� xi
t	tj
�

2�
p

1�2
, 	7


where tj� (or tj�) denotes the time immediately be-
fore (or after) the jth analysis, xik(tj� � m�) denotes
the prior forecast ensemble member of xi sample at

tj� � m� from the kth forecast run, xik(tj� � m�)
denotes the posterior analysis ensemble member ob-
tained from xik(tj� � m�) at the end of the jth assim-
ilation cycle, the overbar labeled with mk denotes the
double average of () over m (�0, �1, . . . , �M for the
2M � 1 sampling time levels) and over k (�1, 2, . . . ,
Ns for Ns runs), xt

i denotes the true value of xi, and {}p

denotes the spatial average over the grid points cov-
ered by observations (where the reflectivity � 10
dBZ).

• The second term is the rms error of the ensemble
mean forecast (beyond the assimilation window, i.e.,
t � t16 � 100 min in our case) averaged over the
entire domain. For the ith variable xi, this term is
defined by

� i
f	t
 � ��xik	t


k
� xi

t	t
�2�1�2
for t 
 t16 � 100 min,

	8


where xik(t) denotes the ensemble member of xi

sampled at t from the kth forecast run for t � t16

beyond the assimilation window, the overbar labeled
with k denotes the average of () over k (�1, 2, . . . , Ns

for the Ns runs), and {} denotes the average over all
the grid points. Note that only standard members are
sampled in the forecast period beyond the assimila-
tion window, so the forecast ensemble mean here has
to be over the standard members only.

• The third term is the spatially averaged spread of the
expanded ensemble at t � tj�. For the ith variable,
this term is defined by

si	tj�
 � ��xik	tj� � m	
 � xik	tj� � m	

mk�2 mk

�
1�2

.

	9


• The fourth term is the spatially averaged spread of
the time-expanded ensemble members sampled (say,
for the jth analysis) from each run and averaged over
all the Ns runs. For the ith variable, this term is de-
fined by

si
e	tj�
 � ��xik	tj� � m	
 � xik	tj � � m	


m�2 mk

�
1�2

,

	10


where the overbar labeled with m denotes the aver-
age of ( ) over m (�0, �1, . . . , �M for the 2M � 1
sampling time levels).

• The fifth term is the spread of the standard members
sampled (for the jth analysis) from all the Ns runs.
For the ith variable, this parameter is defined by

si
s	tj�
 � ��xik	tj�
 � xik	tj�


k�2 k

�
1�2

. 	11


The above definitions of rms errors and spread are
consistent with those used in TX05 and XTD06, with
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the main difference being the introduction of time-
expanded members here. Using the above terms, we
introduce the following four parameters:

• The first parameter is the ratio between i(tj�) and
i(tj�)C30 averaged over the 16 analysis time levels
and 11 model variables, where i(tj�)C30 is defined in
the same way as i(tj�) in Eq. (7) but for C30 specifi-
cally and only. This parameter is called the analysis
relative rms error (RRE) for short and is defined by

analysis RRE � ���i	tj�
��i	tj�
C30�j�� i, 	12


where [ ]j� denotes the average over the 16 analysis
time levels and [( )]i denotes the average of ( ) over i
for the 11 model variables.

• The second parameter is the averaged ratio between
 f

i(t) and  f
i(t)C30, where  f

i(t)C30 is defined in the
same way as  f

i(t) in Eq. (8) but specifically for C30
only. This parameter is called the forecast RRE for
short and is defined by

forecast RRE � ��� i
f	t
�� i

f	t
C30� t� i, 	13


where [ ]t denotes the time average over the forecast
period (from t � 100 to t � 160 min after the assim-
ilation).

• The third parameter is the averaged ratio between
si(t1�) and si(t1�)C30, where si(t1�) is defined in Eq.
(9) for the forecast ensemble at t � tj� � t1� (imme-
diately before the first analysis), and si(t1�)C30 is the
same as si(t1�) but for C30 specifically and only. This
parameter is called the initial relative spread (RS) for
short and is defined by

initial RS � �si	t1�
�si	t1�
C30� i. 	14


• The fourth parameter is the averaged ratio between
se

i (t1�) and s s
i(t1�), where se

i (t1�) is defined in Eq.
(10) with tj� � t1� and s s

i(t1) is defined in Eq. (11)
with tj� � t1. This parameter is called the initial
spread ratio (SR) for short and is defined by

initial SR � �si
e	t1�
�si

s	t1�
� i. 	15


The above first two parameters are introduced to
facilitate the comparison between the proposed time-
expanded sampling with the conventional approach.
The last parameter will be used to preselect the sam-
pling time interval.

In Eqs. (14) and (15), the initial RS and SR are de-
fined at t � t1�. These definitions can be extended to
any t � tj�, and one can verify that

�xik	tj� � m	
 � xik	tj� � m	

mk�2 mk

� �xik	tj� � m	
 � xik	tj� � m	

m

� xik	tj� � m	

m

� xik	tj� � m	

mk�2 mk

� �xik	tj� � m	
 � xik	tj� � m	

m�2 mk

� �xik	tj� � m	

m

� xik	tj� � m	

mk�2 mk

� �xik	tj� � m	
 � xik	tj� � m	

m�2 mk

� �xik	tj�
 � xik	tj�

k�2 k

, 	16


where ( )
mkm

� ( )
mk

and

�xik	tj± � m	
 � xik	tj± � m	

m

��xik	tj± � m	
m � xik	tj � � m	
mk�
mk

� 0

are used in the third step, and xik(tj� � m�)
m

� xjk(tj�)
is used in the last step. Applying { } to the two sides of
Eq. (16) gives

si	tj�
2 � s i
e	tj�
2 � s i

s	tj�
2. 	17


This result indicates that the variance (i.e., the squared
rms spread) of the total ensemble is approximately
equal to the sum of the variance of the time-expanded
members and the variance of the standard members.
Note that xik(tj� � m�)

m
� xjk(tj�) is the only approxi-

mation used in deriving Eqs. (16) and (17), so the ac-

curacy or validity of Eq. (17) depends solely on this
approximation.

Note that the ensemble spread can be easily com-
puted for the first analysis at t � t1� before the assim-
ilation starts, but computing the spread ratio for a sub-
sequent analysis, say, at t � tj� (for j � 1) requires the
ensemble to be updated through j assimilation cycles.
Because we intend to use the initial SR to guide the
design of assimilation before the assimilation is actually
carried out, we have simply set t � t1� in Eqs. (14) and
(15). The initial RS and SR will be computed at t � t1�

(before the assimilation starts) in all the experiments
presented in this paper.
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4. Perfect model assimilation experiments

In this section, a total of 13 perfect model assimila-
tion experiments are performed and analyzed in details.
These include two control experiments (C30 and C10)
and six test experiments with Ns � 10 and M � 1 (thus
N � 30), and five more experiments with Ns � 10 and
M � 2 (N � 50). We first examine the six experiments
with M � 1 and compare them against the two controls.
In the first eight rows of Table 1 are the values of the
four parameters calculated for these experiments, ac-
cording to Eqs. (12)–(15). As shown in the table, mea-
sured by the smallness of the analysis RRE and forecast
RRE, there is an optimal sampling time interval within
the sampling time window (constrained by 2M� � 2T �
10 min) for M � 1. This feature and its implications are
examined in the following section.

a. Optimal time interval for time-expanded
sampling

As we can see from the analysis RREs and forecast
RREs listed in Table 1, the six test experiments per-
form significantly better than C10, and they all have the
same number of prediction runs, that is, Ns � 10. Since
their analysis RREs and forecast RREs are around 1,
the six test experiments have about the same level of
performance as C30. Among the six test experiments,
two experiments, that is, E10�3�168 and E10�3�186,
perform better than C30, and the best is E10�3�168.
Measured by the analysis RRE and forecast RRE, the
optimal sampling time interval is clearly given by � �
168 s among the six selected values of � for the above
test experiments. The above results demonstrate that
(i) the time-expanded sampling can improve the filter
performance, and (ii) the improvement can be opti-
mized by properly selecting the sampling time interval.
Clearly, to improve the ensemble representation by us-
ing the time-expanded sampling, � should be suffi-
ciently large to reduce the similarity and correlation
between the time-expanded members but not too large
to cause the deterioration of the ensemble representa-
tion of the pdf for the forecast background field at the
analysis time.

As shown by the results of E10�3�168 and
E10�3�186 in Table 1, when the sampling time interval
� is optimal or nearly optimal, the initial RS is slightly
larger than 1.5 and the initial SR is around 1. According
to the definition in Eq. (14), the initial RS measures the
initial ensemble spread (immediately before the first
analysis) in the concerned experiment with respect to
that in C30. As will be shown later (see Fig. 5), the
initial ensemble spread in C30 is insufficient as it is
significantly smaller than the rms error of the ensemble

mean. In E10�3�168, the initial ensemble spread is en-
hanced by a factor of 1.55 (as indicated by the initial
RS). This enhanced spread partially explains the im-
proved performance of E10�3�168 relative to that of
C30.

As shown in Table 1, the initial SR is 1.0 for
E10�3�168. This implies that se

i (t1�) � s s
i(t1�) accord-

ing to Eq. (15), but this approximation is crude because
of the variability of se

i (t1�)/s s
i(t1�) over the 11 variables,

especially over the hydrometeor variables (qc, qr, qi, qs,
and qh). With this approximation, we have si(t1�) �
�2s s

i(t1�) according to Eq. (17), so the total ensemble
spread is about �2 times the standard member spread.
Note that the standard members are generated initially
by adding random perturbations only to the (u, �, w, �)
component fields in E10�3�168 in the same way as in
C10, so their initial spread should be the same as that in
C10 but the initial spreads are reflected mainly in the
above four component fields. For these four compo-
nent fields, the initial spreads si(t1�) in C10 are very
close to those in C30 and si(t1�)/si(t1�)C30 are between
0.96 and 0.99 (larger than the variable-averaged value
listed for C10 in Table 1). This implies that ss

i(t1�) in
E10�3�168 are very close to si(t1�) in C30 for these
four component fields, while s e

i (t1�) � s s
i (t1�) in

E10�3�168 as explained above. This indicates again
that the initial ensemble spread, at least for the above
four component fields, is enhanced by about a factor of
�2 by the inclusion of time-expanded members. This
suggests that the sampling time interval � may be pre-
selected by tuning the initial SR to 1, and the detailed
procedure will be discussed at the end of section 5.

In the above test experiments, as Ns is 10 instead of
30, the time-expanded sampling saves more than a half
CPU cost in integrating and updating the ensemble in

TABLE 1. Evaluation parameter values for perfect model assim-
ilation experiments. See Eqs. (12)–(15) for the definitions of the
four evaluation parameters.

Expt
Analysis

RRE
Forecast

RRE
Initial

RS
Initial

SR

C30 1.00 1.00 1.00
C10 1.49 1.26 0.83
E10�3�90 1.18 1.01 1.03 0.58
E10�3�120 1.11 0.99 1.19 0.73
E10�3�168 0.95 0.91 1.55 1.00
E10�3�186 0.97 0.93 1.72 1.11
E10�3�210 1.02 0.98 1.99 1.28
E10�3�240 1.10 1.08 2.46 1.57
E10�5�72 1.11 1.02 1.25 0.74
E10�5�84 0.96 0.94 1.41 0.86
E10�5�90 0.93 0.93 1.49 0.93
E10�5�120 0.99 1.02 2.14 1.36
E10�5�144 1.21 1.05 3.37 2.23
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comparison with the conventional approach in C30.
When the sampling time interval � is properly selected
to make the initial RS close to 1 (for M � 1 with a
perfect model setting), the time-expanded sampling
performs better than the conventional approach in C30.
Note that C30 performs similar to experiment VrP in
TX05 (see their Fig. 4). The performances of the test
experiments will be examined in details and compared

with the performances of C10 and C30 in the subse-
quent sections.

b. Ensemble mean analyses and forecasts

The true fields of vertical velocity and horizontal
wind at z � 6 km are plotted in a time series in the first
row of Fig. 1 against the ensemble mean analyses in C30
(second row), E10�3�168 (third row), and C10 (last

FIG. 1. Vertical velocity (contours and shading at intervals of 4 and �4 m s�1) and horizontal wind (vectors plotted every other grid
point) at level z � 6 km: (a)–(d) true simulation and analyses from (e)–(h) C30, (i)–(l) E10�3�168, and (m)–(p) C10, at the 5th, 7th,
11th, and 16th cycles during the assimilation period. The vector scale for the horizontal wind is shown by the arrow (10 m s�1) at the
lower-left corner.
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row). As shown, after five analysis cycles, the basic
structures of updraft and horizontal flow are reasonably
retrieved. It is evident that E10�3�168 performs better
than C10 in terms of their closeness to the truth fields.
Here E10�3�168 performs even slightly better than
C30 for most of the 11 model variables over the first
nine analysis cycles (see Fig. 3). By the fifth cycle, the
low-level cold pool and the associated divergent flow in

C10, C30, and E10�3�168 are all weaker than the true
fields, especially in E10�3�168 (Fig. 2i), and the cold
pool centers are dislocated slightly to the northeast
from the true center. In the subsequent cycles, hydro-
meteor retrievals are improved significantly and the
analyses continue to improve, especially in E10�3�168.
In this case, as shown in Fig. 2, the magnitude and
location of the perturbation potential temperature be-

FIG. 2. Horizontal perturbation wind (vectors), perturbation potential temperature (thick black lines for 0 K and thin dashed contours
for negative at 0.5-K intervals), and computed reflectivity (thin solid contours and shading at intervals of 5 dBZ, starting from 15 dBZ )
at z � 250 m: (a)–(d) true simulation, and analyses from (e)–(h) C30, (i)–(l) E10�3�168, and (m)–(p) C10. The arrow (10 m s�1) at the
lower-left corner shows the vector scale for the horizontal wind.
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come reasonably good, and the low-level flow and re-
flectivity patterns as well as the shape of the cold pool
also agree quite well with the true fields, again, espe-
cially in E10�3�168.

The accuracies of the ensemble mean analyses and
forecasts are evaluated quantitatively by the rms errors
defined in Eqs. (7) and (8). Since C30 has basically the
same performance as the VrP experiment of TX05 (see
their Fig. 4), it is not necessary to show the rms errors
in C30. By using the results of C30 as benchmarks, the
rms error for each variable in each of the remaining
experiments relative to that in C30 can be conveniently
examined by their ratio, that is, i(tj�)/i(tj�)C30 [or
 f

i(t)/ f
i(t)C30] for the analysis (or forecast) mean for the

ith variable. These ratios are similar to those defined in
Eqs. (12) and (13) but not averaged (neither in time nor
over the 11 variables). The rms error ratios of the en-
semble means, i(tj�)/i(tj�)C30, are plotted in Fig. 3 as
functions of time over the entire assimilation period (16
cycles) for 10 variables (u, �, w, ��, p�, q�, qc, qr, qs, and
qh) produced in C10, E10�3�90, E10�3�168, and
E10�3�240. As shown, C10 has the largest rms errors
over 16 analysis cycles for all variables. The experi-
ments E10�3�90 and E10�3�240 perform better than
C30 during the first 9 cycles, and E10�3�168 performs
better than C30 in the first 10 and last 2 cycles.

The forecast ensemble mean rms errors,  f
i(t), are

plotted in Fig. 4 for w, ��, and qr produced in C10, C30,
and E10�3�168 as functions of time over the first hour
of the forecast launched immediately after the last
(16th) analysis (at t � 100 min). As shown, E10�3�168
continues performing better than C30 and much better
than C10 during this forecast period. The results in Figs.
3 and 4 show again that the time-expanded sampling
cannot only save CPU cost but also improve the analy-
sis and forecast, especially when the sampling time in-
terval is properly adjusted to optimal or nearly optimal.

c. Ensemble spread and consistency ratio

With a limited ensemble size, the conventional EnKF
tends to underestimate the analysis uncertainty. Be-
cause of this, some empirical treatments, such as the
covariance inflation (Anderson 2001) and “double” en-
semble (Houtekamer and Mitchell 1998), have been
introduced to improve the analysis. In this aspect, the
time-expanded sampling approach appears to have an
advantage because the sampling time interval can be
adjusted to improve the ensemble spread not only ini-
tially but also in subsequent cycles. This may partially
explain why the time-expanded sampling improves the
filter performance, especially when the sampling time
interval is properly selected.

Ideally, the ensemble spread should satisfy a con-
sistency relationship with the ensemble mean forecast

FIG. 3. Ensemble mean rms error ratios, i(tj�)/i(tj�)C30, plotted as functions of assimilation time for (a) u, (b) �, (c) w, (d)
perturbation potential temperature ��, (e) perturbation pressure p�, (f) water vapor specific humidity q�, (g) mixing ratios for cloud
water qc, (h) rainwater qr, (i) snow qs, and (j) hail qh produced in C30 (straight thick solid lines), C10 (dashed–dotted lines), E10�3�90
(dashed lines), E10�3�168 (dotted lines), and E10�3�240 (thin solid lines).
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and analysis rms errors. This consistency relation re-
quires the ratio between the ensemble spread and the
ensemble mean rms error to be statistically equal to
�N/(N � 1) (Murphy 1988). We may call this ratio the
consistency ratio for short and define it formally by

consistency ratio � si	tj±
��i	tj±
, 	18


where si(tj�) is the ensemble spread and i(tj�) is the
rms error of the ensemble mean averaged over the grid

points where the reflectivity �10 dBZ, for the ith vari-
able at the time immediately before (or after) each
analysis. Here, as in Eq. (7), tj� (or tj�) denotes the time
immediately before (or after) the jth analysis.

Figure 5 shows the consistency ratios for 10 variables
(u, �, w, ��, p�, q�, qc, qr, qs, and qh) produced in C10,
C30, and E10�3�168. As shown, the consistency ratios
in C10 and C30 undergo similar variations and they are
always below and often significantly below their respec-

FIG. 4. Forecast ensemble mean rms errors,  f
i(t), plotted as functions of forecast time (160 min � t � t16 � 100

min, beyond assimilation window) for (a) w, (b) ��, and (c) qr produced in C10 (dashed–dotted lines), C30 (thick
solid lines), and E10�3�168 (dotted lines).

FIG. 5. Consistency ratios [see Eq. (18)] for (a) u, (b) �, (c) w, (d) ��, (e) p�, (f) q�, (g) qc, (h) qr, (i) qs, and ( j) qh produced in
C10 (dashed–dotted lines), C30 (thick solid lines), and E10�3�168 (dotted lines). The two straight solid lines are the values of
�N/(N � 1) for N � 10 and 30.
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tive ideal values, that is, �N/(N � 1) � 0.984 for N �
30 and �N/(N � 1) � 0.953 for N � 10 as marked by
the two straight solid lines in Fig. 5. The consistency
ratios in E10�3�168 are larger than those in C30 and
C10, and they go up and down through each assimila-
tion cycle more dramatically than those in C30 and C10.
The sharp increases of the ratios in the forecast step are
clearly due to the time-expanded sampling used in
E10�3�168. Because of this, the consistency ratios
in E10�3�168 become closer or much closer to the
ideal value of �N/(N � 1) (�0.984 for N � 30) than in
C30.

d. Experiments with M � 2

So far all the experiments are performed with M � 1.
As explained in section 3a, the sampling time window is
constrained by 2M� � 2T. Because of this, the sampling
time interval is constrained by � � T/M. Under this
constraint, five test experiments are performed with M
increased to 2. The results are listed in the last five rows
of Table 1. Clearly, these five test experiments perform
significantly better than C10, with two of them
(E10�5�84 and E10�5�90) performing better than
C30, and one of them (E10�5�90) producing the best
analysis, which is slightly better than the best analysis
by E10�3�168 using M � 1. The forecast RRE, how-
ever, becomes slightly larger in E10�5�90 than in
E10�3�168. When M � 2, the optimal sampling time
interval among the five test experiments is 90 s as
shown in the last five rows of Table 1.

In E10�5�90, the initial ensemble spread is enhanced
1.49 times relative to that in C30 (as indicated by the
initial RS), and the initial SR is 0.93 and thus is still very
close to 1. Note that these parameter values are very
close to those listed for E10�3�168 in Table 1, so the
optimal value of � (�90 s) obtained for M � 2 in
E10�5�90 can be explained in the same way as for M �
1 in E10�3�168 in section 4a. These parameter values
are about the same (i.e., initial RS � 1.5 and initial SR
� 1) for M � 1 and 2.

When M is increased from 1 to 2, the time-expanded
members are sampled more frequently (with reduced
sampling time intervals) from the same run and thus
become more similar to each other. Thus, there is a
limit in improving the pdf represented by the time-
expanded members by increasing M. This explains why
E10�5�90 (with M � 2) does not perform obviously
better than E10�3�168 (with M � 1). Note that Ns is set
to 10 in all the above test experiments. As M is in-
creased from 1 to 2 with this setting, the CPU cost is
nearly doubled in the analysis step. Thus, increasing M
to 2 and beyond provides no advantage. Decreasing Ns,
say, from 10 to 5 can reduce the CPU cost, but the

performance (not shown) becomes worse than that of
C10 regardless of the chosen values of M and �, even
though N can be larger or much larger than 30 by se-
lecting M � 2. Thus, when the time-expanded sampling
is used, there is a limit in reducing Ns from a value
accepted in the conventional approach (such as Ns � 30
in C30).

5. Imperfect model experiments

In this section, nine imperfect model experiments are
performed to further test and demonstrate the capabili-
ties of the time-expanded sampling. As explained in
sections 2a and 2b, the true state is simulated by the
ARPS with an enhanced resolution (�x � �y � 0.5
km). The forecast model used by the assimilation, how-
ever, is the ARPS with the coarser 2-km horizontal
resolution, as originally used in TX05 and in our perfect
model experiments. Thus, the model is imperfect with
respect to its high-resolution counterpart, and the
model error is caused by the resolution deficiency with
respect to the true state and process. For the imperfect
model experiments, simulated observations are gener-
ated from the high-resolution true state in the polar
coordinate according to the WSR-88D radar storm-
mode scan configuration, after random noise is added
[see Eq.(1)].

The results of the nine experiments are summarized
in Table 2. As shown by the listed analysis and forecast
RREs, C10 still performs worst among the nine experi-
ments. Even though the model is imperfect now and
there is no explicit treatment or estimation of the model
error, the time-expanded sampling can improve the
performance as shown by the test experiments in com-
parison with C10. Measured by the analysis and fore-
cast RREs, two test experiments, that is, E10�3�210
and E10�3�240 perform even better than C30. Mea-
sured by the forecast RREs alone, six test experi-
ments perform better than C30, with the best being

TABLE 2. As in Table 1, but for imperfect model assimilation
experiments.

Expt
Analysis

RRE
Forecast

RRE
Initial

RS
Initial

SR

C30 1.00 1.00 1.00
C10 1.15 1.13 0.80
E10�3�90 1.06 1.07 0.96 0.56
E10�3�120 1.01 0.96 1.08 0.70
E10�3�168 1.02 0.90 1.34 0.92
E10�3�186 1.01 0.92 1.47 1.02
E10�3�210 0.99 0.90 1.66 1.16
E10�3�240 0.98 0.86 2.02 1.44
E10�3�270 1.12 0.88 2.60 2.00
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E10�3�240. Therefore, the optimal sampling time in-
terval is � � 240 s among the seven test experiments.
This optimal value (� � 240 s) is larger than that (� �
168 s) in the perfect model case. This increase is ex-
pected, because it can increase the ensemble spread to
account for the additional background forecast error
due to model error, as discussed in the introduction.

Figure 6 shows the true fields of vertical velocity and
horizontal wind at z � 6 km in a time series (first row)
against the analyzed ensemble mean fields in C30 (sec-
ond row), E10�3�240 (third row), and C10 (last row).

As shown, the middle-level horizontal wind field is rea-
sonably well produced by the analysis at the end of the
fifth assimilation cycle in E10�3�240. The major up-
draft pattern and intensity are also produced in
E10�3�240 better (closer to the true pattern) than in
C30 and much better than in C10, although the updraft
is slightly weaker than the true one. In the subsequent
cycles, E10�3�240 continuously performs well, and
some of the detailed improvements in E10�3�240 in
comparison with C30 and C10 can be seen from Fig. 6.
The low-level cold pool and the associated horizontal

FIG. 6. As in Fig. 1 but for (a)–(d) high-resolution true simulation (vectors plotted every eight grid points) and analyses produced
in the imperfect model experiments (e)–(h) C30, (i)–(l) E10�3�240, and (m)–(p) C10 (vectors plotted every other grid point).
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wind divergence produced in E10�3�240 are also bet-
ter than in C30 and much better than in C10 (not
shown).

The rms errors [defined in Eq. (7)] of the analyzed
mean fields of (u, �, w), perturbed potential tempera-
ture ��, and rainwater qr produced in C10, C30, and
E10�3�240 are plotted as functions of time in Fig. 7. As
shown, since the model is imperfect, the rms errors are
not always reduced effectively and the analysis error
reduction is not always able to overcome the forecast
error growths. The rms errors undergo only limited re-
ductions and remain significant after all the 16 cycles,
especially in C10. Nevertheless, E10�3�240 has the
smallest rms errors in all the variable fields during the
entire assimilation period.

Figure 8 shows the rms errors [defined in Eq. (8)] of
the ensemble mean forecasts of w, ��, and qr from C10,
C30, and E10�3�240 for the first hour after the assim-
ilation (from t � 100 to 160 min). As shown, the fore-
cast rms errors in E10�3�240 are significantly smaller

than those in C30 and much smaller than those in C10.
In comparison with the results presented in Fig. 4, the
forecast error reductions made by the time-expanded
sampling in E10�3�240 are clearly more significant in
this imperfect model case than in the perfect model
case.

The consistency ratios [defined in Eq. (18)] are
shown in Fig. 9 for the same 10 model variables as in
Fig. 5 but produced by the imperfect model experi-
ments C10, C30, and E10�3�240. Note that the consis-
tency ratios produced by each imperfect model experi-
ment in Fig. 9 are slightly smaller than those produced
by the perfect model counterpart in Fig. 5. As shown in
Fig. 9, the consistency ratios are enhanced very signifi-
cantly in E10�3�240 relative to those in C30 and C10.
Because the optimal sampling time interval in this case
is larger than that in the perfect model case, the overall
ensemble spread is enhanced by the time-expanded
sampling in E10�3�240 more significantly (toward the
ideal value) than those in Fig. 5 for the perfect model

FIG. 8. As in Fig. 4 but for the imperfect model experiments C10 (dashed–dotted lines), C30 (thick solid lines),
and E10�3�240 (dotted lines).

FIG. 7. As in Fig. 3 but for the ensemble mean rms errors, i(tj�), plotted for (a) u, (b) �, (c) w, (d) ��, and (e) qr produced in the
imperfect model experiments C10 (dashed–dotted lines), C30 (thick solid lines), and E10�3�240 (dotted lines).
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case. This explains why the consistency ratios are en-
hanced more dramatically in Fig. 9 for E10�3�240 than
those in Fig. 5 for E10�3�168 and why the ensemble
mean rms errors are reduced in E10�3�240 for the im-
perfect model case more significantly than those in
E10�3�168 for the perfect model case.

The results presented in this and previous sections
suggest that the initial SR defined in Eq. (15) may be
used to facilitate the initial selection of the sampling
time interval � (as it is calculated from the forecast
ensemble before the assimilation), but the subsequent
tuning of � will require additional work especially if the
model is significantly imperfect. For example, as shown
by our experiments, � may be preselected to make the
initial SR close to 1 if the model is perfect or moder-
ately larger than 1 if the model is moderately imperfect.
With such an initially selected �, assimilation experi-
ments can be performed with time-expanded sampling
to improve the filter performance. Then, innovation
(observation minus background) data can be collected
and used to estimate the spatially averaged background
error variance (Xu et al. 2007). The estimated error
variance can be used together with the ensemble spread
to compute the consistency ratio [see Eq. (18)] and thus
check the optimality of the preselected �. Based on the
computed consistency ratio, � can be adjusted to im-
prove the optimality (according to the discussions in
section 4c). The above procedure may be used to fa-
cilitate applications of the proposed time-expanded

sampling to real radar data assimilation with an en-
semble-based filter.

6. Conclusions

When the pdf of the model state is represented by an
ensemble of state vectors in an ensemble-based filter,
such as the EnKF or other hybrid filter (Lorenc 2003;
Zupanski 2005), the covariance matrix is directly com-
puted from the ensemble and this makes the filter much
easier to implement than the four-dimensional varia-
tional data assimilation (4DVAR) technique (Lewis
and Derber 1985; Le Dimet and Talagrand 1986; Ben-
nett 1992; Talagrand 1997) and much cheaper to run
than the classic extended Kalman filter (Jazwinski 1970;
Cohn 1997). Ideally, the ensemble size should be suffi-
ciently large to adequately represent the pdf (e.g., W. J.
Martin and M. Xue 2007, unpublished manuscript).
Practically, however, an ensemble-based filter has to
use a limited or even small ensemble to reduce the
computational cost. How to treat problems caused by
limited or small ensembles is thus a primary issue for
ensemble-based filters. Another primary issue for en-
semble-based filters (also for 4DVAR) concerns how to
treat or alleviate problems caused by unknown model
errors. The time-expanded sampling proposed in this
study is intended to deal with these issues. The results
presented in this paper indicate that the proposed
method can be a simple and effective way to improve

FIG. 9. As in Fig. 5 but for the imperfect model experiments C10 (dashed–dotted lines), C30 (thick solid lines), and E10�3�240
(dotted lines).
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the filter performance and reduce the computational
cost even in the presence of model error, although the
method does not directly deal with model errors.

More specifically, by performing assimilation experi-
ments with the EnSRF (Whitaker and Hamill 2002) and
simulated radar observations by the ARPS (Xue et al.
2001), the proposed time-expanded sampling is shown
to have the following merits: (i) It can reduce the num-
ber of prediction runs hence computational cost with-
out reducing the effective ensemble size. (ii) When the
sampling time interval is properly selected, it can im-
prove the filter performance and alleviate spread-
related problems caused by small ensemble sizes and
unknown (but small or moderate) model errors more
effectively than the conventional covariance inflation.
It is also shown (see sections 4c and 5) that the im-
proved filter performance can be explained by the en-
hanced ensemble spread and consistency ratio [see Eq.
(18)] due to the time-expanded sampling. Furthermore,
as the ensemble subspace spanned by the standard en-
semble members is small and the ensemble space can
be enlarged by the inclusion of time-expanded mem-
bers, the ensemble structures can therefore be enriched
by the time-expanded sampling. This may further ex-
plain why the time-expanded sampling can improve the
filter performance more effectively than the optimized
conventional inflation (see section 3a) when the en-
semble size is small. The above summarized merits and
interpretations are also supported by the results of as-
similation experiments performed with the time-
expanded sampling applied to a shallow-water equation
model in Xu et al. (2008).

As explained in the introduction, the proposed time-
expanded sampling was motivated by the consideration
of timing error, but its applicability is not necessarily
limited by this consideration. In fact, all ensemble pre-
dictions in this paper (as well as in Xu et al. 2008) were
initialized with no systematic timing error and there
was no obvious systematic timing error in the subse-
quent ensemble predictions. The above summarized
merits and related interpretations also involve no sys-
tematic timing error. However, since the proposed ap-
proach relies on the anticipated development and/or
propagation of the predicted weather system, it will
become ineffective if the predicted system neither de-
velops nor propagates. This is an obvious limitation, but
the concerned scenario (no development and no propa-
gation in the predicted system) is extremely rare and
should never happen in the presence of active storms.
On the other hand, as shown in Xu et al. (2008), the
time-expanded sampling will become relatively ineffec-
tive when the ensemble size becomes large and the ob-
servations become complete. This appears to be a ma-

jor limitation for the proposed time-expanded sampling.
This limitation, however, does not reduce the potential
usefulness of time-expanded sampling for real radar data
assimilation, because radar observations are highly in-
complete (limited to radial velocity and reflectivity only)
and the practical ensemble size often has to be much (104

or 105 times) smaller than the state vector dimension in a
full model (or the computations will be too expensive).
As a matter of fact, the potential usefulness of time-
expanded sampling for real radar data assimilation has
been demonstrated by the recent study of Lu (2007).

In addition to the above summarized merits and in-
terpretations, there could be fundamental reasons for
the potential usefulness of time-expanded sampling in
certain situations (including those mentioned above un-
der the limitations discussed). In this regard, one may
speculate two possible reasons (as suggested by one of
the anonymous reviewers of this paper): (i) As the en-
semble size is enlarged by the inclusion of time-
expanded members, the time-expanded sampling could
reduce the required localization and thus reduce imbal-
ance problems that can be caused by extreme localiza-
tion. (ii) Using time-expanded sampling could increase
the number of possible locations where convection can
be generated and thus improve the localized ensemble
representation of the forecast pdf if some aspects of
forecasts can be regarded as purely stochastic on the
convective scale. These speculations are not yet verified
in the study but deserve further investigation.
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