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ABSTRACT

This work examines the influence of horizontal propagation of three-dimensional (3D) mountain waves

on the wave momentum flux (WMF) within finite domains (e.g., the grid cell of general circulation models).

Under the Wentzel–Kramers–Brillouin (WKB) approximation, analytical solutions are derived for hy-

drostatic nonrotating mountain waves using the Gaussian beam approximation (GBA), which incorporates

both the wind vertical curvature effect and the height variation of stratification. The GBA solutions are

validated against numerical simulations conducted using the Advanced Regional Prediction System

(ARPS). In the situation of idealized terrain, wind, and stratification, the WMF obtained from the GBA

shows a good agreement with the numerical simulation. The effect of wind curvature in enhancing theWMF

is captured, although the WKB-based GBA solution tends to overestimate the WMF, especially at small

Richardson numbers of order unity. For realistic terrain and/or atmospheric conditions, there are some

biases between theWKBGBA and simulatedWMFs, arising from, for example, themissing physics of wave

reflection. Nonetheless, the decreasing trend of finite-domain WMF with height, because of the horizontal

propagation of 3D mountain waves, can be represented fairly well. Using the GBA, a new scheme is

proposed to parameterize the orographic gravity wave drag (OGWD) in numerical models. Comparison

with the traditional OGWDparameterization scheme reveals that the GBA-based scheme tends to produce

OGWD at higher altitudes, as the horizontal propagation of mountain waves can reduce the wave ampli-

tude and thus inhibit wave breaking.

1. Introduction

Orographic gravity waves (OGWs), or mountain

waves, are generated as stably stratified airflow goes

over mountains. The breaking of OGWs can deposit the

wave momentum into the mean flow, resulting in the

well-known orographic gravity wave drag (OGWD).

The deposition of the wave momentum plays an im-

portant role in the momentum budget of atmospheric

general circulation (Holton 1982). Because OGWs are,

in general, subgrid-scale physical processes, the OGWD

needs to be parameterized in general circulation models

(GCMs; Kim et al. 2003). Indeed, the parameterization

of OGWD is now a common feature of contemporary

numerical models, which can help alleviate the system-

atic wind and temperature biases in the model (e.g.,

Palmer et al. 1986; McFarlane 1987).

Current OGWD parameterization exclusively makes

use of the single-column assumption: namely, OGWs

propagate vertically within themodel grid cell where the

subgrid-scale orography (SSO) is present (Kim and

Arakawa 1995; Lott and Miller 1997; Gregory et al.

1998; Scinocca andMcFarlane 2000;Webster et al. 2003;

Kim and Doyle 2005). This assumption is appropriate in

the case of two-dimensional (2D), hydrostatic, and

nonrotating waves that have zero horizontal group ve-

locity. In contrast, three-dimensional (3D) OGWs can

experience significant lateral propagation, thus violatingCorresponding author e-mail: YuanWang, yuanasm@nju.edu.cn
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the single-column assumption. For instance, Smith

(1980) and Shutts (1998) studied the structure of 3D

mountain waves generated in environments with zero

and directional wind shear over a circular bell-shaped

mountain, respectively. (Directional wind shear means

that the ambient wind direction changes with height.) In

both cases, the wave fields radiate away from the

mountain, forming a bow-shaped pattern. In the di-

rectional wind case, the waves are advected downstream

for an infinitely long distance on meeting their selective

critical levels (Broad 1995; Shutts 1995).

The horizontal propagation of 3D mountain waves

has not yet been considered in existing OGWD pa-

rameterization schemes. Recently, Eckermann et al.

(2015a,b, hereafter E15a,b) for the first time examined

the effect of ‘‘horizontal geometrical spreading.’’ Using

the Fourier-ray method (Broutman et al. 2002), E15a

addressed 3D mountain waves generated in unidirec-

tional flow over elliptical obstacles. The peak wave

amplitude was shown to decrease monotonically with

height. The accumulated reduction of wave amplitude

was comparable to, or even larger than, that caused by

the refraction of vertical wavenumber. E15b simplified

the Fourier-ray solution and derived two asymptotic

solutions for the vertical displacement and steepness

that were relevant to the parameterization of OGWD.

The derived analytical solutions, which depend only on

the terrain’s elliptical aspect ratio and a normalized

height coordinate involving wind and stability varia-

tions, agree very well with the exact solution.

E15a and E15b mainly focused on the reduction of

wave amplitude with height due to horizontal geo-

metrical spreading, which leads to a higher wave

breaking level as compared to the 2D wave case. E15b

also noted that 3D OGWs could propagate out of the

domain where they were generated (e.g., a GCM grid

cell), especially at high altitudes. Since the waves outside

the domain of interest (i.e., grid cell) do not exert a di-

rect influence on the local mean flow, their momentum

should be discarded from the budget of domain of in-

terest. Therefore, the lateral propagation of 3D waves

has twofold influence. For one thing, it reduces the wave

amplitude with height and consequently increases the

altitude of wave breaking. For another, it decreases the

amount of wave momentum flux (WMF) deposited into

the local mean flow. This second effect, to the authors’

knowledge, has not yet been quantitatively studied in

detail. In principle, quantifying the percentage of 3D

waves remaining within a finite domain is nontrivial. It

changes with the domain size, mountain shape, and

location relative to the domain, environmental wind,

and stratification, among other factors. The only way is

to explicitly compute the WMF within the domain.

However, analytical solutions only exist in very limited

cases: for example, constant wind over elliptical terrain

(Phillips 1984). Asymptotic solutions that can accurately

represent the OGWs are thus needed.

Using the ray-tracing method, Shutts (1998) derived a

far-field stationary-phase solution for hydrostatic, non-

rotating mountain waves in a turning wind. This solution

breaks down in the region directly over the terrain

where multiple rays intersect [i.e., caustics (Lighthill

1978)], however. To improve the ray solution, Broutman

et al. (2002) suggested using Maslov’s method that ex-

pressed the ray solution in the spectral domain rather

than in the spatial domain. Although the Fourier-ray

solution can avoid caustics in the spatial domain, it may

suffer from caustics in the spectral domain. Pulido and

Rodas (2011, hereafter PR11) proposed another ap-

proach: that is, the Gaussian beam approximation

(GBA), which is a higher-order ray approximation. For

each ray, the GBA considers not only the contribution

of this ray but also a beam of rays around it to the wave

field. Thus, the ray solution is well defined even at

caustics. In addition, the GBA can be readily applied to

mountain waves forced by complex topography via the

superposition of multiple Gaussians.

The performance of GBA is examined for a few ide-

alized wind profiles in PR11, which gives encouraging

results. However, the effect of wind vertical curvature is

not considered. Teixeira et al. (2004, hereafter TMV04)

developed an analytical model of OGWs using the

second-order Wentzel–Kramers–Brillouin (WKB) ap-

proximation. It shows that the surfaceWMF increases as

the Richardson number decreases for the wind turning

with height while maintaining its magnitude. This drag

enhancement due to the wind vertical curvature appears

to play an important role in affecting the global atmo-

spheric torque (Miranda et al. 2009). Whether the GBA

can capture the effect of wind vertical curvature will be

studied in this work. The behavior of GBA under the

circumstance of variable buoyancy frequency will also

be examined, while only constant buoyancy frequency is

considered in PR11.

The main goal of this work is to establish a new

OGWD parameterization scheme using the GBA

method, which is able to account for the horizontal

propagation and the horizontal geometrical spreading of

mountain waves. The rest of this paper is organized as

follows. In section 2, analytical solutions are derived for

hydrostatic nonrotating mountain waves using the

GBA. Section 3 describes the terrain, wind, and strati-

fication, as well as the setup of numerical experiments.

Section 4 validates the GBA solutions against the nu-

merical simulation for a number of cases, including

both idealized and realistic terrain and atmospheric
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conditions. In section 5, a newOGWDparameterization

scheme is proposed using the GBA and compared to the

traditional scheme. Section 6 summarizes the paper with

discussions.

2. Theory

For hydrostatic mountain waves generated in adia-

batic, inviscid, and Boussinesq flow, with Earth’s rota-

tion neglected, the vertical wavenumber is given by

m(z)2 5
N2K2

D̂2
2

D̂
zz

D̂
. (1)

Here, N is the Brunt–Väisälä frequency (or buoyancy

frequency), K is the magnitude of horizontal wave-

numberK5 (k, l), D̂(z)5V(z) �K,V(z)5 [U(z), V(z)]

is the horizontally uniform mean wind, and D̂zz 5
Vzz(z) �K. (The subscript z denotes partial derivative

with respect to z unless otherwise stated.) Unlike PR11,

the wind curvature effect Vzz is considered. Note that

m is singular at D̂(z)5 0 [i.e., V(z) 5 0 or V(z)?K]. In

the former case, it is the well-known total critical level

where all wave components are attenuated (Booker

and Bretherton 1967). The latter is termed the selective

critical level, because only the waves normal to the

mean flow are absorbed (Broad 1995; Shutts 1995).

Readers are referred to Xu et al. (2012, hereafter

XWX12) for more details about the selective critical-

level filtering.

Under the WKB approximation, the vertical velocity

of mountain waves can be solved as [cf. Eq. (25) of

TMV04]

ŵ(k, l, z)5 ŵ(k, l, 0)

�
m(z)

m(0)

�21/2

exp

�
i

ðz
0

m(z0) dz0
�
, (2)

where ŵ(k, l, z) is the Fourier transform of vertical ve-

locity w(x, y, z). Linear waves satisfy the free-slip lower

boundary condition: that is,

ŵ(k, l, 0)5 iD̂
0
ĥ(k, l), (3)

with ŵ(k, l) being the Fourier transform of terrain

height h(x, y) and D̂0 5 V0 � K. On substituting Eq. (3)

into Eq. (2), one can readily obtain

ŵ(k, l, z)5 iD̂
0

�
m(z)

m(0)

�21/2

ĥ(k, l) exp

�
i

ðz
0

m(z0) dz0
�
. (4)

By definition ofw5 dh/dt, the vertical displacement h in

the spectral space is

ĥ(k, l, z)5
D̂

0

D̂(z)

�
m(z)

m(0)

�21/2

ĥ(k, l) exp

�
i

ðz
0

m(z0) dz0
�
.

(5)

The corresponding vertical displacement in the physical

domain can be recovered by virtue of inverse Fourier

transform: that is,

h(x, y, z)5

ð1‘

2‘

ð1‘

2‘

H
"

D̂
0

D̂(z)

#
D̂

0

D̂(z)

�
m(z)

m(0)

�21/2

ĥ(k, l) exp[if(k, l, z)] dk dl, (6)

where f(k, l, z)5 kx1 ly1
Ð z
0m(z0) dz0 is the wave

phase; H(�) is the Heaviside function equal to zero

(unity) for the negative (positive) argument, which is to

account for the selective critical level filtering by di-

rectional wind shear (XWX12). In the absence of wind

curvature, the above equation is reduced to

h(x, y, z)5
N(0)

N(z)

ð1‘

2‘

ð1‘

12

H
"

D̂
0

D̂(z)

#�
m(z)

m(0)

�1/2
ĥ(k, l) exp[if(k, l, z)]dk dl. (7)

The height variation of buoyancy frequency is involved, consistentwithEq. (26) ofBroutman et al. (2002) andEq. (13) of

E15a. In the situation of constant buoyancy frequency, Eq. (7) can be simplified to Eq. (4) of PR11: that is,

h(x, y, z)5

ð1‘

2‘

ð1‘

2‘

H
"

D̂
0

D̂(z)

#�
m(z)

m(0)

�1/2
ĥ(k, l) exp[if(k, l, z)] dk dl. (8)
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Under the GBA, the amplitude of ray Kc 5 (kc, lc) is

assumed to be represented locally as a Gaussian-shaped

envelope centered at Kc:

~h(k, l, z)5h
c
exp

"
2
1

2

�
k2k

c

s
k

�2

2
1

2

�
l2 l

c

s
l

�2
#
, (9)

where hc is the Gaussian amplitude determined by

the terrain spectrum; sk and sl are the Gaussian width

in k and l directions. Hereinafter, the subscript c

indicates evaluation at the central wavenumber Kc.

Using Taylor’s expansion, the phase function can be

expressed as

f(k, l, z)5f
c
1

›f

›k
(k2 k

c
)1

›f

›l
(l2 l

c
)

1
1

2

�
›2f

›k2
(k2 k

c
)2 1

›2f

›l2
(l2 l

c
)2

1 2
›2f

›k›l
(k2 k

c
)(l2 l

c
)

�
1 . . . ,

(10)

with higher-order terms omitted. On substituting the

above two equations into Eq. (6), the integral can be

solved exactly [cf. Eq. (21) in PR11]:

h
c
(x, y, z)5 2pH

"
D̂

0c

D̂
c
(z)

#
h
c

D̂
0c

D̂
c
(z)

�
m

c
(z)

m
c
(0)

�21/2

(detA)21/2 exp

�
if

c
1

1

2
PTA21P

�
, (11)

where the matrices A and P are given by

A5

0BBB@
s22
k 2 i

›2f

›k2 c
2i

›2f

›k›l c

2i
›2f

›k›l c
s22
l 2 i

›2f

›l2 c

1CCCA and P5

0BB@ i
›f

›k c

i
›f

›l c

1CCA
(12)

and the determinant of A is

detA5

"
s22
k s22

l 1

�
›2f

›k›l c

�2

2
›2f

›k2 c

›2f

›l2 c

#

2 i

�
s22
l

›2f

›k2 c
1s22

k

›2f

›l2 c

�
.

(13)

It is the real part of Eq. (11) that denotes the vertical

displacement in the physical domain, whereas its mag-

nitude represents the wave amplitude, similar to Eq. (28)

in E15a. Equation (11) is the vertical displacement

arising from the wave centered at Kc. The total wave

field forced by an isolated mountain is often composed

of a number of waves, which requires superposition of

multiple Gaussians. An algorithm conserving the wave

energy was proposed in PR11 (see their Fig. 7), with the

amplitude of each Gaussian given by

h
c
5 (ps

k
s
l
)21/2

" ðkc1Dk/2

kc2Dk/2

ðlc1Dl/2

lc2Dl/2

jĥ(k, l)j2dk dl
#1/2

, (14)

whereDk andDl are the spectral resolutions, and (sk,sl)5
Gc(Dk, Dl) with Gc being a tunable parameter.

The GBA solutions for other wave quantities [e.g.,

horizontal velocity vh 5 (u, y)] can be derived from

the polarization relation of plane waves. Once these

variables are obtained, the WMF within a finite domain

is [cf. Eq. (66) in E15b]

t(z)52
r
0

L2

ð1L/2

2L/2

ð1L/2

2L/2

v
h
w dx dy

52
r
0

MN
�
M21

ii50
�
N21

jj50

v
h
(iiDx, jjDy)w(iiDx, jjDy), (15)

whereM andN are the number of grid points within the

domain, Dx and Dy are the grid spacings, and r0 is the

reference density of Boussinesq flow.

3. Methodology

a. Terrain

Twomountains are examined in this study (see Table 1).

The first is the idealized 3D circular bell-shaped moun-

tain (BELL; Fig. 1a)

h(x, y)5 h
m
[11 (x/r

a
)2 1 (y/r

a
)2]23/2 , (16)

where hm is the mountain amplitude and ra is the half-

width. For linear and hydrostatic waves, we choose hm 5
10m and ra 5 50km, respectively. The second is the

Hainan Island (HNI; Fig. 1b) located in the South China

Sea in the area 188–208N, 1098–1118E. This realistic

mountain is about 250km long and 200kmwide, consisting

of several isolated hills of up to 1800m in height. Since we

are only interested in linear mountain waves, the Hainan

Island height is scaled to 10m.

The terrain spectrum, which is required by the GBA,

is obtained by virtue of the fast Fourier transform (FFT)

software FFTPACK (Swarztrauber 1982). Given a finite
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domain of M 3 N points, the spectral resolutions are

Dk 5 2p/(MDx) and Dl 5 2p/(NDy), respectively. The
FFT can give a number of discrete wavenumbers that

are integer multiples of Dk and Dl. However, the GBA

solutions utilize waves at half grid points in the spectral

space: that is, kc5 (0.51 ii)Dk (with ii5 0, 1, 2, . . .), and

lc 5 (0.5 1 jj)Dl (with jj 5 0, 1, 2, . . .), to avoid the zero

wavenumber. The Fourier spectra of these half-grid

wavenumbers are calculated using Eq. (14).

b. Environment wind and buoyancy frequency

To exclude the influence of selective critical-level ab-

sorption, only unidirectional wind profiles are considered.

Thefirstwind profile (wCST) is constant, withU5 10ms21

and V5 0. The second wind profile (wCUR) is defined as

U(z)5U
0

"
12

�
z

z
c

�2
#
, V(z)5 0, (17)

with zc being the total critical level at which the wind van-

ishes. This wind profile was used in Teixeira and Miranda

(2004) to study the effect of wind curvature. It features a

nonuniform vertical shear of Uz(z)52(2U0/z
2
c)z. The

Richardson number at the total critical level is thus

Ric 5 (Nzc/2U0)
2, which has an important influence on the

WMF. The last one is the monthly mean wind speed at

Hainan Island in July 2014 (wHN7; Fig. 2a), derived from

the European Centre for Medium-Range Weather Fore-

casts (ECMWF) interim reanalysis (ERA-Interim; Dee

et al. 2011).

We also make use of two different potential temper-

ature profiles. In the first case (bCST), the atmosphere is

of constant N 5 0.01 s21, with surface potential tem-

perature usfc 5 288K and surface pressure Psfc 5
1000hPa. The second (bHN7) is derived from ERA-

Interim in the same way as the Hainan Island wind

profile. Seen from Fig. 2b, the buoyancy frequency is

FIG. 1. Plan view of the (a) idealized circular bell-shapedmountain and (b) realistic Hainan Island in South China

Sea. The half-width of the bell-shaped mountain is 50 km. The heights of the two mountains are 10m. Tick marks

are spaced 50 km apart.

TABLE 1. Terrain, wind, and buoyancy frequency.

Name Description

Terrain BELL Idealized 3D circular bell-shaped mountain

HNI Realistic Hainan Island in the South China Sea

Wind wCST Constant wind of U 5 10m s21

wCUR1 Wind of vertical curvature with U0 5 20m s21, zc 5 8000m

wCUR2 Wind of vertical curvature with U0 5 20m s21, zc 5 4000m

wHN7 Derived from the ERA-Interim over Hainan Island, July 2014

Buoyancy frequency bCST Constant buoyancy frequency of N 5 0.01 s21

bHN7 Derived from the ERA-Interim over Hainan Island, July 2014
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relatively low in the troposphere below about z5 12km,

and it increases rapidly with height in the lower strato-

sphere, almost doubling its value at z 515km.

c. Setup of numerical experiments

The GBA solution is validated against numerical

simulations using the Advanced Regional Prediction

System (ARPS): that is, a fully compressible, non-

hydrostatic model developed at the Center for Analysis

and Prediction of Storms (CAPS), the University of

Oklahoma (Xue et al. 2000). This numerical model has

been well tested in Xue et al. (2000) and Xu et al. (2013)

for both linear and nonlinear mountain waves.

A series of numerical experiments is conducted with

different configurations of terrain and base-state wind

and buoyancy frequency (see Table 2). The model do-

main has 203 3 203 points in the horizontal with a

horizontal grid spacing of 5 km and a vertical grid

spacing of 100m. The mountain is placed at the domain

center. A free-slip boundary condition is applied at the

bottom, along with a radiation condition at the four

side boundaries. For the upper boundary condition, a

Rayleigh damping layer is used in the upper portion of

the model. A fourth-order horizontal computational

mixing is adopted to damp small-scale numerical noises.

The Coriolis parameter is set to zero for irrotational

gravity waves, and all other physical parameterizations

are turned off. The model is integrated for 50 h such that

the simulated waves reach a steady state.

4. Comparison of GBA with numerical simulations

The GBA solutions are obtained by superposition of

1600Gaussians (unless otherwise stated),withkmin5 0.5Dk

and lmin 5 0.5Dl. The tunable parameter is set to Gc 5
0.55, a little larger than suggested in PR11. To make the

non-Boussinesq model result comparable with the GBA

solution, the simulated waves are multiplied by a factor of

[r(0)/r(z)]21/2 to eliminate the height variation of base-

state density.

a. Constant wind

In the case of constant wind past a circular bell-shaped

mountain (ExpBCST), there are exact solutions [cf. Eq.

(20) in Smith (1980)]. Figure 3 shows the perturbed ver-

tical velocity at z5 4km (left) and z5 8km (right) from

the exact solution (Figs. 3a,b), the ARPS model (Figs.

3c,d), and the GBA solution (Figs. 3e,f), respectively.

Consistent with Smith (1980), the wave fields exhibit a

bow-shaped pattern that widens with height, propagating

laterally and downstream for a few hundred kilometers.

Both the model (Figs. 3c,d) and GBA wave fields

(Figs. 3e,f) agree well with the exact solution (Figs. 3a,b).

Of particular interest is the WMF, which is most rel-

evant in the parameterization of OGWD. From Fig. 4,

the WMF derived from the GBA is in good agreement

with the numerical simulation, despite both being a little

smaller than the exact solution. The WMF shows a

TABLE 2. List of numerical experiments.

Expt Terrain Wind Buoyancy frequency

ExpBCST BELL wCST bCST

ExpBCUR1 BELL wCUR1 bCST

ExpBCUR2 BELL wCUR2 bCST

ExpBHN7a BELL wHN7 bHN7

ExpBHN7b BELL wCST bHN7

ExpHCST HNI wCST bCST

FIG. 2. Monthly averaged (July 2014) (a) wind speed and (b) buoyancy frequency over Hainan Island from

ERA-Interim.
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decreasing trend with height. At z 5 10km, it is only

about 80% of that at z 5 1 km. This is quite different

from the WMF in an infinite domain, which is constant

with height. The height decrease ofWMF is attributed to

the lateral propagation of waves out of the domain. It is

thus more notable for a smaller domain. For example, at

z5 10km, the WMF within the small box (Figs. 3a,b) is

decreased to less than 50% of that at z 5 1 km (Fig. 4).

FIG. 3. Vertical velocity (m s21) at z 5 (left) 4 and (right) 8 km in the case of ExpBCST

obtained from the (a),(b) exact solution, (c),(d) ARPS model, and (e),(f) GBA solution. The

mountain is indicated by the black solid contour. Tick marks are spaced 50 km apart.
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b. Wind profile with vertical curvature

Since exact solutions do not exist in this case, we only

compare the GBA solution to the numerical simulation.

Two wind profiles wCUR1 and wCUR2 are considered,

which have the same surface wind of U0 5 20ms21 but

different critical-level heights of zc 5 8000 and 4000m

(Table 1). The corresponding Richardson numbers at

the critical level are Ric 5 4 and 1, respectively.

The general patterns of the GBA wave fields are very

similar to their numerical counterparts (not shown).

Figure 5 presents the vertical distribution of the GBA

and simulated WMFs for the two wind profiles. Note

that the simulated WMF decreases to zero at the critical

level where the mountain waves become nonlinear and

finally break. However, the GBA WMF is derived from

linear wave theory such that the two WMFs are not

comparable near the critical line. As a result, we will

only focus on the WMF below. In fact, the waves from

the GBA also break at the critical level, as will be shown

in section 5. In the case of Ric5 4, theGBA-basedWMF

shows broad agreement with the model prediction,

which is only about 2.9% larger than its numerical an-

alog (Fig. 5a). In contrast, the GBA overestimates the

WMF by about 10.4% when the Richardson number is

decreased to Ric 5 1 (Fig. 5b). Nonetheless, the de-

creasing trend of the WMF with height, which is due to

the lateral spread of 3D mountain waves, is well cap-

tured by the GBA solution in both cases.

The relatively large discrepancy between the GBA

and numerical model at small Richardson numbers is

because the WKB solution [Eq. (2)] only has first-order

accuracy. As studied in TMV04, extending the WKB

solution to second order can better correct the leading-

order WMF caused by the wind vertical shear and cur-

vature. According to TMV04’s second-order WKB

solution [see their Eq. (50)], the surface WMF for the

wind profile [Eq. (17)] is

D
x
5D

0x

�
11

3

32Ri
c

�
, (18)

where D0x 5 0:25pr0NU0rah
2
m is the leading-order

WMF. The increase of WMF is inversely proportional

to the critical level Richardson number. Figure 6 dis-

plays the normalized WMF (Dx/D0x) as a function of

Ric. The enhancement ofWMF predicted by theGBA is

about twice the second-order WKB solution. This is

consistent with the behavior of the first-order asymp-

totic solution found in TMV04 (see their Fig. 7). The

difference between the GBA and the second-order

WKB solutions is smaller than 2% for about Ri . 5.

This explains why in PR11 theGBA solution agrees well

with the ‘‘exact solution’’ (obtained by solving the wave

FIG. 4. Vertical distribution of the x component of WMF in the

case of ExpBCST [exact (dotted); ARPS (dashed); GBA (solid)].

Thick lines are the WMF calculated within the whole domain

shown in Fig. 3, while thin lines are the WMF within a smaller

domain indicated by the black boxes shown in Figs. 3a and 3b.

FIG. 5. Vertical distribution of the x component ofWMF in the case of (a) ExpBCUR1 and (b) ExpBCUR2 [ARPS

(dashed); GBA (solid)].
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equation using a fourth-order Runge–Kutta algorithm

in the wavenumber space), even though the wind cur-

vature is not considered. The Richardson number in

their study is Ri 5 10.

c. Realistic wind and buoyancy frequency

Figure 7a shows the vertical distribution of the WMF

generated in the realistic wind and buoyancy frequency

over a circular bell-shaped mountain (ExpBHN7a).

There is good consistency between the GBA-derived

and themodel-simulatedWMFs at altitudes above 8 km.

Yet the two WMF profiles diverge significantly in the

mid- to lower troposphere. The GBA solution tends to

underestimate theWMF by up to 18.6% at z5 1 km. As

mentioned above, the wind vertical curvature can help

enhance theWMF.However, the Richardson number of

the realistic wind is basically greater than 10 (not

shown), which would result in little WMF enhancement.

Thus, it is seemingly ascribed to the realistic buoyancy

frequency used. Seen from Fig. 2b, the buoyancy fre-

quency varies radically in the upper troposphere and

lower stratosphere (near z 5 13 km). Wave reflection

can take place at the interface of layers of different

stratifications (Teixeira et al. 2005; Jiang et al. 2014).

Interaction between the incident and reflected waves

can amplify the WMF under favorable conditions (e.g.,

Klemp and Lilly 1975). However, these downward re-

flected waves are not taken into account in the GBA

solution, which is based on the WKB approximation.

The influence of the realistic buoyancy frequency on

the WMF can be verified by a sensitivity experiment

ExpBHN7b, which is the same as ExpBHN7a but uses

the constant wind wCST. In this case, the numerical

model also produces a greater WMF than the GBA,

especially in the troposphere (Fig. 7b). The largest dif-

ference between the model and GBAWMFs is;13.3%

at z5 1 km. Note that the difference between the model

and GBAWMFs is reduced above z5 13 km. It is likely

because parts of the waves are reflected downward in the

model. If there were a significant amount of wave re-

flection, the simulated WMF may become smaller than

the WKB-GBA WMF above the reflection level.

d. Realistic terrain

For mountain waves generated in constant wind over

the realistic Hainan Island terrain (ExpHCST), Figs. 8a

and 8b display the perturbed vertical velocity at z 5
5 km from the model and GBA, respectively. While the

GBA can capture the overall wave pattern, the detailed

structure is not as coherent as in the idealized mountain

case (Fig. 3). For instance, the model produces small-scale

wave activities near the mountain peak in western Hainan

Island, which are absent in the GBA wave field. To better

capture the finescale structure (i.e., high-wavenumber part

FIG. 7. Vertical distribution of the x component of WMF in the case of (a) ExpBHN7a and (b) ExpBHN7b [ARPS

(dashed); GBA (solid)].

FIG. 6. Normalized WMF as a function of Richardson number at

critical level [GBA (solid); second-orderWKB solution (dashed)].
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of the spectrum), more Gaussians are needed (see Fig. 8c,

which uses 3600 Gaussians), and vice versa (Fig. 8d, which

uses 400 Gaussians).

Figure 9 shows the vertical distribution of the WMF.

For the x-component WMF, similar height-decreasing

trends are found in both the model and GBA. But the

GBA WMF (using 1600 Gaussians) is smaller than its

numerical counterpart by about 9% at z 5 1 km. This

difference is mainly due to the lack of small-scale waves

in the GBA wave field. Increasing (decreasing) the

number of Gaussians results in an increase (decrease) of

theWMF.Moreover, different from theWMFproduced

by the circular bell-shaped mountain, the y-component

WMF is nonzero, which is attributed to the anisotropy of

Hainan Island. As noticed in Phillips (1984), a lateral

force will be created when the upstream wind is not

parallel to the terrain symmetry axis.

5. Parameterization of OGWD using the GBA

For the parameterization of OGWD, there are in

general two issues that need to be addressed: that is, at

which altitude the waves break, and how much WMF is

absorbed by the mean flow.

For the first one, mountain waves are assumed to

break at the height where the steepness of vertical

FIG. 8. (top) Vertical velocity (m s21) at z 5 5 km in the case of ExpHCST from the (a) ARPS model and

(b) GBA (using 1600 Gaussians). (bottom) As in (b), but using (c) 3600 and (d) 400 Gaussians. The mountain is

indicated by the black solid contours. Tick marks are spaced 25 km apart.
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displacement (i.e., ›h/›z) exceeds a threshold a, which

equals to unity for the simplest case of convective

overturning (Fritts 1984). On the other hand, Palmer

et al. (1986) suggested the use of ‘‘minimumRichardson

number’’ in their parameterization scheme (i.e., the

smallest Richardson number under the influence of

gravity waves):

fRi5Ri
12Njhj/jVj

[11Ri
1/2
(Njhj/jVj)]2

, (19)

where Ri5Ri(z) is the mean-flow Richardson number.

Wave breaking takes place when Ri falls below a critical

value Ric, which is often set to 0.25, corresponding to

the onset of Kelvin–Helmholtz instability. Evidently,

this wave-modulated Richardson number is closely

related to the wave amplitude. Figure 10 shows the

wave amplitude in the cases of wCST and wCUR1

over a circular bell-shaped mountain, obtained from

the GBA solution. (Note that the growth of wave am-

plitude due to decreasing density is not considered.) In

the constant wind case, the maximum wave amplitude

is located near the mountaintop and decreases with

height, owing to the horizontal geometrical spreading

(Figs. 10a,b). The peak wave amplitude at z 5 5 km

accounts for about 33% of that at the surface, in

quantitative agreement with the Fourier-ray solution

of E15a (see their Fig. 1). In the latter case, the peak

wave amplitude is also concentrated near the moun-

taintop (Fig. 10c). Moving aloft, the wave amplitude

first decreases with height as a result of horizontal

geometrical spreading. On approaching the critical

level at z5 8 km, the wave amplitude increases rapidly

(Fig. 10d), which is attributed to the accumulation of

wave action (Shutts 1998). The increasing wave am-

plitude leads to a wave-modulated Richardson number

less than 0.25 at about z 5 7.95 km (Fig. 11), implying

wave breaking there.

For the second issue, the wave saturation hypothesis

(Lindzen 1981) is often adopted, which reduces the

amplitude of breaking waves to a saturation wave

amplitude hsat. In current OGWD parameterization

schemes, theWMFdeposited into themean flow is equal

to (see page 2333 of E15a)

t
d
5 t

ref
[12 (h

sat
/h

a
)2] , (20)

where tref is the WMF at the reference level zref, and

ha is the peak wave amplitude. However, as shown

above, the WMF within a finite domain decreases with

height due to horizontal propagation. Therefore, the

amount of WMF absorbed by the local mean flow at the

wave breaking level zb should be

t
d
5 t(z

b
)[12 (h

sat
/h

a
)2] . (21)

a. New OGWD parameterization scheme

A simple OGWD parameterization scheme is pro-

posed for linear OGWs, with the wave horizontal

propagation considered. For nonlinear low-level

wave breaking and flow blocking, they can be treat-

ed similarly as in previous schemes (e.g., Kim and

Arakawa 1995; Lott and Miller 1997; Webster et al.

2003). The vertical profile of theWMF is calculated as

follows:

(i) Based on a predefined critical Froude number, a

reference level zref is determined according to the

low-level wind and stratification and SSO elevation

[see Eq. (4) in Lott and Miller (1997)]. The SSO

above zref is Fourier transformed to obtain the

terrain spectrum.

(ii) The U and V winds at model levels are fitted by

cubic spline interpolation (or other methods) to

gain a smooth wind profile, which is of a contin-

uous second derivative used by the vertical

wavenumber.

(iii) Compute the maximum wave amplitude ha and the

wave-modulated Richardson number fRi from the

first model level above zref. Once wave breaking is

activated at a level zb where fRi is smaller than Ric,

compute the finite-domain WMF t(zb) and deposit

the wave momentum into the mean flow according

to Eq. (21).

(iv) The residualWMF is passed to the next model level

until meeting another wave breaking level or

reaching the model top.

FIG. 9. Vertical distribution of the x (thick) and y (thin) com-

ponents of the WMF in the case of ExpHCST [ARPS model

(solid); GBA using 1600 Gaussians (dashed); GBA using 3600

Gaussians (dotted); GBA using 400 Gaussians (dashed–dotted)].
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For the practical use of OGWD parameterization, the

efficiency of computation is of paramount importance. To

quantify the effect of horizontal propagation, one needs

to calculate the wave fields of u, y, and w at the breaking

level. This is time consuming, especially when the model

grid cell is divided into a large number of subgrids. A

coarser SSO (i.e., fewer subgrid-scale grid points) is thus

preferred. Furthermore, on determining the wave break-

ing level, one may only need to compute the wave am-

plitude over the largest SSO, because the peak wave

amplitude tends to stay near the terrain summit (E15a).

The accuracy of the GBA solution is sensitive to the

spectral resolution (Dk and Dl) determined by the do-

main size.We have examined theWMF in constant wind

over a circular bell-shaped mountain as an example, for

three different domain sizes (i.e., D15 10003 1000km2,

D2 5 500 3 500km2, and D3 5 250 3 250km2). The

WMF within D3, which is of the coarsest spectral reso-

lution, is underestimated most notably (not shown). To

increase the spectral resolution, the ‘‘zero padding’’

technique can be used when performing the Fourier

transform of SSO (i.e., adding a number of zeros beyond

the side boundaries). As such, the SSO spectrum is

sampled at finer resolution, with its distribution

unchanged.

It is noteworthy that the waves propagating out of the

model grid cell are discarded. Thus, the new parame-

terization scheme may fail in the case of a high-

resolution model, given the significant fictitious loss of

wave momentum.

FIG. 10. (a)Wave amplitude (m) at z5 5 km and (b) vertical variation of the wave amplitude (scaled with respect

to the mountain height) at the mountaintop in the case of ExpBCST. (c),(d) As in (a) and (b), respectively, but for

the case of ExpBCUR1. Tick marks in (a) and (c) are spaced 50 km apart.
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b. Comparison with traditional OGWD
parameterization scheme

The above OGWD parameterization scheme is first

tested for OGWs generated in the wind profile wCUR1

over a circular bell-shaped mountain with hm 5 500m

and ra 5 50km. Figure 12a presents the vertical varia-

tion of the wave amplitude from the GBA solution, with

the height decay of density considered. For comparison,

the wave amplitude ignoring the horizontal propagation

of 3Dmountain waves is also shown (termed as 2Dwave

amplitude), which is obtained from the conservation of

wave action [cf. Eq. (13) in E15a]:

h
a2d

(z)5h
a2d

(0)

�
r(0)m(z)N2(0)

r(z)m(0)N2(z)

�1/2
’h

a2d
(0)

�
r(0)U(0)N(0)

r(z)U(z)N(z)

�1/2
. (22)

The second approximate equality holds when the wind

curvature effect is neglected. Here, ha2d(0) is the wave

amplitude at the surface, which equals to the mountain

height for linear waves. The threshold of fRi# 0:25 is

used for wave breaking such that the saturation wave

amplitude is [cf. Eqs. (11) and (12) in Palmer et al.

(1986)]

h
sat
(z)5

U(z)

N(z)
Ri

21/2
(112Ri

1/2
)[2Ri

1/4
(112Ri

1/2
)
21/2

21] .

(23)

As shown in Fig. 12a, the 2D wave amplitude keeps

increasing with height and exceeds the saturation wave

amplitude at about z 5 5.2 km. According to Eq. (22),

the amplification of wave amplitude is attributed to the

decreasing wind speed. In contrast, the GBA wave

amplitude exhibits a decrease with height below about

z5 5 km such that the waves saturate at a higher altitude

of about 6.7 km. Upon saturation, mountain waves

break and deposit the excessive wave momentum into

the mean flow, leading to an OGWD: that is,

›V

›t
5

1

r

›t

›z
5

1

r

t
d

Dz
. (24)

FIG. 11. Profiles of the mean-flow Richardson number (solid)

and the wave-modulated Richardson number (dashed) in the case

of ExpBCUR1. The critical level is located at z 5 8 km.

FIG. 12. (a) Maximum wave amplitude obtained from the GBA solution (blue line) in the case of ExpBCUR1

with amountain height of hm5 500m.Also shown are the saturationwave amplitude (black line) obtained from the

criteria offRi5 0:25 (fRi is the wave-modulated Richardson number) and the 2Dwave amplitude (red line) with the

horizontal geometrical spreading omitted. (b) Mountain-wave-induced mean-flow acceleration in the GBA-based

(blue line) and 2D-wave (red line) parameterization schemes.
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Figure 12b shows the mean-flow acceleration caused by

breaking waves. Compared to the traditional scheme,

the deposition of wave momentum produces a larger

OGWD at a higher altitude in the new scheme.

The proposed new scheme is also tested using the

realistic wind and buoyancy frequency and the Hainan

Island rescaled to 500m. In this case, there is no critical

level. The GBA wave amplitude is always smaller than

the saturation wave amplitude (Fig. 13), indicating no

wave breaking and OGWD (at least below z 5 30km).

The waves may break at a higher altitude (such as in the

mesosphere), given the salient decrease of density there.

For the 2D wave amplitude, it is greater than the satu-

ration wave amplitude between about z 5 2.5 and

8.5 km, as well as above about 16 km. The growth in the

mid- to lower troposphere is mainly attributed to the

decreasing wind speed and buoyancy frequency (Fig. 2),

whereas the height decay of density plays a more vital

role in producing the large amplitude in the strato-

sphere. The traditional scheme mistakenly deposits the

wave momentum in the lower stratosphere, which has

been found in previous studies (e.g., Milton and Wilson

1996). Clearly, this excessive stratospheric OGWD can

be alleviated by the new scheme based on the GBA.

6. Summary

The effect of horizontal propagation of three-

dimensional (3D) mountain waves on the wave mo-

mentum flux (WMF) and orographic gravity wave drag

(OGWD) is investigated using the Gaussian beam ap-

proximation (GBA). For one thing, it reduces the wave

amplitude with height and hence increases the wave

breaking altitude (E15a,b). For another, it decreases the

amount of WMF that can be attenuated by the local

mean flow within finite domains (such as a GCM grid

cell). Both of these two effects are missing in current

OGWD parameterization schemes.

Under the WKB approximation and GBA, analytical

expressions are derived for hydrostatic nonrotating

mountain waves, with the height variation of stratifica-

tion and wind vertical curvature considered. The be-

haviors of mountain waves and WMF are investigated

for both idealized circular bell-shaped mountain and the

realistic Hainan Island. Three unidirectional wind pro-

files are examined, including a constant wind, an ideal-

ized wind of vertical curvature, and a realistic wind

derived from ERA-Interim data over Hainan Island.

Furthermore, two potential temperature profiles are

examined, with one of constant buoyancy frequency and

the other also derived from the ERA-Interim dataset.

The GBA solutions are validated against numerical

simulations performed using the ARPS model.

Because of horizontal propagation of 3D mountain

waves, the WMF decreases with height within a finite

domain, even in the absence of wave breaking and/or

other dissipative processes. The GBA solution can well

capture the decay of finite-domain WMF with height,

especially for idealized terrain, wind, and buoyancy

frequency. The effect of wind curvature on improving

the WMF is also captured, which cannot be omitted at

small Richardson numbers of order unity. In comparison

with TMV04’s second-order WKB solution, the first-

order WKB approximation used in our GBA solution

tends to overpredict the WMF, but these two solutions

agree very well at Richardson numbers greater than 5.

For mountain waves generated in realistic wind and

buoyancy frequency, the WMF is underestimated as

compared to its numerical counterpart, since the WKB-

based GBA solution cannot represent wave reflection at

the atmospheric internal boundaries (e.g., tropopause).

In the case of mountain waves forced by Hainan Island,

which contains several isolated hills, moreGaussians are

needed in the GBA solution to better represent the

small-scale waves and the WMF.

According to the GBA, a new OGWD parameteri-

zation scheme is proposed and compared with the tra-

ditional scheme that does not take into account the

horizontal propagation of 3D mountain waves. In the

case of idealized wind (with a critical level) and constant

buoyancy frequency, the wave amplitude keeps in-

creasing with height in the traditional scheme. However,

the wave amplitude obtained from the GBA solution

first decreases with height, then increases rapidly on

approaching the critical level. Consequently, the waves

break at a higher altitude and produce a greater OGWD

than in the traditional scheme. In another case of

FIG. 13. As in Fig. 12a, but for the case of realistic wind and

buoyancy frequency over Hainan Island scaled to 500m.
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realistic wind (without critical level) and buoyancy fre-

quency, the GBA wave amplitude is largely reduced at

high altitudes because of the horizontal geometrical

spreading. As a result, there is no wave breaking in the

lower stratosphere, which can help alleviate the exces-

sive stratospheric OGWD found when using the tradi-

tional OGWD parameterization scheme.

The horizontal propagation of mountain waves may

produce a nonlocal OGWD that influences the mean

flow far away from the mountain. For instance, gravity

waves triggered in the southern Andes and Antarctic

Peninsula were found to contribute remarkably to the

stratospheric OGWD over the Southern Ocean near

608S through meridional propagation (e.g., Jiang et al.

2014, and references therein). In order to represent the

propagating waves, there have been a few studies in the

past (e.g., Marks and Eckermann 1995; Hasha et al.

2008; Song and Chun 2008) that have used the standard

ray-tracing theory. This issue is not considered in the

currently proposed OGWD parameterization scheme

but will be revisited using the GBA.

The GBA solution derived can also address the se-

lective critical-level filtering caused by directional wind

shear (PR11). In accordance with XWX12, the absorp-

tion of 3Dmountain waves at selective critical levels will

result in a body force normal to the mean flow, which is

not included in any existing OGWD parameterization

scheme. In this situation, it is the 3D divergence of

horizontal momentum flux [i.e., = � (vu) and = � (vy)]
that is important in forcing the local mean flow (e.g.,

Miyahara 2006). This will be studied in the future.
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