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Abstract 

An iterative procedure is designed to accelerate the ‘spin-up’ of ensemble square root fil-

ter (EnSRF) data assimilation cycles when starting from a poor initial ensemble. Referred to as 

“iterative EnSRF” (iEnSRF), this procedure follows the “running in place” (RIP) concept devel-

oped for the local ensemble transform Kalman filter (LETKF) but is implemented differently due 

to algorithm differences. iEnSRF is a three step procedure: First, a backward EnSRF analysis is 

performed that updates the ensemble model states at an earlier time. Second, an ensemble of 

forecasts is run from these updated model states to the analysis time. These two steps are then 

repeated a pre-specified number of times. The backward analysis is performed via asynchronous 

Ensemble Kalman filter (EnKF) which is capable of assimilating observations collected at times 

different than the analysis time. Like RIP, iEnSRF uses the same observations repeatedly during 

the initial assimilation cycles, allowing for the extraction of additional information from observa-

tions when estimated ensemble mean state and ensemble covariance are poor. 

The iEnSRF algorithm is tested using simulated radar data for an idealized supercell 

storm. In experiments with a perfect model and correct storm environment, as well as in the 

presence of model and environmental errors, iEnSRF reduces the analysis error in the first few 

cycles more quickly than the regular EnSRF, leading to improved subsequent short-range fore-

casts. After the first few analysis cycles, continued use of iterations does not lead to further im-

provement. The better performance of iEnSRF appears to be the result of improved background 

error covariance estimation as well as improved state estimation in the first few cycles, especial-

ly for correlations between observed and unobserved variables. Through iterations, iEnSRF is 

also able to reach a steady level of state estimation error in a more quickly than the correspond-

ing non-iterated version. 
 

Keywords: Radar Data Assimilation, Iterative Procedure, Ensemble Kalman Filter. 
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1. Introduction 

The ability of ensemble Kalman filter (EnKF) (Evensen 1994, 2003) to initialize 

convective storms from simulated Doppler radar radial velocity data was first demon-

strated by (Snyder and Zhang 2003) and (Zhang et al. 2004) within an anelastic cloud 

model with simplified warm rain microphysics. Subsequent studies by (Tong and Xue 

2005) and (Xue et al. 2006) demonstrated the capability of EnKF to assimilate radar radi-

al velocity as well as reflectivity data into a compressible model with complex ice micro-

physics. More recent studies have found that the ability to handle complex nonlinear 

physics important for convective storms is an advantage the EnKF method has over other 

data assimilation procedures (Jung et al. 2008; Xue et al. 2010; Snook et al. 2011). 

The EnKF is based on Monte Carlo sampling in which an ensemble is used to 

sample the model state uncertainty and to evolve the model state error covariance 

(Evensen 1994). An optimal analysis can be only be obtained if two independent re-

quirements are satisfied: (i) the ensemble mean is close enough to the truth and (ii) the 

ensemble perturbations are representative of the true error characteristics (Kalnay and 

Yang 2010). 

For convective storms, Doppler weather radar is generally the only observation 

platform capable of providing detailed observations of the wind and precipitation struc-

tures within the storms. Due to sensitivity limitations, Doppler radar data are usually only 

available after precipitation-sized particles form, posing a challenge for the initialization 

of rapidly developing storms, especially for cycled data assimilation (DA) methods that 

require the assimilation of many volume scans of radar data before a reasonably accurate 

estimate of the state of atmosphere can be obtained. 
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EnKF DA cycles for convective storms typically start from a first guess field that 

only contains information about the broader-scale storm environment. Observing system 

simulation experiment (OSSE) studies have shown that it typically takes more than 10 

assimilation cycles to obtain accurate analyses of convective storms when assimilating 

Doppler radar data via EnKF (Caya et al. 2005; Xue et al. 2006; Yussouf and Stensrud 

2010). (Caya et al. 2005) showed that because of the iterative nature of a four dimension-

al variational (4DVAR) method, 4DVAR is able to establish a reasonably accurate analy-

sis of a convective storm by assimilating only 1-2 radar volume scans.  EnKF takes sub-

stantially longer to achieve this level accuracy, but is able to a produce a more accurate 

analysis than 4DVAR after several additional assimilation cycles. With the standard pre-

cipitation-mode volume scan interval of about 5 minutes for the operational WSR-88D 

weather radars of the U.S., (Xue et al. 2006) showed that it took about 50 minutes for 

EnKF to establish a well-defined storm, which is confirmed by (Yussouf and Stensrud 

2010). However, given a rapidly developing severe storm, as noted in (Kalnay and Yang 

2010), such a spin-up time is likely to result in the EnKF analysis being less useful for 

severe storm forecast than 4DVAR (Caya et al. 2005).  

The desire to accelerate the ‘convergence’ (i.e., reduce the ‘spin up time’) of 

EnKF DA cycles, so that reasonably accurate state and covariance estimations can be es-

tablished more rapidly, motivated the development of an iterative procedure called ‘run-

ning-in-place (RIP)’ by (Kalnay and Yang 2010), in a local ensemble transform Kalman 

filter (LETKF) (Hunt et al. 2007) framework. RIP is a three-step procedure: (i) a “no-cost” 

ensemble Kalman smoother (EnKS) (Kalnay et al. 2007; Yang et al. 2009) is used to go 

backward in time within an assimilation cycle to improve the background state at the pre-
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vious time, (ii) advance with the standard LETKF procedure from the updated back-

ground and (iii) repeat steps (i) and (ii) until a desired state is reached. Because it is  

based on the LETKF algorithm, the ‘no-cost’ EnKS uses LETKF weights obtained with 

observations at the later time to update ensemble states at the earlier time, hence improv-

ing both the state and covariance at the earlier time and allowing for the repetitive use of 

the observations within an assimilation cycle. (Kalnay and Yang 2010) found that within 

an idealized global primitive equation model the RIP procedure improve the quality of 

the initial ensemble mean and background error covariance, so that fewer cycles are re-

quired for the filter to approach its optimal analysis. This result is especially true when 

initial ensemble perturbations are Gaussian noise and/or when the initial ensemble mean 

is far from the truth.  The latter situation is often realized in thunderstorm initialization. 

Although the RIP procedure was originally motivated by issues observed in 

storm-scale data assimilation, such a procedure has never been applied to the storm-scale 

DA problem. Testing such an idea in storm-scale DA is the main purpose of this paper. 

Almost all storm-scale radar DA studies to date have used either the ensemble square root 

filter (EnSRF) (Whitaker and Hamill 2002) algorithm  or the original EnKF algorithm 

with perturbed observations (Tong and Xue 2005). Such algorithms are serial and process 

observations one at a time. To apply the RIP idea to the EnSRF algorithm, we have de-

veloped a new procedure called iterative EnSRF (iEnSRF). 

As an initial evaluation of iEnSRF, we perform a set of OSSEs with simulated ra-

dar observations for a supercell storm. The OSSEs are conducted first for a perfect model 

experiment with no storm environment error and then in the presence of prediction model 

and storm environment errors. Environment error is generated by adding perturbations to 
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the environmental sounding and model error is simulated by using different physical pa-

rameterization schemes in the ensemble forecasts. The benefits of iEnSRF as compared 

to the regular EnSRF are assessed for these different situations.  

The remainder of this paper is organized as follows. In section 2, the iEnSRF al-

gorithm is described and contrasted with RIP. Section 3 provides the configurations of 

the prediction model and data assimilation, and describes the simulation of radar observa-

tions and the design of OSSEs. The results of the OSSEs are discussed in section 4 and a 

summary is given in section 5. 

2. The EnSRF and iEnSRF algorithms 

 
2.1. The EnSRF algorithm 

We first give a brief summary of the standard EnSRF algorithm on which iEnSRF 

is based. Following (Whitaker and Hamill 2002), the serial EnSRF algorithm analyzes 

uncorrelated observations one after another. Therefore, the observation error covariance 

R  and background error covariance mapped to the observation space, b THP H , reduce to 

scalars. The analysis equations for updating the ensemble mean model state x  and the ith 

ensemble deviation from the mean, 'ix , are, 

a b o b( ( ))jy H  x x Κ x , (1) 

a b b b' ' [ ( ) ( )]i i iH H  x x Κ x x ,  (2) 

where 

b T b T 1( ) Κ P H HP H R , (3) 
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is the Kalman gain matrix, bP  is the background error covariance, H  is the observation 

operator mapping variables from model state space to observation space, and Η  is a lin-

earized version of H . Here, superscripts a, b, and o denote the analysis, background and 

observation, respectively. Subscripts i and j denote the ith ensemble member and the jth 

observation, respectively. In Eq. (2), 

 b T 1 1[1 ( ) ]    R HP H R  (4) 

is a coefficient derived by (Whitaker and Hamill 2002) for the EnSRF algorithm. Equa-

tion (4) is only valid for single observation analysis and therefore both the numerator and 

denominator inside the square root are scalars. The background error covariance terms in 

K are estimated using the ensemble members, according to 

b T b b b b T

1

1
( - )[ ( ) ( )] ,

1

N

i i
i

H H
N 

 
 P H x x x x                                                          (5) 

b T b b b b T

1

1
[ ( ) ( )][ ( ) ( )] ,

1

N

i i
i

H H H H
N 

  
 HP H x x x x                                         (6) 

where N is the ensemble size. For each observation, TbHP  is a vector and TbHHP  is a 

scalar. Observations are analyzed by using Eq. (1) and Eq. (2) sequentially, one after an-

other. After all observations at a given time are analyzed, an ensemble of forecasts pro-

ceeds from the analysis ensemble until new observations are available; the analysis cycles 

are then repeated. 

2.2. The iEnSRF algorithm 

As mentioned earlier, our iterative EnSRF procedure follows the RIP concept and 

also involves three steps in each analysis cycle, but its implementation differs from that 

of RIP due to differences between the LETKF and EnSRF algorithms on which they are 
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based.  This is particularly true for the first step where an earlier state is updated using 

later observations. This subsection describes the details of iEnSRF while pointing out its 

differences with RIP. 

In LETKF, the final ensemble analyses are obtained as linear combinations of the 

background ensemble forecasts, using transformation weights determined by the LETKF 

algorithm (Hunt et al. 2007). In the first step of RIP (Kalnay and Yang 2010), the 

“weights” obtained at the current time, tn, are used to transform the ensemble forecasts at 

a previous time,tn-1, into updated states or ensemble analyses valid at tn-1. This procedure 

is referred to as ‘no-cost’ EnKS (Kalnay et al. 2007; Yang et al. 2009).  EnSRF has no 

such weights, at least not explicitly, thus requiring a different procedure to update the 

previous time.  

Specifically, in EnSRF, an asynchronous implementation can be done so that ob-

servations at the current time can be used to update states at an earlier time. An algorithm 

to implement such asynchronicity was developed by (Sakov et al. 2010) and can be ap-

plied to different variants of EnKF. However, due to the serial nature of EnSRF, the im-

plementation of the asynchronous algorithm has additional complications. In a typical 

asynchronous algorithm, observation priors computed at tn, the time of observations, are 

used to update the model state at tn-1. This usually requires the pre-calculation and simul-

taneous use of all observation priors, as described in (Sakov et al. 2010); this is not possi-

ble for the serial EnSRF. 

To address this complication, we treat the state vector x at tn-1as an extension of 

the state vector at tn and form an extended stated vector
1

T T T( , )
n nt t 

x x . This extended state 

vector is treated like a regular vector in EnSRF, and both state vectors are updated by the 
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filter simultaneously. It is then straightforward to apply the asynchronous algorithm. This 

is similar to the joint state-observation vector used by (Anderson 2001).  Through this 

new vector, the update of observation priors at tn  follows the standard EnSRF algorithm 

and it is possible to analyze the model state at tn-1 from observations available at tn. Here, 

the update of state at tn-1 by data available at tn is achieved through asynchronous covari-

ance which involves model state samples distributed in time. The asynchronous covari-

ance for updating model state at tn-1 using observations tn are 

1 1 1

b T b b b b T

1

1
( - )[ ( ) ( )]

1n- n- n n n

N

t i,t t i,t t
i

H H
N 



 
 P H x x x x , (7) 

b T b b b b T

1

1
[ ( ) ( )][ ( ) ( )]

1n n n n n

N

t i,t t i,t t
i

H H H H
N 

  
 HP H x x x x , (8) 

where Tb

1
HP

n-t  is the covariance between model states at tn-1 and observation priors at tn, 

b T

nt
HP H  is the same as that in Eq. (6) because the observations used to update 

1n-tx are 

valid at tn. Therefore, the Kalman gain matrix 
1n-tΚ  for updating model state 

1n-tx is calcu-

lated according to 

1 1

b T b T 1( )
n- n- nt t t

 Κ P H HP H R . (9) 

Then, the analysis equations for ensemble mean (
1n-tx ) and ensemble deviations (

1,'
n-i tx ) 

are, respectively, 

1 1 1

a b o b( ( ))
n - n - n - nt t t j ty H  x x Κ x , (10) 

1 1 1

a b b b
, , ,' ' ( ( ) ( ))

n - n - n - n ni t i t t i t tH H  x x Κ x x . (11) 

Through Eqs. (10) and (11), the model states at tn-1 can be updated by observations taken 

at tn.  Because Eqs. (10) and (11) are similar to Eqs. (1) and (2), except for the Kalman 
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gain, it is easy to implement within an existing EnSRF framework. Once the ensemble 

states at tn-1 are updated, ensemble forecasts from tn-1are produced to arrive at new fore-

cast states at tn and such new forecast states are used in the next iteration of asynchronous 

filter updating. The iterations are repeated in a similar manner as in (Kalnay and Yang 

2010). Because of the use of an updated state at tn-1, the updated forecast states at tn 

should be improved over that of the earlier iteration.  

Our iEnSRF procedure is illustrated in Figure 1. It should be pointed out that, as 

part of an extended state, , ni tx  and 
1, n-i tx must be simultaneously updated (note that in the 

figure, model states at *
1nt   instead of 1nt  are updated, this will be discussed  later in this 

section).It is noted that only the updated , ni tx in the final iteration are carried into the next 

assimilation cycle, while those in the intermediate iterations are only needed for calculat-

ing covariance for the next observation. Obviously, this is computationally inefficient. A 

possible solution to this problem follows the scalable implementation of an ensemble fil-

ter proposed by (Anderson and Collins 2007), which pre-calculates and updates observa-

tion priors as part of an extended state. By updating the observation priors at tn instead of 

the full state, the number of calculations can be greatly reduced; , ni tx will then only need 

to be updated in the final iteration. This approach is only equivalent to state updating 

when the observation operator is linear. In practice, differences due to such an approxi-

mation are likely no larger than other sources of uncertainty within a filter implementa-

tion (Anderson and Collins 2007).While this approach is attractive, computational 

efficiency is not the focus in this proof of concept paper, and we chose to keep the 

implementation simple based on an existing EnSRF code. 
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Asynchronous algorithms are subject to temporal sampling error, in addition to 

spatial sampling error. Similar to the spatial sampling error, temporal sampling error can 

cause erroneous correlations when the time interval between samples is long. A temporal 

localization is introduced to help minimize such effects. In this study, the fifth-order cor-

relation function (Gaspari and Cohn 1999), typically used for spatial localization, is em-

ployed for temporal localization. Spatial and temporal localization are applied simultane-

ously to all state variables. With the spatiotemporal localization, analysis equations for 

updating ensemble mean 
1n-tx  and ensemble deviations 

1,'
n-i tx are modified from those in 

(10) and (11), 

1 1 1

a b o b( ) ( ( ))
n- n- n- nt t tl sl t j ty H  x x ρ Κ x , (12) 

1 1 1

a b b b
, , ,' ' ( ) ( ( ) ( ))

n- n- n- n ni t i t tl sl t i t tH H   x x ρ Κ x x , (13) 

where scalar tl  is the temporal localization coefficient; vector slρ  contains the spatial 

localization coefficients and “  ” represents the Schur (elementwise) product 

(Houtekamer and Mitchell 2001). tl  is a scalar that is a function of the time interval be-

tween tn-1 and tn while slρ
 is a vector because the distance between o

jy  and model grid 

points can vary. 

Another important consideration in our iterative procedure is how to determine 

the time interval of iteration between tn-1 and tn. According to (Kalnay and Yang 2010), 

RIP updates the state at tn-1 even though observations are available at tn. They justified 

such a procedure on the grounds that the EnKS updated ensemble at tn-1 is more accurate 

than the analysis ensemble using data only at tn-1 (Yang et al. 2009; Kalnay and Yang 

2010).  However, studies have not yet been conducted to confirm that asynchronous 
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EnKF can generate better analysis at tn-1 by using observations valid at tn instead of tn-1. 

In other words, if observations are available at tn-1, they are usually used to update the 

state at tn-1, rather than updating the state at tn-1
 with observations valid at tn. To avoid this 

complication, in our implementation, iterations are carried out between tn and *
1nt  , where 

*
1nt   is an intermediate time between tn-1 and tn when no observation is available. The oth-

er consideration in using *
1nt   rather than tn is that the desired the temporal localization 

can limit the time interval of iteration because the correlation coefficient is reduced to 

zero outside the cutoff radius of temporal localization; the asynchronous updating should 

occur within the time localization window. A longer time interval of iteration also costs 

more computationally because of the longer, repetitive, ensemble forecasts involved; tun-

ing of an iterative procedure will likely need to balance analysis quality and computa-

tional cost. 

 

3. The observing system simulation experiments 

3.1. The prediction model settings and truth simulation 

The non-hydrostatic and fully compressible Weather Research and Forecast 

(WRF) model V2.2.1 is used to produce the truth simulation of an idealized supercell 

storm and for the OSSEs. For all experiments, the physical domain used is 60 km × 60 

km × 20 km. The model domain has a horizontal grid spacing of 2 km and a vertical grid 

spacing of 0.5 km. The truth simulation is initialized from the classic (Weisman and 

Klemp 1982) analytic sounding provided in WRF package (plotted in Fig. 2 along with a 

modified sounding to be discussed later). The CAPE of the sounding is about 2000 J kg-1 
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with directional (clockwise) vertical wind shear that favors right-moving cells following 

storm splitting (Klemp 1987). The storm is triggered by an ellipsoidal thermal bubble 

centered at x= 14, y = 28 and z = 1.5 km, with a 10-km horizontal radius and a 1.5-km 

vertical radius and a 3 K maximum temperature perturbation. Other model configurations 

include: Runge-Kutta 3rd-order time-integration scheme with a time step of 12 seconds, 

WRF Single-Moment 6-class (WSM6) microphysics parameterization scheme, and the 

Rapid Radiative Transfer Model (RRTM) and Dudhia schemes for long and short wave 

radiation. No cumulus parameterization is included. A 1.5-order turbulent kinetic energy 

(TKE) closure scheme is used to parameterize subgrid-scale turbulence and a positive 

definite scheme is used for the advection of moisture and water variables. Open condi-

tions are used at the lateral boundaries. More details with regard to schemes in WRF V2 

are described in (Skamarock et al. 2005). The length of the truth simulation is 90 minutes. 

We now briefly describe the truth simulation.  In this paper, all times are relative 

to the initial time (0 min) of the truth simulation. At 40 min (Figure 3a), two updraft 

cores are found at mid-levels, resulting from storm splitting. One core is located in the 

southern part of the rear of storm with the other located to the north. The southern cell 

(hereafter, SC) is stronger than the northern cell (hereafter, NC). The maximum updraft 

in SC at this time reaches 25 m s-1 at 5 km above ground level (AGL). At 90 min (Figure 

3b), SC is located in the southeastern portion of the model domain, about 28 km from the 

position of initial thermal bubble (shown with a red dot in Figure 3b). The maximum up-

draft is greater than 30 m s-1 at 5 km AGL. Meanwhile, in the northern part of the model 

domain, the region of graupel associated with NC becomes larger than that with SC even 

though its updraft is still weaker. Plots at higher altitudes (not shown) feature a larger re-
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gion of hydrometeors for SC, indicative of a deeper updraft for SC than NC. Throughout 

the simulation period, the storm top of SC reaches about 15 km and its maximum updraft 

reaches 40 m s-1. This classic splitting supercell storm serves as the truth storm from 

which simulated radar data will be created for OSSEs. 

3.2. Simulation of radar observations 

A simulated WSR-88D type of radar is placed at x= -22 km and y = 78 km. This 

location is outside the model domain and about 60 km to the northwest of initial thermal 

bubble. Following recent OSSE papers of (Xue et al. 2006) and (Zhang and Rosati 2010),  

the simulated observations are sampled on radar elevations rather than at model grid 

points (Snyder and Zhang 2003; Tong and Xue 2005).  Radar observations are simulated 

from model variables interpolated to the model scalar points in horizontal direction and 

radar elevation in vertical direction, as is common practice (Crook et al. 2004). The radar 

operates in the standard U.S. operational WSR-88D radar precipitation scan mode (VCP 

11), with 14 elevation levels and 5 minute volumes scan intervals. Following (Zhang and 

Rosati 2010), the lower 12 sweeps of observations are generated at a rate of 3 sweeps per 

minute and the upper 2 sweeps are generated in the final minute of each volume scan. To 

take into account measurement and sampling error of radial velocity (Vr) and reflectivity 

observations (Z), random errors of zero mean and standard deviations of 2 m s-1 and 

2dBZ are added to Vr and Z, respectively. The operator for Vr  is  

cos sin cos cos ( )sin ,r g g g tV u v w w       
 
                                          (14) 

where gu , gv  and gw  are model-simulated velocities interpolated from the staggered 

model grid points to the observation location using tri-linear interpolation; tw  is the mean 
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terminal fall speed of hydrometeors;  and  are the elevation and azimuth angles of the 

radar beam, respectively. The simulated reflectivity, Z, in dBZ is calculated from the 

mixing ratios of rainwater, snow, and graupel using the formulations of (Tong and Xue 

2005) and (Xue et al. 2006). The operator for Z satisfies the relationship 

10 6 3
10 log ( ),

1
r s hZ Z Z

Z
mm m

 
                                                                                   (15) 

where rZ , sZ  and hZ  are equivalent reflectivity factors for rainwater, snow and graupel, 

respectively. Observations used in the assimilation experiments are calculated from Eqs. 

(14) and (15) with added random errors. Radial velocity and reflectivity are only assimi-

lated where reflectivity exceeds 10 dBZ. 

3.3. Data assimilation settings 

Forty ensemble members are used in all experiments. Similar to (Tong and Xue 

2005), ensemble forecasts begin 20 min into the simulation when the storm cell first de-

velops from the thermal bubble. Random perturbations are added to a first guess state to 

create an ensemble of initial conditions. These random perturbations have a Gaussian dis-

tribution with zero mean and standard deviation of 3 K for perturbation potential temper-

ature θ’(defined as total potential temperature θ minus 300 K) and 0.5 g kg-1 for water 

vapor mixing ratio qv. The wind field is not perturbed. Perturbations are only added at the 

grid points where reflectivity greater than 10 dBZ is observed within 2 km to avoid spu-

rious convection outside the observed area. After all the observations at an analysis time 

are analyzed, the relaxation method of inflation (Zhang et al. 2004) is used to overcome 

insufficient ensemble spread. Following (Zhang et al. 2004), the formula for relaxation 

inflation is 
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a a b( ) ' (1 )( ) ' ( ) 'new    x x x ,                                                                               (16) 

where   is the weight of the background ensemble perturbation and is set to 0.5 follow-

ing (Zhang et al. 2004). We applied additional inflation every 5 min to further increase 

the ensemble spread. This additional inflation is realized by scaling the spread of θ to 2 K 

in the areas influenced by observational data in the filter updating. This procedure has an 

effect of increasing the spread of thermal variables and limits additional uncertainties to 

the areas impacted by observations; it has a similar effect as the additive noise method of 

(Dowell and Wicker 2009) where temperature perturbations are only added in areas of 

precipitation.  

For spatial localization a fifth-order correlation function (Gaspari and Cohn 1999) 

is used. The horizontal radius is set to 8 km and the vertical radius is 4 km. The model 

variables updated by data assimilation system include the grid point values of wind com-

ponents u, v, w, potential temperature θ, perturbation geopotential , water vapor mixing 

ratio qv, and mixing ratios of microphysical variables qr, qi, qs, and qg for rain, ice, snow 

and graupel. Both radial velocity Vr and radar reflectivity Z are assimilated. 

For iEnSRF, the time interval between tn-1
* and tn is set to 4 minutes for the first 

analysis (at 25 min) and 3 minutes for all subsequent analysis cycles. In RIP, the number 

of iterations is automatically adjusted according to a criterion based on the mean squares 

observation minus forecast or the forecast innovation. A similar criterion is not appropri-

ate in our case, because none of the model state variables are directly observed, and a 

good fit of model state to observations does not guarantee accurate state estimation. We 

choose instead to set the number of iterations to 3 for all analysis cycles with iterations, 

which is consistent with the experience of (Kalnay and Yang 2010).  In our iterative pro-
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cedure, spatial covariance inflation and localization configurations for updating the state 

at tn-1
* are the same as those for updating state at tn. Temporal localization is performed 

using a fifth-order correlation function  (Gaspari and Cohn 1999).  The cutoff radius of 

the temporal localization is set to 6 minutes (slightly long than a radar volume scan time).  

3.4. OSSE design 

As in many earlier OSSE studies with EnKF (e.g. Tong and Xue 2005; Zhang et 

al. 2006), we first examine iEnSRF with a perfect model and a storm environment de-

fined by the correct sounding. In this perfect model situation, two experiments are per-

formed. One is named EnSRF_ne, using EnSRF, while the other is iEnSRF_ne, using 

iEnSRF. The “ne” in the names indicates no model or environmental error. Following 

(Tong and Xue 2005) and (Xue et al. 2006), we perform analyses every 5 minutes, from 

25 min to 90 min for both experiments. Short-range deterministic forecasts are launched 

from the ensemble mean analyses at 40 min and 60 min, respectively. The forecasts 

launched at 40 min are designed to determine the impact of iEnSRF on forecasts with a 

short assimilation window while the forecasts launched at 60 min examine the impact of 

iEnSRF after more data are assimilated through additional cycles.  

In a second set of experiments, both EnSRF and iEnSRF are subject to a more re-

alistic condition that includes error in both the prediction model and storm environment. 

Two experiments are again performed, EnSRF_e and iEnSRF_e, where “e” refers to the 

fact that error is included in the model and environmental sounding. As in the error-free 

experiments, cycled analyses are performed from 25 min to 90 min at 5 minute intervals 

and two deterministic forecasts are launched from ensemble mean analyses at 40 min and 

60 min. Similar to (Zhang and Meng 2007) and (Snook et al. 2011), the model error or 
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uncertainty is modeled by using different physical parameterization schemes from those 

used in the truth simulation. Specifically, the Smagorinsky first-order closure scheme 

(SFOC) instead of the 1.5-order turbulent-kinetic energy (TKE) scheme is used for the 

subgrid-scale turbulence parameterization; the Purdue Lin (Lin et al. 1983; Rutledge and 

Hobbs 1984) instead of WSM6 scheme is used for microphysics, and a 2nd-order instead 

of a 3rd -order Runge-Kutta scheme is used for model time integration. The environmen-

tal error is introduced by adjusting the profile of water vapor mixing ratio (qv) and lapse 

rate of temperature of the sounding. A coefficient of 0.9 is multiplied to the qv profile to 

represent an underestimate of the environmental moisture. For temperature, the amplitude 

of perturbation from the original profile mean is first reduced by 10%, a constant is then 

added to the profile so that its surface value remains unchanged. The adjusted sounding is 

shown in Fig. 2 (gray lines). The largest differences in this modified sounding are the 

smaller value of CAPE, higher lifting condensation level (LCL), and larger dew point 

depression at the lower levels, indicating a less convectively unstable environment. 

The impact of data assimilation using the iEnSRF is then examined in terms of 

both analysis and forecast errors. In order to isolate the effects of the difference in the 

initial condition, we use the perfect model for the free-forecast period of both error-free 

and error-containing experiments.  The configurations of model and data assimilation for 

all four experiments discussed above are listed in Table 1, including the parameterization 

schemes, assimilation window length, and the localization and inflation configurations. 

4. Results and discussions 

The root-mean square (RMS) errors of analyzed model state variables are used to 

quantify and compare the performance of iEnSRF and standard EnSRF. Following (Tong 
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and Xue 2005) and (Xue et al. 2006), the RMS errors are calculated against the truth at 

grid points where the truth reflectivity is greater than 10 dBZ. The mass field used for 

verification is the perturbation geopotential height in meters. Meanwhile, for quantitative 

comparison of iEnSRF and EnSRF, we define the improvement produced by iEnSRF, 

Imp, as the percentage difference,  

100 ( ) /ensrf iensrf ensrfImp e e e   , 

where e is the RMS error while the subscript denotes the analysis scheme used. Note that 

a positive value of Imp represents an improvement in the analysis of iEnSRF. 

4.1. Results with no model or environmental error 

Figure 4 compares the RMS errors from the EnSRF_ne and iEnSRF_ne. When 

used from 25 min to 90 min, iEnSRF generally performs better than regular EnSRF in the 

first 4 – 5 cycles but it errors gradually become comparable with or even worse than 

those of EnSRF in later cycles. It can be seen in Figure 4 that iEnSRF reduces the initial 

background error for all variables except for qv more than EnSRF does at the end of the 

first analysis cycle at 25 min. Table 2 shows that the Imp for the three wind components, 

u, v, and w, is between 8.6% and 14.4% at this time. For variables that are not directly 

related to radial velocity, such as geopotential height and potential temperature θ, the 

Imp is 34.4% and 14.6%, respectively. For the hydrometeor variables, the Imp is some-

what less. For qv, the Imp is -62% in the first cycle (Table 2). This suggests that the en-

semble covariances used to update the moisture and microphysical variables are not reli-

able at the end of the first cycle even with the iterations of iEnSRF.  

At 40 min, after 4 assimilation cycles, the errors in both EnSRF_ne and 

iEnSRF_ne are greatly reduced from their initial levels. The analysis errors for the wind 
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components in EnSRF_e are about 2.5 m s-1 while those in iEnSRF_e are reduced to 

about 2.0 m s-1 (Fig. 4), representing an Imp of more than 20% for u and v and 30% for w 

by iEnSRF. Although the analysis error of  in iEnSRF_ne is not much smaller than that 

in EnSRF_ne, the analysis error of θ in the former is about 31.16% smaller than that in 

the latter. Moreover, substantial improvement can be seen for hydrometeor variables after 

applying iEnSRF for 4 cycles. The Imp for the analysis error of qv is about 8.5% while 

those for qr, qs, and qg are all over 30%. This result suggests that the iterations improved 

not only state estimation but also the covariance estimation, since microphysical variables 

depend strongly on the cross-variable covariance when they are updated by radial veloci-

ty observations. 

However, the positive impact of the iterative procedure did not last through the 

remainder of the assimilation cycles. This is most clearly seen in the analysis and back-

ground forecast errors of θ in the later cycles (Fig. 4). From 75 through 90 min, the errors 

of iEnSRF are noticeably larger. The same degradation is seen is for the wind compo-

nents. This result agrees with (Kalnay and Yang 2010), who also found that performing 

additional iterations after the filter reaches its asymptotic level could lead to larger analy-

sis errors. This is due to over-fitting of the analysis to observations, when the observa-

tions are used repeatedly after reasonable state and covariance estimations have already 

been established. 

It is therefore recommended that the iterative procedure is stopped after the DA 

system stabilizes, i.e., when the analysis errors calculated against the observation level 

off. Through further tuning and sensitivity experiments it may be possible to automatical-

ly determine when this stabilization has occurred; the extra iteration step should then be 
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halted. 

Launching from the analyses at 40 min, the forecast errors in EnSRF_ne (grey 

dash lines in Figure 4) increase rapidly and became about twice as large by 90 min for 

most variables. In contrast, the forecast errors in iEnSRF_ne (dark dash lines in Figure 4) 

grow more slowly and remain substantially lower than those of EnSRF_ne throughout the 

forecast period.  For instance, the improvement over EnSRF is between 27 and 35% for u, 

v, and w at 90 min while improvement for other variables is at least 18% (Table 2). This 

is true even for variables that are not directly related to radial velocity or reflectivity, such 

as , θ, and qv. It is interesting to note that even though the improvement to the analysis at 

40 min is slightly negative for , the forecast error in  starting from this analysis is im-

proved by close to 32% by 90 min, due to a more accurate analysis of most other state 

variables positively impacting the evolution of the forecast.

 As mentioned earlier, we also launched deterministic forecasts from ensemble 

mean analyses at 60 min.  By this time, both EnSRF and iEnSRF had reached their as-

ymptotic error levels and the analysis errors of all variables in EnSRF_ne were compara-

ble with those in iEnSRF_ne. It can be seen in Figure 4  that the forecast error curves 

(dash lines) for these two experiments were nearly identical after being launched at 60 

min, indicating that applying iterations after the filter reaches its asymptotic error level 

(shortly after 40 min in this case) does not improve the analysis and subsequent forecast. 

At 90 min, the forecast errors for nearly all variables in iEnSRF_ne become slightly larg-

er than those in EnSRF_ne. Meanwhile, at 90min, the error level of the forecast in 

iEnSRF_ne starting from 40 min is comparable with that of forecast starting from 60 min. 

This suggests that applying iEnSRF effectively increases the forecast lead time by 20 
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minutes in the current case; in other words, the assimilation window can be 20 minutes 

shorter to reach a similar quality of state estimation for the current supercell storm, so 

that forecasts can be issued 20 minutes earlier. 

4.1. Results with model and environmental errors 

A perfect prediction model and perfect environmental conditions are not possible 

for real data assimilation problems. In this section, we examine results the second set of 

experiments; those that include prediction model and storm environment errors. Figure 5 

shows the RMS errors from experiments EnSRF_e and iEnSRF_e. In this more realistic 

scenario, iEnSRF still produces more accurate analyses than EnSRF in the first several 

cycles. Similar to the no error case, the RMS errors in the later cycles become compara-

ble to those of EnSRF. Overall, the analysis errors in the error-containing experiments are 

comparable with the corresponding error-free experiments (compare Figure 5 to Figure 4).  

As can be seen in  

Table 3, the iteration procedure in iEnSRF has positive impacts on the wind anal-

ysis at the end of the first cycle but the relative improvement is less than 10%, which is 

about 22-32 % smaller than that in no-error experiments. The Imp for  and θ are also 

smaller, achieving 22.66% and 8.52%, respectively, compared to the 34% and 14% of no-

error case. Among water vapor and hydrometeors, iEnSRF produces smaller errors for qr 

and qg but it produces a large degradation in qs  verus qv as in the no-error case. Similar to 

the no error case, this larger analysis error for qs here is likely due to unreliable covari-

ance associated with the microphysical variables, and such a problem can be enlarged by 

the use of a wrong microphysical scheme.  
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By 40 min or after 4 assimilation cycles, the improvements by iEnSRF are again 

evident. At this time, the improvements to u, v, and w are between 28% and 44% and the 

improvement to  is also substantial (21.47%). The improvement to θ is smaller in 

iEnSRF_e than in iEnSRF_ne (4.87 versus 31.16%), this is believed to be related to the 

error in the environment. The improvements to the moisture and hydrometeor variables 

are clearly evident, except for a small degradation in qs. On average, the improvements to 

the hydrometeors are smaller than the no-error case. Similar to the no-error case, the 

analysis errors of iEnSRF in later cycles become close to those of EnSRF analyses, again 

suggesting that further iterations are unnecessary and may be undesirable after an asymp-

totic error level is reached..  

When forecasts are launched at 40 min, the forecast errors in EnSRF_e and 

iEnSRF_e initially grow at similar rates as the corresponding no-error runs (compare 

Figure 5 to Figure 4), but after 10-15 min the errors grow much faster, reaching substan-

tially higher levels by 90 min. These large forecast errors can be attributed to errors in the 

storm environment that cannot be easily corrected by the radar data. Throughout the fore-

cast period, the RMS errors of iEnSRF_e remain lower than those of EnSRF_e for most 

variables. For a few variables, e.g., u, v, and qs, the Imp is larger than it was at 40 min, 

indicating that the benefit of the iterative procedure, in this error-containing case (as well 

as the error-free case, Figure 4), is retained or even amplified for at least 50 min in the 

forecast period. 

By 60 min, the analysis errors in both EnSRF_e and iEnSRF_e have leveled off 

and the differences between them, though still identifiable, have become rather small. As 

a result, forecasts launched from analyses at this time produce similar forecast errors be-
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tween iEnSRF_e and EnSRF_e (Figure 5), although those of iEnSRF_e are still slightly 

smaller. Compared to the error-free case, it seems to be beneficial to apply the iteration 

procedure for a couple more cycles in the error-containing case, given that Imp is mostly 

positive for 90minF60 in the error case (Table 3) while the corresponding Imp in the er-

ror-free case is mostly negative (Table 2). It is observed that the analysis errors for u and 

w at 60 min is still clearly lower in iEnSRF_e than those in EnSRF_e while the differ-

ences is already very small between iEnSRF_ne and EnSRF_ne by this time; further iter-

ations in the latter case would start to hurt. Overall, the benefit of using the iterative pro-

cedure to reduce spin-up time in iEnSRF is clear in both error-free and error-containing 

experiments. 

4.3. Error correlation structures, and analysis and forecast fields 

To help understand how the iterations produce the positive impacts noted in the 

previous subsection, we examine the background error correlation coefficients within the 

first assimilation cycle of EnSRF_e and iEnSRF_e (Figure 6). The correlation between w 

and θ is first examined. A positive correlation between w and θ perturbations due to latent 

heat release within the updraft regions is physically consistent with and important for 

deep moist convection. In a vertical cross-section through the main updraft, one sample 

point marked by a red triangle is selected, where a hypothetical radial velocity (Vr) obser-

vation is assumed. At this point, the estimated w is smaller than the truth in both Figs.6a 

and 6b.  Therefore, if a Vr observation from a nearby radar can correct w at sampled point, 

the increment of w at this point is expected to be positive. Surrounding this point, the ini-

tial estimate of θ was also smaller than the truth (Figure 6a), implying a positive correla-

tion between θ and w around the point is necessary in order for the assimilation of Vr to 
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produce a positive θ increment, thereby reducing its error through variable cross-

correlation. However, the correlation coefficients calculated from the ensemble back-

ground forecasts in EnSRF_e are negative within the red ellipse (a region within the lo-

calization radius of the Vr observation) at this time (Figure 6a). Therefore, using the co-

variance between θ and the w component in radial wind prior to update θ will lead to 

negative impact on the θ analysis. Conversely, in Figure 6b for iEnSRF, the correlations 

calculated from the background ensemble forecasts after three iterations are generally 

positive within the ellipse. This indicates that positive error correlations between θ and w 

are corrected captured by the ensemble after 3 iterations in iEnSRF, but not in EnSRF. 

Similar behaviors can be observed with the qg and w fields. Near the hypothetical 

observation point (marked by triangle), the forecast qg and w in both EnSRF_e and 

iEnSRF_e are smaller than the truth values (Figure 6c, d). Within the ellipse, positive 

correlations between qg and w can be correctly estimated from the forecast ensembles in 

both EnSRF_e and iEnSRF_e, but the maximum correlation coefficient in the former is 

small, reaching only 0.2, while in the latter, the value reaches 0.6. Given the larger corre-

lation coefficient in iEnSRF_e, the filter can produce a larger correction to qg through the 

assimilation of Vr observations. In addition to the magnitude of error correlation, its spa-

tial distribution is more reasonable in iEnSRF_e. The error maximum of qg in iEnSRF_e 

is located near the bottom boundary of ellipse, implying that the error correlation should 

be smaller near the triangle while larger near the error maximum. This tendency is well 

captured in iEnSRF_e.  In EnSRF_e, this spatial distribution is incorrectly estimated, 

with the error correlation maximum located near the triangle. 
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To further explore the impact of the iteration procedure on the analyzed storm, we 

examine the wind and qg fields at 40 min, the time when we launch the first set of fore-

casts (Figure 7). As mentioned in section 3.1, the storm in the truth simulation begins to 

split into two cells (NC and SC mentioned in section 3.1) at 40 min. The differences be-

tween the vertical profiles of analysis errors (not shown) of iEnSRF_e and EnSRF_e 

were found to be substantial in the mid and upper troposphere, especially for w and qg.   

For example, at 5 km AGL, it is clear that there are two updraft maxima in the truth simu-

lation (Figure 7a). This structure is captured in both EnSRF_e and iEnSRF_e. However, 

the updrafts and precipitation core are stronger in iEnSRF_e (Figure 7c), closer to the 

truth, than in EnSRF_e (Figure 7b). The updraft of the northern cell in EnSRF_e is par-

ticularly weak. In the truth simulation, the region of qg greater than 2 g kg-1extends to 

x=45 km, which is not well captured by EnSRF_e but better in iEnSRF_e. These findings 

are consistent with the fact that the storm in EnSRF_e is less well spun-up through the 

limited number of assimilation cycles without iterations.  

Looking higher in the storm, at 10 km AGL, there is indication of cell splitting in 

the structure of the updraft in the truth simulation (Figure 7d). In EnSRF_e (Figure 7e), 

only a single updraft core is identifiable while iEnSRF_e produces an updraft structure 

(Figure 7f) that is closer to the truth.  These results again show the benefit of iterations in 

accelerating the storm spin up. 

At the end of 50-min forecast, the forecast errors of both iEnSRF_e and EnSRF_e 

have become large (Figure 5), but the errors of iEnSRF_e are still smaller than those of 

EnSRF_e (Table 3). To see the visual differences in the forecasts, Figure 8 shows the 

forecast fields at 90 min from EnSRF_e and iEnSRF_e at 5 and 10 km AGL. At this time, 
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the strength of storm in both EnSRF_e and iEnSRF_e is weaker than the truth simulation, 

especially in terms of graupel mixing ratio (qg). As suggested earlier, the less unstable 

sounding that is used to define the storm environment likely contributed to such forecast 

errors. Nonetheless, the forecast storm in iEnSRF_e is somewhat stronger than that in 

EnSRF_e. For example, at 5 km AGL, the areal extent and maximum value of qg associ-

ated with SC are larger in iEnSRF_e than those in EnSRF_e. We see similar trends at 10 

km AGL with a larger updraft and area of qg in iEnSRF_e than in EnSRF_e. Comparison 

with the truth simulation shows that the stronger and larger updraft of iEnSRF_e is more 

accurate than that of EnSRF_e. Therefore, the smaller error in iEnSRF_e corresponds to 

more accurate forecast of storm strength. Overall, although the relative improvement 

yielded by iEnSRF in the presence of model and environment error is not as large as that 

with perfect conditions, the benefits the iteration procedure in iEnSRF short-range storm 

forecasting through accelerated error reduction in the state estimation is clear. 

5. Summary and conclusions 

An iterative procedure based on the ensemble square root filter (EnSRF), which 

we refer to as iEnSRF, is designed with the goal of accelerating the “spin-up” of ensem-

ble Kalman filter state estimation.  The procedure is designed to be used in situations in 

which the first guess ensemble has a poor mean state estimate and poor ensemble error 

covariances. This procedure is similar to the “running-in-place” (RIP) procedure pro-

posed by (Kalnay and Yang 2010) but differs substantially in implementation due to dif-

ferences between the local ensemble transform Kalman filter (LETKF) and the EnSRF 

algorithms used in the respective systems. In iEnSRF, the background states at the analy-

sis time and at an earlier time are combined into a new extended state vector. With this 



26 
 

extended vector, the states at both times are updated by the filter, using the asynchronous 

ensemble Kalman filter (Sakov et al. 2010). By launching ensemble forecasts from the 

earlier updated states, and using the forecasts as the new background ensemble in Kalman 

filter updating in subsequent iterations within the same cycles, additional information can 

be extracted from the observations to more rapidly reach a more accurate state estimate.  

Specifically, the iEnSRF contains three steps: First, a backward EnSRF analysis is 

performed that updates the ensemble model states at an earlier time. Second, an ensemble 

of forecasts is run from these updated model states to the analysis time. These two steps 

are then repeated a predetermined number of times. The backward analysis is performed 

via asynchronous EnKF which can use observations not collected at the state updating 

time. 

We test the iEnSRF algorithm using simulated radar data for an idealized super-

cell storm. Two sets of experiments are performed; one employs a perfect prediction 

model and a storm environment defined by the true environmental sounding.  The other 

experiment set includes a combination of prediction model error and environmental error. 

In the error-free case, iEnSRF accelerates the rate of error reduction and reaches a lower 

error level within the first 4 cycles. Continued application of the iterative procedure in 

later cycles leads to larger errors than in the non-iterative case, suggesting over-fitting of 

the analysis to observations. In this idealized scenario, the error of the deterministic fore-

cast starting from iEnSRF analysis obtained after 4 cycles is found to be substantially 

smaller than that starting from EnSRF analysis valid at the same time. After both iEnSRF 

and EnSRF reach their asymptotic error level (~8 cycles), the difference between anal-

yses and subsequent forecasts yielded by these two methods became small.  
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When model error and environmental error are present, the results are very similar. 

iEnSRF performs better than EnSRF in the first 4 cycles and becomes comparable in later 

cycles. The relative improvement over the non-iterative case is somewhat less than the 

error-free case but is still clearly evident. Examination of the analyzed storm at 40 min, 

or after 4 assimilation cycles, indicates that iEnSRF is able to capture the storm splitting, 

intensity, and structure better than EnSRF. The benefit of the improved analysis is main-

tained throughout the 50 min forecast launched from the ensemble mean analysis at 40 

min.  

To better understand how iEnSRF is able to produce more accurate analyses in 

the first few cycles, we examined the background error correlations between different 

variables in the first cycle. Results showed that the error correlations calculated from the 

ensemble after 3 iterations with iEnSRF are more physically consistent than those ob-

tained without iterations. The improved ensemble error covariance obtained by the itera-

tive procedure helps with not only just with the analysis of the wind field, but also with 

the estimation of state variables, such as temperature, humidity, and microphysical varia-

bles that are not directly linked (through the observation operator) to the assimilated radi-

al velocity observations.. Through iterations, iEnSRF is able to reach a constant level of 

state estimation error in a fewer number of cycles than the corresponding non-iterated 

version. 

Similar to the findings of (Kalnay and Yang 2010), the iterative procedure is 

found to dramatically improve state estimation in the first few assimilation cycles when 

starting from a poor initial ensemble.  Such a poor initial ensemble is generally the case  

in thunderstorm initialization, where useful radar observations are typically not available 
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before precipitation is present within a  developing thunderstorm, or when data assimila-

tion is not running continuously in time so that ongoing thunderstorms have to be spun-

up starting from coarse resolution operational model background that has little or no 

knowledge about the ongoing thunderstorms. After the data assimilation cycles stabilize 

and the analysis error levels off, it is neither necessary nor desirable to continue the itera-

tions, because over-fitting to observations can occur and iterations also incur additional 

computational costs.  For the problem of assimilating radar volume scan data at about 5 

minute intervals, it is recommended to use iEnSRF only in the first 4-5 cycles. For practi-

cal implementations, we expect some level of turning to reach optimal configurations. 

Future work will examine the application of iEnSRF for real data cases. 
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Table 1.The model and data assimilation configurations of OSSEs 

Experiment name EnSRF_ne iEnSRF_ne EnSRF_e iEnSRF_e 

Analysis scheme EnSRF iEnSRF EnSRF iEnSRF 

Iteration interval time 
(min) 

N/A 
cycle one: 4 

other cycles: 3 
N/A 

cycle one: 4 
other cycles: 3 

Iteration number for 
each cycle 

N/A 3 N/A 3 

Temporal localization 
(min) 

N/A 6 N/A 6 

Parameterization 
schemes for analysis 

RK3/ WSM6/ TKE RK2/ Lin /SFOC 

Parameterization 
schemes for forecast 

RK3/ WSM6/ TKE 

Environmental 
sounding 

Truth Truth Adjusted Adjusted 

Spatial Localization 
radius (km) 

Horizontal: 8 km / Vertical: 4 km 

Inflation 
scheme/coefficient 

Relaxation / 0.5 

Additional inflation Rescaling spread to 2 K for θ 
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Table 2.Percentage differences between RMS errors of iEnSRF_ne and EnSRF_ne at 25, 
40 and 90 min of model time. At 25 and 40 min, the errors are for the analyses while at 
90 min they are for forecasts. Positive values mean that errors are smaller in iEnSRF_ne 
while negative ones mean errors are larger in iEnSRF_ne. F40 represents forecast pro-
ceeding from 40 min while F60 represents forecast proceeding from 60 min. 

 

Time u v w  θ qv qr qs qg 

25min 13.80 8.65 14.42 34.41 14.60 -62.00 16.11 4.65 4.57 

40min 22.87 26.53 32.82 -1.48 31.16 8.51 32.20 31.21 33.21 
90minF40 27.32 34.63 27.02 31.29 18.35 25.40 19.56 28.40 39.15 
90minF60 -4.44 -15.17 -19.50 -9.50 -6.47 -3.03 -30.02 -0.20 -8.16 
 
 

Table 3. Percentage differences between RMS errors of iEnSRF_e and EnSRF_e at 25, 
40 and 90 min of model time. At 25 and 40 min, the errors are for the analyses while at 
90 min they are for forecasts.F40 represents forecast proceeding from 40 min while F60 
represents forecast proceeding from 60 min. 

 

 u v w  θ qv qr qs qg 

25min 9.07 5.33 8.50 22.66 8.52 -1.16 2.08 -86.79 4.53 
40min 28.63 32.79 44.26 21.47 4.87 9.12 13.09 -2.72 23.40 

90minF40 14.39 15.75 12.71 13.36 5.81 9.05 13.55 16.16 19.04 
90minF60 11.36 -0.73 12.64 -0.20 5.39 4.16 9.54 7.36 3.90 
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localization coefficient for the observation located at the red triangle. For 

iEnSRF_e the forecasts are at the end of the third iteration. The upper panels 

show the forecast errors of θ (shaded) and w (vertical vectors) and forecast error 

correlation coefficient between w at the point marked by the red triangle and θ at 

the grid point, for EnSRF_e (left) and iEnSRF_e (right). The lower panels are the 

same as the upper panels except θ is replaced by qg. 

Figure 8. The graupel mix ratio (shaded), vertical velocity (contoured at intervals of 4 m 

s-1) and horizontal wind vectors at 40 min. for the truth simulation (left), EnSRF 

analysis (middle) and iEnSRF_e analysis (right), at 5 km (upper panels) and 10 

km (lower panels) AGL. w contours are shown in bold. 

Figure 9. The same as Figure 7, but for deterministic forecasts at 90 min starting from the 

ensemble mean analyses at 40 min. in EnSRF_e (mid panels) and iEnSRF_e 

(right panels), as compared to the truth (left panels). 
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Figure 1.The Flow chart for EnSRF and iEnSRF procedure in each cycle, where the 
t*n-1 is an arbitrarily intermediate time between tn-1 and tn. 
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Figure 2. The original (black) and modified (gray) environmental soundings using by the 
truth simulation, and by the error-containing OSSEs, respectively. Solid and dashed 
lines are for temperature and dewpoint temperature, respectively. LCL:M indicates the 
LCL of modified sounding while LCL:T indicates the original LCL. 
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Figure 3.The graupel mix ratio (shaded), vertical velocity (contour at interval of 4 
m s-1) and horizontal wind (vector) at 5km AGL for the truth simulation at model 
times of (a) 40 min and (b) 90 min. red dot indicates the location of initial thermal 
bubble. 
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Figure 4. The evolution of RMS errors for experiments EnSRF_ne (grey line) and 
iEnSRF_ne (black line). Solid lines represent errors within the assimilation window 
while dash lines stand for errors of deterministic forecasts launched from the en-
semble mean analyses at 40 and 60 minutes. 
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Figure 5. The same as Figure 4, but for experiments EnSRF_e (grey line) and 
iEnSRF_e (black line). 
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Figure 6. Vertical cross sections of forecast errors, calculated as the ensemble mean mi-
nus the truth (error field shaded with vertical velocity error shown as vertical vectors), 
and the correlation coefficients of forecast errors (contours at intervals of 0.2), at 25 min, 
the time of first analysis, in an x-y plane at y=30 km. The 0.2 correlation contours are in 
bold. The red ellipse is the 0.2 contour for the localization coefficient for the observation 
located at the red triangle. For iEnSRF_e the forecasts are at the end of the third iteration. 
The upper panels show the forecast errors of θ (shaded) and w (vertical vectors) and 
forecast error correlation coefficient between w at the point marked by the red triangle 
and θ at the grid point, for EnSRF_e (left) and iEnSRF_e (right). The lower panels are 
the same as the upper panels except θ is replaced by qg.  
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Figure 7. The graupel mix ratio (shaded), vertical velocity (contoured at intervals of 4 m 
s-1) and horizontal wind vectors at 40 min. for the truth simulation (left), EnSRF analysis 
(middle) and iEnSRF_e analysis (right), at 5 km (upper panels) and 10 km (lower panels) 
AGL. w contours are shown in bold. 
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Figure 8. The same as Figure 7, but for deterministic forecasts at 90 min starting from the 
ensemble mean analyses at 40 min. in EnSRF_e (mid panels) and iEnSRF_e (right pan-
els), as compared to the truth (left panels). 
 

 

 

 

 

 


