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Abstract 31 

A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel 32 

assimilation of multi-scale observations including those from dense observational networks such 33 

as those of radar is developed based on the domain decomposition strategy. The scheme handles 34 

inter-node communication through message passing interface (MPI), and the communication 35 

within shared-memory nodes via Open Multi-Processing (OpenMP) threads; it also supports pure 36 

MPI and pure OpenMP modes. The parallel framework can accommodate high-volume remote-37 

sensed radar (or satellite) observations as well as conventional observations that usually have 38 

larger covariance localization radii. 39 

The performance of the parallel algorithm has been tested with simulated and real radar 40 

data. The parallel program shows good scalability in pure MPI and hybrid MPI/OpenMP modes, 41 

while pure OpenMP runs exhibit limited scalability on a symmetric shared-memory system. It is 42 

found that in MPI mode, better parallel performance is achieved with domain decomposition 43 

configurations in which the leading dimension of the state variable arrays is larger, because this 44 

configuration allows for more efficient memory access.  Given a fixed amount of computing 45 

resources, the hybrid parallel mode is preferred to pure MPI mode on supercomputers with nodes 46 

containing shared-memory cores. The overall performance is also affected by factors such as the 47 

cache size, memory bandwidth, and the networking topology.  Tests with a real data case with a 48 

large number of radars confirm that the parallel data assimilation can be done on a multi-core 49 

supercomputer with a significant speedup compared to the serial data assimilation algorithm.  50 
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1. Introduction 51 

With significant advances in computing power in recent years, advanced data 52 

assimilation (DA) techniques, such as the ensemble Kalman filter (EnKF) (Evensen 1994; 53 

Evensen and Leeuwen 1996; Burgers et al. 1998; Houtekamer and Mitchell 1998; Anderson 54 

2001; Bishop et al. 2001; Whitaker and Hamill 2002; Evensen 2003; Tippett et al. 2003) and 55 

four-dimensional variational (4DVAR) (e.g., Le Dimet and Talagrand 1986; Courtier and 56 

Talagrand 1987; Sun and Crook 1997; Gao et al. 1998; Wu et al. 2000; Caya et al. 2005), are 57 

becoming more popular in both operational and research communities. However, they both incur 58 

a high computational cost, one of the biggest constraints for their operational applications at very 59 

high resolutions. Between EnKF and 4DVAR, the EnKF method appears to be more attractive 60 

for convective scale numerical weather prediction (NWP), where nonlinear physical processes 61 

have critical roles.  EnKF can also provide a natural set of initial conditions for ensemble 62 

forecasting. EnKF has been applied at scales ranging from global to convective and has produced 63 

encouraging results (e.g., Snyder and Zhang 2003; Dowell et al. 2004; Tong and Xue 2005, 64 

hereafter TX05; Xue et al. 2006; Jung et al. 2008; Buehner et al. 2010; Dowell et al. 2011; 65 

Hamill et al. 2011; Snook et al. 2011; Jung et al. 2012).  66 

Among variants of EnKF, the ensemble square-root Kalman filter (EnSRF) of Whitaker 67 

and Hamill (2002) is widely used in convective-scale DA studies involving radar data. The 68 

EnSRF, as well as the similar ensemble adjustment Kalman filter (EAKF, Anderson 2003) and 69 

the classic perturbed-observation EnKF algorithm (Evensen 2003),  is an observation-space-70 

based algorithm in which observations are assimilated one after another. Because of the 71 

sequential nature of the EnSRF (and EAKF and classic EnKF), parallelization of the algorithm at 72 

the observation level is not straightforward. It is possible to parallelize at the state variable level, 73 
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i.e., to perform the updating of the state variables in parallel because each observation updates 74 

many state variables within the covariance localization radius of the EnSRF, and these operations 75 

are independent. Such parallelization can be easily achieved on shared-memory platforms via 76 

OpenMP directives, and is done with the Advanced Regional Prediction System (ARPS, Xue et 77 

al. 2003) EnSRF system (e.g., Xue et al. 2006; Jung et al. 2008). A processing element (PE) on a 78 

shared-memory or distributed-memory platform is an individual processor with single-core 79 

processors or a processor core on multi-core CPUs. Each PE generally supports only a single 80 

process or a single thread. The number of PEs available on shared-memory nodes (the term 81 

“processing unit,” abbreviated PU, will be used to refer to a shared-memory node) usually limits 82 

the scale of shared-memory parallelization (SMP) and the number of state variables that can be 83 

updated simultaneously. Distributed-memory parallelization (DMP) via the Message Passing 84 

Interface (MPI) library would allow the use of much larger computers, which are essential for 85 

very-high-resolution DA and NWP over large domains (Xue et al. 2007).  86 

Anderson and Collins (2007, hereafter AC07) proposed a modification to the standard 87 

EAKF algorithm that is also applicable to EnSRF. In their algorithm, multiple observation priors 88 

(background converted to observed quantities via observation operators) are first calculated in 89 

parallel, and the observation priors corresponding to as yet unused observations are updated by 90 

the filter together with the state vector, allowing easier parallelization at the state vector level 91 

(for a given observation, multiple elements in the state vector are updated in parallel). However, 92 

its state update procedure requires broadcasting the observation priors from one PU to the rest, 93 

and more importantly, the processing of observations is still serial. Because of this, the algorithm 94 

does not scale well when the number of PUs increases to the point where the cost of 95 

communication starts to dominate or when the ratio of the number of observations to that of state 96 
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variables is large. Other parallel approaches have also been proposed by Keppenne and 97 

Rienecker (2002) and Zhang et al. (2005). While both methods utilize domain decomposition, 98 

they differ in whether communication among PUs is allowed. Because there is no cross-PU 99 

communication in the algorithm of Zhang et al. (2005), the analysis near the PU boundaries is 100 

not the same as that of scalar implementation, which is a potentially serious drawback of their 101 

algorithm. Keppenne and Rienecker (2002), on the other hand, allow observations in other PUs 102 

to update the states in the current PU, but their communication cost is potentially very high 103 

because message passing is executed many times to properly exchange information among PUs. 104 

In this paper, we develop a new parallelization algorithm for EnSRF (also suitable for 105 

other similar serial ensemble filters) that is especially suitable for dense observations that 106 

typically use relatively small horizontal covariance localization radii. Most NWP models, 107 

including the ARPS and the Weather Research and Forecasting model (WRF), use horizontal 108 

domain decomposition for effective parallelization (Sathye et al. 1997; Michalakes et al. 2004). 109 

A domain-decomposition-based parallel DA strategy is attractive because it can share much of 110 

the parallelization infrastructure with the prediction model. If the DA system and prediction 111 

model use the same number and configuration of subdomains, transfer of model grids between 112 

the two systems will be more straightforward either through disk or within computer memory. 113 

Furthermore, with typical ensemble DA systems, the state arrays are usually moved between the 114 

prediction model and DA system through disk I/O within the DA cycles; such I/O can take more 115 

than half of the total wall clock time within each cycle (Szunyogh et al. 2008), making high-116 

frequency assimilation of observations on large, high-resolution, grids prohibitively expensive. 117 

Our eventual goal is to achieve data exchange through message passing within computer 118 

memory, bypassing disk I/O altogether; adopting a domain decomposition parallelization 119 
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strategy would simplify this process. Finally, the domain decomposition strategy makes grid-120 

based calculations within the DA system, such as spatial interpolation, easier. 121 

The domain-decomposition-based strategy we propose takes advantage of the relatively 122 

small localization radii typically used by very dense observations within ensemble algorithms, 123 

because observations that do not influence state variables at the same grid points can be 124 

processed in parallel. More sparse conventional observations tend to require larger localization 125 

radii (Dong et al. 2011) and are therefore more difficult to process in parallel. In this case, a 126 

strategy similar to that of AC07 is taken, in which observations are processed serially but still 127 

using the same decomposed domains. Parallelization can be achieved at the state variable level in 128 

the case; in other words, different parallelization strategies can be used in combination, taking 129 

advantage of the serial nature of the ensemble algorithms. Note that this approach scales well 130 

only for observations whose localization radius is large enough to impact most of the grid points 131 

in the model domain, unless additional steps are taken to balance the load, as in AC07.  132 

In addition to domain-decomposition-based parallelization, we also want to take 133 

advantage of SMP capabilities of multi-core compute nodes that are available on essentially all 134 

large parallel systems of today. SMP among cores on the same node eliminates explicit data 135 

transport among the cores, thus reducing communication costs and contention for interconnect 136 

ports. By performing domain decomposition for the nodes while parallelizing across the PEs 137 

(e.g., cores) on the same PUs (e.g., nodes), the decomposed domains can be larger relative to the 138 

localization radii, increasing the chance that observations on different decomposed domains can 139 

be processed independently.  140 

For the EnSRF algorithm, SMP is easily achieved at the state variable level, because each 141 

observation will need to update all state variables within its localization radius, and these update 142 
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operations are independent. Thus, the state variable update can be parallelized using OpenMP 143 

directives applied to the loops over the state variables. The combination of MPI and OpenMP 144 

strategies gives hybrid parallelization. This paper describes a hybrid parallel scheme 145 

implemented for the ARPS EnSRF system. In addition, observation data are organized into 146 

batches to improve the load balance when assimilating data from a number of radars. 147 

This paper is organized as follows. Section 2 reviews the EnSRF formulation and briefly 148 

describes the ARPS model used in timing experiments. Section 3 introduces the parallel 149 

algorithms for high-density radar data and conventional observations separately. It also describes 150 

the OpenMP/MPI hybrid strategy as well as the observation organization. Validation of the 151 

parallel implementation and its performance are examined in section 4. A summary and 152 

conclusions are presented in section 5. 153 

2. The ARPS ensemble DA system  154 

The ARPS (Xue et al. 2000; Xue et al. 2001; Xue et al. 2003) model is a general-purpose, 155 

multi-scale prediction system in the public domain. It has a non-hydrostatic, fully compressible 156 

dynamic core formulated in generalized terrain-following coordinates. It employs the domain 157 

decomposition strategy in the horizontal for massively parallel computers (Sathye et al. 1997; 158 

Xue et al. 2007), and has been tested through real-time forecasts at convection-159 

permitting/allowing resolutions for many years (e.g., Xue et al. 1996), including forecasts in 160 

continental US (CONUS-scale) domains at 4 and 1 km grid spacing (e.g., Xue et al. 2011), 161 

assimilating data from all radars in the WSR-88D radar network using a 3DVAR method. 162 

As mentioned earlier, the current ARPS EnKF DA system (Xue et al. 2006) is primarily 163 

based on the EnSRF algorithm of Whitaker and Hamill (2002). In addition, an asynchronous 164 

(Sakov et al. 2010) four-dimensional EnSRF (Wang et al. 2013) has also been implemented. The 165 
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system includes capabilities for parameter estimation (Tong and Xue 2008), dual-polarimetric 166 

radar data assimilation (Jung et al. 2008), simultaneous reflectivity attenuation correction (Xue et 167 

al. 2009), and the ability to handle a variety of data sources (Dong et al. 2011). Additionally, it 168 

has been coupled with a double-moment microphysics scheme (Xue et al. 2010; Jung et al. 2012).  169 

To be able to apply this system to large, convection-resolving domains such as those used by 170 

ARPS 3DVAR for continental scale applications (e.g., Xue et al. 2011) and be able to assimilate 171 

frequent, high-volume observations, efficient parallelization of the system is essential.  172 

Briefly, in EnSRF, the ensemble mean and ensemble deviations are updated separately. 173 

The analysis equations for ensemble mean state vector x  and the ensemble deviations i
x  are, 174 

respectively, 175 

 ( ) ,a b o bH    x x ρ K y x  (1) 176 

 ' ( ) 'a b

i iH  x I ρ Κ x  (2) 177 

where K is the Kalman gain and y
o
 the observation vector. Subscript i denotes the ensemble 178 

member and ranges from 1 to N with N being the ensemble size. H is the forward observation 179 

operator that projects state variables to observed quantities, which can be nonlinear. Symbol  in 180 

the equations represents the Schur (element-wise) product and ρ  is the localization matrix, 181 

containing localization coefficients that are typically functions of the distance between the 182 

observation being processed and the state variable being updated. The analysis background b
x  183 

projected into observation space, i.e., ( )bH x , is called the observation prior. Superscripts a, b, 184 

and o denote analysis, background, and observation, respectively. State vector x  includes in our 185 

case the grid point values of the three wind components (u, v, w), potential temperature (θ), 186 

pressure (p), the mixing ratios of water vapor (qv), cloud water (qc), rain water (qr), cloud ice (qi), 187 
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snow (qs), and hail (qh). When a two-moment microphysics parameterization scheme is used, the 188 

total number concentrations for the 5 water and ice species are also part of the state vector (Xue 189 

et al. 2010). Background state vectors b
x  and b

i
x  

are either forecasts from the previous 190 

assimilation cycle or the states updated by observations processed prior to the current one. The 191 

parameter β is the covariance inflation factor. Variable α is a factor in the square root algorithm 192 

derived by Whitaker and Hamill (2002), 193 

  
1

1
T1 b


 

   
 

R HP H R . (3) 194 

Here, R is observation error covariance matrix, P
b
 the background error covariance matrix, and 195 

H the linearized observation operator. The Kalman gain matrix K is given by 196 

  
1

T Tb b


 K P H HP H R . (4) 197 

In the above, matrices Tb
P H  and Tb

HP H , representing the background error covariance 198 

between the state variables and observation priors, and that between observation priors, 199 

respectively, are estimated from the background ensemble, according to 200 

  
T

T

1

1
( ) ( )

1

N
b b b b b

i i

i

H H
N 

   
 

P H x x x x , (5) 201 

 . (6) 202 

The overbars in Eqs. (5) and (6) denote the ensemble mean. When a single observation is 203 

analyzed,  becomes a vector having the length of the state vector . In practice, due to 204 

covariance localization, all elements in  are not calculated; those for grid points outside the 205 

localization radius of a given observation are assumed to be zero. In fact, it is this assumption 206 

that makes the design of our parallel algorithm practical; observations whose domains of 207 

influence (as constrained by the covariance localization radii) do not overlap can be analyzed 208 

T
T

1

1
( ) ( ) ( ) ( )

1

N
b b b b b

i i

i

H H H H
N 

     
   

HP H x x x x

Tb
P H x

Tb
P H
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simultaneously. Another basic assumption with this algorithm (and most atmospheric DA 209 

algorithms) is that observation errors are uncorrelated, so that observations can be analyzed 210 

sequentially in any order. When the observations are processed serially, one at a time, the 211 

observation error covariance matrix  reduces to a scalar, as does matrix Tb
HP H . In this case, 212 

Tb
HP H  is the background error variance at the observation point. 213 

After an observation is analyzed based on Eqs. (1)-(6), the analyzed ensemble states a

ix  
214 

( 1i N ), the sum of ensemble mean and deviations, become the new background states b

ix  215 

for the next observation, and the analysis is repeated until all observations at a given time are 216 

analyzed. An ensemble of forecasts then proceeds from the analysis ensemble until the time of 217 

new observation(s); at that time the analysis cycle is repeated. 218 

3. The parallel algorithm for EnSRF 219 

For convective-scale weather, Doppler weather radar is one of the most important 220 

observing platforms. The US National Weather Service (NWS) operates a network of over 150 221 

Weather Surveillance Radar-1988 Doppler (WSR-88D) radars that continuously scan the 222 

atmosphere, at a rate of one full volume scan every 5-10 minutes, producing radial velocity and 223 

reflectivity data. One volume scan in precipitation mode typically contains 14 elevations with 224 

approximately several million observations every 5 minutes.  225 

The number of conventional observations, such as surface station measurements, upper 226 

air soundings, and wind profiler winds, is small compared to radar observations; because they 227 

typically represent weather phenomena of larger scales, their assimilation in EnKF typically uses 228 

larger covariance localization radii, and therefore their influence reaches larger distances (Dong 229 

et al. 2011). Because of the different characteristics of each data type, different parallel strategies 230 

are employed for conventional and radar data. 231 

R
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a. The parallel algorithm for high-density observations with small covariance localization radii 232 

The algorithm partitions the entire analysis domain into subdomains defined by the 233 

number of participating MPI processes in the horizontal x and y directions. No decomposition is 234 

performed in the vertical direction, and therefore, state variables are always complete in the 235 

vertical columns. High-density radar observations (and other high-resolution observations 236 

including those of satellite) are distributed to each subdomain according to their physical 237 

locations. Fig. 1 illustrates an analysis domain that is partitioned into 4 physical subdomains 238 

horizontally, to be handled by 4 PUs in the computing system. Each computational domain is 239 

comprised of the physical subdomain (in darker gray for P1, separated with thick solid lines) and 240 

extended boundary „halo‟ zones surrounding the physical subdomain (in light gray for P1, 241 

bounded by thin lines); the physical domain and the boundary halo zones combined together are 242 

called computational subdomains. The width of the extended boundary halo zone for the DA 243 

system is typically larger than the halo zone or „ghost cells‟ needed for boundary condition 244 

exchanges in parallel NWP models based on domain decomposition (e.g., Sathye et al. 1997). 245 

The width of the halo zone in the ARPS model, for example, is only one grid interval on each 246 

boundary.  247 

The extended boundary zone on each side must be at least as wide as the maximum 248 

localization radius (R) of observations handled by the algorithm in the subdomain. For radar 249 

observations, R is usually equal to a few grid intervals. Each physical subdomain is further 250 

divided into 4 patches that are separated by bold dashed lines in Fig. 1, and these patches are 251 

labeled S1, S2, S3 and S4, respectively. The horizontal width of patch S2 and the vertical height 252 

of patch S3 must be at least 2R. The rest of the physical domain is assigned to patches S1 and S4 253 

as in Fig. 1, and their horizontal width and height also must be at least 2R. Thus, the width of the 254 
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physical subdomain must be larger than 4R for the algorithm to work. All other subdomains in 255 

Fig. 1 are divided following the same patch pattern. Such a patch division assures that patches 256 

with the same label in adjacent subdomains are at least 2R apart, so observations in any one 257 

patch do not affect grid points in the same patch on other PUs and thus, they can be analyzed in 258 

parallel. In other words, no two observations that are being analyzed in parallel will influence the 259 

same grid point. In practice, we want to make patch S1 as large as possible, increasing the 260 

chance that any two observations can be processed independently (see below). Thus, the width of 261 

S2 and the height of S3 are assigned the minimum possible size of 2R (see Fig. 1), which leaves 262 

the majority of the subdomain to patch S1. 263 

The EnKF DA over the analysis domain is performed in 4 sequential steps for 264 

observations within S1, S2, S3 and S4. In the first step, only observations within S1 on all PUs 265 

are assimilated in parallel while observations on each S1 patch are assimilated sequentially. Let 266 

P be the number of PUs. Then, there can be at most P observations being assimilated in parallel 267 

at any time. After all observations located within S1 are assimilated, MPI communications are 268 

required to properly update state variables at grid points within the extended boundary zones that 269 

are shared with neighboring PUs. The same procedure is then repeated for observations within 270 

S2, S3 and S4 in steps 2, 3, and 4.  271 

The assimilation of observations within the same-labeled patches from all PUs can be 272 

done in parallel because: 1) the grid points influenced by the observations analyzed in parallel 273 

are separated far enough without overlap, and 2) the ensemble state arrays are extended beyond 274 

the physical subdomain, so that the influence on state grids by observations within each 275 

subdomain can be passed to its neighbor PUs with MPI communications. Best load balancing is 276 

realized if the same-labeled patches contain the same number of observations so that all PUs can 277 



 11 

complete each analysis step in approximately the same time. In practice, however, the number of 278 

observations on each subdomain is usually different due to uneven spatial distribution of 279 

observations (and of observation types). One way to improve parallelism is to make one patch 280 

(S1 in our system) as large as possible, which increases the number of observations that can be 281 

processed independently and improves the load balance. Assimilation of observations on S2, S3 282 

and S4 may not be well balanced. However, because they tend to be smaller and contain fewer 283 

observations, their effect on the assimilation time tends to be small. 284 

Since high-density observations, such as radar data, usually assume relatively small 285 

localization radii, the constraint that the width of the physical subdomain should be at least 4R in 286 

each direction usually does not become a major problem, especially when the DA domain is 287 

large. When a hybrid MPI-OpenMP parallelization strategy is used this problem can be further 288 

alleviated (see later). While the proposed algorithm is valid for most meteorological observations 289 

that can assume a small localization radius, certain „integral observations‟ such as radar 290 

reflectivity with path-integrated attenuation effect (e.g., Xue et al. 2009) and GPS slant-path 291 

water vapor (e.g., Liu and Xue 2006) pose special challenge for the serial EnSRF algorithm in 292 

general since their observation operators are non-local (Campbell et al. 2010). 293 

b. The parallel algorithm for conventional observations with large covariance localization radii 294 

Currently supported conventional observations in the ARPS EnKF system include surface 295 

station, upper air sounding, wind profiler, and aircraft observations. Since the covariance 296 

localization radii applied to these observations are usually large, the width of the extended 297 

boundary zones described in section 3a would be impractical for these data, unless the 298 

decomposed subdomains are much larger than the localization radii. This is usually only true 299 

when a small number of subdomains is used. Therefore, we design and implement an alternative 300 
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algorithm for this type of observations. Because the number of conventional (or any other 301 

coarse-resolution) observations is typically much smaller than the number of (dense) radar 302 

observations, we can afford to process the observations serially while trying to achieve 303 

parallelism at the state variable level, similar to the strategy taken by AC07. 304 

 In our current implementation, conventional observations within the entire analysis 305 

domain are broadcast to all PUs and assimilated one by one. Only the PU containing the 306 

observation to be analyzed computes the observation prior; it then broadcasts the observation 307 

prior ensemble, H(xi), to all other PUs. The state variables within the covariance localization 308 

radius of this observation are updated simultaneously on each PU that carries the state variables 309 

(Fig. 2). Since we do not need extra boundary zones, state variable updating occurs within the 310 

computational subdomains of the original NWP model. However, a set of MPI communications 311 

between PUs is still needed right after the analysis of each observation to update the state 312 

variables within the halo zone to facilitate the spatial interpolation involved in observation 313 

operators. These steps are repeated until all observations are assimilated.  314 

Our current implementation does not pre-calculate H(x) or update H(x) as part of the 315 

extended state vector as AC07 does, and we use a regular domain decomposition strategy to 316 

distribute the state variables across the PUs. This implementation will have load balance issues 317 

for conventional observations, especially when the covariance localization radii of these 318 

observations are small relative to the size of the entire model domain. AC07 mitigates this 319 

problem by distributing the state variables across PUs as heterogeneously as possible, i.e., by 320 

distributing neighboring grid points across as many PUs as possible.  Such an irregular 321 

distribution of state variables makes it difficult to implement grid-point-based treatments within 322 

the EnKF algorithms. The H(x) pre-calculation and update strategy employed by AC07 allows 323 
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simultaneous calculation of observation priors. This can be an option in a future implementation; 324 

in fact, the 4D EnSRF algorithm implemented by Wang et al. (2013) employs this strategy. 325 

c. Hybrid MPI-OpenMP parallelization  326 

All current supercomputers use compute nodes with multiple shared-memory cores. The 327 

original ARPS EnSRF code supports OpenMP parallelization via explicit loop-level directives at 328 

the state-variable-update level (Xue et al. 2006). Thus, it is straightforward to employ a hybrid 329 

technique, using SMP among cores on the same node and DMP via MPI across nodes. Doing so 330 

can reduce explicit data communication within nodes and allow for larger S1 patches within the 331 

decomposed domains on each PU (see Fig. 1). Our hybrid implementation is designed such that 332 

each MPI process spawns multiple threads. Since message passing calls are outside of the 333 

OpenMP parallel sections, they are parallel thread safe, i.e., only the master thread in a process 334 

makes calls to MPI routines. The final program is flexible enough to run in MPI only, OpenMP 335 

only, or in MPI/OpenMP hybrid modes, on a single-node workstation or supercomputers made 336 

up of multiple nodes. 337 

d. Parallel strategy for assimilating data from multiple radars 338 

In the ARPS EnKF system, full-resolution radar observations in the radar coordinates are 339 

usually mapped horizontally to the model grid columns during preprocessing (Brewster et al. 340 

2005). The original ARPS EnSRF implementation processes data from one radar at a time, 341 

sequentially. This is convenient because the data are stored in arrays for individual radars on 342 

elevation levels (Xue et al. 2006). For data from the same radar, only a few parameters are 343 

needed to describe the radar characteristics. However, because each radar typically covers only a 344 

portion of the model domain, this procedure severely limits the scalability of the analysis system 345 
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due to load imbalances (see Fig. 3). Figure 3a illustrates a domain that contains six radars labeled 346 

A through F. If this domain is decomposed into four subdomains, all PUs, except P1, will be idle 347 

when data from radar A are assimilated. The same is true for radars B through F. To mitigate this 348 

problem, we develop a procedure that merges radar data into composite sets or batches so that 349 

data from multiple radars can be processed at the same time. 350 

In the analysis program, all vertical levels of radar observations at each horizontal grid 351 

location are stored continuously as a vector column. The most general approach is to store all 352 

columns of radar data in a single dynamically allocated storage array or data structure while 353 

keeping track of the radar characteristics associated with each column. Each column may contain 354 

different numbers of available radar elevations. When overlapping coverage exists, the grid 355 

columns covered by multiple radars will have multiple columns of data (see Fig. 3a). To keep 356 

track of data in reference to the analysis grid, it is convenient to define arrays that have the same 357 

dimensions as the model grid in the horizontal directions, but such arrays will only be able to 358 

store no more than one column of data at each grid location unless the last dimension is defined 359 

dynamically or pre-defined to be large enough. While for optimally tuned EnKF, the order in 360 

which observations are assimilated should not matter, in practice, because the ensemble spread 361 

can be reduced too much by observations processed earlier before covariance inflation is applied, 362 

the order of observation processing sometimes do matter somewhat. For this reason, we group 363 

the radar data into several batches, the number of which is no bigger than the maximum number 364 

of radars covering the same spot anywhere in the analysis domain. For a radar network that is 365 

designed to maximize spatial coverage, such as the WSR-88D radar network, this maximum is 366 

usually a single digit number; i.e., anywhere in the network, less than 10 radars observe the same 367 

column. 368 
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Fig. 3 shows the spatial coverage of three batches of data that add up to all columns of 369 

data available; those three batches of observations will be processed in sequence. Within regions 370 

having multiple radar coverage, the radar from which data will be first picked can be chosen 371 

randomly or based on the order the data were input to the program. Alternatively, the data 372 

columns from the closest radar can be picked first. The last option is more desirable, as it 373 

removes the randomness of the algorithm. Finally, because the radar data are no longer organized 374 

according to radar, additional two-dimensional arrays are needed to store parameters for each 375 

data column. When only a few elevations within a radar volume scan are analyzed using short 376 

(e.g., 1 to 2 minutes) assimilation cycles, the vertical dimension of the arrays storing the 377 

composite data sets need only to be a few. 378 

With the above implementation, the load balance is significantly improved for the first 379 

composite data set. It should be noted that we usually assimilate reflectivity data even in 380 

precipitation-free regions, which has the benefit of suppressing spurious storms (Tong and Xue 381 

2005). We note that load imbalance does still exist with radial velocity data in the first group 382 

since they are usually only available in precipitation regions; however, their numbers are usually 383 

much smaller than the total number of reflectivity data. In addition, load imbalances usually exist 384 

with the second group of data and above but again the volume of data in these groups is small 385 

since they only exist in overlapping regions, and these regions are usually spread over the 386 

assimilation domain. 387 

4. Algorithm verification and performance analysis 388 

a. Verification of the parallelized code 389 

The domain partition and batch processing inevitably change the sequence of 390 

observations being assimilated in the EnKF system. Theoretically, the order in which the 391 
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observations are processed does not matter for observations with uncorrelated errors, to the 392 

extent that sampling error does not impact the results. In practice, the analysis results may differ 393 

significantly if the filter is not properly tuned, where the tuning typically includes covariance 394 

inflation and localization.   395 

A set of experiments has been performed to investigate the effect of domain 396 

decomposition on the analysis of simulated radar observations in an observing system simulation 397 

experiment (OSSE) framework. Convective storms are triggered by five 4-K ellipsoidal thermal 398 

bubbles with a 60-km horizontal radius and 4-km vertical radius in an environment defined by 20 399 

May 1977 Del City, Oklahoma, supercell sounding (Ray et al. 1981). The model domain is 400 

300×200×16 km
3
 with horizontal and vertical grid spacings of 1 km and 500 m, respectively. 401 

Forty ensemble members are initiated at 3000 seconds of model time. The full state vector has 402 

1.4 × 10
9
 elements. Simulated radar observations from three radars are produced, using the 403 

standard WSR-88D VCP (Volume Coverage Pattern) 11, which contains 14 elevation levels.  404 

The total number of observations is approximately 6.7 × 10
5
 from three volume scans spanning 5 405 

minutes each. Radar DA is first performed at 5-minute intervals from 3300 to 5700 seconds, 406 

using the original serial ARPS EnSRF code to provide an ensemble for subsequent parallel 407 

assimilation tests. The Milbrandt and Yau (2005) double-moment microphysics scheme is used 408 

in both truth simulation and in DA. The environment and model configurations that are not 409 

described here can be found in Xue et al. (2010).  410 

Three parallel DA experiments are then performed at 6000 seconds, one running in pure 411 

MPI mode, one in pure OpenMP mode, and one in pure OpenMP mode but processing 412 

observations serially in a reversed order. These experiments are referred as MPI, OMP_F, and 413 

OMP_B (F for forward and B for backward), respectively. For each experiment, average RMS 414 
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errors for the state variables are computed against the truth simulation at the grid points where 415 

truth reflectivity is greater than 10 dBZ. The RMS errors of MPI and OMP_B are normalized by 416 

the RMS errors of OMP_F and shown in Fig. 4 for individual state variables. Most of the 417 

normalized errors are very close to 1, and all of them are between 0.95 and 1.05 for MPI. Among 418 

the variables, the total number concentration for rain water shows the largest variability, 419 

probably due to the high sensitivity of reflectivity to the rain drop size distribution. In fact, the 420 

normalized error for rain water number concentration is an outlier for OMP_B, reaching close to 421 

1.25, much larger than the normalized error of about 1.05 for MPI. These results suggest that the 422 

effect of the domain partition on the analysis is small, and the differences are within the range of 423 

sampling uncertainties of the ensemble system.  424 

With respect to the parallel code implementation for conventional data analysis, domain 425 

decomposition does not change the sequence of the observation processing (see section 3b). 426 

Therefore, identical results from experiments OMP_F and MPI are guaranteed. The results from 427 

the experiments when simulated surface observations are also included are not shown here.   428 

b. Performance evaluation with OSSE experiments 429 

The performance of our parallel EnKF system is evaluated with radar DA benchmark 430 

experiments on a Cray XT5 system (called Kraken) at National Institute of Computational 431 

Science (NICS) at the University of Tennessee, which has 9408 total compute nodes with 12 432 

cores each (6 cores per processor, 2 processors per node), giving a peak performance of 1.17 433 

petaFLOPS. With Kraken, users can set the number of MPI processes per node (1-12), the 434 

number of MPI processes per processor (1-6), and the number of cores (OpenMP threads) per 435 

MPI process (1-12). A number of experiments with combinations of different numbers of MPI 436 

processes, OpenMP threads, cores per node, and cores per processor have been performed to 437 
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examine the timing performance of various configurations. The same case described in section 438 

4a is used for benchmarking.  439 

First, the scalability of the OpenMP implementation is investigated as a reference. Since 440 

each Kraken node contains only 12 cores, the maximum number of threads that can be used for 441 

an OpenMP job is 12. The OpenMP implementation shows scalability up to 8 cores (see Table 1), 442 

beyond which the reduction in wall clock time becomes minimal. One very likely reason is the 443 

contention accessing shared memory and cache by different cores of the Opteron processors used. 444 

To evaluate the performance of our MPI implementation, we ran several OpenMP and 445 

MPI experiments on a single compute node. Table 1 lists the wall clock times and relative 446 

speedups for these experiments. The experiment names follow the convention o[ total cores used447 

]  for OpenMP and m[ nproc_x ] ×[ nproc_y ]  for MPI experiments, where nproc_x and nproc_y 448 

denote the number of PUs corresponding to the decomposed domains in the x and y directions, 449 

respectively. Generally, the OpenMP jobs perform better than their MPI counterparts using the 450 

same number of cores when running on a single node due to the communication overhead of 451 

MPI processes and possibly better load balance with OpenMP. It is also noticed that the wall-452 

clock time is heavily influenced by the domain partitioning configuration in the x and y 453 

directions. For example, m02×01 takes almost 1.4 times longer than m01×02, although both use 454 

the same number of cores. Since FORTRAN arrays are stored contiguously in the column-major 455 

order in the computer memory, a run that has a smaller partition number in the x direction than 456 

the y direction (e.g., m01×02) is better at taking advantage of the spatial locality of the data in 457 

memory. This can accelerate data loading from main memory into cache and improve cache 458 

reuse. Conversely, an inefficient partition can degrade the performance even when more system 459 

resources are used. For example, m03×02 using 6 cores has a much smaller speed improvement 460 
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over m01×01 than experiments using 4 cores or even some experiments using 2 cores. These 461 

results suggest that finding the optimal domain decomposition is important in achieving the best 462 

performance with the given system resources. 463 

Table 2 shows performance data collected from pure MPI runs, and from hybrid 464 

MPI/OpenMP experiments that run on 4 Kraken nodes. All experiments are named as following: 465 

m(h)[ nproc_x ] ×[ nproc_y ] _[ number of processes per node ] o[ number of threads per process ] , 466 

where “m” denotes MPI runs and “h” denotes hybrid runs. For MPI runs, the number of threads 467 

per process is always 1. Thus, “o[ number of threads per process ] ” is omitted from the notations 468 

for all MPI runs in Table 2.  Since each Kraken node contains two processors, the processes on 469 

each node are distributed to those processors as evenly as possible in order to obtain the best 470 

possible performance.  471 

It is found that the domain partitioning again plays an important role for the DA system 472 

performance. For example, experiments that use 20 cores in total on 4 compute nodes show large 473 

variability in the execution time. Among these experiments, m02×10_05 has the best 474 

performance, suggesting that m02×10_05 utilizes the system cache most efficiently and/or has 475 

the least message-passing overhead given 20 cores. Generally, the MPI experiments using more 476 

nodes perform better than those experiments with the same domain partitioning but using fewer 477 

nodes. For example, m01×04 in Table 1 that uses one compute node takes 2660 seconds to finish 478 

while m01×04_01 in Table 2 running on 4 compute nodes takes only 2343 seconds. This is 479 

consistent with the observation that performance is improved as available cache size increases. 480 

Adding more processes improves the performance on 4 compute nodes. As an example, 481 

m06×08_12 takes less time than those experiments using 40 cores or less.  This is because more 482 

observations can be processed in parallel in the m06×08_12 experiment than the others, even 483 
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though MPI communication costs are higher than in the other experiments. However, as 484 

observed before with OpenMP experiments, access contention for the memory bandwidth and 485 

the cache sharing as more cores are used may impede the performance at some point. It suggests 486 

that there is a tradeoff between the number of processes and available computing resources and, 487 

therefore, finding optimal configurations for MPI runs may not be straightforward because it 488 

depends on a number of hardware factors. 489 

For the hybrid runs, the wall-clock times of m01×04_01 (i.e. h01×04_01o1), 490 

h01×04_01o2, h01×04_01o4, h01×04_01o6, h01×04_01o8 and h01×04_01o12 decrease 491 

monotonically, in that order. The decreasing trend of wall-clock time with increasing number of 492 

threads is consistently found in other similar sets of experiments. It is also found that the hybrid 493 

runs are as sensitive as the MPI runs to the domain partitioning, available cache, and other 494 

hardware configuration factors. A hybrid experiment can outperform or underperform the 495 

corresponding MPI experiments using the same resources (number of cores and number of nodes) 496 

depending on the configuration (Table 2 and 3). For example, the minimum wall-clock time with 497 

8 cores from 4 nodes in hybrid mode is 1471 seconds, which is smaller than the minimum time 498 

required by a MPI run with 8 processes on 4 nodes (2169 seconds) in Table 3. On the other hand, 499 

h01×04_01o12 takes 733 seconds, more than the 606 seconds of m06×08_12, which uses the 500 

same resources. It is also observed that a larger improvement is achieved by the hybrid jobs with 501 

a fewer number of threads. This is because observations are processed one by one with OpenMP 502 

processes. By using more MPI processes rather than more OpenMP threads, we can assimilate 503 

more observations simultaneously and, hence, improve the parallel efficiency (see section 4c for 504 

more details). In addition, cache availability and memory access contention with a large number 505 

of threads in the hybrid experiments also affect program performance.  506 
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c. Performance evaluation with a real data application 507 

The parallel ARPS EnKF system is applied to the 10 May 2010 Oklahoma-Kansas 508 

tornado outbreak case. Over 60 tornadoes, with up to EF4 intensity, affected large parts of 509 

Oklahoma and adjacent parts of southern Kansas, southwestern Missouri, and western Arkansas 510 

on that day. This real data case is run on an SGI UV 1000 cc-NUMA shared-memory system at 511 

the Pittsburgh Supercomputing Center (PSC). The system, called Blacklight, is comprised of 256 512 

nodes containing 2 eight-core Intel Xeon processors each; its theoretical peak performance is 37 513 

teraFLOPS. The cc-NUMA architecture allows for SMP across nodes.  Up to 16 terabytes (TB) 514 

of memory can be requested for a single shared memory job, while hybrid jobs can access the 515 

full 32 TB of system memory. 516 

The EnSRF analyses are performed on a grid with 4 km horizontal grid spacing, using 40 517 

ensemble members. The domain consists of 443×483×53 grid points, and the model state 518 

includes three velocity components, potential temperature, pressure, and mixing ratios of water 519 

vapor, and 5 water and ice species. A single-moment microphysics scheme is used. The state 520 

vector has 4.9 × 10
9
 elements. Observations of radar reflectivity and radial velocity from 35 521 

radars are analyzed from 1705 UTC to 1800 UTC at 5-minute intervals. Fig. 5 presents a 522 

comparison between the radar observation mosaic at 1800 UTC on 10 May 2010 and the 523 

corresponding analysis results by the parallel ARPS EnSRF system. Overall, the analyzed 524 

reflectivity exhibits a good fit to the observations in shape, structure, and intensity. The 525 

exceptions are several echoes in Texas, southeast Montana, and northwest Colorado, which are 526 

due to the incomplete radar coverage over those areas. Several timing benchmark analyses at 527 

1710 UTC are performed. There are about 1.3 × 10
6
 observations from the 35 radars at this time 528 

(see Fig. 6), more than any of the other times in the analysis window.   529 
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Our parallel benchmark experiments are run in pure OpenMP, pure MPI and hybrid 530 

MPI/OpenMP modes. In all cases, all cores on the compute nodes were fully utilized, either by 531 

individual MPI processes or by OMP threats. The experiment names and their configurations are 532 

listed in Table 4. Guided by the timing results on Kraken, experiments are designed to use the 533 

most optimal configurations, i.e., with a larger number of PUs in the y direction than in the x 534 

direction. Each experiment in Table 4 was repeated 7 times. Because the timing results on 535 

Blacklight show up to 185% variability due to system load variations, the best timing results for 536 

each case are selected and presented here. Fig. 7 shows the best timing results of each case as a 537 

function of the number of cores used. Very large variations in run time were found to be 538 

attributable to disk I/O on a large shared file system; I/O times are therefore excluded in Fig. 7 to 539 

allow us to focus on the time spent on the analyses. The times with and without including 540 

message passing are shown.  541 

Both MPI and hybrid runs show good scalability according to Fig. 7, and they outperform 542 

pure OpenMP runs by a large margin except for the case of 16 cores. Because each physical node 543 

of Blacklight has only 16 cores, when more than 16 cores are used by OpenMP, the memory 544 

access will be across different physical nodes; this clearly leads to reduced parallelization 545 

efficiency with the OpenMP runs. Also, with pure OpenMP, the parallelization is limited to the 546 

state variable level, meaning all observations have to be processed serially (i.e., not 547 

parallelization at the observation level).  548 

Fig. 7 also shows that, when using the same amount of total resources, the hybrid runs 549 

generally outperform pure MPI runs when both analysis and message passing times are included. 550 

For the same number of cores used, pure MPI runs implies more PUs, i.e., more message passing 551 

requests. Even though the pure MPI mode may be able to parallelize more at the observation 552 
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level, the message passing overhead can reduce the benefit. Not surprisingly, the hybrid 553 

OpenMP/MPI runs are better in terms of total computational time. Among the hybrid groups, 554 

jobs with fewer threads hence more MPI processes seem to give better performances, in terms of 555 

the analysis time. This suggests that assimilating observations in parallel via MPI processes gives 556 

a greater benefit before the increased message passing overhead becomes overwhelming.   557 

We have noticed that I/O can easily take 60% to 80% of the total wall-clock time with 558 

experiments in which all data I/O were handled by a single MPI process or the master OpenMP 559 

thread. This I/O time can be reduced by distributing I/O loads among the MPI processes (but not 560 

among OpenMP threads). Therefore, our solution is to let each MPI process read and write data 561 

within its own subdomain, in the form of “split files”. This improves I/O parallelization and also 562 

reduces time needed for communicating gridded information across PUs. With split files, only 563 

data within the extended boundary zones need to be exchanged with neighboring PUs. Due to the 564 

large variations in the I/O times collected on Blacklight, we ran another set of experiments on a 565 

supercomputer with more consistent I/O performance between runs. It consists of 2.0 GHz quad-566 

core Pentium4 Xeon E5405 processors, with 2 processors on each node. Tests with split files on 567 

this system, corresponding to h04×08_01o8 (see above naming conventions), reveal that the 568 

times spent on I/O and message passing are reduced (the latter because of the reduced exchanges 569 

of gridded information across MPI processes); the total wall-clock time for I/O and message 570 

passing for one experiment was reduced from 1231 seconds to 188 seconds using split files. 571 

5. Summary and conclusions 572 

A parallel algorithm based on the domain decomposition strategy has been developed and 573 

implemented within the ARPS EnKF framework. The algorithm takes advantage of the relatively 574 

small spatial covariance localization radii typically used by high-resolution observations such as 575 
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those of radar. Assuming that the maximum horizontal covariance localization radius of the 576 

observations to be analyzed in parallel is R, the horizontal area of a decomposed physical 577 

subdomain should be at least 4R × 4R. An additional boundary zone of width R is added to each 578 

side of the physical subdomains to create enlarged computational subdomains, which facilitate 579 

information exchanges between neighboring subdomains. Each subdomain is assigned to one 580 

processing unit (PU), within which no MPI message passing is required. The subdomains are 581 

then further divided up into 4 sub-patches, denoted S1 through S4. The width and height of each 582 

patch are required to be at least 2R to ensure any two observations that may be processed in 583 

parallel are well separated. In practice, the size of S1 is made as large as possible within its 584 

subdomain to increase the probability that observations from different subdomains can be 585 

processed in parallel.  586 

Observations within the 4 patches are processed sequentially, but data in the patches with 587 

the same label in different subdomains are processed simultaneously. Distributed-memory 588 

parallelization is therefore achieved at the observation level. The patch division ensures that most 589 

of the analysis work is done in parallel when processing observations within patches S1 of all 590 

PUs. To handle the load imbalance issue when assimilating observations from many radars, the 591 

observation arrays are organized into batches. The maximum number of batches is limited by the 592 

maximum number of radars covering the same location anywhere in the analysis domain. Such 593 

an observation organization improves the uniformity of observation distribution within the first 594 

observation batch and thereby improves load balance.  595 

Conventional data that use larger covariance localization radii are still processed serially. 596 

State variables influenced by a particular observation are updated synchronously on the PUs 597 

carrying those state variables.   598 
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The algorithm supports three parallel modes: pure OpenMP, pure MPI, and 599 

MPI/OpenMP hybrid. Within the PUs with multiple cores, shared-memory parallelization can be 600 

achieved via OpenMP at the state variable update level. OpenMP parallelization reduces 601 

message passing overhead and allows for larger decomposed domains, making the 4R 602 

requirement easier to satisfy.  603 

It was first confirmed via OSSEs that changing the sequence of observation processing 604 

due to domain decomposition has little impact on the analysis. Parallel DA benchmark 605 

experiments are performed on a Cray XT5 machine. The OpenMP implementation shows 606 

scalability up to 8 threads, beyond which memory and cache access contention limit further 607 

improvement. MPI and OpenMP runs on a single compute node show that OpenMP 608 

parallelization runs faster because of the lower communication overhead. MPI jobs with a 609 

smaller number of partitions in the x direction than in the y direction exhibit better performance. 610 

The same also applies to most of the hybrid jobs, although all hybrid jobs do not outperform the 611 

corresponding MPI jobs.  612 

A real data case involving 35 radars is tested on an SGI UV 1000 cc-NUMA system 613 

capable of shared-memory programming across physical nodes. Poor scalability with pure 614 

OpenMP is observed when more than one node is used, but both MPI and hybrid runs show good 615 

scalability on this system. Excluding message passing time, pure MPI runs exhibit best 616 

performance. When message-passing time is included, the hybrid runs generally outperform pure 617 

MPI runs. For this real data case, the EnKF analysis excluding I/O can be completed within 4.5 618 

minutes using 160 cores of the SGI UV 1000.  619 

Given a fixed amount of resources, the hybrid jobs improve more over pure MPI jobs 620 

with fewer numbers of threads. Because MPI processes realize parallelization at the observation 621 
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level, they are more efficient than OpenMP threads. However, there is a tradeoff between a 622 

performance improvement due to the parallel processing of observations and degradation due to 623 

increased message passing overhead. On the other hand, a pure OpenMP strategy for EnKF 624 

shows good scalability on symmetric shared-memory systems but is limited by the number of 625 

cores available on the individual node and by the physical memory available on the node. With 626 

pure OpenMP, data I/O can only be handled by a single process, reducing the overall scalability. 627 

The MPI/OpenMP hybrid strategy combines the strengths of both methods. However, 628 

care must be taken when partitioning the domain, because the configuration of MPI domain 629 

partitioning has a significant impact on the system performance. Given the same resources, jobs 630 

with smaller numbers of partitions in the x direction tend to run faster because FORTRAN arrays 631 

are stored in the column-major order in memory. Timing experiments have also shown that 632 

determining the optimal decomposition configuration on a specific computing system is not 633 

straightforward because the performance depends on factors such as the subdomain size in the x 634 

and y directions, the number of cores on each node, the cache sizes and memory bandwidth 635 

available to each core, and the networking topology across the nodes.  636 

In all configurations, data I/O constituted a large portion of the execution time. 637 

Experiments on a small dedicated Linux cluster show that the time spent on I/O and message 638 

passing are reduced significantly by distributing I/O loads among the MPI processes with 639 

MPI/OpenMP hybrid or pure MPI runs.  640 

Although a data batching strategy is developed to reduce the load imbalance issue, further 641 

improvement could be obtained through dynamic load balancing. Another problem is the low 642 

resource utilization during inter-node communications because all threads are idle except one: 643 

the master thread. The development of runtime management algorithms, for example the 644 
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Scalable Adaptive Computational Toolkit (SACT) (Li and Parashar 2007; Parashar et al. 2008), 645 

are expected to decrease runtime of the application automatically with reduced efforts from 646 

developers. Finally we point out that our parallel algorithm can be easily applied to other serial 647 

ensemble-based algorithm such as EAKF and the classic EnKF. 648 
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List of Figures 801 

Fig. 1. A schematic of the domain decomposition strategy for the analysis of high-density 802 

observations, illustrated with 4 processing units (PUs, denoted by P1 through P4). Letters i-l 803 

denote observations that are assumed to be equally spaced and letters a-h indicate the 804 

influence limits (as determined by the covariance localization radii of EnKF) of those 805 

observations. In this example, observations i and l are far enough apart that they will not 806 

influence any of the same state variables; they are among the observations that are analyzed 807 

simultaneously in the first step of the procedure. Observations j and k are analyzed in the 808 

second step, but they must be analyzed sequentially. Note that in practice, there will be 809 

many more observations within patches S1 and S2 of subdomains P1 to P4 than shown in 810 

the figure. 811 

Fig. 2. A schematic for analyzing conventional data. Three steps are involved when analyzing 812 

one observation whose location is denoted by a black dot in the figure: 1) PU14 computes 813 

H(xi) (where i is the ensemble index); 2) H(xi) are broadcasted to all PUs; 3) state variables 814 

xi within the influence range of this observation (within the large circle) are updated in 815 

parallel by the PUs that carry the state variables. 816 

Fig. 3. Composite radar data batches organized such that within each batch, no more than one 817 

column of data exists for each grid column. (a) Observations from six radars (A-F) with 818 

their coverage indicated by the maximum range circles are remapped onto the model grid. 819 

(b) Observations of the first batch, (c) observations of the second batch, and (d) 820 

observations of the third batch. If there are more observations unaccounted for, additional 821 

data batch(es) will be formed. 822 
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Fig. 4. RMS errors averaged over the grid points where truth reflectivity is greater than 10 dBZ 823 

and normalized by the errors of experiment OMP_F. The state variables are the 16 ARPS 824 

prognostic variables: three velocity components (u, v, and w), potential temperature (pt), 825 

pressure (p), mixing ratios of water vapor (qv), cloud water (qc), rain water (qr), cloud ice 826 

(qi), snow aggregate (qs), hail (qh) and their respective number concentrations (Ntc, Ntr, Nti, 827 

Nts, and Nth, associated with a two-moment microphysics scheme used). 828 

Fig. 5. (a) The observed radar reflectivity mosaic and (b) the reflectivity field analyzed by the 829 

parallel EnKF algorithm, at model grid level 20 at 1800 UTC 10 May 2010. 830 

Fig. 6. The model domain and coverage of 35 WSR-88D radars with 230 km range rings for the 831 

10 May 2010 real data test case. 832 

Fig. 7. Wall clock times of the EnKF analyses as a function of the total number of compute cores 833 

used, for the 10 May 2010 real data case in the analysis domain shown in Fig. 6, obtained 834 

on the PSC Blacklight (an SGI UV 1000). OMP denotes pure OpenMP runs, MPI denotes 835 

pure MPI runs, and H_o4, H_o8, and H_o16 denote hybrid runs with 4, 8, and 16 OpenMP 836 

threads within each MPI process, respectively. In all cases, all cores on the compute nodes 837 

were fully utilized, either by individual MPI processes or by OMP threats. Solid lines 838 

denote the total time excluding message passing, and the dashed lines show the total times 839 

including message passing. Data I/O times are excluded from all statistics. 840 

  841 
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 842 

Table 1. Timing comparisons of OpenMP experiments with MPI experiments on 843 

one compute node. Speedup for OpenMP and MPI experiments are computed 844 

relative to o1 and m01×01, respectively. 845 

 846 

Experiment  
Total number  

of cores used 
Wall Clock Time (s) Speedup 

o1 1 6310 1.00 

o2 2 3617 1.75 

o4 4 2597 2.43 

o6 6 1919 3.29 

o8 8 1597 3.95 

o12 12 1607 3.93 

m01×01 1 6815 1.00 

m01×02 2 3994 1.71 

m02×01 2 5698 1.20 

m01×04 4 2660 2.56 

m02×02 4 3690 1.85 

m04×01 4 2896 2.35 

m03×02 6 4177 1.63 

m02×04 8 2100 3.25 

m04×02 8 2413 2.82 

 847 

 848 

849 
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Table 2. Timing comparisons of pure MPI experiments with hybrid MPI/OpenMP experiments 850 

on 4 compute nodes. Speedup is computed relative to experiment m01×01 (6815 seconds in 851 

Table 1). 852 

 853 

Experiment 
Total number of 

cores used 
Wall Clock Time (s) Speedup 

m01×04_01 

4 

2343 2.91 

m02×02_01 3577 1.91 

m04×01_01 2750 2.48 

m02×04_02 
8 

2169 3.14 

m04×02_02 2330 2.92 

m03×04_03 
12 

1575 4.33 

m06×02_03 1699 4.01 

m04×04_04 16 1327 5.14 

m02×10_05 

20 

915 7.45 

m10×02_05 1357 5.02 

m04×05_05 1082 6.30 

m05×04_05 1085 6.28 

m03×08_06 
24 

880 7.74 

m06×04_06 1049 6.50 

m04×10_10 
40 

637 10.70 

m10×04_10 720 9.47 

m06×08_12 48 606 11.25 

h01×04_01o2 8 1471 4.63 

h01×04_01o4 16 1129 6.04 

h01×04_01o6 24 831 8.20 

h01×04_01o8 32 772 8.83 

h01×04_01o12 48 733 9.30 

h02×04_02o2 16 1200 5.68 

h02×04_02o4 32 908 7.51 

h02×04_02o6 48 709 9.61 

 854 

  855 



 39 

Table 3. Comparison of the minimum time taken in hybrid mode with that in MPI mode using 856 

the same number of cores on 4 compute nodes 857 

 858 

Number of 

cores 
Hybrid case 

Minimum 

time (s) 
MPI case 

Minimum 

time (s) 

Difference 

(s) 

8 h01×04_01o2 1471 m02×04_02 2169 698 

16 h01×04_01o4 1129 m04×04_04 1327 198 

24 h01×04_01o6 831 m03×08_06 880 49 

40 h02×10_05o2 635 m04×10_10 637 2 

48 h03×08_06o2 604 m06×08_12 606 2 

 859 

860 
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Table 4. The names and configurations of real data experiments. 861 

 862 

Experiment 

Number of 

PUs in x 

direction 

Number of 

PUs in y 

direction 

Number of 

threads per PU 

Total number 

of Cores used 

OpenMP 

o16  16 16 

o32 32 32 

o64 64 64 

o80 80 80 

o160 160 160 

MPI 

m16 1 16  16 

m32 2 16 32 

m64 3 16 64 

m80 5 16 80 

m160 10 16 160 

Hybrid 

Group 1 

h4o4 1 4 

4 

16 

h8o4 1 8 32 

h16o4 2 8 64 

h20o4 2 10 80 

h40o4 4 10 160 

Hybrid 

Group 2 

h2o8 1 2 

8 

16 

h4o8 1 4 32 

h8o8 1 8 64 

h10o8 2 5 80 

h20o8 4 5 160 

Hybrid 

Group 3 

h2o16 1 2 

16 

32 

h4o16 1 4 64 

h5o16 1 5 80 

h10o16 2 5 160 

 863 

 864 
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 865 

Fig. 1. A schematic of the domain decomposition strategy for the analysis of high-866 

density observations, illustrated with 4 processing units (PUs, denoted by P1 867 

through P4). Letters i-l denote observations that are assumed to be equally spaced 868 

and letters a-h indicate the influence limits (as determined by the covariance 869 

localization radii of EnKF) of those observations. In this example, observations i 870 

and l are far enough apart that they will not influence any of the same state 871 

variables; they are among the observations that are analyzed simultaneously in the 872 

first step of the procedure. Observations j and k are analyzed in the second step, 873 

but they must be analyzed sequentially. Note that in practice, there will be many 874 

more observations within patches S1 and S2 of subdomains P1 to P4 than shown 875 

in the figure.  876 
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 877 

Fig. 2. A schematic for analyzing conventional data. Three steps are involved 878 

when analyzing one observation whose location is denoted by a black dot in the 879 

figure: 1) PU14 computes H(xi) (where i is the ensemble index); 2) H(xi) are 880 

broadcasted to all PUs; 3) state variables xi within the influence range of this 881 

observation (within the large circle) are updated in parallel by the PUs that carry 882 

the state variables. 883 

 

 

H(x
i
) 

PU0 PU1 PU2 PU3 PU4 PU5 

PU6 PU7 PU8 PU9 PU10 PU11 

PU12 PU13 PU14 PU15 PU16 PU17 

PU18 PU19 PU20 PU21 PU22 PU23 

PU24 PU25 PU26 PU27 PU28 PU29 

PU30 PU31 PU32 PU33 PU34 PU35 



 43 

 884 

Fig. 3. Composite radar data batches organized such that within each batch, no 885 

more than one column of data exists for each grid column. (a) Observations from 886 

six radars (A-F) with their coverage indicated by the maximum range circles are 887 

remapped onto the model grid. (b) Observations of the first batch, (c) observations 888 

of the second batch, and (d) observations of the third batch. If there are more 889 

observations unaccounted for, additional data batch(es) will be formed. 890 

 891 

 892 
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 893 

Fig. 4. RMS errors averaged over the grid points where truth reflectivity is greater 894 

than 10 dBZ and normalized by the errors of experiment OMP_F. The state 895 

variables are the 16 ARPS prognostic variables: three velocity components (u, v, 896 

and w), potential temperature (pt), pressure (p), mixing ratios of water vapor (qv), 897 

cloud water (qc), rain water (qr), cloud ice (qi), snow aggregate (qs), hail (qh) and 898 

their respective number concentrations (Ntc, Ntr, Nti, Nts, and Nth, associated with a 899 

two-moment microphysics scheme used). 900 
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 902 

 903 

Fig. 5. (a) The observed radar reflectivity mosaic and (b) the reflectivity field 904 

analyzed by the parallel EnKF algorithm, at model grid level 20 at 1800 UTC 10 905 

May 2010. 906 

 907 

 908 
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 909 

Fig. 6. The model domain and coverage of 35 WSR-88D radars with 230 km 910 

range rings for the 10 May 2010 real data test case. 911 

 912 
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 913 

Fig. 7. Wall clock times of the EnKF analyses as a function of the total number of 914 

compute cores used, for the 10 May 2010 real data case in the analysis domain 915 

shown in Fig. 6, obtained on the PSC Blacklight (an SGI UV 1000). OMP denotes 916 

pure OpenMP runs, MPI denotes pure MPI runs, and H_o4, H_o8, and H_o16 917 

denote hybrid runs with 4, 8, and 16 OpenMP threads within each MPI process, 918 

respectively. In all cases, all cores on the compute nodes were fully utilized, either 919 

by individual MPI processes or by OMP threats. Solid lines denote the total time 920 

excluding message passing, and the dashed lines show the total times including 921 

message passing. Data I/O times are excluded from all statistics. 922 
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