
 1

 2

 3

A Hybrid MPI/OpenMP Parallel Algorithm and Performance Analysis for an Ensemble 4

Square Root Filter Designed for Multi-scale Observations 5

 6

Yunheng Wang
1
, Youngsun Jung

1
, Timothy A. Supinie

1,2
 and Ming Xue

1,2
7

8

 9

Center for Analysis and Prediction of Storms
1
 and School of Meteorology

2
 10

University of Oklahoma, Norman Oklahoma 73072 11

 12

 13

August 2012 14

 15

Submitted to J. Atmospheric and Oceanic Technology 16

 17

Revised January 16, 2013 18

 19

 20

 21

 22

 23

Corresponding author address: 24

Ming Xue 25

Center for Analysis and Prediction of Storms 26

University of Oklahoma, 27

120 David L. Boren Blvd, Norman OK 73072 28

mxue@ou.edu 29

 30

 i

Abstract 31

A hybrid parallel scheme for the ensemble square root filter (EnSRF) suitable for parallel 32

assimilation of multi-scale observations including those from dense observational networks such 33

as those of radar is developed based on the domain decomposition strategy. The scheme handles 34

inter-node communication through message passing interface (MPI), and the communication 35

within shared-memory nodes via Open Multi-Processing (OpenMP) threads; it also supports pure 36

MPI and pure OpenMP modes. The parallel framework can accommodate high-volume remote-37

sensed radar (or satellite) observations as well as conventional observations that usually have 38

larger covariance localization radii. 39

The performance of the parallel algorithm has been tested with simulated and real radar 40

data. The parallel program shows good scalability in pure MPI and hybrid MPI/OpenMP modes, 41

while pure OpenMP runs exhibit limited scalability on a symmetric shared-memory system. It is 42

found that in MPI mode, better parallel performance is achieved with domain decomposition 43

configurations in which the leading dimension of the state variable arrays is larger, because this 44

configuration allows for more efficient memory access. Given a fixed amount of computing 45

resources, the hybrid parallel mode is preferred to pure MPI mode on supercomputers with nodes 46

containing shared-memory cores. The overall performance is also affected by factors such as the 47

cache size, memory bandwidth, and the networking topology. Tests with a real data case with a 48

large number of radars confirm that the parallel data assimilation can be done on a multi-core 49

supercomputer with a significant speedup compared to the serial data assimilation algorithm. 50

 1

1. Introduction 51

With significant advances in computing power in recent years, advanced data 52

assimilation (DA) techniques, such as the ensemble Kalman filter (EnKF) (Evensen 1994; 53

Evensen and Leeuwen 1996; Burgers et al. 1998; Houtekamer and Mitchell 1998; Anderson 54

2001; Bishop et al. 2001; Whitaker and Hamill 2002; Evensen 2003; Tippett et al. 2003) and 55

four-dimensional variational (4DVAR) (e.g., Le Dimet and Talagrand 1986; Courtier and 56

Talagrand 1987; Sun and Crook 1997; Gao et al. 1998; Wu et al. 2000; Caya et al. 2005), are 57

becoming more popular in both operational and research communities. However, they both incur 58

a high computational cost, one of the biggest constraints for their operational applications at very 59

high resolutions. Between EnKF and 4DVAR, the EnKF method appears to be more attractive 60

for convective scale numerical weather prediction (NWP), where nonlinear physical processes 61

have critical roles. EnKF can also provide a natural set of initial conditions for ensemble 62

forecasting. EnKF has been applied at scales ranging from global to convective and has produced 63

encouraging results (e.g., Snyder and Zhang 2003; Dowell et al. 2004; Tong and Xue 2005, 64

hereafter TX05; Xue et al. 2006; Jung et al. 2008; Buehner et al. 2010; Dowell et al. 2011; 65

Hamill et al. 2011; Snook et al. 2011; Jung et al. 2012). 66

Among variants of EnKF, the ensemble square-root Kalman filter (EnSRF) of Whitaker 67

and Hamill (2002) is widely used in convective-scale DA studies involving radar data. The 68

EnSRF, as well as the similar ensemble adjustment Kalman filter (EAKF, Anderson 2003) and 69

the classic perturbed-observation EnKF algorithm (Evensen 2003), is an observation-space-70

based algorithm in which observations are assimilated one after another. Because of the 71

sequential nature of the EnSRF (and EAKF and classic EnKF), parallelization of the algorithm at 72

the observation level is not straightforward. It is possible to parallelize at the state variable level, 73

 2

i.e., to perform the updating of the state variables in parallel because each observation updates 74

many state variables within the covariance localization radius of the EnSRF, and these operations 75

are independent. Such parallelization can be easily achieved on shared-memory platforms via 76

OpenMP directives, and is done with the Advanced Regional Prediction System (ARPS, Xue et 77

al. 2003) EnSRF system (e.g., Xue et al. 2006; Jung et al. 2008). A processing element (PE) on a 78

shared-memory or distributed-memory platform is an individual processor with single-core 79

processors or a processor core on multi-core CPUs. Each PE generally supports only a single 80

process or a single thread. The number of PEs available on shared-memory nodes (the term 81

“processing unit,” abbreviated PU, will be used to refer to a shared-memory node) usually limits 82

the scale of shared-memory parallelization (SMP) and the number of state variables that can be 83

updated simultaneously. Distributed-memory parallelization (DMP) via the Message Passing 84

Interface (MPI) library would allow the use of much larger computers, which are essential for 85

very-high-resolution DA and NWP over large domains (Xue et al. 2007). 86

Anderson and Collins (2007, hereafter AC07) proposed a modification to the standard 87

EAKF algorithm that is also applicable to EnSRF. In their algorithm, multiple observation priors 88

(background converted to observed quantities via observation operators) are first calculated in 89

parallel, and the observation priors corresponding to as yet unused observations are updated by 90

the filter together with the state vector, allowing easier parallelization at the state vector level 91

(for a given observation, multiple elements in the state vector are updated in parallel). However, 92

its state update procedure requires broadcasting the observation priors from one PU to the rest, 93

and more importantly, the processing of observations is still serial. Because of this, the algorithm 94

does not scale well when the number of PUs increases to the point where the cost of 95

communication starts to dominate or when the ratio of the number of observations to that of state 96

 3

variables is large. Other parallel approaches have also been proposed by Keppenne and 97

Rienecker (2002) and Zhang et al. (2005). While both methods utilize domain decomposition, 98

they differ in whether communication among PUs is allowed. Because there is no cross-PU 99

communication in the algorithm of Zhang et al. (2005), the analysis near the PU boundaries is 100

not the same as that of scalar implementation, which is a potentially serious drawback of their 101

algorithm. Keppenne and Rienecker (2002), on the other hand, allow observations in other PUs 102

to update the states in the current PU, but their communication cost is potentially very high 103

because message passing is executed many times to properly exchange information among PUs. 104

In this paper, we develop a new parallelization algorithm for EnSRF (also suitable for 105

other similar serial ensemble filters) that is especially suitable for dense observations that 106

typically use relatively small horizontal covariance localization radii. Most NWP models, 107

including the ARPS and the Weather Research and Forecasting model (WRF), use horizontal 108

domain decomposition for effective parallelization (Sathye et al. 1997; Michalakes et al. 2004). 109

A domain-decomposition-based parallel DA strategy is attractive because it can share much of 110

the parallelization infrastructure with the prediction model. If the DA system and prediction 111

model use the same number and configuration of subdomains, transfer of model grids between 112

the two systems will be more straightforward either through disk or within computer memory. 113

Furthermore, with typical ensemble DA systems, the state arrays are usually moved between the 114

prediction model and DA system through disk I/O within the DA cycles; such I/O can take more 115

than half of the total wall clock time within each cycle (Szunyogh et al. 2008), making high-116

frequency assimilation of observations on large, high-resolution, grids prohibitively expensive. 117

Our eventual goal is to achieve data exchange through message passing within computer 118

memory, bypassing disk I/O altogether; adopting a domain decomposition parallelization 119

 4

strategy would simplify this process. Finally, the domain decomposition strategy makes grid-120

based calculations within the DA system, such as spatial interpolation, easier. 121

The domain-decomposition-based strategy we propose takes advantage of the relatively 122

small localization radii typically used by very dense observations within ensemble algorithms, 123

because observations that do not influence state variables at the same grid points can be 124

processed in parallel. More sparse conventional observations tend to require larger localization 125

radii (Dong et al. 2011) and are therefore more difficult to process in parallel. In this case, a 126

strategy similar to that of AC07 is taken, in which observations are processed serially but still 127

using the same decomposed domains. Parallelization can be achieved at the state variable level in 128

the case; in other words, different parallelization strategies can be used in combination, taking 129

advantage of the serial nature of the ensemble algorithms. Note that this approach scales well 130

only for observations whose localization radius is large enough to impact most of the grid points 131

in the model domain, unless additional steps are taken to balance the load, as in AC07. 132

In addition to domain-decomposition-based parallelization, we also want to take 133

advantage of SMP capabilities of multi-core compute nodes that are available on essentially all 134

large parallel systems of today. SMP among cores on the same node eliminates explicit data 135

transport among the cores, thus reducing communication costs and contention for interconnect 136

ports. By performing domain decomposition for the nodes while parallelizing across the PEs 137

(e.g., cores) on the same PUs (e.g., nodes), the decomposed domains can be larger relative to the 138

localization radii, increasing the chance that observations on different decomposed domains can 139

be processed independently. 140

For the EnSRF algorithm, SMP is easily achieved at the state variable level, because each 141

observation will need to update all state variables within its localization radius, and these update 142

 5

operations are independent. Thus, the state variable update can be parallelized using OpenMP 143

directives applied to the loops over the state variables. The combination of MPI and OpenMP 144

strategies gives hybrid parallelization. This paper describes a hybrid parallel scheme 145

implemented for the ARPS EnSRF system. In addition, observation data are organized into 146

batches to improve the load balance when assimilating data from a number of radars. 147

This paper is organized as follows. Section 2 reviews the EnSRF formulation and briefly 148

describes the ARPS model used in timing experiments. Section 3 introduces the parallel 149

algorithms for high-density radar data and conventional observations separately. It also describes 150

the OpenMP/MPI hybrid strategy as well as the observation organization. Validation of the 151

parallel implementation and its performance are examined in section 4. A summary and 152

conclusions are presented in section 5. 153

2. The ARPS ensemble DA system 154

The ARPS (Xue et al. 2000; Xue et al. 2001; Xue et al. 2003) model is a general-purpose, 155

multi-scale prediction system in the public domain. It has a non-hydrostatic, fully compressible 156

dynamic core formulated in generalized terrain-following coordinates. It employs the domain 157

decomposition strategy in the horizontal for massively parallel computers (Sathye et al. 1997; 158

Xue et al. 2007), and has been tested through real-time forecasts at convection-159

permitting/allowing resolutions for many years (e.g., Xue et al. 1996), including forecasts in 160

continental US (CONUS-scale) domains at 4 and 1 km grid spacing (e.g., Xue et al. 2011), 161

assimilating data from all radars in the WSR-88D radar network using a 3DVAR method. 162

As mentioned earlier, the current ARPS EnKF DA system (Xue et al. 2006) is primarily 163

based on the EnSRF algorithm of Whitaker and Hamill (2002). In addition, an asynchronous 164

(Sakov et al. 2010) four-dimensional EnSRF (Wang et al. 2013) has also been implemented. The 165

 6

system includes capabilities for parameter estimation (Tong and Xue 2008), dual-polarimetric 166

radar data assimilation (Jung et al. 2008), simultaneous reflectivity attenuation correction (Xue et 167

al. 2009), and the ability to handle a variety of data sources (Dong et al. 2011). Additionally, it 168

has been coupled with a double-moment microphysics scheme (Xue et al. 2010; Jung et al. 2012). 169

To be able to apply this system to large, convection-resolving domains such as those used by 170

ARPS 3DVAR for continental scale applications (e.g., Xue et al. 2011) and be able to assimilate 171

frequent, high-volume observations, efficient parallelization of the system is essential. 172

Briefly, in EnSRF, the ensemble mean and ensemble deviations are updated separately. 173

The analysis equations for ensemble mean state vector x and the ensemble deviations i
x are, 174

respectively, 175

 () ,a b o bH x x ρ K y x (1) 176

 ' () 'a b

i iH x I ρ Κ x (2) 177

where K is the Kalman gain and y
o
 the observation vector. Subscript i denotes the ensemble 178

member and ranges from 1 to N with N being the ensemble size. H is the forward observation 179

operator that projects state variables to observed quantities, which can be nonlinear. Symbol in 180

the equations represents the Schur (element-wise) product and ρ is the localization matrix, 181

containing localization coefficients that are typically functions of the distance between the 182

observation being processed and the state variable being updated. The analysis background b
x 183

projected into observation space, i.e., ()bH x , is called the observation prior. Superscripts a, b, 184

and o denote analysis, background, and observation, respectively. State vector x includes in our 185

case the grid point values of the three wind components (u, v, w), potential temperature (θ), 186

pressure (p), the mixing ratios of water vapor (qv), cloud water (qc), rain water (qr), cloud ice (qi), 187

 7

snow (qs), and hail (qh). When a two-moment microphysics parameterization scheme is used, the 188

total number concentrations for the 5 water and ice species are also part of the state vector (Xue 189

et al. 2010). Background state vectors b
x and b

i
x

are either forecasts from the previous 190

assimilation cycle or the states updated by observations processed prior to the current one. The 191

parameter β is the covariance inflation factor. Variable α is a factor in the square root algorithm 192

derived by Whitaker and Hamill (2002), 193

1

1
T1 b

R HP H R . (3) 194

Here, R is observation error covariance matrix, P
b
 the background error covariance matrix, and 195

H the linearized observation operator. The Kalman gain matrix K is given by 196

1

T Tb b

 K P H HP H R . (4) 197

In the above, matrices Tb
P H and Tb

HP H , representing the background error covariance 198

between the state variables and observation priors, and that between observation priors, 199

respectively, are estimated from the background ensemble, according to 200

T

T

1

1
() ()

1

N
b b b b b

i i

i

H H
N

P H x x x x , (5) 201

 . (6) 202

The overbars in Eqs. (5) and (6) denote the ensemble mean. When a single observation is 203

analyzed, becomes a vector having the length of the state vector . In practice, due to 204

covariance localization, all elements in are not calculated; those for grid points outside the 205

localization radius of a given observation are assumed to be zero. In fact, it is this assumption 206

that makes the design of our parallel algorithm practical; observations whose domains of 207

influence (as constrained by the covariance localization radii) do not overlap can be analyzed 208

T
T

1

1
() () () ()

1

N
b b b b b

i i

i

H H H H
N

HP H x x x x

Tb
P H x

Tb
P H

 8

simultaneously. Another basic assumption with this algorithm (and most atmospheric DA 209

algorithms) is that observation errors are uncorrelated, so that observations can be analyzed 210

sequentially in any order. When the observations are processed serially, one at a time, the 211

observation error covariance matrix reduces to a scalar, as does matrix Tb
HP H . In this case, 212

Tb
HP H is the background error variance at the observation point. 213

After an observation is analyzed based on Eqs. (1)-(6), the analyzed ensemble states a

ix
214

(1i N), the sum of ensemble mean and deviations, become the new background states b

ix 215

for the next observation, and the analysis is repeated until all observations at a given time are 216

analyzed. An ensemble of forecasts then proceeds from the analysis ensemble until the time of 217

new observation(s); at that time the analysis cycle is repeated. 218

3. The parallel algorithm for EnSRF 219

For convective-scale weather, Doppler weather radar is one of the most important 220

observing platforms. The US National Weather Service (NWS) operates a network of over 150 221

Weather Surveillance Radar-1988 Doppler (WSR-88D) radars that continuously scan the 222

atmosphere, at a rate of one full volume scan every 5-10 minutes, producing radial velocity and 223

reflectivity data. One volume scan in precipitation mode typically contains 14 elevations with 224

approximately several million observations every 5 minutes. 225

The number of conventional observations, such as surface station measurements, upper 226

air soundings, and wind profiler winds, is small compared to radar observations; because they 227

typically represent weather phenomena of larger scales, their assimilation in EnKF typically uses 228

larger covariance localization radii, and therefore their influence reaches larger distances (Dong 229

et al. 2011). Because of the different characteristics of each data type, different parallel strategies 230

are employed for conventional and radar data. 231

R

 9

a. The parallel algorithm for high-density observations with small covariance localization radii 232

The algorithm partitions the entire analysis domain into subdomains defined by the 233

number of participating MPI processes in the horizontal x and y directions. No decomposition is 234

performed in the vertical direction, and therefore, state variables are always complete in the 235

vertical columns. High-density radar observations (and other high-resolution observations 236

including those of satellite) are distributed to each subdomain according to their physical 237

locations. Fig. 1 illustrates an analysis domain that is partitioned into 4 physical subdomains 238

horizontally, to be handled by 4 PUs in the computing system. Each computational domain is 239

comprised of the physical subdomain (in darker gray for P1, separated with thick solid lines) and 240

extended boundary „halo‟ zones surrounding the physical subdomain (in light gray for P1, 241

bounded by thin lines); the physical domain and the boundary halo zones combined together are 242

called computational subdomains. The width of the extended boundary halo zone for the DA 243

system is typically larger than the halo zone or „ghost cells‟ needed for boundary condition 244

exchanges in parallel NWP models based on domain decomposition (e.g., Sathye et al. 1997). 245

The width of the halo zone in the ARPS model, for example, is only one grid interval on each 246

boundary. 247

The extended boundary zone on each side must be at least as wide as the maximum 248

localization radius (R) of observations handled by the algorithm in the subdomain. For radar 249

observations, R is usually equal to a few grid intervals. Each physical subdomain is further 250

divided into 4 patches that are separated by bold dashed lines in Fig. 1, and these patches are 251

labeled S1, S2, S3 and S4, respectively. The horizontal width of patch S2 and the vertical height 252

of patch S3 must be at least 2R. The rest of the physical domain is assigned to patches S1 and S4 253

as in Fig. 1, and their horizontal width and height also must be at least 2R. Thus, the width of the 254

 10

physical subdomain must be larger than 4R for the algorithm to work. All other subdomains in 255

Fig. 1 are divided following the same patch pattern. Such a patch division assures that patches 256

with the same label in adjacent subdomains are at least 2R apart, so observations in any one 257

patch do not affect grid points in the same patch on other PUs and thus, they can be analyzed in 258

parallel. In other words, no two observations that are being analyzed in parallel will influence the 259

same grid point. In practice, we want to make patch S1 as large as possible, increasing the 260

chance that any two observations can be processed independently (see below). Thus, the width of 261

S2 and the height of S3 are assigned the minimum possible size of 2R (see Fig. 1), which leaves 262

the majority of the subdomain to patch S1. 263

The EnKF DA over the analysis domain is performed in 4 sequential steps for 264

observations within S1, S2, S3 and S4. In the first step, only observations within S1 on all PUs 265

are assimilated in parallel while observations on each S1 patch are assimilated sequentially. Let 266

P be the number of PUs. Then, there can be at most P observations being assimilated in parallel 267

at any time. After all observations located within S1 are assimilated, MPI communications are 268

required to properly update state variables at grid points within the extended boundary zones that 269

are shared with neighboring PUs. The same procedure is then repeated for observations within 270

S2, S3 and S4 in steps 2, 3, and 4. 271

The assimilation of observations within the same-labeled patches from all PUs can be 272

done in parallel because: 1) the grid points influenced by the observations analyzed in parallel 273

are separated far enough without overlap, and 2) the ensemble state arrays are extended beyond 274

the physical subdomain, so that the influence on state grids by observations within each 275

subdomain can be passed to its neighbor PUs with MPI communications. Best load balancing is 276

realized if the same-labeled patches contain the same number of observations so that all PUs can 277

 11

complete each analysis step in approximately the same time. In practice, however, the number of 278

observations on each subdomain is usually different due to uneven spatial distribution of 279

observations (and of observation types). One way to improve parallelism is to make one patch 280

(S1 in our system) as large as possible, which increases the number of observations that can be 281

processed independently and improves the load balance. Assimilation of observations on S2, S3 282

and S4 may not be well balanced. However, because they tend to be smaller and contain fewer 283

observations, their effect on the assimilation time tends to be small. 284

Since high-density observations, such as radar data, usually assume relatively small 285

localization radii, the constraint that the width of the physical subdomain should be at least 4R in 286

each direction usually does not become a major problem, especially when the DA domain is 287

large. When a hybrid MPI-OpenMP parallelization strategy is used this problem can be further 288

alleviated (see later). While the proposed algorithm is valid for most meteorological observations 289

that can assume a small localization radius, certain „integral observations‟ such as radar 290

reflectivity with path-integrated attenuation effect (e.g., Xue et al. 2009) and GPS slant-path 291

water vapor (e.g., Liu and Xue 2006) pose special challenge for the serial EnSRF algorithm in 292

general since their observation operators are non-local (Campbell et al. 2010). 293

b. The parallel algorithm for conventional observations with large covariance localization radii 294

Currently supported conventional observations in the ARPS EnKF system include surface 295

station, upper air sounding, wind profiler, and aircraft observations. Since the covariance 296

localization radii applied to these observations are usually large, the width of the extended 297

boundary zones described in section 3a would be impractical for these data, unless the 298

decomposed subdomains are much larger than the localization radii. This is usually only true 299

when a small number of subdomains is used. Therefore, we design and implement an alternative 300

 12

algorithm for this type of observations. Because the number of conventional (or any other 301

coarse-resolution) observations is typically much smaller than the number of (dense) radar 302

observations, we can afford to process the observations serially while trying to achieve 303

parallelism at the state variable level, similar to the strategy taken by AC07. 304

 In our current implementation, conventional observations within the entire analysis 305

domain are broadcast to all PUs and assimilated one by one. Only the PU containing the 306

observation to be analyzed computes the observation prior; it then broadcasts the observation 307

prior ensemble, H(xi), to all other PUs. The state variables within the covariance localization 308

radius of this observation are updated simultaneously on each PU that carries the state variables 309

(Fig. 2). Since we do not need extra boundary zones, state variable updating occurs within the 310

computational subdomains of the original NWP model. However, a set of MPI communications 311

between PUs is still needed right after the analysis of each observation to update the state 312

variables within the halo zone to facilitate the spatial interpolation involved in observation 313

operators. These steps are repeated until all observations are assimilated. 314

Our current implementation does not pre-calculate H(x) or update H(x) as part of the 315

extended state vector as AC07 does, and we use a regular domain decomposition strategy to 316

distribute the state variables across the PUs. This implementation will have load balance issues 317

for conventional observations, especially when the covariance localization radii of these 318

observations are small relative to the size of the entire model domain. AC07 mitigates this 319

problem by distributing the state variables across PUs as heterogeneously as possible, i.e., by 320

distributing neighboring grid points across as many PUs as possible. Such an irregular 321

distribution of state variables makes it difficult to implement grid-point-based treatments within 322

the EnKF algorithms. The H(x) pre-calculation and update strategy employed by AC07 allows 323

 13

simultaneous calculation of observation priors. This can be an option in a future implementation; 324

in fact, the 4D EnSRF algorithm implemented by Wang et al. (2013) employs this strategy. 325

c. Hybrid MPI-OpenMP parallelization 326

All current supercomputers use compute nodes with multiple shared-memory cores. The 327

original ARPS EnSRF code supports OpenMP parallelization via explicit loop-level directives at 328

the state-variable-update level (Xue et al. 2006). Thus, it is straightforward to employ a hybrid 329

technique, using SMP among cores on the same node and DMP via MPI across nodes. Doing so 330

can reduce explicit data communication within nodes and allow for larger S1 patches within the 331

decomposed domains on each PU (see Fig. 1). Our hybrid implementation is designed such that 332

each MPI process spawns multiple threads. Since message passing calls are outside of the 333

OpenMP parallel sections, they are parallel thread safe, i.e., only the master thread in a process 334

makes calls to MPI routines. The final program is flexible enough to run in MPI only, OpenMP 335

only, or in MPI/OpenMP hybrid modes, on a single-node workstation or supercomputers made 336

up of multiple nodes. 337

d. Parallel strategy for assimilating data from multiple radars 338

In the ARPS EnKF system, full-resolution radar observations in the radar coordinates are 339

usually mapped horizontally to the model grid columns during preprocessing (Brewster et al. 340

2005). The original ARPS EnSRF implementation processes data from one radar at a time, 341

sequentially. This is convenient because the data are stored in arrays for individual radars on 342

elevation levels (Xue et al. 2006). For data from the same radar, only a few parameters are 343

needed to describe the radar characteristics. However, because each radar typically covers only a 344

portion of the model domain, this procedure severely limits the scalability of the analysis system 345

 14

due to load imbalances (see Fig. 3). Figure 3a illustrates a domain that contains six radars labeled 346

A through F. If this domain is decomposed into four subdomains, all PUs, except P1, will be idle 347

when data from radar A are assimilated. The same is true for radars B through F. To mitigate this 348

problem, we develop a procedure that merges radar data into composite sets or batches so that 349

data from multiple radars can be processed at the same time. 350

In the analysis program, all vertical levels of radar observations at each horizontal grid 351

location are stored continuously as a vector column. The most general approach is to store all 352

columns of radar data in a single dynamically allocated storage array or data structure while 353

keeping track of the radar characteristics associated with each column. Each column may contain 354

different numbers of available radar elevations. When overlapping coverage exists, the grid 355

columns covered by multiple radars will have multiple columns of data (see Fig. 3a). To keep 356

track of data in reference to the analysis grid, it is convenient to define arrays that have the same 357

dimensions as the model grid in the horizontal directions, but such arrays will only be able to 358

store no more than one column of data at each grid location unless the last dimension is defined 359

dynamically or pre-defined to be large enough. While for optimally tuned EnKF, the order in 360

which observations are assimilated should not matter, in practice, because the ensemble spread 361

can be reduced too much by observations processed earlier before covariance inflation is applied, 362

the order of observation processing sometimes do matter somewhat. For this reason, we group 363

the radar data into several batches, the number of which is no bigger than the maximum number 364

of radars covering the same spot anywhere in the analysis domain. For a radar network that is 365

designed to maximize spatial coverage, such as the WSR-88D radar network, this maximum is 366

usually a single digit number; i.e., anywhere in the network, less than 10 radars observe the same 367

column. 368

 15

Fig. 3 shows the spatial coverage of three batches of data that add up to all columns of 369

data available; those three batches of observations will be processed in sequence. Within regions 370

having multiple radar coverage, the radar from which data will be first picked can be chosen 371

randomly or based on the order the data were input to the program. Alternatively, the data 372

columns from the closest radar can be picked first. The last option is more desirable, as it 373

removes the randomness of the algorithm. Finally, because the radar data are no longer organized 374

according to radar, additional two-dimensional arrays are needed to store parameters for each 375

data column. When only a few elevations within a radar volume scan are analyzed using short 376

(e.g., 1 to 2 minutes) assimilation cycles, the vertical dimension of the arrays storing the 377

composite data sets need only to be a few. 378

With the above implementation, the load balance is significantly improved for the first 379

composite data set. It should be noted that we usually assimilate reflectivity data even in 380

precipitation-free regions, which has the benefit of suppressing spurious storms (Tong and Xue 381

2005). We note that load imbalance does still exist with radial velocity data in the first group 382

since they are usually only available in precipitation regions; however, their numbers are usually 383

much smaller than the total number of reflectivity data. In addition, load imbalances usually exist 384

with the second group of data and above but again the volume of data in these groups is small 385

since they only exist in overlapping regions, and these regions are usually spread over the 386

assimilation domain. 387

4. Algorithm verification and performance analysis 388

a. Verification of the parallelized code 389

The domain partition and batch processing inevitably change the sequence of 390

observations being assimilated in the EnKF system. Theoretically, the order in which the 391

 16

observations are processed does not matter for observations with uncorrelated errors, to the 392

extent that sampling error does not impact the results. In practice, the analysis results may differ 393

significantly if the filter is not properly tuned, where the tuning typically includes covariance 394

inflation and localization. 395

A set of experiments has been performed to investigate the effect of domain 396

decomposition on the analysis of simulated radar observations in an observing system simulation 397

experiment (OSSE) framework. Convective storms are triggered by five 4-K ellipsoidal thermal 398

bubbles with a 60-km horizontal radius and 4-km vertical radius in an environment defined by 20 399

May 1977 Del City, Oklahoma, supercell sounding (Ray et al. 1981). The model domain is 400

300×200×16 km
3
 with horizontal and vertical grid spacings of 1 km and 500 m, respectively. 401

Forty ensemble members are initiated at 3000 seconds of model time. The full state vector has 402

1.4 × 10
9
 elements. Simulated radar observations from three radars are produced, using the 403

standard WSR-88D VCP (Volume Coverage Pattern) 11, which contains 14 elevation levels. 404

The total number of observations is approximately 6.7 × 10
5
 from three volume scans spanning 5 405

minutes each. Radar DA is first performed at 5-minute intervals from 3300 to 5700 seconds, 406

using the original serial ARPS EnSRF code to provide an ensemble for subsequent parallel 407

assimilation tests. The Milbrandt and Yau (2005) double-moment microphysics scheme is used 408

in both truth simulation and in DA. The environment and model configurations that are not 409

described here can be found in Xue et al. (2010). 410

Three parallel DA experiments are then performed at 6000 seconds, one running in pure 411

MPI mode, one in pure OpenMP mode, and one in pure OpenMP mode but processing 412

observations serially in a reversed order. These experiments are referred as MPI, OMP_F, and 413

OMP_B (F for forward and B for backward), respectively. For each experiment, average RMS 414

 17

errors for the state variables are computed against the truth simulation at the grid points where 415

truth reflectivity is greater than 10 dBZ. The RMS errors of MPI and OMP_B are normalized by 416

the RMS errors of OMP_F and shown in Fig. 4 for individual state variables. Most of the 417

normalized errors are very close to 1, and all of them are between 0.95 and 1.05 for MPI. Among 418

the variables, the total number concentration for rain water shows the largest variability, 419

probably due to the high sensitivity of reflectivity to the rain drop size distribution. In fact, the 420

normalized error for rain water number concentration is an outlier for OMP_B, reaching close to 421

1.25, much larger than the normalized error of about 1.05 for MPI. These results suggest that the 422

effect of the domain partition on the analysis is small, and the differences are within the range of 423

sampling uncertainties of the ensemble system. 424

With respect to the parallel code implementation for conventional data analysis, domain 425

decomposition does not change the sequence of the observation processing (see section 3b). 426

Therefore, identical results from experiments OMP_F and MPI are guaranteed. The results from 427

the experiments when simulated surface observations are also included are not shown here. 428

b. Performance evaluation with OSSE experiments 429

The performance of our parallel EnKF system is evaluated with radar DA benchmark 430

experiments on a Cray XT5 system (called Kraken) at National Institute of Computational 431

Science (NICS) at the University of Tennessee, which has 9408 total compute nodes with 12 432

cores each (6 cores per processor, 2 processors per node), giving a peak performance of 1.17 433

petaFLOPS. With Kraken, users can set the number of MPI processes per node (1-12), the 434

number of MPI processes per processor (1-6), and the number of cores (OpenMP threads) per 435

MPI process (1-12). A number of experiments with combinations of different numbers of MPI 436

processes, OpenMP threads, cores per node, and cores per processor have been performed to 437

 18

examine the timing performance of various configurations. The same case described in section 438

4a is used for benchmarking. 439

First, the scalability of the OpenMP implementation is investigated as a reference. Since 440

each Kraken node contains only 12 cores, the maximum number of threads that can be used for 441

an OpenMP job is 12. The OpenMP implementation shows scalability up to 8 cores (see Table 1), 442

beyond which the reduction in wall clock time becomes minimal. One very likely reason is the 443

contention accessing shared memory and cache by different cores of the Opteron processors used. 444

To evaluate the performance of our MPI implementation, we ran several OpenMP and 445

MPI experiments on a single compute node. Table 1 lists the wall clock times and relative 446

speedups for these experiments. The experiment names follow the convention o[total cores used447

] for OpenMP and m[nproc_x] ×[nproc_y] for MPI experiments, where nproc_x and nproc_y 448

denote the number of PUs corresponding to the decomposed domains in the x and y directions, 449

respectively. Generally, the OpenMP jobs perform better than their MPI counterparts using the 450

same number of cores when running on a single node due to the communication overhead of 451

MPI processes and possibly better load balance with OpenMP. It is also noticed that the wall-452

clock time is heavily influenced by the domain partitioning configuration in the x and y 453

directions. For example, m02×01 takes almost 1.4 times longer than m01×02, although both use 454

the same number of cores. Since FORTRAN arrays are stored contiguously in the column-major 455

order in the computer memory, a run that has a smaller partition number in the x direction than 456

the y direction (e.g., m01×02) is better at taking advantage of the spatial locality of the data in 457

memory. This can accelerate data loading from main memory into cache and improve cache 458

reuse. Conversely, an inefficient partition can degrade the performance even when more system 459

resources are used. For example, m03×02 using 6 cores has a much smaller speed improvement 460

 19

over m01×01 than experiments using 4 cores or even some experiments using 2 cores. These 461

results suggest that finding the optimal domain decomposition is important in achieving the best 462

performance with the given system resources. 463

Table 2 shows performance data collected from pure MPI runs, and from hybrid 464

MPI/OpenMP experiments that run on 4 Kraken nodes. All experiments are named as following: 465

m(h)[nproc_x] ×[nproc_y] _[number of processes per node] o[number of threads per process] , 466

where “m” denotes MPI runs and “h” denotes hybrid runs. For MPI runs, the number of threads 467

per process is always 1. Thus, “o[number of threads per process] ” is omitted from the notations 468

for all MPI runs in Table 2. Since each Kraken node contains two processors, the processes on 469

each node are distributed to those processors as evenly as possible in order to obtain the best 470

possible performance. 471

It is found that the domain partitioning again plays an important role for the DA system 472

performance. For example, experiments that use 20 cores in total on 4 compute nodes show large 473

variability in the execution time. Among these experiments, m02×10_05 has the best 474

performance, suggesting that m02×10_05 utilizes the system cache most efficiently and/or has 475

the least message-passing overhead given 20 cores. Generally, the MPI experiments using more 476

nodes perform better than those experiments with the same domain partitioning but using fewer 477

nodes. For example, m01×04 in Table 1 that uses one compute node takes 2660 seconds to finish 478

while m01×04_01 in Table 2 running on 4 compute nodes takes only 2343 seconds. This is 479

consistent with the observation that performance is improved as available cache size increases. 480

Adding more processes improves the performance on 4 compute nodes. As an example, 481

m06×08_12 takes less time than those experiments using 40 cores or less. This is because more 482

observations can be processed in parallel in the m06×08_12 experiment than the others, even 483

 20

though MPI communication costs are higher than in the other experiments. However, as 484

observed before with OpenMP experiments, access contention for the memory bandwidth and 485

the cache sharing as more cores are used may impede the performance at some point. It suggests 486

that there is a tradeoff between the number of processes and available computing resources and, 487

therefore, finding optimal configurations for MPI runs may not be straightforward because it 488

depends on a number of hardware factors. 489

For the hybrid runs, the wall-clock times of m01×04_01 (i.e. h01×04_01o1), 490

h01×04_01o2, h01×04_01o4, h01×04_01o6, h01×04_01o8 and h01×04_01o12 decrease 491

monotonically, in that order. The decreasing trend of wall-clock time with increasing number of 492

threads is consistently found in other similar sets of experiments. It is also found that the hybrid 493

runs are as sensitive as the MPI runs to the domain partitioning, available cache, and other 494

hardware configuration factors. A hybrid experiment can outperform or underperform the 495

corresponding MPI experiments using the same resources (number of cores and number of nodes) 496

depending on the configuration (Table 2 and 3). For example, the minimum wall-clock time with 497

8 cores from 4 nodes in hybrid mode is 1471 seconds, which is smaller than the minimum time 498

required by a MPI run with 8 processes on 4 nodes (2169 seconds) in Table 3. On the other hand, 499

h01×04_01o12 takes 733 seconds, more than the 606 seconds of m06×08_12, which uses the 500

same resources. It is also observed that a larger improvement is achieved by the hybrid jobs with 501

a fewer number of threads. This is because observations are processed one by one with OpenMP 502

processes. By using more MPI processes rather than more OpenMP threads, we can assimilate 503

more observations simultaneously and, hence, improve the parallel efficiency (see section 4c for 504

more details). In addition, cache availability and memory access contention with a large number 505

of threads in the hybrid experiments also affect program performance. 506

 21

c. Performance evaluation with a real data application 507

The parallel ARPS EnKF system is applied to the 10 May 2010 Oklahoma-Kansas 508

tornado outbreak case. Over 60 tornadoes, with up to EF4 intensity, affected large parts of 509

Oklahoma and adjacent parts of southern Kansas, southwestern Missouri, and western Arkansas 510

on that day. This real data case is run on an SGI UV 1000 cc-NUMA shared-memory system at 511

the Pittsburgh Supercomputing Center (PSC). The system, called Blacklight, is comprised of 256 512

nodes containing 2 eight-core Intel Xeon processors each; its theoretical peak performance is 37 513

teraFLOPS. The cc-NUMA architecture allows for SMP across nodes. Up to 16 terabytes (TB) 514

of memory can be requested for a single shared memory job, while hybrid jobs can access the 515

full 32 TB of system memory. 516

The EnSRF analyses are performed on a grid with 4 km horizontal grid spacing, using 40 517

ensemble members. The domain consists of 443×483×53 grid points, and the model state 518

includes three velocity components, potential temperature, pressure, and mixing ratios of water 519

vapor, and 5 water and ice species. A single-moment microphysics scheme is used. The state 520

vector has 4.9 × 10
9
 elements. Observations of radar reflectivity and radial velocity from 35 521

radars are analyzed from 1705 UTC to 1800 UTC at 5-minute intervals. Fig. 5 presents a 522

comparison between the radar observation mosaic at 1800 UTC on 10 May 2010 and the 523

corresponding analysis results by the parallel ARPS EnSRF system. Overall, the analyzed 524

reflectivity exhibits a good fit to the observations in shape, structure, and intensity. The 525

exceptions are several echoes in Texas, southeast Montana, and northwest Colorado, which are 526

due to the incomplete radar coverage over those areas. Several timing benchmark analyses at 527

1710 UTC are performed. There are about 1.3 × 10
6
 observations from the 35 radars at this time 528

(see Fig. 6), more than any of the other times in the analysis window. 529

 22

Our parallel benchmark experiments are run in pure OpenMP, pure MPI and hybrid 530

MPI/OpenMP modes. In all cases, all cores on the compute nodes were fully utilized, either by 531

individual MPI processes or by OMP threats. The experiment names and their configurations are 532

listed in Table 4. Guided by the timing results on Kraken, experiments are designed to use the 533

most optimal configurations, i.e., with a larger number of PUs in the y direction than in the x 534

direction. Each experiment in Table 4 was repeated 7 times. Because the timing results on 535

Blacklight show up to 185% variability due to system load variations, the best timing results for 536

each case are selected and presented here. Fig. 7 shows the best timing results of each case as a 537

function of the number of cores used. Very large variations in run time were found to be 538

attributable to disk I/O on a large shared file system; I/O times are therefore excluded in Fig. 7 to 539

allow us to focus on the time spent on the analyses. The times with and without including 540

message passing are shown. 541

Both MPI and hybrid runs show good scalability according to Fig. 7, and they outperform 542

pure OpenMP runs by a large margin except for the case of 16 cores. Because each physical node 543

of Blacklight has only 16 cores, when more than 16 cores are used by OpenMP, the memory 544

access will be across different physical nodes; this clearly leads to reduced parallelization 545

efficiency with the OpenMP runs. Also, with pure OpenMP, the parallelization is limited to the 546

state variable level, meaning all observations have to be processed serially (i.e., not 547

parallelization at the observation level). 548

Fig. 7 also shows that, when using the same amount of total resources, the hybrid runs 549

generally outperform pure MPI runs when both analysis and message passing times are included. 550

For the same number of cores used, pure MPI runs implies more PUs, i.e., more message passing 551

requests. Even though the pure MPI mode may be able to parallelize more at the observation 552

 23

level, the message passing overhead can reduce the benefit. Not surprisingly, the hybrid 553

OpenMP/MPI runs are better in terms of total computational time. Among the hybrid groups, 554

jobs with fewer threads hence more MPI processes seem to give better performances, in terms of 555

the analysis time. This suggests that assimilating observations in parallel via MPI processes gives 556

a greater benefit before the increased message passing overhead becomes overwhelming. 557

We have noticed that I/O can easily take 60% to 80% of the total wall-clock time with 558

experiments in which all data I/O were handled by a single MPI process or the master OpenMP 559

thread. This I/O time can be reduced by distributing I/O loads among the MPI processes (but not 560

among OpenMP threads). Therefore, our solution is to let each MPI process read and write data 561

within its own subdomain, in the form of “split files”. This improves I/O parallelization and also 562

reduces time needed for communicating gridded information across PUs. With split files, only 563

data within the extended boundary zones need to be exchanged with neighboring PUs. Due to the 564

large variations in the I/O times collected on Blacklight, we ran another set of experiments on a 565

supercomputer with more consistent I/O performance between runs. It consists of 2.0 GHz quad-566

core Pentium4 Xeon E5405 processors, with 2 processors on each node. Tests with split files on 567

this system, corresponding to h04×08_01o8 (see above naming conventions), reveal that the 568

times spent on I/O and message passing are reduced (the latter because of the reduced exchanges 569

of gridded information across MPI processes); the total wall-clock time for I/O and message 570

passing for one experiment was reduced from 1231 seconds to 188 seconds using split files. 571

5. Summary and conclusions 572

A parallel algorithm based on the domain decomposition strategy has been developed and 573

implemented within the ARPS EnKF framework. The algorithm takes advantage of the relatively 574

small spatial covariance localization radii typically used by high-resolution observations such as 575

 24

those of radar. Assuming that the maximum horizontal covariance localization radius of the 576

observations to be analyzed in parallel is R, the horizontal area of a decomposed physical 577

subdomain should be at least 4R × 4R. An additional boundary zone of width R is added to each 578

side of the physical subdomains to create enlarged computational subdomains, which facilitate 579

information exchanges between neighboring subdomains. Each subdomain is assigned to one 580

processing unit (PU), within which no MPI message passing is required. The subdomains are 581

then further divided up into 4 sub-patches, denoted S1 through S4. The width and height of each 582

patch are required to be at least 2R to ensure any two observations that may be processed in 583

parallel are well separated. In practice, the size of S1 is made as large as possible within its 584

subdomain to increase the probability that observations from different subdomains can be 585

processed in parallel. 586

Observations within the 4 patches are processed sequentially, but data in the patches with 587

the same label in different subdomains are processed simultaneously. Distributed-memory 588

parallelization is therefore achieved at the observation level. The patch division ensures that most 589

of the analysis work is done in parallel when processing observations within patches S1 of all 590

PUs. To handle the load imbalance issue when assimilating observations from many radars, the 591

observation arrays are organized into batches. The maximum number of batches is limited by the 592

maximum number of radars covering the same location anywhere in the analysis domain. Such 593

an observation organization improves the uniformity of observation distribution within the first 594

observation batch and thereby improves load balance. 595

Conventional data that use larger covariance localization radii are still processed serially. 596

State variables influenced by a particular observation are updated synchronously on the PUs 597

carrying those state variables. 598

 25

The algorithm supports three parallel modes: pure OpenMP, pure MPI, and 599

MPI/OpenMP hybrid. Within the PUs with multiple cores, shared-memory parallelization can be 600

achieved via OpenMP at the state variable update level. OpenMP parallelization reduces 601

message passing overhead and allows for larger decomposed domains, making the 4R 602

requirement easier to satisfy. 603

It was first confirmed via OSSEs that changing the sequence of observation processing 604

due to domain decomposition has little impact on the analysis. Parallel DA benchmark 605

experiments are performed on a Cray XT5 machine. The OpenMP implementation shows 606

scalability up to 8 threads, beyond which memory and cache access contention limit further 607

improvement. MPI and OpenMP runs on a single compute node show that OpenMP 608

parallelization runs faster because of the lower communication overhead. MPI jobs with a 609

smaller number of partitions in the x direction than in the y direction exhibit better performance. 610

The same also applies to most of the hybrid jobs, although all hybrid jobs do not outperform the 611

corresponding MPI jobs. 612

A real data case involving 35 radars is tested on an SGI UV 1000 cc-NUMA system 613

capable of shared-memory programming across physical nodes. Poor scalability with pure 614

OpenMP is observed when more than one node is used, but both MPI and hybrid runs show good 615

scalability on this system. Excluding message passing time, pure MPI runs exhibit best 616

performance. When message-passing time is included, the hybrid runs generally outperform pure 617

MPI runs. For this real data case, the EnKF analysis excluding I/O can be completed within 4.5 618

minutes using 160 cores of the SGI UV 1000. 619

Given a fixed amount of resources, the hybrid jobs improve more over pure MPI jobs 620

with fewer numbers of threads. Because MPI processes realize parallelization at the observation 621

 26

level, they are more efficient than OpenMP threads. However, there is a tradeoff between a 622

performance improvement due to the parallel processing of observations and degradation due to 623

increased message passing overhead. On the other hand, a pure OpenMP strategy for EnKF 624

shows good scalability on symmetric shared-memory systems but is limited by the number of 625

cores available on the individual node and by the physical memory available on the node. With 626

pure OpenMP, data I/O can only be handled by a single process, reducing the overall scalability. 627

The MPI/OpenMP hybrid strategy combines the strengths of both methods. However, 628

care must be taken when partitioning the domain, because the configuration of MPI domain 629

partitioning has a significant impact on the system performance. Given the same resources, jobs 630

with smaller numbers of partitions in the x direction tend to run faster because FORTRAN arrays 631

are stored in the column-major order in memory. Timing experiments have also shown that 632

determining the optimal decomposition configuration on a specific computing system is not 633

straightforward because the performance depends on factors such as the subdomain size in the x 634

and y directions, the number of cores on each node, the cache sizes and memory bandwidth 635

available to each core, and the networking topology across the nodes. 636

In all configurations, data I/O constituted a large portion of the execution time. 637

Experiments on a small dedicated Linux cluster show that the time spent on I/O and message 638

passing are reduced significantly by distributing I/O loads among the MPI processes with 639

MPI/OpenMP hybrid or pure MPI runs. 640

Although a data batching strategy is developed to reduce the load imbalance issue, further 641

improvement could be obtained through dynamic load balancing. Another problem is the low 642

resource utilization during inter-node communications because all threads are idle except one: 643

the master thread. The development of runtime management algorithms, for example the 644

 27

Scalable Adaptive Computational Toolkit (SACT) (Li and Parashar 2007; Parashar et al. 2008), 645

are expected to decrease runtime of the application automatically with reduced efforts from 646

developers. Finally we point out that our parallel algorithm can be easily applied to other serial 647

ensemble-based algorithm such as EAKF and the classic EnKF. 648

 649

Acknowledgements: This work was primarily supported by NSF grant OCI-0905040, AGS-650

0802888, and NOAA Warn-on-Forecast Project under NA080AR4320904. Partial support was 651

also provided by NSF AGS-0750790, AGS-0941491, AGS-1046171, and AGS-1046081. We 652

acknowledge David O‟Neal of Pittsburgh Supercomputing Center (PSC) for assistance with the 653

use of Tuning and Analysis Utilities (TAU) on a PSC Altix cluster early in the work. 654

Computations were performed at the Pittsburgh Supercomputing Center (PSC), and the National 655

Institute for Computational Sciences (NICS), and the OU Supercomputing Center for Education 656

and Research (OSCER). 657

658

http://twister.ou.edu/PetaApps_Abstract.html
http://twister.ou.edu/VortexII_Summary.htm
http://twister.ou.edu/VortexII_Summary.htm

 28

References 659

Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. 660

Rev., 129, 2884-2903. 661

Anderson, J. L., 2003: A local least square framework for ensemble filtering. Mon. Wea. Rev., 662

131, 634-642. 663

Anderson, J. L. and N. Collins, 2007: Scalable implementations of ensemble filter algorithms for 664

data assimilation. J. Atmos. Ocean. Technol. , 24, 1452-1463. 665

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble 666

transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420. 667

Brewster, K., M. Hu, M. Xue, and J. Gao, 2005: Efficient assimilation of radar data at high 668

resolution for short-range numerical weather prediction. WWRP Int. Symp. Nowcasting 669

Very Short Range Forecasting, CDROM 3.06. 670

Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010: Intercomparison 671

of variational data assimilation and the ensemble Kalman filter for global deterministic 672

NWP. Part II: One-month experiments with real observations. Mon. Wea. Rev., 138, 673

1567-1586. 674

Burgers, G., P. J. v. Leeuwen, and G. Evensen, 1998: Analysis scheme in the ensemble Kalman 675

filter. Mon. Wea. Rev., 126, 1719-1724. 676

Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for 677

satellite radiances in ensemble Kalman filters. Mon. Wea. Rev., 138, 282-290. 678

Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4D-VAR and the ensemble 679

Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 3081–3094. 680

 29

Courtier, P. and O. Talagrand, 1987: Variational assimilation of meteorological observations 681

with the adjoint equation. Part II: Numerical results. Quart. J. Roy. Meteor. Soc., 113, 682

1329-1347. 683

Dong, J., M. Xue, and K. K. Droegemeier, 2011: The analysis and impact of simulated high-684

resolution surface observations in addition to radar data for convective storms with an 685

ensemble Kalman filter. Meteor. Atmos. Phy., 112, 41-61. 686

Dowell, D., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature 687

retrievals in the 17 May 1981 Arcadia, Oklahoma supercell: Ensemble Kalman filter 688

experiments. Mon. Wea. Rev., 132, 1982-2005. 689

Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar 690

observations of the 8 May 2003 Oklahoma City supercell: Influence of reflectivity 691

observations on storm-scale analysis. Mon. Wea. Rev., 138, 1152-1171. 692

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using 693

Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143-10162. 694

Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical 695

implementation. Ocean Dynamics, 53, 343-367. 696

Evensen, G. and P. J. v. Leeuwen, 1996: Assimilation of geosat altimeter data for the Agulhas 697

current using the ensemble Kalman filter with a quasigeostrophic model. Mon. Wea. Rev., 698

124, 85-96. 699

Gao, J., M. Xue, Z. Wang, and K. K. Droegemeier, 1998: The initial condition and explicit 700

prediction of convection using ARPS adjoint and other retrievals methods with WSR-701

88D data. 12th Conf. Num. Wea. Pred., Phoenix AZ, Amer. Meteor. Soc., 176-178. 702

 30

Hamill, T. M., J. S. Whitaker, M. Fiorino, and S. G. Benjamin, 2011: Global ensemble 703

predictions of 2009's tropical cyclones initialized with an ensemble Kalman filter. Mon. 704

Wea. Rev., 139, 668-688. 705

Houtekamer, P. L. and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter 706

technique. Mon. Wea. Rev., 126, 796-811. 707

Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29-30 May 2004 708

Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics 709

schemes, with verification against polarimetric data. Mon. Wea. Rev., 140, 1457-1475. 710

Jung, Y., M. Xue, G. Zhang, and J. Straka, 2008: Assimilation of simulated polarimetric radar 711

data for a convective storm using ensemble Kalman filter. Part II: Impact of polarimetric 712

data on storm analysis. Mon. Wea. Rev., 136, 2246-2260. 713

Keppenne, C. L. and M. M. Rienecker, 2002: Initial testing of a massively parallel ensemble 714

Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Wea. 715

Rev., 130, 2951-2965. 716

Le Dimet, F. X. and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of 717

meteorological observations: Theoretical aspects. Tellus, 38A, 97-110. 718

Li, X. and M. Parashar, 2007: Hybrid Runtime Management of Space-Time Heterogeneity for 719

Parallel Structured Adaptive Applications. IEEE Transactions on Parallel and 720

Distributed Systems (TPDS), 18, 1202-1214. 721

Liu, H. and M. Xue, 2006: Retrieval of moisture from slant-path water vapor observations of a 722

hypothetical GPS network using a three-dimensional variational scheme with anisotropic 723

background error. Mon. Wea. Rev., 134, 933–949. 724

 31

Michalakes, J., J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Skamarock, and W. Wang, 2004: 725

The Weather Research and Forecast Model: Software Architecture and Performance. . 726

Proceedings, 11th ECMWF Workshop on the Use of High Performance Computing In 727

Meteorology, Reading U.K. 728

Milbrandt, J. A. and M. K. Yau, 2005: A multi-moment bulk microphysics parameterization. Part 729

I: Aanlysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051-3064. 730

Parashar, M., X. Li, and S. Chandra, 2008: Advanced Computational Infrastructure for Parallel 731

and Distributed Adaptive Applications. Vol. To appear, John Wiley & Sons. 732

Ray, P. S., B. Johnson, K. W. Johnson, J. S. Bradberry, J. J. Stephens, K. K. Wagner, R. B. 733

Wilhelmson, and J. B. Klemp, 1981: The morphology of severe tornadic storms on 20 734

May 1977. J. Atmos. Sci., 38, 1643-1663. 735

Sakov, P., G. Evensen, and L. Bertino, 2010: Asynchronous data assimilation with the EnKF. 736

Tellus, 62, 24-29. 737

Sathye, A., M. Xue, G. Bassett, and K. K. Droegemeier, 1997: Parallel weather modeling with 738

the Advanced Regional Prediction System. Parallel Computing, 23, 2243-2256. 739

Snook, N., M. Xue, and J. Jung, 2011: Analysis of a tornadic meoscale convective vortex based 740

on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. 741

Wea. Rev., 139, 3446-3468. 742

Snyder, C. and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an 743

ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677. 744

Sun, J. and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar 745

observations using a cloud model and its adjoint. Part I: Model development and 746

simulated data experiments. J. Atmos. Sci., 54, 1642-1661. 747

 32

Szunyogh, I., E. J. Kostelich, G. Gyarmati, E. Kalnay, B. R. Hunt, E. Ott, and E. Satterfield, 748

2008: A local ensemble tranform Kalman filter data assimilation system for the NCEP 749

global model. Tellus, 60A, 113-130. 750

Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble 751

square root filters. Mon. Wea. Rev., 131, 1485-1490. 752

Tong, M. and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a 753

compressible nonhydrostatic model: OSS Experiments. Mon. Wea. Rev., 133, 1789-1807. 754

Tong, M. and M. Xue, 2008: Simultaneous estimation of microphysical parameters and 755

atmospheric state with radar data and ensemble square-root Kalman filter. Part II: 756

Parameter estimation experiments. Mon. Wea. Rev., 136, 1649–1668. 757

Wang, S., M. Xue, and J. Min, 2013: A four-dimensional asynchronous ensemble square-root 758

filter (4DEnSRF) and tests with simulated radar data. Tellus, In press. 759

Whitaker, J. S. and T. M. Hamill, 2002: Ensemble data assimilation without perturbed 760

observations. Mon. Wea. Rev., 130, 1913-1924. 761

Wu, B., J. Verlinde, and J. Sun, 2000: Dynamical and microphysical retrievals from Doppler 762

radar observations of a deep convective cloud. J. Atmos. Sci., 57, 262-283. 763

Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System 764

(ARPS) - A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part I: 765

Model dynamics and verification. Meteor. Atmos. Phy., 75, 161-193. 766

Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble 767

square-root Kalman filter for evaluating impact of data from radar networks on 768

thunderstorm analysis and forecast. J. Atmos. Ocean Tech., 23, 46–66. 769

 33

Xue, M., K. K. Droegemeier, and D. Weber, 2007: Numerical prediction of high-impact local 770

weather: A driver for petascale computing. Petascale Computing: Algorithms and 771

Applications, Taylor & Francis Group, LLC, 103-124. 772

Xue, M., M. Tong, and G. Zhang, 2009: Simultaneous state estimation and attenuation correction 773

for thunderstorms with radar data using an ensemble Kalman filter: Tests with simulated 774

data. Q. J. Roy. Meteor. Soc., 135, 1409-1423. 775

Xue, M., Y. Jung, and G. Zhang, 2010: State estimation of convective storms with a two-moment 776

microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar 777

data Q. J. Roy. Meteor. Soc, 136, 685-700. 778

Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced 779

Regional Prediction System (ARPS), storm-scale numerical weather prediction and data 780

assimilation. Meteor. Atmos. Phy., 82, 139-170. 781

Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and 782

D. Wang, 2001: The Advanced Regional Prediction System (ARPS) - A multi-scale 783

nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and 784

applications. Meteor. Atmos. Phys., 76, 143-165. 785

Xue, M., K. Brewster, K. K. Droegemeier, V. Wong, D. H. Wang, F. Carr, A. Shapiro, L. M. 786

Zhao, S. Weygandt, D. Andra, and P. Janish, 1996: The 1996 CAPS spring operational 787

forecasting period: Realtime storm-scale NWP, Part II: Operational summary and 788

examples. Preprint, 11th Conf. Num. Wea. Pred., Norfolk, VA, Amer. Meteor. Soc., 297-789

300. 790

Xue, M., F. Kong, K. W. Thomas, Y. Wang, K. Brewster, J. Gao, X. Wang, S. J. Weiss, A. J. 791

Clark, J. S. Kain, M. C. Coniglio, J. Du, T. L. Jensen, and Y. H. Kuo, 2011: CAPS 792

 34

Realtime Storm Scale Ensemble and High Resolution Forecasts for the NOAA 793

Hazardous Weather Testbed 2010 Spring Experiment. 24th Conf. Wea. Forecasting/20th 794

Conf. Num. Wea. Pred., Amer. Meteor. Soc., Paper 9A.2. 795

Zhang, S., M. J. Harrison, A. T. Wittenberg, A. Rosati, J. L. Anderson, and V. Balaji, 2005: 796

Initialization of an ENSO forecast system using a parallelized ensemble filter. Mon. Wea. 797

Rev., 133, 3176-3201. 798

 799

800

 35

List of Figures 801

Fig. 1. A schematic of the domain decomposition strategy for the analysis of high-density 802

observations, illustrated with 4 processing units (PUs, denoted by P1 through P4). Letters i-l 803

denote observations that are assumed to be equally spaced and letters a-h indicate the 804

influence limits (as determined by the covariance localization radii of EnKF) of those 805

observations. In this example, observations i and l are far enough apart that they will not 806

influence any of the same state variables; they are among the observations that are analyzed 807

simultaneously in the first step of the procedure. Observations j and k are analyzed in the 808

second step, but they must be analyzed sequentially. Note that in practice, there will be 809

many more observations within patches S1 and S2 of subdomains P1 to P4 than shown in 810

the figure. 811

Fig. 2. A schematic for analyzing conventional data. Three steps are involved when analyzing 812

one observation whose location is denoted by a black dot in the figure: 1) PU14 computes 813

H(xi) (where i is the ensemble index); 2) H(xi) are broadcasted to all PUs; 3) state variables 814

xi within the influence range of this observation (within the large circle) are updated in 815

parallel by the PUs that carry the state variables. 816

Fig. 3. Composite radar data batches organized such that within each batch, no more than one 817

column of data exists for each grid column. (a) Observations from six radars (A-F) with 818

their coverage indicated by the maximum range circles are remapped onto the model grid. 819

(b) Observations of the first batch, (c) observations of the second batch, and (d) 820

observations of the third batch. If there are more observations unaccounted for, additional 821

data batch(es) will be formed. 822

 36

Fig. 4. RMS errors averaged over the grid points where truth reflectivity is greater than 10 dBZ 823

and normalized by the errors of experiment OMP_F. The state variables are the 16 ARPS 824

prognostic variables: three velocity components (u, v, and w), potential temperature (pt), 825

pressure (p), mixing ratios of water vapor (qv), cloud water (qc), rain water (qr), cloud ice 826

(qi), snow aggregate (qs), hail (qh) and their respective number concentrations (Ntc, Ntr, Nti, 827

Nts, and Nth, associated with a two-moment microphysics scheme used). 828

Fig. 5. (a) The observed radar reflectivity mosaic and (b) the reflectivity field analyzed by the 829

parallel EnKF algorithm, at model grid level 20 at 1800 UTC 10 May 2010. 830

Fig. 6. The model domain and coverage of 35 WSR-88D radars with 230 km range rings for the 831

10 May 2010 real data test case. 832

Fig. 7. Wall clock times of the EnKF analyses as a function of the total number of compute cores 833

used, for the 10 May 2010 real data case in the analysis domain shown in Fig. 6, obtained 834

on the PSC Blacklight (an SGI UV 1000). OMP denotes pure OpenMP runs, MPI denotes 835

pure MPI runs, and H_o4, H_o8, and H_o16 denote hybrid runs with 4, 8, and 16 OpenMP 836

threads within each MPI process, respectively. In all cases, all cores on the compute nodes 837

were fully utilized, either by individual MPI processes or by OMP threats. Solid lines 838

denote the total time excluding message passing, and the dashed lines show the total times 839

including message passing. Data I/O times are excluded from all statistics. 840

 841

 37

 842

Table 1. Timing comparisons of OpenMP experiments with MPI experiments on 843

one compute node. Speedup for OpenMP and MPI experiments are computed 844

relative to o1 and m01×01, respectively. 845

 846

Experiment
Total number

of cores used
Wall Clock Time (s) Speedup

o1 1 6310 1.00

o2 2 3617 1.75

o4 4 2597 2.43

o6 6 1919 3.29

o8 8 1597 3.95

o12 12 1607 3.93

m01×01 1 6815 1.00

m01×02 2 3994 1.71

m02×01 2 5698 1.20

m01×04 4 2660 2.56

m02×02 4 3690 1.85

m04×01 4 2896 2.35

m03×02 6 4177 1.63

m02×04 8 2100 3.25

m04×02 8 2413 2.82

 847

 848

849

 38

Table 2. Timing comparisons of pure MPI experiments with hybrid MPI/OpenMP experiments 850

on 4 compute nodes. Speedup is computed relative to experiment m01×01 (6815 seconds in 851

Table 1). 852

 853

Experiment
Total number of

cores used
Wall Clock Time (s) Speedup

m01×04_01

4

2343 2.91

m02×02_01 3577 1.91

m04×01_01 2750 2.48

m02×04_02
8

2169 3.14

m04×02_02 2330 2.92

m03×04_03
12

1575 4.33

m06×02_03 1699 4.01

m04×04_04 16 1327 5.14

m02×10_05

20

915 7.45

m10×02_05 1357 5.02

m04×05_05 1082 6.30

m05×04_05 1085 6.28

m03×08_06
24

880 7.74

m06×04_06 1049 6.50

m04×10_10
40

637 10.70

m10×04_10 720 9.47

m06×08_12 48 606 11.25

h01×04_01o2 8 1471 4.63

h01×04_01o4 16 1129 6.04

h01×04_01o6 24 831 8.20

h01×04_01o8 32 772 8.83

h01×04_01o12 48 733 9.30

h02×04_02o2 16 1200 5.68

h02×04_02o4 32 908 7.51

h02×04_02o6 48 709 9.61

 854

 855

 39

Table 3. Comparison of the minimum time taken in hybrid mode with that in MPI mode using 856

the same number of cores on 4 compute nodes 857

 858

Number of

cores
Hybrid case

Minimum

time (s)
MPI case

Minimum

time (s)

Difference

(s)

8 h01×04_01o2 1471 m02×04_02 2169 698

16 h01×04_01o4 1129 m04×04_04 1327 198

24 h01×04_01o6 831 m03×08_06 880 49

40 h02×10_05o2 635 m04×10_10 637 2

48 h03×08_06o2 604 m06×08_12 606 2

 859

860

 40

Table 4. The names and configurations of real data experiments. 861

 862

Experiment

Number of

PUs in x

direction

Number of

PUs in y

direction

Number of

threads per PU

Total number

of Cores used

OpenMP

o16 16 16

o32 32 32

o64 64 64

o80 80 80

o160 160 160

MPI

m16 1 16 16

m32 2 16 32

m64 3 16 64

m80 5 16 80

m160 10 16 160

Hybrid

Group 1

h4o4 1 4

4

16

h8o4 1 8 32

h16o4 2 8 64

h20o4 2 10 80

h40o4 4 10 160

Hybrid

Group 2

h2o8 1 2

8

16

h4o8 1 4 32

h8o8 1 8 64

h10o8 2 5 80

h20o8 4 5 160

Hybrid

Group 3

h2o16 1 2

16

32

h4o16 1 4 64

h5o16 1 5 80

h10o16 2 5 160

 863

 864

 41

 865

Fig. 1. A schematic of the domain decomposition strategy for the analysis of high-866

density observations, illustrated with 4 processing units (PUs, denoted by P1 867

through P4). Letters i-l denote observations that are assumed to be equally spaced 868

and letters a-h indicate the influence limits (as determined by the covariance 869

localization radii of EnKF) of those observations. In this example, observations i 870

and l are far enough apart that they will not influence any of the same state 871

variables; they are among the observations that are analyzed simultaneously in the 872

first step of the procedure. Observations j and k are analyzed in the second step, 873

but they must be analyzed sequentially. Note that in practice, there will be many 874

more observations within patches S1 and S2 of subdomains P1 to P4 than shown 875

in the figure. 876

 42

 877

Fig. 2. A schematic for analyzing conventional data. Three steps are involved 878

when analyzing one observation whose location is denoted by a black dot in the 879

figure: 1) PU14 computes H(xi) (where i is the ensemble index); 2) H(xi) are 880

broadcasted to all PUs; 3) state variables xi within the influence range of this 881

observation (within the large circle) are updated in parallel by the PUs that carry 882

the state variables. 883

H(x
i
)

PU0 PU1 PU2 PU3 PU4 PU5

PU6 PU7 PU8 PU9 PU10 PU11

PU12 PU13 PU14 PU15 PU16 PU17

PU18 PU19 PU20 PU21 PU22 PU23

PU24 PU25 PU26 PU27 PU28 PU29

PU30 PU31 PU32 PU33 PU34 PU35

 43

 884

Fig. 3. Composite radar data batches organized such that within each batch, no 885

more than one column of data exists for each grid column. (a) Observations from 886

six radars (A-F) with their coverage indicated by the maximum range circles are 887

remapped onto the model grid. (b) Observations of the first batch, (c) observations 888

of the second batch, and (d) observations of the third batch. If there are more 889

observations unaccounted for, additional data batch(es) will be formed. 890

 891

 892

 44

 893

Fig. 4. RMS errors averaged over the grid points where truth reflectivity is greater 894

than 10 dBZ and normalized by the errors of experiment OMP_F. The state 895

variables are the 16 ARPS prognostic variables: three velocity components (u, v, 896

and w), potential temperature (pt), pressure (p), mixing ratios of water vapor (qv), 897

cloud water (qc), rain water (qr), cloud ice (qi), snow aggregate (qs), hail (qh) and 898

their respective number concentrations (Ntc, Ntr, Nti, Nts, and Nth, associated with a 899

two-moment microphysics scheme used). 900

 901

u v w pt p qv qc qr qi qs qh Ntc Ntr Nti Nts Nth

0.95

1

1.05

1.1

1.15

1.2

1.25
N

o
rm

al
iz

ed
 R

M
S

 e
rr

o
s

State variables

MPI

OMP_B

 45

 902

 903

Fig. 5. (a) The observed radar reflectivity mosaic and (b) the reflectivity field 904

analyzed by the parallel EnKF algorithm, at model grid level 20 at 1800 UTC 10 905

May 2010. 906

 907

 908

 46

 909

Fig. 6. The model domain and coverage of 35 WSR-88D radars with 230 km 910

range rings for the 10 May 2010 real data test case. 911

 912

 47

 913

Fig. 7. Wall clock times of the EnKF analyses as a function of the total number of 914

compute cores used, for the 10 May 2010 real data case in the analysis domain 915

shown in Fig. 6, obtained on the PSC Blacklight (an SGI UV 1000). OMP denotes 916

pure OpenMP runs, MPI denotes pure MPI runs, and H_o4, H_o8, and H_o16 917

denote hybrid runs with 4, 8, and 16 OpenMP threads within each MPI process, 918

respectively. In all cases, all cores on the compute nodes were fully utilized, either 919

by individual MPI processes or by OMP threats. Solid lines denote the total time 920

excluding message passing, and the dashed lines show the total times including 921

message passing. Data I/O times are excluded from all statistics. 922

0.00

500.00

1,000.00

1,500.00

2,000.00

2,500.00

16 32 64 80 160

W
al

l c
lo

ck
 t

im
e

 (
se

c)

Number of compute cores on Blacklight

Best Scenario Performance OMP

MPI

H_o4

H_o8

H_o16

MPI+Msg

H_o4+Msg

H_o8+Msg

H_o16+Msg

