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An iterative procedure is designed to accelerate the ‘spin-up’ of ensemble square-root
filter (EnSRF) data-assimilation cycles when starting from a poor initial ensemble.
Referred to as the iterative EnSRF (iEnSRF), this iterative procedure follows the
‘running in place’ (RIP) concept developed for the local ensemble transform Kalman
filter (LETKF) but because of algorithm differences is implemented differently. The
iEnSRF is a three-step procedure: first, a backward EnSRF analysis is performed that
updates the ensemble model states at an earlier time. Second, an ensemble of forecasts
is run from these updated model states to the analysis time. These two steps are then
repeated a prespecified number of times. The backward analysis is performed via
an asynchronous ensemble Kalman filter (EnKF), which is capable of assimilating
observations collected at times different than the analysis time. Like RIP, the iEnSRF
uses the same observations repeatedly during the initial assimilation cycles, allowing
for the extraction of additional information from observations when estimated
ensemble mean state and ensemble covariance are poor. The iEnSRF algorithm is
tested using simulated radar data for an idealized supercell storm. In experiments
with a perfect model and the correct storm environment, as well as in the presence of
model and environmental errors, the iEnSRF reduces the analysis error in the first
few cycles more quickly than the regular EnSRF, leading to improved subsequent
short-range forecasts. After the first few analysis cycles, continued use of iterations
does not lead to further improvement. The better performance of the iEnSRF
appears to be the result of improved background error covariance estimation as
well as improved state estimation in the first few cycles, especially for correlations
between observed and unobserved variables. Through iterations, the iEnSRF is
also able to reach a steady level of state estimation error more quickly than the
corresponding non-iterated version.
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1. Introduction

The ability of an ensemble Kalman filter (EnKF) (Evensen,
1994, 2003) to initialize convective storms from simulated
Doppler radar radial velocity data was first demonstrated
by Snyder and Zhang (2003) and Zhang et al. (2004)
within an anelastic cloud model with simplified warm rain
microphysics. Subsequent studies by Tong and Xue (2005)
and Xue et al. (2006) demonstrated the capability of an EnKF
to assimilate radar radial velocity as well as reflectivity data
into a compressible model with complex ice microphysics.
More recent studies have found that the ability to handle the
complex nonlinear physics important for convective storms
is an advantage that the EnKF method has over other data
assimilation procedures (Jung et al., 2008; Xue et al., 2010;
Snook et al., 2011).

The EnKF is based on Monte Carlo sampling in which an
ensemble is used to sample the model state uncertainty and
to evolve the model state error covariance (Evensen, 1994).
An optimal analysis can be obtained only if two independent
requirements are satisfied: (i) the ensemble mean is close
enough to the truth and (ii) the ensemble perturbations are
representative of the true error characteristics (Kalnay and
Yang, 2010).

For convective storms, Doppler weather radar is generally
the only observation platform capable of providing detailed
observations of the wind and precipitation structures within
the storms. Due to sensitivity limitations, Doppler radar data
are usually available only after precipitation-sized particles
form, posing a challenge for the initialization of rapidly
developing storms, especially for cycled data-assimilation
(DA) methods that require the assimilation of many volume
scans of radar data before a reasonably accurate estimate of
the state of the atmosphere can be obtained.

The EnKF DA cycles for convective storms typically start
from a first-guess field that contains information only about
the broader-scale storm environment. Observing system
simulation experiment (OSSE) studies have shown that it
typically takes more than 10 assimilation cycles to obtain
accurate analyses of convective storms when assimilating
Doppler radar data via an EnKF (Caya et al., 2005; Xue
et al., 2006; Yussouf and Stensrud, 2010). Caya et al. (2005)
showed that because of the iterative nature of a four-
dimensional variational (4D-Var) method, 4D-Var is able
to establish a reasonably accurate analysis of a convective
storm by assimilating only one to two radar volume scans.
EnKF takes substantially longer to achieve this level accuracy,
but is able to a produce a more accurate analysis than 4D-
Var after several additional assimilation cycles. With the
standard precipitation-mode volume scan interval of about
5 min for the operational WSR-88D weather radars of the
U.S., Xue et al. (2006) showed that it took about 50 min
for an EnKF to establish a well-defined storm, which was
confirmed by Yussouf and Stensrud (2010). However, given
a rapidly developing severe storm, as noted in Kalnay and
Yang (2010), such a spin up time is likely to result in the
EnKF analysis being less useful for severe storm forecast
than 4D-Var (Caya et al., 2005).

The desire to accelerate the ‘convergence’ (i.e., reduce
the ‘spin up time’) of EnKF DA cycles, so that reasonably
accurate state and covariance estimations can be established
more rapidly, motivated the development of an iterative
procedure called ‘running in place (RIP)’ by Kalnay and Yang
(2010), in a local ensemble transform Kalman filter (LETKF)

(Hunt et al., 2007) framework. RIP is a three-step procedure:
(i) a ‘no-cost’ ensemble Kalman smoother (EnKS) (Kalnay
et al., 2007; Yang et al., 2009) is used to go backward in time
within an assimilation cycle to improve the background
state at the previous time; (ii) an advance with the standard
LETKF procedure from the updated background; and (iii) a
repeat of steps (i) and (ii) until a desired state is reached.
Because it is based on the LETKF algorithm, the ‘no-cost’
EnKS uses LETKF weights obtained with observations at the
later time to update ensemble states at the earlier time, hence
improving both the state and covariance at the earlier time
and allowing for the repetitive use of the observations within
an assimilation cycle. Kalnay and Yang (2010) found that
within an idealized global primitive equation model the RIP
procedure improves the quality of the initial ensemble mean
and background error covariance, so that fewer cycles are
required for the filter to approach its optimal analysis. This
result is especially true when initial ensemble perturbations
are Gaussian noise and/or when the initial ensemble mean
is far from the truth. The latter situation is often realized
in thunderstorm initialization. Yang et al. (2012a) further
studied the impact of RIP on nonlinearity and non-Gaussian
noise with the Lorenz 63 model (Lorenz, 1963) and pointed
out that RIP can significantly improve the analysis accuracy
even in the presence of high nonlinearity.

Most recently, RIP has been applied to a typhoon case
within OSSEs (Yang et al., 2012b) based on the Weather
Research and Forecast (WRF) model with an LETKF
assimilation system, and RIP was able to accelerate the spin-
up of dynamic structures of a typhoon. However, for radar,
radial velocity and reflectivity observations are not model
state variables. The impact of RIP with indirect observations
or with storm-scale DA has yet to be examined. Testing the
RIP idea for storm-scale radar DA is the main purpose of
this article.

To date, almost all storm-scale radar DA studies have used
either the ensemble square root filter (EnSRF) (Whitaker
and Hamill, 2002) algorithm or the original EnKF algorithm
with perturbed observations (Tong and Xue, 2005); they are
serial algorithms that process observations one at a time,
whereas the LETKF algorithm when RIP is applied is an
algorithm that processes all observations (within the local
domain) simultaneously. To apply the RIP concept to the
serial EnSRF algorithm, we have developed a new procedure
called iterative EnSRF (iEnSRF).

As an initial evaluation of the iEnSRF, we perform
a set of OSSEs with simulated radar observations for
a supercell storm. The OSSEs are conducted first for a
perfect model experiment with no storm environment
error and then in the presence of prediction-model and
storm-environment errors. Environment error is generated
by adding perturbations to the environmental sounding
and model error is simulated by using different physical
parametrization schemes in the ensemble forecasts. The
benefits of the iEnSRF as compared to the regular EnSRF are
assessed for these different situations.

The remainder of this article is organized as follows. In
section 2, the iEnSRF algorithm is described and contrasted
with RIP. Section 3 provides the configurations of the
prediction model and data assimilation, and describes the
simulation of radar observations and the design of OSSEs.
The results of the OSSEs are discussed in section 4 and a
summary is given in section 5.

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 1888–1903 (2013)



1890 S. Wang et al.

2. The EnSRF and iEnSRF algorithms

2.1. The EnSRF algorithm

We first give a brief summary of the standard EnSRF
algorithm on which the iEnSRF is based. Following Whitaker
and Hamill (2002), the serial EnSRF algorithm analyzes
uncorrelated observations one after another. Therefore,
the observation error covariance R and background error
covariance mapped to the observation space, HPbHT, reduce
to scalars. The analysis equations for updating the ensemble
mean model state x and the ith ensemble deviation from the
mean, x′

i, are,

xa = xb + K(yo
j − H(xb)), (1)

x′a
i = x′b

i − αK[H(xb
i ) − H(xb)], (2)

where
K = PbPT(HPbHT + R)−1, (3)

is the Kalman gain matrix, Pb is the background error
covariance, H represents the observation operator mapping
variables from model state space to observation space, and
H is a linearized version of H. Here, superscripts a, b,
and o denote the analysis, background and observation,
respectively. Subscripts i and j denote the ith ensemble
member and the jth observation, respectively. In Eq. (2),

α = [1 +
√

R(HPbHT + R)−1]−1 (4)

is a coefficient derived by Whitaker and Hamill (2002) for
the EnSRF algorithm. Equation (4) is valid only for single
observation analysis and therefore both the numerator
and denominator inside the square root are scalars. The
background error covariance terms in K are estimated using
the ensemble members, according to

PbHT = 1

N − 1

N∑
i=1

(xb
i − xb)[H(xb

i ) − H(xb)]T , (5)

HPbHT = 1

N − 1

N∑
i=1

[H(xb
i − H(xb)][H(xb

i − H(xb)]T,

(6)
where N is the ensemble size. For each observation, PbHT is
a vector and HPbHT is a scalar. Observations are analyzed
by using Eq. (1) and Eq. (2) sequentially, one after the
other. After all observations at a given time are analyzed, an
ensemble of forecasts proceeds from the analysis ensemble
until new observations are available; the analysis cycles are
then repeated.

2.2. The iEnSRF algorithm

As mentioned earlier, our iterative EnSRF procedure follows
the RIP concept and also involves three steps in each analysis
cycle, but its implementation differs from that of RIP due
to differences between the LETKF and EnSRF algorithms on
which they are based. This is particularly true for the first step
where an earlier state is updated using later observations.
This subsection describes the details of the iEnSRF while
pointing out its differences to RIP.

In LETKF, the final ensemble analyses are obtained as
linear combinations of the background ensemble forecasts,
using transformation weights determined by the LETKF
algorithm (Hunt et al., 2007). In the first step of RIP (Kalnay
and Yang, 2010), the ‘weights’ obtained at the current time,
tn, are used to transform the ensemble forecasts at a previous
time, tn−1, into updated states or ensemble analyses valid
at tn−1. This procedure is referred to as ‘no-cost’ EnKS
(Kalnay et al., 2007; Yang et al., 2009). An EnSRF has no
such weights, at least not explicitly, thus requiring a different
procedure to update the previous time.

Specifically, in the EnSRF, an asynchronous implemen-
tation can be done so that observations at the current time
can be used to update states at an earlier time. An algorithm
to implement such asynchronicity was developed by Sakov
et al. (2010) and can be applied to different variants of EnKF.
However, due to the serial nature of the EnSRF, the imple-
mentation of the asynchronous algorithm has additional
complications. In a typical asynchronous algorithm, obser-
vation priors computed at tn, the time of observations, are
used to update the model state at tn−1. This usually requires
the precalculation and simultaneous use of all observation
priors, as described in Sakov et al. (2010); this is not possible
for the serial EnSRF.

To address this complication, we treat the state vector X
at tn−1 as an extension of the state vector at tn and form
an extended stated vector (xT

tn
, xT

tn−1
)T. This extended state

vector is treated like a regular vector in the EnSRF, and both
state vectors are updated by the filter simultaneously. It is
then straightforward to apply the asynchronous algorithm.
This is similar to the joint state-observation vector used
by Anderson (2001). Through this new vector, the update
of observation priors at tn follows the standard EnSRF
algorithm and it is possible to analyze the model state at tn−1

from observations available at tn. Here, the update of state at
tn−1 by data available at tn is achieved through asynchronous
covariance, which involves model state samples distributed
in time. The asynchronous covariance for updating the
model state at tn−1 using observations tn are

Pb
tn−1

HT = 1

N − 1

N∑
i=1

(xb
i,tn−1

− xb
tn−1

)[H(xb
i,tn

) − H(xb
tn

)]T,

(7)

HPb
tn

HT = 1

N − 1

N∑
i=1

[H(xb
i,tn

) − H(xb
tn

)][H(xb
i,tn

)

−H(xb
tn

)]T, (8)

where Pb
tn−1

HT is the covariance between model states at

tn−1 and observation priors at tn, HPb
tn

HT is the same as
that in Eq. (6) because the observations used to update xtn−1

are valid at tn. Therefore, the Kalman gain matrix Ktn−1 for
updating model state xtn−1 is calculated according to

Ktn−1 = Pb
tn−1

HT(HPb
tn

HT + R)−1. (9)

Then, the analysis equations for ensemble mean (xtn−1 ) and
ensemble deviations (x′

i,tn−1
) are, respectively,

xa
tn−1

= xb
tn−1

+ Ktn−1 (yo
j − H(xb

tn
)), (10)

x′a
i,tn−1

= x′b
i,tn−1

− αKtn−1 (H(xb
i,tn

) − H(xb
tn

)), (11)
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Figure 1. The flow chart for the EnSRF and iEnSRF procedures in each
cycle, where t∗n−1 is an arbitrarily intermediate time between tn−1 and tn.

Through Eqs (10) and (11), the model states at tn−1 can be
updated by observations taken at tn. Because Eqs (10) and
(11) are similar to Eqs (1) and (2), except for the Kalman
gain, it is easy to implement within an existing EnSRF
framework. Once the ensemble states at tn−1 are updated,
ensemble forecasts from tn−1 are produced to arrive at new
forecast states at tn and such new forecast states are used
in the next iteration of asynchronous filter updating. The
iterations are repeated in a similar manner as in Kalnay and
Yang (2010). Because of the use of an updated state at tn−1,
the updated forecast states at tn should be improved over
that of the earlier iteration.

Our iEnSRF procedure is illustrated in Figure 1. It should
be pointed out that, as part of an extended state, xi,tn and
xi,tn−1 must be simultaneously updated (note that in the
figure, model states at t∗n−1 instead of tn−1 are updated,
this will be discussed later in this section). It is noted that
only the updated xi,tn in the final iteration are carried into
the next assimilation cycle, while those in the intermediate
iterations are needed only for calculating covariance for
the next observation. Obviously, this is computationally
inefficient. A possible solution to this problem follows the
scalable implementation of an ensemble filter proposed
by Anderson and Collins (2007), which precalculates and
updates observation priors as part of an extended state. By
updating the observation priors at tn instead of the full
state, the number of calculations can be greatly reduced;
xi,tn will then need to be updated only in the final iteration.

This approach is equivalent to state updating only when
the observation operator is linear. In practice, differences
due to such an approximation are probably no larger than
other sources of uncertainty within a filter implementation
(Anderson and Collins, 2007). Although this approach is
attractive, computational efficiency is not the focus in
this proof of concept article, and we chose to keep the
implementation simple based on an existing EnSRF code.

Asynchronous algorithms are subject to temporal
sampling error, in addition to spatial sampling error. Similar
to the spatial sampling error, temporal sampling error can
cause erroneous correlations when the time interval between
samples is long. A temporal localization is introduced to
help minimize such effects. In this study, the fifth-order
correlation function (Gaspari and Cohn, 1999), typically
used for spatial localization, is employed for temporal
localization. Spatial and temporal localization are applied
simultaneously to all state variables. With the spatiotemporal
localization, analysis equations for updating ensemble mean
xtn−1 and ensemble deviations x′

i,tn−1 are modified from
those in (10) and (11),

xa
tn−1

= xb
tn−1

+ (ρtlρsl) ◦ Ktn−1 (yo
j − H(xb

tn
)), (12)

x′a
i,tn−1

= x′b
i,tn−1

− α(ρtlρsl) ◦ Ktn−1 (H(xb
i,tn

) − H(xb
tn

)),
(13)

where scalar ρtl is the temporal localization coefficient;
vector ρsl contains the spatial localization coefficients and ‘◦‘
represents the Schur (element-wise) product (Houtekamer
and Mitchell, 2001). Scalar ρtl is a function of the time
interval between tn−1 and tn while for vector ρsl the distance
between yo

j and model grid points can vary.
Another important consideration in our iterative

procedure is how to determine the time interval of iteration
between tn−1 and tn. According to Kalnay and Yang (2010),
RIP updates the state at tn−1 even though observations
are available at tn. They justified such a procedure on the
grounds that the EnKS updated ensemble at tn−1 is more
accurate than the analysis ensemble using data only at
tn−1 (Yang et al., 2009; Kalnay and Yang, 2010). However,
similar to what was pointed out by Yang et al. (2012b), in
our case, nonlinear growth of the perturbations becomes
larger in the case of a fast developing and splitting storm,
thus the linear assumption made in asynchronous EnKF that
perturbations linearly evolve within the assimilation window
may not be valid. This situation implies that updating the
model state using future data far away from the model
state in time may not yield the optimal analysis. In other
words, if observations are available at tn−1, they, instead
of observations valid at tn, are usually used to update the
state at tn−1. To allow later observations to update an
earlier state, in our implementation, iterations are carried
out between tn and t∗n−1, where t∗n−1 is an intermediate
time between tn−1 and tn when no observation is available.
The other consideration in using t∗n−1 rather than tn−1 is
to ensure that the observations at tn have impacts on the
model state at an earlier time; this means that this earlier
update time should be within the cut off radius of temporal
location; the asynchronous updating should occur within
the time localization window. A longer time interval of
iteration also costs more computationally because of the
longer, repetitive, ensemble forecasts involved; tuning of an
iterative procedure would probably need to balance analysis
quality and computational cost.
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Modifiied sounding

Truth sounding

Figure 2. The original (black) and modified (grey) environmental soundings used by the truth simulation, and by the error-containing observing system
simulation experiments, respectively. Solid and dashed lines are for temperature and dewpoint temperature, respectively. LCL:M indicates the lifting
condensation level of the modified sounding while LCL:T indicates the original lifting condensation level.

The total computational cost of the iEnSRF increases
linearly with the number of iterations. Assuming that the
computational costs of the EnSRF analysis and ensemble
forecast from t∗n−1 to tn are A and B respectively, the cost
for our current iEnSRF implementation with L iterations
is about L(2A + B). The computational cost of the EnSRF
analysis has a factor of two because the model states at
both t∗n−1 and tn have to be updated in the current iEnSRF
implementation. The cost of the EnSRF analyses can be
reduced by 50% by updating the observation priors instead
of the state vector, in a procedure similar to that of Anderson
and Collins (2007); then the model state at t∗n−1 is updated
in all except the final iteration, whereas the model state at tn

is updated only in the final iteration.
In addition, we note here the assumption that errors

in the observations and the newly updated background are
uncorrelated is no longer valid within the iterative procedure
due to the influence of the same observations on the analysis
states. Even so, because the quality of the initial background
ensemble is poor, the benefit of the iteration procedure in
improving the ensemble and hence the analysis apparently
out-weighs the potential negative impact of the assumption.

3. The observing system simulation experiments

3.1. The prediction model settings and truth simulation

The non-hydrostatic and fully compressible WRF Version
2.2.1 model is used to produce the truth simulation of
an idealized supercell storm and for the OSSEs. For all

experiments, the physical domain used is 60 km × 60 km ×
20 km. The model domain has a horizontal grid spacing
of 2 km and a vertical grid spacing of 0.5 km. The
truth simulation is initialized from the classic Weisman
and Klemp (1982) analytic sounding provided in the
WRF package (plotted in Figure 2 along with a modified
sounding to be discussed later). The convective available
potential energy (CAPE) of the sounding is about 2000 J
kg−1 with directional (clockwise) vertical wind shear that
favours right-moving cells following storm splitting (Klemp,
1987). The storm is triggered by an ellipsoidal thermal
bubble centred at x = 14, y = 28 and z = 1.5 km, with a
10 km horizontal radius and a 1.5 km vertical radius and
a 3 K maximum temperature perturbation. Other model
configurations include: a Runge–Kutta third-order time
integration scheme with a time-step of 12 s, WRF single-
moment six-class (WSM6) microphysics parametrization
scheme, and the Rapid Radiative Transfer Model (RRTM)
and Dudhia schemes for long- and short-wave radiation. No
cumulus parametrization is included. A 1.5-order turbulent
kinetic energy (TKE) closure scheme is used to parametrize
subgrid-scale turbulence and a positive definite scheme is
used for the advection of moisture and water variables. Open
conditions are used at the lateral boundaries. More details
with regard to schemes in the WRF Version 2 model are
described in Skamarock et al. (2005). The length of the truth
simulation is 90 min.

We now briefly describe the truth simulation. In this
article, all times are relative to the initial time (0 min) of the
truth simulation. At 40 min (Figure 3(a)), two updraft cores
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Figure 3. The graupel mix ratio (shaded), vertical velocity (contour at
interval of 4 m s−1) and horizontal wind (vector) at 5 km AGL for the
truth simulation at model times of (a) 40 min and (b) 90 min. The red dot
indicates the location of the initial thermal bubble.

are found at mid-levels, resulting from storm splitting. One
core is located in the southern part of the rear of storm with
the other located to the north. The southern cell (hereafter,
SC) is stronger than the northern cell (hereafter, NC). The
maximum updraft in the SC at this time reaches 25 m s−1

at 5 km above ground level (AGL). At 90 min (Figure 3(b)),
the SC is located in the southeastern portion of the model
domain, about 28 km from the position of initial thermal
bubble (shown with a red dot in Figure 3(b)). The maximum
updraft is greater than 30 m s−1 at 5 km AGL. Meanwhile,
in the northern part of the model domain, the region of
graupel associated with the NC becomes larger than that
with the SC even though its updraft is still weaker. Plots
at higher altitudes (not shown) feature a larger region of
hydrometeors for the SC, indicative of a deeper updraft for
the SC than the NC. Throughout the simulation period, the
storm top of the SC reaches about 15 km and its maximum
updraft reaches 40 m s−1. This classic splitting supercell
storm serves as the truth storm from which simulated radar
data will be created for OSSEs.

3.2. Simulation of radar observations

A simulated WSR-88D type of radar is placed at x = −22 km
and y = 78 km. This location is outside the model
domain and about 60 km to the northwest of the initial
thermal bubble. Following the recent OSSE articles of Xue
et al. (2006) and Yussouf and Stensrud (2010), the simulated
observations are sampled on radar elevations rather than at

model grid points (Snyder and Zhang, 2003; Tong and
Xue, 2005). Radar observations are simulated from model
variables interpolated to the model scalar points in the
horizontal direction and radar elevation in the vertical
direction, as is common practice (Crook et al., 2004). The
radar operates in the standard U.S. operational WSR-88D
radar precipitation scan mode (VCP 11), with 14 elevation
levels and 5 min volume scan intervals. Following Yussouf
and Stensrud (2010), the lower 12 sweeps of observations
are generated at a rate of three sweeps per minute and
the upper two sweeps are generated in the final minute
of each volume scan. To take into account measurement
and sampling error of radial velocity (Vr) and reflectivity
observations (Z), random errors of zero mean and standard
deviations of 2 m s−1 and 2 dBZ are added to Vr and Z,
respectively. The operator for Vr is

Vr = ug cos α sin β + vg cos α cos β + (wg − wt) sin α,
(14)

where ug, vg and wg are model-simulated velocities
interpolated from the staggered model grid points to the
observation location using tri-linear interpolation; wt is
the mean terminal fall speed of hydrometeors calculated
according to Tong and Xue (2008); α and β are the elevation
and azimuth angles of the radar beam, respectively. The
simulated reflectivity, Z (in dBZ) is calculated from the
mixing ratios of rainwater, snow and graupel using the
formulations of Tong and Xue (2005) and Xue et al. (2006).
The operator for Z satisfies the relationship

Z = 10 log10

(
Zr + Zs + Zh

1 mm6m−3

)
, (15)

where Zr, Zs and Zh are equivalent reflectivity factors for
rainwater, snow and graupel, respectively. Observations used
in the assimilation experiments are calculated from Eqs (14)
and (15) with added random errors. Radial velocity and
reflectivity are only assimilated where reflectivity exceeds
10 dBZ.

3.3. Data assimilation settings

Forty ensemble members are used in all experiments. Similar
to Tong and Xue (2005), ensemble forecasts begin 20 min
into the simulation when the storm cell first develops from
the thermal bubble. Random perturbations are added to a
first-guess state to create an ensemble of initial conditions.
These random perturbations have a Gaussian distribution
with zero mean and a standard deviation of 3 K for
perturbation potential temperature θ ′ (defined as total
potential temperature θ minus 300 K) and 0.5 g kg−1

for water vapour mixing ratio qv. The wind field is not
perturbed. This configuration works reasonably well because
wind perturbations can be induced effectively by thermal
perturbations, somewhat like the triggering of storm cells
by thermal bubbles. Perturbations are added at the grid
points only where reflectivity > 10 dBZ is observed within
2 km in order to avoid spurious convection outside the
observed area. After all the observations at an analysis time
are analyzed, the relaxation inflation method of Zhang
et al. (2004) is used to prevent ensemble underdispersion,
and the inflation is applied to model states at both t∗n−1 and
tn. Following Zhang et al. (2004), the formula for relaxation
inflation is

(xa
new)′ = (1 − γ )(xa)′ + γ (xb)′, (16)
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where γ is the weight of the background ensemble
perturbation and is set to 0.5 following Zhang et al. (2004).
This parameter is used at both t∗n−1 and tn. We applied
additional inflation every 5 min to further increase the
ensemble spread. This additional inflation is realized by
scaling the spread of θ to 2 K in the areas influenced by
observational data in the filter updating. This procedure has
an effect of increasing the spread of thermal variables and
limits added inflation to the areas impacted by observations;
it has a similar effect as the additive noise method of Dowell
and Wicker (2009) where temperature perturbations are
added only in areas of precipitation.

For spatial localization a fifth-order correlation function
(Gaspari and Cohn, 1999) is used. The horizontal radius
is set to 8 km and the vertical radius is 4 km. The model
variables updated by the DA system include the grid-point
values of wind components u, v, w, potential temperature
θ , perturbation geopotential φ, water vapour mixing ratio
qv, and mixing ratios of microphysical variables qr, qi, qs

and qg for rain, ice, snow and graupel. Both radial velocity
Vr and radar reflectivity Z are assimilated.

For the iEnSRF, the time interval between t∗n−1 and tn is
set to 4 min for the first analysis (at 25 min) and 3 min
for all subsequent analysis cycles. Using a longer interval for
the first analysis cycle allows for the development of flow-
dependent covariance structures, which can be beneficial
when starting from the poor initial ensemble. In RIP, the
number of iterations is automatically adjusted according to
a criterion based on the mean squares observation minus
forecast or the forecast innovation. A similar criterion is
not appropriate in our case, because none of the model
state variables are directly observed, and a good fit of the
model state to observations does not guarantee accurate
state estimation. We choose instead to set the number of
iterations to three for all analysis cycles with iterations, which
is consistent with the experience of Kalnay and Yang (2010).
In our iterative procedure, spatial covariance inflation and
localization configurations for updating the state at t∗n−1
are the same as those for updating state at tn. Temporal
localization is performed using a fifth-order correlation
function (Gaspari and Cohn, 1999). The cut-off radius of
the temporal localization is set to 6 min (slightly longer than
a radar volume scan time).

3.4. Design of the OSSE

As in many earlier OSSE studies with EnKF (e.g. Tong and
Xue, 2005; Zhang et al., 2006), we first examine the iEnSRF
with a perfect model and a storm environment defined
by the correct sounding. In this perfect model situation,
two experiments are performed. One is named EnSRF ne,
using the EnSRF, while the other is named iEnSRF ne,
using the iEnSRF. The ‘ne’ in the names indicates no model
or environmental error. Following Tong and Xue (2005)
and Xue et al. (2006) we perform analyses every 5 min,
from 25 min to 90 min for both experiments. Short-range
deterministic forecasts are launched from the ensemble
mean analyses at 40 min and 60 min, respectively. The
forecasts launched at 40 min are designed to determine the
impact of the iEnSRF on forecasts with a short assimilation
window, whereas the forecasts launched at 60 min examine
the impact of the iEnSRF after more data are assimilated
through additional cycles.

In a second set of experiments, both the EnSRF and the
iEnSRF are subject to a more realistic condition that includes
error in both the prediction model and storm environment.
Two experiments are again performed, the EnSRF e and
iEnSRF e, where ‘e’ refers to the fact that error is included in
the model and environmental sounding. As in the error-free
experiments, cycled analyses are performed from 25 min to
90 min at 5 min intervals and two deterministic forecasts
are launched from ensemble mean analyses at 40 min and
60 min. Similar to Zhang and Meng (2007) and Snook
et al. (2011), the model error or uncertainty is modelled by
using different physical parametrization schemes from those
used in the truth simulation. Specifically, the Smagorinsky
first-order closure scheme (SFOC) instead of the 1.5-
order TKE scheme is used for the subgrid-scale turbulence
parametrization; the Purdue Lin (Lin et al., 1983; Rutledge
and Hobbs, 1984) instead of the WSM6 scheme is used for
microphysics, and a second-order instead of a third-order
Runge–Kutta scheme is used for model time integration.
The environmental error is introduced by adjusting the
profile of the water vapour mixing ratio (qv) and lapse
rate of temperature of the sounding. A coefficient of 0.9 is
multiplied to the qv profile to represent an underestimate of
the environmental moisture. For temperature, the amplitude
of perturbation from the original profile mean is first reduced
by 10%, a constant is then added to the profile so that its
surface value remains unchanged. The adjusted sounding
is shown in Figure 2 (grey lines). The largest differences
in this modified sounding are the smaller value of CAPE,
higher lifting condensation level (LCL), and larger dew point
depression at the lower levels, indicating a less convectively
unstable environment.

The impact of DA using the iEnSRF is then examined in
terms of both analysis and forecast errors. In order to isolate
the effects of the difference in the initial condition, we use
the perfect model for the free-forecast period of both error-
free and error-containing experiments. The configurations
of the model and for all four experiments discussed
above are listed in Table 1, including the parametrization
schemes, assimilation window length, and the localization
and inflation configurations.

4. Results and discussion

The root-mean-square (RMS) errors of the analyzed model
state variables are used to quantify and compare the
performance of the iEnSRF and the standard EnSRF.
Following Tong and Xue (2005) and Xue et al. (2006),
the RMS errors are calculated against the truth at grid points
where the truth reflectivity is greater than 10 dBZ. The mass
field used for verification is the perturbation geopotential
height in metres. Meanwhile, for quantitative comparison
of the iEnSRF and EnSRF, we define the improvement
produced by the iEnSRF, Imp, as the percentage difference,

Imp = 100 × (eensrf − eiensrf )/eensrf ,

where e is the RMS error while the subscript denotes the
analysis scheme used. Note that a positive value of Imp
represents an improvement in the analysis of the iEnSRF.

4.1. Results with no model or environmental error

Figure 4 compares the RMS errors from the EnSRF ne and
iEnSRF ne. When used from 25 min to 90 min, iEnSRF
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Table 1. The model and data assimilation configurations of the observing system simulation experiments.

Parameters Experiment name

EnSRF ne iEnSRF ne EnSRF e iEnSRF e

Analysis scheme EnSRF iEnSRF EnSRF iEnSRF
Iteration interval time (min) N/A Cycle one: 4 N/A Cycle one: 4

Other cycles: 3 Other cycles: 3
Iteration number for each cycle N/A 3 N/A 3
Temporal localization (min) N/A 6 N/A 6
Parametrization schemes for analysis RK3/WSM6/TKE RK2/Lin/SFOC
Parametrization schemes for forecast RK3/WSM6/TKE
Environmental sounding Truth Truth Adjusted Adjusted
Spatial localization radius (km) Horizontal: 8

Vertical: 4
Inflation scheme/coefficient Relaxation/0.5
Additional inflation Rescaling spread to 2 K for θ

generally performs better than the regular EnSRF in the
first four to five cycles, but its errors gradually become
comparable with or even worse than those of the EnSRF
in later cycles. It can be seen in Figure 4 that the iEnSRF
reduces the initial background error for all variables except
qv more than the EnSRF does at the end of the first analysis
cycle at 25 min. Table 2 shows that the Imp for the three
wind components, u, v and w, is between 8.6% and 14.4%
at this time. For variables that are not related directly to
radial velocity, such as geopotential height φ and potential
temperature θ , the Imp is 34.4% and 14.6%, respectively.
For the hydrometeor variables, the Imp is somewhat less.
For qv, the Imp is −62% in the first cycle (Table 2). This
suggests that the ensemble covariances used to update the
moisture and microphysical variables are not reliable at the
end of the first cycle even with the iterations of the iEnSRF.

At 40 min, after four assimilation cycles, the errors in both
the EnSRF ne and iEnSRF ne are greatly reduced from their
initial levels. The analysis errors for the wind components
in the EnSRF e are about 2.5 m s−1, whereas those in
the iEnSRF e are reduced to about 2.0 m s−1 (Figure 4),
representing an Imp of more than 20% for u and v and
30% for w by the iEnSRF. Although the analysis error of
φ in the iEnSRF ne is not much smaller than that in the
EnSRF ne, the analysis error of θ in the former is about
31.16% smaller than that in the latter. Moreover, substantial
improvement can be seen for hydrometeor variables after
applying the iEnSRF for four cycles. The Imp for the analysis
error of qv is about 8.5%, whereas for qr, qs and qg Imp is
over 30%. These results suggest that the iterations improved
not only state estimation but also the covariance estimation;
the updating of the mass and temperature fields relies on
the cross-variable covariance when assimilating the radial
velocity and reflectivity observations.

However, the positive impact of the iterative procedure
did not last through the remainder of the assimilation cycles.
This is seen most clearly in the analysis and background
forecast errors of θ in the later cycles (Figure 4). From
75 through to 90 min, the errors of the iEnSRF are
noticeably larger. The same degradation is seen for the
wind components. This result agrees with Kalnay and Yang
(2010), who also found that performing additional iterations
after the filter reaches its asymptotic level could lead to larger
analysis errors. This is due to overfitting of the analysis to
observations, when the observations are used repeatedly after

reasonable state and covariance estimations have already
been established.

It is therefore recommended that the iterative procedure
is stopped after the DA system stabilizes, which can be at the
time when the change of the innovation falls below a specified
value (Kalnay and Yang, 2010). Through further tuning and
sensitivity experiments it may be possible to automatically
determine when this stabilization has occurred; the extra
iteration step should then be halted.

To further understand the filter behaviour, the ensemble
spread is examined, in the same region where the RMS error
is calculated. Figure 5 shows the forecast and analysis spreads
for different variables for the EnSRF ne and iEnSRF ne. It
can be seen that the ensemble spread is much smaller
than the RMS error for all variables except for θ and
qv at the beginning of assimilation in both experiments.
This is because only θ and qv are perturbed in the initial
ensemble. However, after about three cycles, the ensemble
spread becomes comparable to the RMS error for most
variables (c.f., Figure 4). The significant increase in the
analysis ensemble spread for θ is due to our additional
inflation that rescales its spread to 2 K after each analysis
cycle (or each iteration in the iEnSRF ne) if it is less than
2 K. This procedure actually causes overdispersion of the
ensemble in terms of the potential temperature, especially
with the analyses. The reason that the analysis spread is
sometimes slightly larger than 2 K is because the region used
for calculating the inflation differs slightly from that used
for calculating the RMS error. Overall, the spreads of other
variables are generally comparable to their RMSEs. We also
examined the consistency ratios (e.g. Dowell et al., 2004) in
observation space; they convey similar information on the
ensemble spread as Figures 4 and 5 and are therefore not
shown. In addition, it can be seen from Figure 5 that the
analysis ensemble spreads for u, v, w and φ in the iEnSRF ne
are larger than those in the EnSRF ne after three iterations in
the first cycle (25 min), even though the same observations
were used several times in the iEnSRF ne, indicating that our
inflation procedure is effective in maintaining the ensemble
spread. Starting from the third analysis cycle (35 min),
the analysis and forecast spreads in the iEnSRF ne become
smaller for most variables than those in the EnSRF ne and
are actually closer to the corresponding RMS errors shown
in Figure 4, giving a better consistency between the spread
and error.
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Figure 4. The evolution of RMS errors for experiments EnSRF ne (grey line) and iEnSRF ne (black line). Solid lines represent errors within the
assimilation window while dashed lines represent errors of deterministic forecasts launched from the ensemble mean analyses at 40 and 60 min.

Table 2. Percentage differences between RMS errors of the iEnSRF ne and EnSRF ne at 25, 40 and 90 min of model time. At 25 and 40 min, the errors
are for the analyses, while at 90 min they are for forecasts.

Time u v w φ θ qv qr qs qg

25 min 13.80 8.65 14.42 34.41 14.60 −62.00 16.11 4.65 4.57
40 min 22.87 26.53 32.82 −1.48 31.16 8.51 32.20 31.21 33.21

90minF40 27.32 34.63 27.02 31.29 18.35 25.40 19.56 28.40 39.15
90minF60 −4.44 −15.17 −19.50 −9.50 −6.47 −3.03 −30.02 −0.20 −8.16

Positive values mean that errors are smaller in the iEnSRF ne while negative ones mean errors are larger in the iEnSRF ne.
F40 represents forecast proceeding from 40 min while F60 represents forecast proceeding from 60 min.

Launching from the analyses at 40 min, the forecast
errors in the EnSRF ne (grey dashed lines in Figure 4)
increase rapidly and became about twice as large by 90 min
for most variables. In contrast, the forecast errors in the
iEnSRF ne (black dashed lines in Figure 4) grow more
slowly and remain substantially lower than those of the
EnSRF ne throughout the forecast period. For instance, the
improvement over the EnSRF is between 27 and 35% for
u, v and w at 90 min, while improvement for the other

variables is at least 18% (Table 2). This is true even for
variables that are not related directly to radial velocity
or reflectivity, such as φ, θ and qv. It is interesting to
note that even though the improvement to the analysis at
40 min is slightly negative for φ, the forecast error in φ

starting from this analysis is improved by close to 32%
by 90 min, due to a more accurate analysis of most other
state variables positively impacting the evolution of the
forecast.
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Figure 5. The forecast and analysis ensemble spread values for experiments EnSRF ne (grey line) and iEnSRF ne (black line). The spread values in the
iEnSRF ne are calculated for the final iteration of each cycle.

As mentioned earlier, we also launched deterministic
forecasts from ensemble mean analyses at 60 min. By
this time, both the EnSRF and iEnSRF had reached their
asymptotic error levels and the analysis errors of all variables
in the EnSRF ne were comparable with those in the
iEnSRF ne. It can be seen in Figure 4 that the forecast
error curves (dash lines) for these two experiments were
nearly identical after being launched at 60 min, indicating
that applying iterations after the filter reaches its asymptotic
error level (shortly after 40 min in this case) does not improve
the analysis and subsequent forecast. At 90 min, the forecast
errors for nearly all variables in the iEnSRF ne become
slightly larger than those in the EnSRF ne. Meanwhile, at
90 min, the error level of the forecast in the iEnSRF ne
starting from 40 min is comparable with that of the forecast
starting from 60 min. This suggests that applying the iEnSRF
effectively increases the forecast lead time by 20 min in the
current case; in other words, the assimilation window can be
20 min shorter to reach a similar quality of state estimation

for the current supercell storm, so that forecasts can be
issued 20 min earlier.

4.2. Results with model and environmental errors

A perfect prediction model and perfect environmental
conditions are not possible for real DA problems. In
this section we examine the results of the second set
of experiments; those that include prediction-model and
storm-environment errors. Figure 6 shows the RMS errors
from experiments EnSRF e and iEnSRF e. In this more
realistic scenario, the iEnSRF still produces more accurate
analyses than the EnSRF in the first several cycles. Similar to
the no error case, the RMS errors in the later cycles become
comparable to those of the EnSRF. Overall, the analysis
errors in the error-containing experiments are comparable
with the corresponding error-free experiments (compare
Figure 6 with Figure 4).
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Figure 6. The same as Figure 4, but for experiments EnSRF e (grey line) and iEnSRF e (black line).

As can be seen in Table 3, the iteration procedure in
the iEnSRF has positive impacts on the wind analysis at
the end of the first cycle but the relative improvement is
less than 10%, which is about 22–32% smaller than that in
no-error experiments. The Imp for φ and θ are also smaller,
achieving 22.66% and 8.52%, respectively, compared with
the 34% and 14% of the no-error case. Among water vapour
and hydrometeors, the iEnSRF produces smaller errors for
qr and qg but it produces a large degradation in qs verus
qv as in the no-error case. Similar to the no-error case,
this larger analysis error for qs here is probably due to
unreliable covariance associated with the microphysical
variables, and such a problem can be enlarged by use of
the wrong microphysical scheme.

By 40 min or after four assimilation cycles, the
improvements by the iEnSRF are again evident. At this
time, the improvements to u, v and w are between 28% and
44% and the improvement to φ is also substantial (21.47%).
The improvement to θ is smaller in the iEnSRF e than in

iEnSRF ne (4.87 vs 31.16%), which is believed to be related
to the error in the environment. The improvements to the
moisture and hydrometeor variables are clearly evident,
except for a small degradation in qs. On average, the
improvements to the hydrometeors are smaller than the
no-error case. Similar to the no-error case, the analysis
errors of the iEnSRF in later cycles become close to those of
the EnSRF analyses, again suggesting that further iterations
are unnecessary and may be undesirable after an asymptotic
error level is reached.

The ensemble spreads in these experiments with imperfect
conditions are also examined (not shown); the evolutions of
ensemble spread in the iEnSRF e and EnSRF e are similar to
their counterparts with perfect conditions. However, due to
the environmental error, the ensemble spreads for θ and qv

are actually smaller than their RMSEs, unlike the error-free
case.

When forecasts are launched at 40 min, the forecast errors
in the EnSRF e and iEnSRF e initially grow at similar rates
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Table 3. Percentage differences between RMS errors of the iEnSRF e and EnSRF e at 25, 40 and 90 min of model time. At 25 and 40 min, the errors are
for the analyses while at 90 min they are for forecasts.

u v w φ θ qv qr qs qg

25 min 9.07 5.33 8.50 22.66 8.52 −1.16 2.08 −86.79 4.53
40 min 28.63 32.79 44.26 21.47 4.87 9.12 13.09 −2.72 23.40

90minF40 14.39 15.75 12.71 13.36 5.81 9.05 13.55 16.16 19.04
90minF60 11.36 −0.73 12.64 −0.20 5.39 4.16 9.54 7.36 3.90

F40 represents forecast proceeding from 40 min while F60 represents forecast proceeding from 60 min.

as the corresponding no-error runs (compare Figure 6 with
Figure 4), but after 10–15 min the errors grow much faster,
reaching substantially higher levels by 90 min. These large
forecast errors can be attributed to errors in the storm
environment that cannot be easily corrected by the radar
data. Throughout the forecast period, the RMS errors of
the iEnSRF e remain lower than those of the EnSRF e for
most variables. For a few variables, for example, u, v and qs,
the Imp is larger than it was at 40 min, indicating that the
benefit of the iterative procedure, in this error-containing
case (as well as the error-free case, Figure 4), is retained or
even amplified for at least 50 min in the forecast period.

By 60 min, the analysis errors in both the EnSRF e and
iEnSRF e have levelled off and the differences between them,
although still identifiable, have become rather small. As a
result, forecasts launched from analyses at this time produce
similar forecast errors between the iEnSRF e and EnSRF e
(Figure 6), although those of the iEnSRF e are still slightly
smaller. Compared with the error-free case, it seems to be
beneficial to apply the iteration procedure for a couple more
cycles in the error-containing case, given that Imp is mostly
positive for 90minF60 in the error case (Table 3) whereas the
corresponding Imp in the error-free case is mostly negative
(Table 2). It is observed that the analysis errors for u and
w at 60 min are still clearly lower in the iEnSRF e than
those in EnSRF e, while the difference is already very small
between the iEnSRF ne and EnSRF ne by this time; further
iterations in the latter case would start to hurt. Overall, the
benefit of using the iterative procedure to reduce spin up
time in the iEnSRF is clear in both the error-free and the
error-containing experiments.

4.3. Error correlation structures, and analysis and forecast
fields

To help understand how the iterations produce the positive
impacts noted in the previous subsection, we examine the
background error correlation coefficients within the first
assimilation cycle of the EnSRF e and iEnSRF e (Figure 7).
The correlation between w and θ is first examined. A
positive correlation between w and θ perturbations due to
latent heat release within the updraft regions is physically
consistent with, and important for, deep moist convection.
In a vertical cross-section through the main updraft, one
sample point marked by a red triangle is selected, where
a hypothetical radial velocity (Vr) observation is assumed.
At this point, the estimated w is smaller than the truth in
both Figures 6(a) and 6(b). Therefore, if a Vr observation
from a nearby radar can correct w at the sampled point,
the increment of w at this point is expected to be positive.
Surrounding this point, the initial estimate of θ was also
smaller than the truth (Figure 7(a)), implying that a positive
correlation between θ and w around the point is necessary

in order for the assimilation of Vr to produce a positive θ

increment, thereby reducing its error through variable cross-
correlation. However, the correlation coefficients calculated
from the ensemble background forecasts in the EnSRF e
are negative within the red ellipse (a region within the
localization radius of the Vr observation) at this time
(Figure 7(a)). Therefore, using the covariance between θ

and the w component in radial wind prior to updating θ will
lead to a negative impact on the θ analysis. Conversely, in
Figure 7(b) for the iEnSRF, the correlations calculated from
the background ensemble forecasts after three iterations
are generally positive within the ellipse. This indicates that
the ensemble correctly captured positive error correlations
between θ and w after three iterations in the iEnSRF, but
not in the EnSRF.

Similar behaviour can be observed with the qg and w
fields. Near the hypothetical observation point (marked by
triangle), the forecast qg and w in both the EnSRF e and
iEnSRF e are smaller than the truth values (Figure 7(c)
and (d)). Within the ellipse, positive correlations between
qg and w can be correctly estimated from the forecast
ensembles in both the EnSRF e and iEnSRF e, but the
maximum correlation coefficient in the former is small,
reaching only 0.2, whereas in the latter, the value reaches
0.6. Given the larger correlation coefficient in the iEnSRF e,
the filter can produce a larger correction to qg through
the assimilation of Vr observations. In addition to the
magnitude of error correlation, its spatial distribution is
more reasonable in the iEnSRF e. The error maximum of
qg in iEnSRF e is located near the bottom boundary of the
ellipse, implying that the error correlation should be smaller
near the triangle but larger near the error maximum. This
tendency is well captured in the iEnSRF e. In the EnSRF e,
this spatial distribution is incorrectly estimated, with the
error correlation maximum located near the triangle.

To further explore the impact of the iteration procedure
on the analyzed storm, we examine the wind and qg fields
at 40 min, the time when we launch the first set of forecasts
(Figure 8). As mentioned in section 3.1, the storm in the
truth simulation begins to split into two cells (the NC and
SC mentioned in section 3.1) at 40 min. The differences
between the vertical profiles of analysis errors (not shown)
of the iEnSRF e and EnSRF e were found to be substantial
in the mid- and upper troposphere, especially for w and qg.
For example, at 5 km AGL, it is clear that there are two
updraft maxima in the truth simulation (Figure 8(a)). This
structure is captured in both the EnSRF e and iEnSRF e.
However, the updrafts and precipitation core are stronger
in the iEnSRF e (Figure 8c), closer to the truth, than in the
EnSRF e (Figure 8(b)). The updraft of the northern cell in
the EnSRF e is particularly weak. In the truth simulation,
the region of qg greater than 2 g kg−1extends to x = 45 km,
which is not well captured by the EnSRF e but better in the

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 1888–1903 (2013)



1900 S. Wang et al.

Figure 7. Vertical cross-sections of forecast errors, calculated as the ensemble mean minus the truth (shading for θ or qg and vertical vectors for vertical
velocity), and the correlation coefficients of forecast errors (contours at intervals of 0.2, with 0.2 correlation contours are in bold), at 25 min, the time of
first analysis, in an x–y plane at y = 30 km. The red ellipse is the 0.2 contour for the localization coefficient for the observation located at the red triangle.
For the iEnSRF e the forecasts are at the end of the third iteration. The upper panels show the forecast errors of θ (shaded) and w (vertical vectors) and
forecast error correlation coefficient between w at the point marked by the red triangle and θ at the grid point, for the EnSRF e (left) and iEnSRF e
(right). The lower panels are the same as the upper panels except θ is replaced by qg.

iEnSRF e. The absolute errors of w shown in red contours
clearly indicate much smaller errors in the iEnSRF e, where
the maximum error is about 4 m s−1 but that in the EnSRF e
reaches 12 m s−1. These findings are consistent with the fact
that the storm in the EnSRF e is spun up less well because of
the limited number of assimilation cycles without iterations.

Looking higher in the storm, at 10 km AGL, there
is an indication of cell splitting in the structure of the
updraft in the truth simulation (Figure 8(d)). In the
EnSRF e (Figure 8(e)), only a single updraft core is
identifiable, whereas the iEnSRF e produces an updraft
structure (Figure 8(f)) that is closer to the truth. Such visual
differences are consistent with the calculated absolute errors
of w in the iEnSRF e and EnSRF e; their maximum errors are
about 4 and 16 m s−1, respectively. These results again show
the benefit of iterations in accelerating the storm spin-up.

At the end of the 50 min forecast, the forecast errors of both
the iEnSRF e and EnSRF e have become large (Figure 6),
but the errors of the iEnSRF e are still smaller than those
of the EnSRF e (Table 3). To see the visual differences in
the forecasts, Figure 9 shows the forecast fields at 90 min
from the EnSRF e and iEnSRF e at 5 and 10 km AGL. At
this time, the strength of the storm in both the EnSRF e and
iEnSRF e is weaker than the truth simulation, especially in
terms of the graupel mixing ratio (qg). As suggested earlier,
the less unstable sounding that is used to define the storm
environment probably contributed to such forecast errors.
Nonetheless, the forecast storm in the iEnSRF e is somewhat
stronger than that in the EnSRF e. For example, at 5 km AGL,
the areal extent and maximum value of qg associated with
the SC are larger in the iEnSRF e than those in the EnSRF e.
We see similar trends at 10 km AGL, with a larger updraft
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Figure 8. The graupel mix ratio (shaded), vertical velocity (contoured at intervals of 4 m s−1) and horizontal wind vectors at 40 min for the truth
simulation (left), EnSRF analysis (middle) and iEnSRF e analysis (right), at 5 km (upper panels) and 10 km (lower panels) AGL. The red contours (at
intervals of 4 m s−1) in (b) (c) (e) and (f) are for the absolute w forecast errors.

and area of qg in the iEnSRF e than in EnSRF e. Comparison
with the truth simulation shows that the stronger and larger
updraft of the iEnSRF e is more accurate than that of
the EnSRF e. Therefore, the smaller error in the iEnSRF e
corresponds to a more accurate forecast of storm strength. In
Figure 9, the maximum absolute error of w in the EnSRF e
is about 10 m s−1 larger than that in the iEnSRF e, at
both the middle and upper levels. Overall, although the
relative improvement yielded by the iEnSRF in the presence
of both model and environment error is not as large as
that with perfect conditions, the benefits of the iteration
procedure in the iEnSRF short-range storm forecasting
through accelerated error reduction in the state estimation
are clear.

5. Summary and conclusions

An iterative procedure based on the EnSRF, which we refer
to as the iEnSRF, is designed with the goal of accelerating
the ‘spin-up’ of the ensemble Kalman filter state estimation.
The procedure is designed for use in those situations where
the first-guess ensemble has a poor mean state estimate
and poor ensemble error covariances. This procedure is
similar to the ‘running-in-place’ (RIP) procedure proposed
by Kalnay and Yang (2010), but differs substantially in
its implementation due to differences between the local
ensemble transform Kalman filter (LETKF) and the EnSRF
algorithms used in the respective systems. In the iEnSRF,
the background states at the analysis time and at an earlier

time are combined into a new extended state vector. Using
this extended vector the states at both times are updated by
the filter, through using the asynchronous ensemble Kalman
filter (Sakov et al., 2010). By launching ensemble forecasts
from the earlier updated states, and using the forecasts as
the new background ensemble in Kalman filter updating
in subsequent iterations within the same cycles, additional
information can be extracted from the observations to reach
a more accurate state estimate more rapidly.

Specifically, the iEnSRF contains three steps: first, a
backward EnSRF analysis is performed that updates the
ensemble model states at an earlier time. Second, an
ensemble of forecasts is run from these updated model
states to the analysis time. These two steps are then
repeated a predetermined number of times. The backward
analysis is performed via asynchronous EnKF, which can
use observations not collected at the state updating time.

We test the iEnSRF algorithm using simulated radar data
for an idealized supercell storm. Two sets of experiments
are performed: one employs a perfect prediction model and
a storm environment defined by the true environmental
sounding. The other experiment set includes a combination
of prediction model error and environmental error. In
the error-free case, the iEnSRF accelerates the rate of error
reduction and reaches a lower error level within the first four
cycles. Continued application of the iterative procedure in
later cycles leads to larger errors than in the non-iterative
case, suggesting overfitting of the analysis to observations. In
this idealized scenario, the error of the deterministic forecast
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Figure 9. The same as Figure 8 but for deterministic forecasts at 90 min starting from the ensemble mean analyses at 40 min in EnSRF e (middle panels)
and iEnSRF e (right panels), as compared to the truth (left panels). The red contours (at intervals of 10 m s−1) in (b) (c) (e) and (f) are for the absolute
w forecast errors.

starting from the iEnSRF analysis obtained after four cycles
is found to be substantially smaller than that starting from
the EnSRF analysis valid at the same time. After both the
iEnSRF and EnSRF reach their asymptotic error level (about
eight cycles), the difference between analyses and subsequent
forecasts yielded by these two methods became small.

When model error and environmental error are present,
the results are very similar. The iEnSRF performs better than
the EnSRF in the first four cycles and becomes comparable in
later cycles. The relative improvement over the non-iterative
case is somewhat less than the error-free case but is still
clearly evident. Examination of the analyzed storm at 40 min,
or after four assimilation cycles, indicates that the iEnSRF is
able to capture the storm splitting, intensity, and structure
better than EnSRF. The benefit of the improved analysis is
maintained throughout the 50 min forecast launched from
the ensemble mean analysis at 40 min.

To better understand how the iEnSRF is able to produce
more accurate analyses for unobserved variables in the first
few cycles, we examined the background error correlations
between different variables in the first cycle. Results showed
that the error correlations calculated from the ensemble
after three iterations with the iEnSRF are more physically
consistent than those obtained without iterations. The
improved ensemble error covariance obtained by the
iterative procedure not only helps with the analysis of the
wind and precipitating hydrometeor fields that are more
directly observed, but also with the estimation of state
variables, such as temperature, humidity and geopotential
height and humidity that are not directly linked (through the

observation operator) to the radar observations. Through
iterations, the iEnSRF is able to produce more balanced
analyses and reach a stable level of state estimation error in a
fewer number of cycles than the corresponding non-iterated
version. Because the iterative procedure not only improves
the state estimation but also the error covariance, especially
in the earlier cycles when these estimates tend to be poor,
the method appears to be more beneficial for assimilating
observations that are indirectly related to the state variables,
as in the case of radar observations.

Similar to the findings of Kalnay and Yang (2010), the
iterative procedure is found to dramatically improve state
estimation in the first few assimilation cycles when starting
from a poor initial ensemble. Such a poor initial ensemble
is generally the case in thunderstorm initialization, where
useful radar observations are typically not available before
precipitation is present within a developing thunderstorm,
or when DA is not running continuously in time so that
ongoing thunderstorms have to be spun up starting from
a coarse resolution operational model background that has
little or no knowledge about the ongoing thunderstorms.
After the cycles stabilize and the analysis error levels off, it
is neither necessary nor desirable to continue the iterations,
because overfitting to observations can occur and iterations
also incur additional computational costs. For the problem
of assimilating radar volume scan data at about 5 min
intervals, it is recommended to use the iEnSRF only in the
first four to five cycles. For practical implementations, we
expect some level of tuning to reach optimal configurations.
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Future work will examine the application of the iEnSRF for
real data cases.
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