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The primary objective of this study is to improve the performance of deterministic high resolution
rainfall forecasts caused by severe storms bymerging an extrapolation radar-based schemewith a
storm-scale Numerical Weather Prediction (NWP) model. Effectiveness of Multi-scale Tracking
and Forecasting Radar Echoes (MTaRE) model was compared with that of a storm-scale NWP
model named Advanced Regional Prediction System (ARPS) for forecasting a violent tornado
event that developed over parts of western andmuch of central Oklahoma onMay 24, 2011. Then
the bias corrections were performed to improve the forecast accuracy of ARPS forecasts. Finally,
the corrected ARPS forecast and radar-based extrapolation were optimally merged by using a
hyperbolic tangent weight scheme. The comparison of forecast skill betweenMTaRE and ARPS in
high spatial resolution of 0.01° × 0.01° and high temporal resolution of 5min showed thatMTaRE
outperformed ARPS in terms of index of agreement andmean absolute error (MAE).MTaRE had a
better Critical Success Index (CSI) for less than 20-min lead times andwas comparable to ARPS for
20- to 50-min lead times, while ARPS had a better CSI for more than 50-min lead times. Bias
correction significantly improved ARPS forecasts in terms of MAE and index of agreement,
although the CSI of corrected ARPS forecasts was similar to that of the uncorrected ARPS forecasts.
Moreover, optimally merging results using hyperbolic tangent weight scheme further improved
the forecast accuracy and became more stable.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Deterministic forecasting with high spatial and temporal
resolutions for the next few hours (nowcasting) plays an
important role in severe rainfall prediction, meteorological
disaster warnings, and the meteorological services of major
sports events. Three primary nowcasting methods are used
operationally.

The first group includes a number of techniques that rely
on extrapolation of radar images, and is widely applied in
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operational nowcasting systems such as the Auto-Nowcast
System (ANC; Mueller et al., 2003) developed by the National
Center Atmosphere Research and the McGill Algorithm for
PrecipitationNowcasting by Lagrangian Extrapolation (MAPLE;
Turner et al., 2004) used atMcGill. Extrapolation techniques are
divided into pixel-based and object-based approaches (Zahraei
et al., 2012). The pixel-based technique extrapolates radar
reflectivity observations using motion estimation from two
consecutive radar images (Rinehart and Garvey, 1978; Li et al.,
1995; Grecu and Krajewski, 2000; Germann and Zawadzki,
2002; Zahraei et al., 2012;Wang et al., 2013; Sokol et al., 2013).
The object-based technique identifies 3D convective cells,
tracks, and forecasts storm-related parameters assuming linear
trends (Dixon and Wiener, 1993; Johnson et al., 1998; Hong
et al., 2004; Vila et al., 2008; Zahraei et al., 2013).

The second group consists of storm-scale NWP models.
Recently, the “spin-up” problem of NWP models was reduced
significantly using the rapid-update-cycle (RUC) approach.
The High-Resolution Rapid Refresh (HRRR; Zahraei et al.,
2012) developed by the National Oceanic and Atmospheric
Administration, and ARPS used at the Center for Analysis and
Prediction of Storms (CAPS) are the outstanding represen-
tatives of the second group. The forecast accuracy at the first
several hours has been improved significantly by assimilat-
ing various types of observation data (Macpherson, 2001;
Weygandt et al., 2002; Benjamin et al., 2004; Caya et al.,
2005; Tong and Xue, 2005; Sokol, 2007; Sokol and Pesice,
2012; Wong et al., 2009; Zahraei et al., 2012).

Predictive accuracy of radar-based extrapolation rapidly
decreases within the first several hours of severe weather
development, because the growth and decay of storms are not
taken into account. Extrapolation of observations is most likely
more accurate in the shorter terms (Austin et al., 1987; Golding,
1998; Lin et al., 2005;Wong et al., 2009; Zahraei et al., 2012), as
shown in Fig. 1. On the other hand, some comparisons show
that the NWP models outperform radar-based extrapolation
methods over longer time scales as they dynamically resolve
large-scale flow. However, they may not produce optimal
predictions at the first short-term, because they are sensitive to
the initial condition, spatial resolution, and assimilation data
(Golding, 1998; Ganguly and Bras, 2003; Lin et al., 2005;
Zahraei et al., 2012).
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Fig. 1. Forecast performance of threeprimarynowcastingmethods as a function
of lead time (Wolfson et al., 2008).
Advantages of both approaches may be realized by a third
group that merges or blends radar-based extrapolation with
NWP-based forecast. The merging technique was primitively
developed to advect rainfall fields usingNWPmodelwind fields
in the 1980s (Conway and Browning, 1988). A prior prototype
of the forecasting approach is Nimrod system, whichmerges an
extrapolation-based system, Forecasting Rain Optimised using
New Techniques of Interactively Enhanced Radar and Satellite
(FRONTIERS), with an NWP model referred to as Interactive
Meso-scale Initialisation system using variational scheme and
recursive filter algorithm (Golding, 1998). Recent nowcasting
systems of the merging approach such as GANDOLF (Generat-
ing Advanced Nowcast for Deployment in Operational Land
Surface Flood Forecast; Pierce et al., 2000), RAPIDS (Rainstorm
Analysis and Prediction Integrated Data-processing System;
Wong and Lai, 2006), and STEPS (Short-Term Ensemble
Prediction System; Bowler et al., 2006) further validated the
potential improvement upon the predictive skill, compared
with individual forecast models. Optimal predictions could be
obtained by assigning the primary weight to extrapolation
forecasts for the first lead times, while the NWP forecasts are
weighted to increase with lead time (Golding, 1998;Wong and
Lai, 2006; Wong et al., 2009). The merged quantity was either
rainfall rate (Golding, 1998; Pierce et al., 2000; Wong et al.,
2009), radar reflectivity factor (Wilson and Xu, 2006), or a
probabilistic forecast of precipitation (Bowler et al., 2006; Kober
et al., 2012). Additionally, a bias-correction was applied for
NWP model forecast before merging was performed (Wong
et al., 2009). NWP models with coarse spatial resolution
(≥10 km) and temporal resolution (1 h) were used, in most
studies, to merge with radar-based extrapolation nowcast.
A significant attempt to connect extrapolating nowcasting
methods with numerical weather prediction models is the
assimilation of extrapolated radar reflectivity data into a NWP
model (Sokol, 2011).

Higher spatial and temporal resolution forecasts are needed
to reduce casualties and property losses from rapidly changing
severeweather events such as thunderstorms or flooding heavy
rains. Radar networks were intended to provide very short-
term (0–30 min) warning for high-impact severe weather
events with rapid development and decay (Brewster, 2003).
Predictive performance for these severe weather events could
be improved by combininghigh spatial and temporal resolution
storm-scale NWP with radar-based extrapolation.

This article aims to improve the performance of deterministic
rainfall forecasts caused by the severe storms with high spatial
and temporal resolutions by merging a radar-based extrapola-
tion scheme with a storm-scale NWP model. A key element of
this study is the use of the Advanced Regional Prediction System
(ARPS) storm-scale NMP developed by the Center for Analysis
and Prediction of Storms, University of Oklahoma. The ARPS
model could output rainfall forecasts caused by severe storms
with high spatial resolution of 0.01° × 0.01° (~1 km× 1 km) and
1-minute interval. Moreover, the deduced CPDF of radar
observation for lead time is proposed for correcting the ARPS
forecasts by using PDF matching. In this study, we evaluate
the accuracy of forecasts using the Multi-scale Tracking and
Forecasting Radar Echoes (MTaFRE) scheme, developed by the
State Key Laboratory of Severe Weather (LaSW) of Chinese
Academy of Meteorological Science (CAMS), versus the ARPS
model for a violent tornado event that developed over parts of
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western and much of central Oklahoma on 24 May, 2011. The
performance of MTaRE model decreases rapidly with lead times
because radar-based extrapolation ignores the temporal evolu-
tion of storms. The ARPS model could forecast the evolution of
storms, but overestimates the storms.

The paper is organized as follows. Section 2 describes the
study domain and data sets used in this study. The detailed
methodology of bias-corrected ARPS forecasts and merging
scheme is described in Section 3. Section 4 presents the
evaluation results and discussion. The conclusions are drawn
in Section 5.

2. Data and case study

2.1. Radar data

In this study, the radar mosaicked composite reflectivity
factor product produced by the National Severe Storm Labora-
tory (NSSL) (Zhang et al., 2005) was used to track, nowcast
future radar reflectivity factor fields, and also acts as verification
data to assess forecast skill of MTaFRE and ARPS models. Radar
mosaic composite reflectivity factor images were produced
with a temporal resolution of 5 min and a spatial resolution of
0.01° (~1 km).

2.2. Case study and analysis domain

The May 21–26, 2011 tornado outbreak was used to
experiment with the combination of MTaFRE forecasts and
ARPS outputs. The tornado outbreak took place across the
Midwestern and Southern regions of the United States and
resulted in 184 deaths, making it the second deadliest since
1974, and the second costliest in United States history, with
insured damage estimated at $4–7 billion. Several tornadic
thunderstorms developed over parts of western and much of
central OklahomaonMay 24, 2011. Extensive damage occurred
over many areas of central Oklahoma. Seven initialized times
for predicting the tornado with up to 2 h lead times were
analyzed in this paper.

3. Methodology

3.1. Performance indices

Performances of the radar-based extrapolationmodel, storm-
scale NWP model, and bias-corrected scheme and merging
forecast were qualitatively assessed using three performance
indices. The index of agreement (d) was used to measure the
agreement between forecasts and observations. The Critical
Success Index (CSI) measures the pattern match between
forecasts and observations. Germann and Zawadzki (2002)
stated that neither the agreement nor the pattern match
provided a direct measure of forecast accuracy. Thus, the mean
absolute error (MAE) is calculated for measuring the average
error magnitude. The formulas are defined as follows:

d ¼ 1−

XN
i¼1

Oi−Fið Þ2

XN
i¼1

Oi−O
�� ���

þ Fi−O
�� ��Þ2

ð1Þ
CSI ¼ ns

ns þ nf þ na
ð2Þ
MAE ¼ 1
N

XN
i¼1

Fi−Oij j; ð3Þ

where Oi and Fi are observed rainfall and predicted rainfall at the
ith grid point, and the bar indicates the mean value. N is the
number of observations and forecasts, while ns, nf, and na denote
the number of successes, failures, and false alarms, respectively.
When observed rainfall and predicted rainfall are equal, then a
perfect forecastwould result in d=1, CSI=1 andMAE=0. The
concepts of success, failure, false alarm are the same as those
depicted in the literature (Grecu and Krajewski, 2000; Zahraei
et al., 2012).

Although the forecasts were made in terms of radar
reflectivity, we assessed them in terms of rainfall, which is
not only a significant variable in hydrology but also a linear
variable. Taking into account convective tornado storms, the
single convective Z–R (where Z denotes radar reflectivity
factor and R is rainfall rate) relationship was arbitrarily chosen
as Z=300R1.4 for radar QPE, which was adopted operationally
in the WSR-88D system. The rainfall estimate errors from the
Z–R relationship are negligible because the effect on the
forecasts is the same as that of observations and the errors
from forecasts are likely to be much greater than those from
estimates (Grecu and Krajewski, 2000). The threshold for
calculating the CSI was selected to 0.1 mm h−1. Precipitation
rates below the threshold were considered as “no rain”
(Germann and Zawadzki, 2004).

3.2. Multi-scale Tracking and Forecasting Radar Echoes (MTaFRE)
scheme

MTaFRE is an extrapolation-based nowcasting technique for
deterministic forecasts (see detail description in Wang et al.,
2013, 2014). A flowchart of the MTaFRE scheme is given in
Fig. 2. It uses a two-step Tracking Radar Echoes by Cross-
correlation (TREC) algorithm to estimate motion of a storm,
and a mass-conserving, monotonic advection scheme based on
the explicit remapped particle-mesh semi-Lagrangian (RPMSL)
advection scheme for extrapolating reflectivity factor fields
(Reich, 2007). The length step was chosen to be 5 min,
corresponding to the temporal resolution of radar observations.
For improving forecasting accuracy, moving average as a
function of lead time is adopted to filter off the perishable and
less predictable small-scale precipitation features. The optimal
smoothing window length is given as follows:

L ¼ kTλ
; ð4Þ

where L is amoving averagewindow in km, T denotes lead time
in min, k and λ are empirical coefficients with ranges of
1.0 ≤ k ≤ 1.3 and 0.7 ≤ λ ≤ 0.8, respectively. The relationship
depends on the assessment parameter and is independent of
precipitation classification (Bellon and Zawadzki, 1994; Seed,
2003). Because of the RPMSL advection scheme outputting
forecasts in 5-min interval, a spatiallymoving average centered
on each pixel and including a matrix in size of (3 × 3) pixels
(~3 km × 3 km) is applied to each forecast pattern.
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Fig. 2. A flowchart of the MTaFRE scheme.
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The MTaFRE ran the NSSL composite reflectivity factor
images to generate up to 2-h forecasts with a horizontal
resolution of 0.01° × 0.01° and a temporal resolution of 5 min.

3.3. Advanced Regional Prediction System (ARPS)

The Advanced Regional Prediction System (ARPS) is a state-
of-the-art storm-scale forecasting model (Xue et al., 2000,
2001, 2003), which was used as the storm-scale NWPmodel in
this study. ARPS is a compressible non-hydrostatic model that
predicts velocity components u, v, and w, potential tempera-
ture θ, pressure p, turbulence kinetic energy (TKE), water
vapor mixing ratio qv, and the mixing ratios of cloud water,
rainwater, ice, snow, and hail (qc, qr, qi,qs, and qh, respectively).
A 353 × 323 × 53 grid with a horizontal resolution of 1 km
defines the whole physical domain of a 350 × 320 × 20 km3

area. In the vertical, a grid stretching scheme based on a
cubic function is used with the mean vertical grid spacing of
400 m and a grid spacing of 20 m at the surface. The 3-ice
microphysical scheme is used (Lin et al., 1983). Subgrid-scale
turbulence mixing is handled by the 1.5-order TKE-based
turbulence parameterization after Deardorff (1980), while
within the convective planetary boundary layer (PBL) a non-
local vertical mixing length is calculated based on Sun and
Chang (1986).

Other model dynamics choices include fourth-order mo-
mentum advection used in both the horizontal and vertical. A
fourth-ordermonotonic flux-corrected transport (FCT) scheme
(Zalesak, 1979) is applied to potential temperature, water
variables, and TKE. Details on these physics and computational
options can be found in Xue et al. (2000, 2001, 2003).

To initialize the forecasts, the North American Meso-scale
Model (NAM; Janjic, 2003) 12-km analysis is first interpolated
to the ARPS high-resolution domain. The radar observations,
including radar radial velocity and reflectivity factor, are
assimilated with a three‐dimensional variational (3D‐Var)
cloud analysis system (Gao et al., 2004; Brewster, 2003; Hu
et al., 2006a, b) within the Advanced Regional Prediction
System to obtain the initial conditions.

The intense degree of high-impact severe weather events is
usually expressed in terms of reflectivity factor. Radar reflec-
tivity factor is calculated from ARPS forecast based on Smith
et al. (1975), which is not an ARPS forecast variable. The
logarithmic reflectivity factor Z in dBZ is estimated as follows:

Z ¼ 10 log10
Ze

1mm6m−3

� �
; ð5Þ

where, the reflectivity factor (Ze) is composed of three con-
tributions from rainwater, snow, and hail. This formula has
been used by Tong and Xue (2005).

ARPS was initialized every 20-min from 2100 to 2300 UTC
on May 24, 2012 to forecast the evolution of the tornado up to
2-h ahead, with high spatial resolution of 0.01° × 0.01° and
forecast output interval of 1min. The ARPS forecasts of a 5-min
interval were chosen to be evaluated and merged with radar
observations. The ARPS outputs for the tornado event focused
on the domain from 95.5 W to 99.5 W in longitude and from
33.5 N to 36.1 N in latitude.

3.4. Bias correction for ARPS forecasts

Storm-scale forecast fields may have properly developed
small-scale features that have incorrect positions or improper
amplitudes (Hoffman et al., 1995). Analysis and correction of
position error and amplification error could also improve the
forecast by reducing the differences between the analysis fields
and observations (Hoffman and Grassotti, 1996; Brewster,
2003). Taking into account the ARPS model forecasting correct
positions for the tornado event, an amplitude-correcting
scheme was adopted to improve forecast accuracy of the
ARPS model in this study.

Due to physical processes, initial condition and model
resolution, intensity discrepancies between NWP forecasts and
the observations are notable (Wong et al., 2009). In this work,
the amplitude correction is performed for the ARPS forecasts
by matching the Probability Density Function (PDF) of the
ARPS forecast field with that of the radar observation field.
Cumulative PDF (CPDF), defined as the PDF for reflectivity
factor equal to or larger than a threshold, is then computed
for the ARPS forecast field and the radar observation field,
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respectively. Assuming that reflectivity factor at a percentage
point in the CPDF table for ARPS forecast field is the same as
that in the CPDF table for the observation field, the bias of
amplitude in the ARPS forecast is corrected by matching the
CPDF of the ARPS forecast field with that of the radar
observation field. The PDF matching scheme was used to
calibrate 1-h accumulated precipitation forecasts of the Non-
hydrostatic Model (NHM) by matching PDF of precipitation
intensity of NHM with that of quantitative precipitation
estimation from radar. Then, when no radar observations
were available for matching with NHM forecast at subsequent
lead time, precipitation intensity of NHM at the lead time was
corrected by using the ratio of its maximum precipitation value
to that at calibrating time (Wong et al., 2009). It seemsunstable
that amplification correction typically depends on a single
value of maximum. Xie and Xiong (2011) adopted a PDF
matching method in correcting daily precipitation estimation
produced by the Climate Prediction Center morphing method
(CMORPH). In this study, we extended the work to deduce
PDFs of observations at lead times when no actual radar
observations were available, and corrected the amplitude
errors of ARPS forecasts by using PDF matching.

Major steps of the ARPS model amplitude correcting scheme
are outlined with the following three steps:

(i) Calculate the PDF of ARPS forecasts andMTaRE forecasts
at 5-min lead time;

Previous studies have shown that theWeibull distribution is
reasonable for fitting precipitation, and provides better fit than
the gamma distribution for many meteorological applications
(Wong, 1977; Shoji and Kitaura, 2006; Wong and Lai, 2006). In
this paper, theWeibull distributionwith two shape parameters
was used to fit intensity of storms. The PDF and CPDF ofWeibull
distribution are expressed using Eqs. (6) and (7), respectively:

f xð Þ ¼ k
λ

x
λ

� �α−1
e− x=λð Þk

; ð6Þ

F xð Þ ¼ P tbxf g ¼
Zx

−∞

f tð Þdt ¼ 1−e− x=λð Þk
; ð7Þ

where k N 0 is the shape parameter and λ N 0 is the scale
parameter of the Weibull distribution. Studies have shown that
Maximum likelihood method is simple and has higher fitting
precision for estimatingWeibull distribution parameters (Zhang,
1996; Ghosh, 1999). Therefore, in this study, the maximum-
likelihood estimator method was used to estimate Weibull
distribution parameters.

(ii) Amplitude error correction was performed for ARPS
forecasts at 5-min lead time using PDF matching and
improvement of forecast accuracy was evaluated;

When no radar observation was available at the lead time
and radar-based extrapolation was effective for forecasting at
the 5-min lead time, the +5 minute MTaFRE prediction was
regarded as equal to radar observation. Therefore, amplitude
error correction is first performed for the +5 minute ARPS
prediction by PDF matching. Both CPDFs of the ARPS forecast
field and MTaFRE forecast field at the 5-min lead time are
computed, respectively. We assume that reflectivity factor at a
percentage point in the CPDF table for the +5 minute ARPS
prediction is the same as that in the CPDF table for the
+5 minuteMTaFRE prediction. The amplitude error correction
for ARPS forecasts at the 5-min lead time is performed by
matching its CPDF with that of the simultaneous MTaFRE
forecasts. For example, if the 70 percentile values in the CPDF
table for ARPS forecast field and MTaFRE forecast field are
50 dBZ and 45 dBZ, respectively, reflectivity factor of 50 dBZ in
ARPS forecast field will be adjusted to 45 dBZ so that the CPDF
of the corrected ARPS forecast field will be the same as that for
theMTaFRE forecast field. Then theMAEs are compared (before
and after correction) to determine whether the correction
procedure could be performed for the ARPS forecast fields at
subsequent lead times.

(iii) If step (ii) improved the forecast accuracy, deduce PDFs
of radar observations (named deduced PDF) at subse-
quent lead times, then PDF matching was adopted for
correcting ARPS forecasts at subsequent lead times.

With increasing lead time, the difference between MTaFRE
prediction and radar observation increases gradually. It is not
reasonable to correct the ARPS prediction by using the MTaFRE
prediction. Therefore, in this study, we deduced CPDFs of
radar observations for subsequent lead times when no radar
observationswere available. For example, for the tornado event
at 2140 UTC 24 May 2011, assuming that we intended to
deduce the CPDF for +50 minute radar observation, we
first computed CPDF for +5 minute MTaFRE prediction, and
CPDFs for +5 and+50 minute ARPS predictions, respectively.
Then two hypotheses were made: (1) +5 minute MTaFRE
prediction is regarded as +5 minute radar observation; and
(2) Evolution of the storm predicted by the ARPS model is
consistent with that of radar observations in the same period.
That is, the change of reflectivity factor at a percentage point
between CPDF tables for +5 and +50 minute ARPS predic-
tions is regarded as the same as that for radar observations.
Fig. 3 gives an example, the 70 percentile values in the CPDF
tables for +5 and +50 minute ARPS predictions are 32 dBZ
and 42 dBZ, respectively. The 70 percentile values in the CPDF
table for +50 minute ARPS prediction increased by ΔdBZ
(10 dBZ), compared to that for +5 minute ARPS prediction.
The 70 percentile values in the CPDF table for +5 minute
MTaFRE prediction (regarded as radar observation) are 25 dBZ.
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Based on the above two hypotheses, we obtain that the 70
percentile values in the CPDF table for +50 minute radar
observation also have an equal increment of ΔdBZ (10 dBZ).
Thus, we deduce that the 70 percentile values in the CPDF table
for+50 minute radar observation should be 35dBZ. Therefore,
reflectivity factor of 42 dBZ in the+50 minute ARPS prediction
will be adjusted to 35 dBZ. Repeating the procedure, the
deduced CPDF of the +50 minute radar observation is
obtained (red solid line in Fig. 3), and the +50 minute ARPS
prediction will be corrected.

3.5. Merging scheme

MTaREwith ARPSwasmerged by implementing aweighted
average of the single forecast product. Studies have verified
that radar-based extrapolation forecasts outperform numerical
weather prediction models at short lead times. However, the
NWP models perform better than extrapolation methods with
increasing lead times (Lin et al., 2005). Therefore, in the
merging scheme, larger weights are usually assigned to
extrapolation forecasts at very short lead times and increasing
weights are given to NWP models with lead time increasing
(Wong et al., 2009). The merging forecasts are obtained using
Eq. (8):

Rmerging tð Þ ¼ 1−w tð Þð Þ � Rextra tð Þ þw tð Þ � RNWP tð Þ; ð8Þ

where Rmerging(t) is the merging forecast at a lead time
(t).Rextra(t), and RNWP(t) are extrapolation forecast and NMP
forecast, respectively, at lead time (t), andw(t) is the weight of
the NWP model forecast. Yang et al. (2010) compared three
weight schemes among sine curve weight, hyperbolic tangent
curve weight, and real-time scrolling weight, and showed that
themerging resultswith hyperbolic tangent curveweightwere
closer to observations. The weight calculated by the hyperbolic
tangent curve can be expressed using Eq. (9):

w tð Þ ¼ α þ β−α
2

� �
� 1þ tanh γ t−1ð Þ½ �f g; ð9Þ

where α and β are the weights at lead times of t = 0 and
t = 1 h, respectively. They can be determined from evaluation
results of past forecasts. In this study,αwas set to 0.2 andβwas
set to 0.7 according to past forecasts, and γ represents the slope
of the middle section of the hyperbolic tangent curve. To make
w(t) smoother in the middle section of the hyperbolic tangent
curve, γ is set to 1. Based on the above, the merging forecasts
are mainly based on radar-based extrapolation at lead times in
the first half hour, and the weight of the NWP model increases
gradually with increasing lead times.

4. Results and discussion

4.1. Comparison of performance between MTaFRE and ARPS
forecasts

The forecast performances of MTaFRE and ARPS were
compared for up to 2-h forecasts initiated at 7 times of 2100,
2120, 2140, 2200, 2220, 2240, and 2300 UTC 24 May 2012. The
aim of the evaluation was to compare the advantages and
disadvantages of MTaFRE and ARPS models.
Fig. 4 shows an example of comparison of forecast fields
from MTaFRE and ARPS models initialized at 2140 UTC 11 May
2011 with radar observations. Fig. 5 gives the mean forecast
performances for all the lead times from 5min to 2 h over the 7
initialized times using three performance indices. MTaFRE
forecasts quitewell during the first 30-min lead times; however,
MTaFRE could not forecast the evolution of the violent storm
with increasing lead time. The MTaFRE model has a higher
initial CSI (0.92) than ARPS (0.73) at the 5-min lead time;
however, the forecast accuracy decreases with increasing lead
time and is worse than the ARPS model after a lead time of
50 min. The loss of accuracy for the MTaFRE radar-based
extrapolation is due to temporal evolution of storms. On the
other hand, ARPS could forecast the enhancement of a violent
tornado, which complements the shortcomings of radar-based
extrapolation, but ARPS forecast significantly overestimates
storm intensity of the tornado event. This results in MAE of
ARPS being much higher than that of MTaFRE for all the lead
times from 5 min to 2 h. The index of agreement for MTaFRE is
slightly better than ARPS for all the lead times.

4.2. Error correction for ARPS forecast fields

The original ARPS forecast fields exhibited much higher
values of reflectivity factor compared to radar observations,
which was effectively improved by the PDF matching
scheme. Fig. 6 gives the amplitude-corrected ARPS forecasts
initialized at 2140 UTC11 May 2011, which shows that the
amplitude correction procedure successfully reduced the
errors of original ARPS forecasts and produced a more accurate
reflectivity factor field.

Effectiveness of the amplitude correction procedures was
quantitatively evaluated for improved forecast accuracy by
comparing the index of agreement, CSI, and MAE for original
and corrected ARPS forecast fields at the available 7 initialized
times. Fig. 7 shows the comparison of the performances
between original and corrected ARPS forecast fields up to the
lead time of 2 h with 10-min interval initialized at 2140 UTC 11
May, 2011. The corrected ARPS forecast fields have a higher
index of agreement and substantially reduced MAE for all the
lead times, compared with original ARPS forecast. Corrected
ARPS forecast fields have no significant improvement on CSI. At
some lead times, corrected ARPS forecast fields have lower CSI
than the original ARPS forecast fields. This may be due to
amplitude correction error that perished CSI by adjusting some
original values less than the evaluation threshold.

From the mean performance indexes of the corrected ARPS
forecasts over 7 initialized times (Fig. 5), the amplitude cor-
rection scheme is shown to improve the index of agreement of
the ARPS forecast fields, and is comparable to that of theMTaRE
model. The corrected ARPS forecast fields have significantly
reduced the MAE compared with their original forecast fields,
although its MAE is still slightly higher than MTaREs. However,
the correction scheme has negligible improvement in terms
of CSI.

During amplitude correction, the first assumption is that
MTaFRE forecast field at the lead time of 5 min is the same as a
radar observation. Studies showed negligible error between
the radar-based extrapolation of 5-min lead time and radar
observation. The second assumption is that the ARPS model
forecasts a storm's evolution consistentwith radar observations,
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so the error depends on the performance of the NWP model. In
general, we can see that the MAE of ARPS forecast was
significantly reduced and index of agreement was improved.

4.3. Merging results

Very-short term forecasts from radar-based extrapolation
and storm-scale NWP have their respective advantages and
disadvantages. Although the ARPS forecasts have been corrected,
MTaFRE models have better CSI during the first 20 min lead
times, and better index of agreement andMAE for all lead times.
After a lead timeof 50min, both original andbias-correctedARPS
forecasts have better CSI than the MTaFRE model. Studies have
shown that merging different forecastmembers could produce a
better and stable forecast (Raftery et al., 2005; Ajami et al., 2007;
Sloughteret et al., 2007; Jiang et al., 2012). In this study, two
different deterministic forecast fields with high spatio-temporal
resolution were merged and evaluated.

Fig. 8 gives the merging forecasts of MTaFRE and ARPS
forecasts initialized at 2140 UTC 11 May 2011. Compared with
radar observations (Fig. 4f and i), it can be seen that the
merging forecasts not only could predict the temporal evolution
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of the tornado, but also were close to radar observations in
terms of intensity. Quantitative evaluation also demonstrated
the improvement of forecast performances. Fig. 9 represents
the calculated performance indexes at 60-min lead time for 7
initialized times, and shows that the merging forecasts have
better index of agreement and CSI compared with each
individual forecast (except for the initialized time of 2300
UTC). They also have MAE that is comparable to radar-based
extrapolation.

From the mean forecast performances over the 7 initialized
times (Fig. 5), the merging results are better than or similar to
the best of the forecasts from the single forecast product. The
results show that the merging forecasts significantly improved
the forecast performances of all the lead times in this study to
a better and more stable direction in terms of both index
of agreement and CSI, though there was no significant
improvement as far as MAE relative to the MTaRE model is
concerned. Note that the forecast accuracy of the merging
forecasts depends on that of each single model.
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5. Conclusions

Radar-based extrapolation and storm-scale NWPmodels are
two major very short-term deterministic forecast methods. In
this study, the forecast accuracy of MTaRE model developed by
the State Key Laboratory of SevereWeather of Chinese Academy
of Meteorological Science was compared with the ARPS model
developed by the Center for Analysis and Prediction of Storms,
University of Oklahoma. Amplitude error corrections were then
performed on the ARPS forecasts using PDF matching. Finally,
the corrected ARPS forecasts andMTaRE forecasts were merged
using hyperbolic tangent curve weight scheme.

Results show that both radar-based extrapolation and storm-
scale NWP model have individual advantages and limitations.
The MTaRE model was able to predict the existing storms, but
could not forecast the temporal evolution. The ARPS model did
not have this limitation, but the ARPS overestimated the storm
intensity. The MTaRE model outperforms the ARPS model as far
as index of agreement and MAE are concerned. The MTaRE has
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better CSI than the ARPS model during the first 20-min lead
times and comparable CSI to the ARPS model for lead times
ranging from20min to 50min,while after 50min lead times the
ARPS model has better CSI than MTaRE.

The amplitude error correction scheme improves ARPS
forecasts in terms of MAE and index of agreement, although it
has no significant improvement on CSI relative to original ARPS
forecasts. In short, the amplitude error correction approach
demonstrated a positive effect for forecast performance of the
ARPS model.

Forecasts of theMTaRE and the corrected ARPSweremerged
using hyperbolic tangent curve weight scheme, which achieved
the best index of agreement and CSI for all initialized times
modeled for the Oklahoma tornado event in May 2011. Still, the
merging forecasts also further reduced MAE of the corrected
ARPS forecasts and resulted in a similar MAE to the MTaRE
model. Overall, the merging results are better than or similar
to the best of the forecasts from the single forecast product.
The merging method significantly improved the forecast
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Fig. 8. Merging forecasts of MTaFRE and ARPS initialized at 2140 UTC 11
performance of all the lead times from 5 min to 2 h. This study
also confirms that merging radar-based extrapolation with
storm-scale NWP is one of the primary means to improve the
short-term deterministic rainfall forecasts caused by severe
storms. The performance of merging forecast scheme is closely
related with that of each single forecast member. Therefore, it
is a key step to improving the forecast accuracy of each single
forecast member.

This merging scheme was assessed quantitatively based on
just a tornado event and 24 forecasts and should be considered
to be preliminary. Further investigations should focus on
error correction of storm-scale NWP model and the merging
approach using more events. Currently, a WRF-based rapid
updating cycling forecast system of Beijing Meteorological
Bureau (BJ-RUC) is one of major storm-scale NWP in China.
Several heavy convective precipitation events that occurred
in Beijing are being selected for investigating the merging
technique based on BJ-RUC andMTaRE. Larger amounts of data
will be used to evaluate the merging scheme.
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May 2011 with 30-min lead time (a) and 60-min lead time (b).
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