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A four-dimensional ensemble square-root filter algorithm (4DEnSRF) is designed
to assimilate high-frequency asynchronous observations distributed over time.
Given the serial nature of the EnSRF, the 4DEnSRF algorithm pre-calculates
observation priors from ensemble model states at observation times and updates
the observation priors at asynchronous observational times using the filter. These
updated observation posteriors are used to update model state variables at the
analysis time. Such an algorithm is able to utilize more observations collected
over time with fewer analysis cycles, thereby reducing computational costs and
potentially improving filter performance. The 4DEnSRF algorithm is tested using
simulated Doppler radar data for a convective storm. The radar data are simulated
elevation-by-elevation, grouped into batches with different time intervals and then
assimilated with analysis cycles of the same lengths. Parallel sets of experiments
using 4DEnSRF and the regular EnSRF are performed for comparison, with varying
data batch or cycle lengths of 1 to 20 min. For longer time intervals, EnSRF either
assumes that all data collected within the time window are valid at the same analysis
time, or uses only elevations collected within a shorter time interval centered at the
analysis time. Results show that 4DEnSRF outperforms EnSRF when the cycle length
is more than 1 min. Observation timing error is the main cause of the performance
degradation with EnSRF for both analysis and forecast; the longer the cycle length,
the worse the degradation. For long cycle lengths, 4DEnSRF improves the analysis
by utilizing more data whereas the EnSRF performs well only when data far away
from the analysis time are discarded. Assimilating only a couple of scan elevations at
a time using EnSRF with very short cycles can introduce imbalances into the model
state that degrades the subsequent analyses and forecasts. Copyright c© 2012 Royal
Meteorological Society
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1. Introduction

Frequent observations from modern remote sensing plat-
forms such as weather radar can provide nearly continuous

observations of weather systems. Effective utilization of
such frequent observations and maximum extraction of
their information content for model initialization pose a
great challenge. A common practice for sequential data

Copyright c© 2012 Royal Meteorological Society



806 S. Wang et al.

assimilation (DA) algorithms such as the three-dimensional
variational (3DVAR) technique and ensemble Kalman filter
(EnKF; Evensen, 1994) is to group frequent observations
into small batches and perform the analyses at frequent
intervals through so-called intermittent assimilation cycles
(e.g. Hu and Xue, 2007; Dowell and Wicker, 2009). This
approach involves frequent stopping and restarting of the
prediction model, which can introduce shock to the pre-
diction system every time a new analysis is performed. In
the case of EnKF, the writing and reading of a full ensem-
ble of states at least twice each cycle carry very high data
input/output (I/O) costs.

Assimilating radar data at volume-scan or subvolume-
scan intervals can be computationally very expensive given
the high frequency of the data. Using longer assimilation
cycles can save computational costs, where observations
taken over a chosen time window are often all assumed to
be valid at the analysis time. This approach is common in
assimilating frequent radar data. It can, however, introduce
large timing error when the weather system is fast evolving,
as in the case of a fast moving convective storm. Another
way to reduce the computational cost is to discard some
observations not close enough to the analysis time (e.g. Hu
and Xue, 2007; Zhang et al., 2009). The obvious drawback
is that some valuable observations are not used.

A better approach to more fully utilize observations
collected over time is to employ four-dimensional
assimilation algorithms. In contrast to three-dimensional
algorithms, four-dimensional algorithms use observations
distributed over time simultaneously and at the times
when they are collected. Sakov et al. (2010; S10 hereafter)
proposed a generic asynchronous ensemble Kalman filter
(AEnKF) that allows for the assimilation of asynchronous
observations before, at and after the analysis time. The
algorithm has a close relationship with the ensemble Kalman
smoother (EnKS) (Evensen and van Leeuwen, 2000). The
four-dimensional local ensemble Kalman filter (4D-LEnKF)
of Hunt et al. (2004) and the four-dimensional local
ensemble transform Kalman filter (4D-LETKF) of Hunt
et al. (2007) can be considered specific implementations of
the AEnKF algorithm. As pointed out by S10, in the case
of a perfect, linear model, the analysis ensemble mean and
ensemble perturbations in EnKF can be written as the linear
combination or linear transform of the forecast ensemble
perturbations. This transform matrix, calculated from the
background forecast ensembles at the observation times,
can be used for the assimilation of observations at other
times as long as the evolution of ensemble perturbations
is linear (Evensen, 2003). When the transform matrix is
used for the assimilation of observations at other times,
the Kalman gain in the EnKF formula contains covariances
involving ensemble priors at different times; they are
therefore referred to as asynchronous covariances. Through
the asynchronous covariances between background states
at the observation times and the analysis time, AEnKF
can directly use asynchronous observations to update the
model state at the analysis time. In addition, AEnKF can be
implemented for different EnKF variants in principle (S10).

Hunt et al. (2004) showed that for the Lorenz-96 (Lorenz,
1996) model, the performance of their 4D-LEnKF is consid-
erably better than that of the standard EnKF and EnKF using
time-interpolated data. In Hunt et al. (2007), 4D-LETKF
is compared with the National Centers for Environmental
Prediction (NCEP) spectral statistical interpolation (SSI)

3DVAR system using a T62 model in a perfect model sce-
nario; they also found 4D-LETKF-based forecasts to be more
accurate than those from the SSI analyses. These studies show
positive impacts using four-dimensional algorithms even
when the linear model assumption is not strictly valid. More
recently, Compo et al. (2011) applied the ensemble square
root filter (EnSRF; Whitaker and Hamill, 2002; hereafter
WH02) to a global reanalysis project that assimilated surface
pressure observations only, and mentioned in passing the
use of hourly observations not taken at the 6 h analysis
times through an extension of the EnSRF algorithm. Their
implementation did not seem to apply time localization.

For a storm-scale radar DA problem, the model dynamics
and physics are more highly nonlinear. Additionally, some
observation operators are also nonlinear. The performance
of an AEnKF algorithm in storm-scale applications has yet
to be examined. It would be interesting to see how well an
asynchronous extension of the serial EnSRF (Whitaker and
Hamill, 2002) would work, given that radar DA studies have
almost exclusively used the EnSRF algorithm or algorithms
that are very similar (e.g. Snyder and Zhang, 2003; Zhang
et al., 2004; Tong and Xue, 2005; Xue et al., 2006; Snook
et al., 2011).

In this article we develop an AEnKF implementation
of EnSRF, which we refer to as the 4DEnSRF. As the
first step to evaluate the algorithm, we employ observing
system simulation experiments (OSSEs) that use simulated
radar data. With OSSEs the truth is known, allowing us to
unambiguously assess the performance of the algorithms.
The OSSE framework also allows us to simulate radar data
in different configurations and to perform experiments
that are not easy to do with real data. We compare the
4DEnSRF with the regular EnSRF. The rest of this article
is organized as follows. In section 2 we review the general
EnSRF algorithm and then describe our 4DEnSRF algorithm
and its implementation. Model settings, radar observation
simulation and OSSE configurations are described in section
3. The OSSE results are discussed in section 4 and a summary
and conclusions are given in section 5.

2. Formulation and implementation of 4DEnSRF

2.1. The regular EnSRF algorithm

According to S10, the linear ensemble update in EnKF can
be written in a generic form as

xa = xb + X′bGs, (1)

X′a = X′b + X′bT, (2)

where x is the state vector, overbar is for ensemble
mean, superscript a and b denote the analysis and
the analysis background and prime denotes ensemble
perturbation. X′b = [x′b

1, x′b
2, . . . , x′b

m] is the perturbation
forecast ensemble with an ensemble size of m and

s = R−1/2(yo − HX
b
)/

√
m − 1 (3)

is the scaled innovation vector; with yo the observation
vector, R the observation covariance matrix and H the
linearized observation operator. In S10, matrices G and T in
Eqs (1) and (2) are represented in terms of scaled observation
ensemble priors, S,

S = R−1/2HX′b/
√

m − 1. (4)
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Therefore, G is written as

G = ST(I + SST)−1, (5)

where I is an identity matrix. Matrix G is not dependent on
the specific ensemble analysis algorithm used, but transform
matrix T is. For the EnSRF algorithm of WH02, T has the
following form:

T = −αGS (6)

where α is a factor introduced by WH02 in the deterministic
EnSRF algorithm and is given by

α = [1 +
√

R(HPbHT + R)−1]−1, (7)

where

Pb = X′b(X′b)T . (8)

As mentioned in WH02, α is only valid for single
observation analysis, so is the T in the form of Eq. (6).

Substituting Eq. (6) into Eqs (1) and (2) gives the EnSRF
formula; however, these equations are not in the form
presented by WH02 and commonly used in storm-scale DA,
including the advanced regional prediction system (ARPS)
EnKF framework used in this study (Xue et al., 2006). Here
we will show that they are equivalent.

Substituting Eq. (4) into Eq. (5), we can rewrite matrix G
as

G = √
m − 1(HX′b)T R−1/2(I + R−1/2HX′bX′bT HT R−1/2)−1

(9a)

= √
m − 1(HX′b)T(R + HPbHT)−1R1/2. (9b)

Using Eqs (3) and (9b), the correction to the ensemble
mean, X′bGs, in Eq. (1) can be expressed as

X′bGs = X′b[(HX′b)T(R + HPbHT)−1(y − HX
b
)] (10a)

= K(yo − HX
b
), (10b)

where K is the typical Kalman gain

K = PbHT(HPbHT + R)−1, (11)

using Eq. (8). Similarly, the X′bT in Eq. (2) can also be
rewritten using Eqs (4), (5) and (6)

X′bT = −αX′b[(HX′b)T(R + HPbHT)−1HX′b] (12a)

= −αKHX′b. (12b)

Plugging Eqs (10b) and (12b) into Eqs (1) and (2) gives
the commonly used EnSRF formula. Therefore, the key
difference between the WH02 formulation (and the original
EnKF formulation as presented by Evensen, 1994), and the
S10 formulation (as well as the LETKF formulation: Hunt
et al., 2007; Yang et al., 2009) is the treatment of ensemble
perturbation matrix X′b in the equations. In the former,
X′b is absorbed into the Kalman gain matrix K and used
to calculate the background error covariance, whereas in
the latter, X′b is kept explicitly in the update equations with
‘weight’ matrices applied to it to give the analysis increments.

2.2. The 4DEnSRF algorithm

The second terms on the right-hand side of Eqs (1)
and (2) are the corrections to the ensemble mean and
ensemble perturbations, respectively, written as δx and
δX′. Sakov et al. (2010) pointed out that the evolution
of these corrections from t0 to t1 can be approximated by,
respectively,

δx1 ∼ M01δx0 = M01X′b
0G0s0 ∼ X′b

1G0s0, (13)

δX′
1 ∼ M01δX′

0 = M01X′b
0T0 ∼ X′b

1T0, (14)

where M01 is the tangent linear propagator for the forecast
trajectory from time t0 to t1, subscripts 0 and 1 are used to
tag variables at t0 and t1, respectively, and the ‘∼’ denotes
‘asymptotically equal’. Substituting approximations in Eqs
(13) and (14) into Eqs (1) and (2), respectively, gives the
AEnKF update equations

xa
1 = xb

1 + X′b
1G0s0, (15)

X′a
1 = X′b

1 + X′b
1T0, (16)

which use matrices G0 and T0 calculated from observation
priors HX′b at time t0, and observation innovations given
by s0 to update ensemble states at time t1.

As shown earlier, Eqs (15) and (16) can be rewritten into
the EnSRF form based on Eqs (10b) and (12b) as follows:

xa
1 = xb

1 + K01(yo − Hxb
0), (17)

X′a
1 = X′b

1 − α0K01HX′b
0, (18)

where

K01 = X′b
1(HX′b

0)T(R0 + HPb
0HT)−1 (19)

is the Kalman gain for updating model state at t1 using
observations collected at t0 and α0 is factor α in Eq. (7)
calculated using priors at t0. In Eq. (19), X′b

1(HX′b
0)T

represents the asynchronous covariance between the model
states at the analysis time and the observation priors at the
observation times. Comparing Eqs (10b), (11) and (12b)
with Eqs (17), (18) and (19), the only difference is that
the observation prior at the analysis time is replaced by the
observation prior calculated at the observation time. For the
EnSRF algorithm, Eqs (17) and (18) are applied to each
observation distributed over time serially (one at a time).
Therefore, it is sufficient to know the observation priors
at the observation times for the 4DEnSRF analysis; the full
model states at observation times are not required. This is
important because otherwise the full model states at the
observation times would have to be updated by each of the
observations, which would be computationally expensive.

Equations (13) and (14) are based on the tangent linear
approximation to the forecast system. However, as pointed
out in S10, as long as the impact of the nonlinear part
of forecast system is not very significant, Eqs (17) and
(18) may still be valid. Being based on forward-integrating
tangent linear equations, Eqs (13) and (14) provide only
a derivation of the asynchronous filter for updating the
model state using past data. However, as pointed out by
S10, the asynchronous filter can be used to assimilate future
data also. In that case, the formulation is equivalent to an
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ensemble Kalman smoother (e.g. Evensen and van Leeuwen,
2000); in fact, Evensen (2003) presented the equations (their
Eqs (103) and (104)) for updating the current state using
future observations as a smoother, and the formulation is the
same as the filter (see their Eqs (54) and (72)) except for the
differences in relative state and observation times. Therefore,
AEnKF also can be used to update a model state at a time
prior to the observation times. Therefore, belonging to the
family of AEnKF, 4DEnSRF has the ability to assimilate past
and current data as a filter and future data as a smoother.
Algorithmically, the latter involves calculating covariance
between the model state at the analysis time and observation
priors at a future time.

2.3. The implementation of asynchronous 4DEnSRF

According to Eqs (17) and (18), 4DEnSRF requires the
precalculation of observation priors before performing
the analysis. This precalculation can be done within the
forecast model during the advancement of each member
to save on data I/O cost. We have actually implemented
this capability within the ARPS model (Xue et al., 2003)
and its EnKF DA system. For this current study based on
the WRF model, we calculate the observation priors from
the model outputs written to the disk. A flow chart of
the 4DEnSRF procedure is given in Figure 1. Compared
with the standard sequential EnSRF where observations are
grouped into batches and analyzed at the analysis times,
4DEnSRF analyzes observations collected at different times
of the assimilation window simultaneously, with observation
priors calculated from the background forecast states at the
observation times.

Unlike the cases of 4D-LEnKF (Hunt et al., 2004) and
4D-LETKF (Hunt et al., 2007), the WH02 EnSRF algorithm
on which 4DEnSRF is based analyzes observations one after
another. After an observation is analyzed, the new analysis
becomes the background for the next observation, and
typically the prior of the next observation is computed from
this new background. In Eqs (17) and (18), only model
states at the analysis time are updated, while at other times
observation priors should be updated by the filter/smoother.
Thus it is necessary to write separate equations for updating
these priors, including their ensemble mean and ensemble
perturbations (the observation priors also can be considered
part of an extended state vector).

For the jth observation, yo
j , the update equations for the

observation prior ensemble mean, y, and deviations from
the ensemble mean, Y′, are, respectively:

ya = yb + ρo◦Ko
j (yo

j − yb
j ) (20)

Y′a = Y′b − αρo◦Ko
j Y′b

j , (21)

where Ko
j is the Kalman gain for the jth observation, with its

kth element equal to

Ko
j,k =

m∑
i=1

y′b
i,jy

′b
i,k

m∑
i=1

y′b
i,jy

′b
i,j + Rj

. (22)

In Eqs (20) and (21) symbol ◦ in the equations represents
the Schur (element-wise) product, ρo is the localization
coefficient factor for the observation prior, which in our case

is expressed as ρo = (ρtρ
o
s + ρhf )/2, and the two terms on

the right-hand side are the static and flow-dependent parts,
respectively. ρo

s is a spatial localization factor that is specified
as a function of the distance between the observation being
processed and the observation prior being updated. ρt is
a temporal localization factor that is a function of the
time interval between the two observations. For the flow-
dependent part, ρhf , we adopt the hierarchical filter (HF)
idea of Anderson (2007) with ρhf being the regression
confidence factor (RCF) of the HF. Equal weight given to
the static and flow-dependent parts was found to work well
based on earlier tests. A combination of the static and flow-
dependent parts to form a ‘hybrid’ localization scheme is
beneficial because the flow-dependent part based on the HF
is also subject to sampling error.

With the above algorithm, for a given observation yo
j ,

priors for those observations within the time window that
have not been analyzed are first updated using Eqs (20) and
(21). State variables are then updated using Eqs (17) and
(18).

Updating the observation priors using the filter is
equivalent to updating the model state and then calculating
the observation priors from the updated state when the
observation operator is linear. Anderson and Collins (2007)
proposed a variant of the serial EnKF that is more friendly
to parallel processing. It precomputes observation priors in
parallel and updates them like state variables rather than
recalculating them from the updated state. Therefore, this
variant is referred to as parallel EnKF (PEnKF). In the case
that all data are synchronously observed at the analysis time,
and when our 4DEnSRF also updates observation priors at
the analysis time, the 4DEnSRF and PEnSRF become the
same.

Using the most recently updated observation priors and
the state ensemble and including the localization, the state
update equations for jth observation are

xa = xb + ρ ◦ K̂j(yo
j − ya

j ), (23)

X′a = X′b − αρ ◦ K̂jY
′a
j , (24)

where the kth element of Kalman gain K̂j is

K̂j,k =

N∑
i=1

x′b
i,ky′a

i,j

N∑
i=1

y′a
i,jy

′a
i,j + Rj

. (25)

Similarly, ρ = (ρtρs + ρhf )/2 in the equations is the
localization factor for state variables for a given observation.
The flow-dependent part has the ability to account for
movement of features during the assimilation window.
We should point out here that the use of temporal
localization will break the formal equivalence between
the four-dimensional asynchronous algorithm and the
sequential synchronous algorithm that assimilates data at
the observation times, even in the case of a perfect linear
model and linear operator; the localization is, however,
necessary to alleviate the negative impact of covariance
sampling error, especially when the time window is long.

In summary, 4DEnSRF in a single analysis cycle involves
three steps: (i) the calculation of all observation priors at the
times observations are taken; (ii) the update of observation
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Figure 1. Flow charts of (a) regular synchronous EnSRF and (b) four-dimensional asynchronous EnSRF (4DEnSRF), where T represents the analysis
time; dt donates the time interval for processing observation priors and l indicates the number of times this process is conducted. The solid lines with
arrow head indicate ensemble forecasts while the dashed lines indicate input/output processes.

priors; and (iii) the update of model states. Steps (ii) and
(iii) are repeated for each observation serially until all
observations in the current time window are processed.

3. OSSE experiments

3.1. Model configuration and truth simulation

The weather research and forecast (WRF) model V2.2.1
(Skamarock et al., 2005) is used for the truth simulation and
OSSEs. In the truth simulation, a fast-moving, splitting
supercell storm is simulated, triggered by a thermal
bubble in a horizontally homogeneous environment. This
environment is defined by a classic Weisman and Klemp
(1982) analytic sounding and is shown in Figure 2. The
wind profile is made up of a quarter circle in the lowest
7 km and then a straight westerly hodograph above, plus
a uniform (10, 10) m s−1 wind vector added to the entire
wind profile. For all experiments, the domain is 120 km
× 120 km × 20 km with 61 × 61 × 41 grid points.
The horizontal grid spacing is 2 km and the vertical grid
spacing is 0.5 km. A 3 K ellipsoidal thermal bubble with a
horizontal radius of 10 km and a vertical radius of 1.5 km
is centred at x = 10 km, y = 30 km and z = 1.5 km.
Other model parameters used include: Runge-Kutta third-
order time-integration scheme with a time step of 12 s,
WRF single-moment 6-class (WSM6) microphysics, and

the rapid radiative transfer model (RRTM) and Dudhia
schemes for long- and short-wave radiation. No cumulus
parametrization is included. A 1.5-order turbulent kinetic
energy (TKE) closure scheme is used to parametrize subgrid-
scale turbulence and a positive definite scheme is used for the
advection of moisture and water variables. Open conditions
are used at the lateral boundaries. More details with regard to
these parametrization schemes can be found in Skamarock
et al. (2005). The length of simulation is 95 min.

Three stages of the simulated storm are plotted in Figure 3.
At 30 min, the storm is approximately centred at x = 35 km,
y = 45 km, about 15 km northeast of its initial location.
There are two updraft maxima in the storm, corresponding
to the start of cell splitting. At 60 min, two separate cells and
updraft cores are established and at 5 km above ground level
(AGL) the updrafts of the right moving and left moving cells
(hereafter RC and LC) reach about 30 m s−1 and 20 m s−1,
respectively. At 90 min, the two cells drift further apart and
both remain rather strong. The maximum updraft of the RC
reaches 45 m s−1 during the simulation and its cloud top
reaches 15 km AGL.

3.2. Simulation of radar observations

In this study, observations are simulated for a radar located
at x = 0 km, y = 90 km, and its maximum range is enough
to cover the entire model domain. In the vertical, the
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Figure 2. The environmental sounding for truth simulation, where the bold solid line represents the profile of temperature, bold dashed line represents
the dewpoint temperature. The vector in the hodograph is the estimated storm motion vector.

T=30 min

X(km)

Y
(k

m
)

T=60 min

T=90 min

Figure 3. w (contour at 5 m s−1 interval) and qg (shaded) at 5 km above
ground level for truth simulation at 30 min (left), 60 min (middle) and
90 min (right). w with value of 5 m s−1 is plotted with the bold contour.
The location of the initial thermal bubble is marked by a dot and that of
the simulated radar is marked by a triangle.

observations are simulated on radar elevation levels, as in
recent OSSE articles (e.g. Xue et al., 2006; Lei et al., 2007).
In the horizontal direction, observations are assumed to
be mapped to the model grid points already, a common
practice with radar DA (e.g. Xue et al., 2006). The radar

operates in the standard US WSR-88D volume scan pattern
(VCP) 11, which has 14 elevation angles ranging from
0.5◦ to 19.5◦. Each volume scan spans 5 min. Following
Yussouf and Stensrud (2010), the lowest 12 elevations of
observations are collected at a rate of three elevations per
minute and the upper two elevations are collected during the
last minute of each volume scan with observations stored in
data files minute-by-minute. Data in each file are assumed
to be observed simultaneously and these 1 min data files
are referred to as raw data files. The first raw data file is at
21 min of model time.

Simulated observations are calculated using the obser-
vation operators, from model variables interpolated to the
model scalar points in horizontal direction and radar ele-
vations in the vertical direction. For radial velocity Vr, the
observation operator is

Vr = ug cos θ sin φ + vg cos θ cos φ + (wg − wt) sin θ ,
(26)

where ug, vg and wg represent the model forecast wind
components at radar observation points interpolated from
the staggered model grid points, wt represents the terminal
fall speed of hydrometeors, and θ and φ represent the
elevation angle and azimuth angle of the radar beam,
respectively. For simulated reflectivity Z, the observation
operator follows the formulae of Smith et al. (1975), which
are also used in Tong and Xue (2005) and Xue et al. (2006),

Z = 10 log10

(
Zr + Zs + Zh

1 mm6 m−3

)
, (27)

where Zr, Zs and Zh are the equivalent reflectivity factors
for rainwater, snow and hail, respectively. The reflectivity
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observation operator in Eq. (27) has strong nonlinearity.
Random errors drawn from Gaussian distributions with
zero mean and standard deviations of 2 m s−1 and 2 dBZ are
added to radial velocity and reflectivity, respectively. Data
are assimilated only where reflectivity exceeds 10 dBZ, as in
earlier OSSE studies (Tong and Xue, 2005).

3.3. Assimilation experiments

In our 4DEnSRF implementation, model variables updated
include wind components u, v, w, geopotential height φ,
potential temperature θ , and the mixing ratios of water
vapour qv, cloud water qc, rainwater qr, cloud ice qi,
snow qs and graupel qg. A first-guess state is defined
by the environmental sounding used in truth simulation.
Random perturbations are added to this initial background
to create an initial 40-member ensemble. These random
perturbations have a Gaussian distribution with zero mean
and standard deviation of 3 K for θ and 0.5 g kg−1 for qv. The
wind field is not perturbed. The perturbations are smoothed
by a recursive filter (e.g. Gao et al., 2004) with a horizontal
correlation scale of 2 km and a vertical correlation scale of
two model levels, and are added at grid points only where
reflectivity is > 10 dBZ. The effect of this procedure is similar
to that used in Tong and Xue (2008) and is computationally
more efficient. The relaxation inflation scheme of Zhang
et al. (2004) is used to help maintain the ensemble spread,
according to

X′a
new = (1 − γ )X′a + γ X′b, (28)

where X′a
new is the inflated posterior ensemble, and γ is

the weight of the background ensemble, set to 0.5 as in
Zhang et al. (2004). Additional inflation is further applied
every 5 min by scaling the spread of θ to 2 K in the areas
influenced by observational data in the filter updating. A
fifth-order correlation function of Gaspari and Cohn (1999)
is used to calculate the localization coefficients for static
localization in both space and time (ρs or ρo

s and ρt). The
cut off radii for spatial localization are 6 km in the horizontal
and 2 km in the vertical. For temporal localization, settings
are experiment-dependent and will be given later. In the
calculation of RCF ρhf of the hierarchical filter, 40 ensemble
members are divided into eight groups of five members
each.

For the purpose of comparison, we design pairs of
experiments using 4DEnSRF and EnSRF respectively. These
experiments mostly differ in the data batch lengths (cycle
intervals), which vary from 1 min to 20 min (Table 1).
The first two letters in the experiment names indicate the
analysis scheme used: SE, AE and PE represent, respectively,
synchronous or regular EnSRF, asynchronous 4DEnSRF and
the Anderson and Collins (2007) parallel EnSRF in which
observation priors at the analysis time are also updated and
used in the filter analysis. All non-PE experiments calculate
the observation priors at the analysis time from the latest
updated state. The ‘nM’ indicates the cycle interval (data
batch length) as ‘n’ minutes. A data batch consists of data
files with times centred on the analysis. For example, in SE1M
and PE1M, 1 min data batches valid at the analysis time are
used; the pair examines the effects of nonlinear radial velocity
(because of the involvement of terminal velocity wt) and
reflectivity observation operators in PEnSRF versus regular
EnSRF. As discussed in section 2c, when all data are observed

synchronously, PEnSRF is equivalent to 4DEnSRF, therefore
AE1M would be the same as PE1M. In SE3M, raw data files
1 min before and after the analysis time are assumed to be
valid at the analysis time, while in AE3M they are used at
their valid times; and similarly for other experiments with
longer batch lengths. Here, we choose to update the model
state at the middle of the assimilation window to minimize
the temporal sampling error. In a nonlinear system, the
closer the observations are to the analysis time, the better
the linear approximation is.

In addition, ‘P’ in the experiment name indicates that only
partial data are used. The number following ‘P’ represents
the time interval of data used. For instance, ‘P10’ means
10 min of data centred at the analysis time are used in each
cycle. The ‘S’ at the end of SE5MS means that the data
are actually synchronous, created from the truth simulation
at the instance of analysis. This is the case in SE5MS only,
which is designed to measure the impact of data timing error
on the EnSRF analysis only. In all experiments, we perform
the first analysis at 21 to 25 min (depending on the cycle
length), run the analysis cycles until 85 to 88 min and launch
a deterministic forecast from the ensemble mean analysis at
about 45 min. No forecast is launched for SE5MS. In AE20M
and SE20M, a 20 min data batch is not valid at 25 min so for
the first cycle a 10 min data batch is used.

4. Results and discussions

To simplify the presentation, the square root of mean
difference total energy (DTE) is used to evaluate the
performance of the assimilation algorithm:

DTE = 1

2

[
(δu)2 + (δv)2 + (δw)2 + Cp

Tr
(δθ)2

]
, (29)

where δ denotes the difference of the ensemble mean from
the truth, Cp = 1004.7J kg−1K−1 is the specific heat of dry
air at constant pressure, and Tr = 270 K is the reference
temperature. We added vertical velocity w compared to the
DTE used in Meng and Zhang (2007). Furthermore, to
evaluate errors in the moisture and hydrometer fields, we
define

HydroDTE = 1

2
[(δqv)2 + (δqr)

2 + (δqs)
2 + (δqg)2],

(30)

where qv, qr, qs and qg are the mixing ratios of water
vapour, rainwater, snow and graupel, respectively. Similar to
previous radar OSSE studies (e.g. Tong and Xue, 2005; Xue
et al., 2006), DTE and HydroDTE diagnostics are calculated
only at grid points where the truth reflectivity exceeds
10 dBZ. Meanwhile, we refer the square root of mean
DTE and HydroDTE as RM DTE and RM HydroDTE for
convenience.

4.1. High frequency (1 and 3 min) assimilation experiments

We first look at the results using 1 min update cycles
or data batches. The analysis RM DTE and RM HydroDTE
obtained in PE1M are found to be very close to those of SE1M
throughout the assimilation. The differences between final
analysis errors in PE1M and SE1M are about 0.3 m s−1and
0.08 g kg−1 for RM DTE and RM HydroDTE, respectively.
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Table 1. List of experiments, where the SE, PE and AE represent sequential EnSRF, parallel EnSRF (PEnSRF) and asynchronous 4DEnSRF, respectively;
nM in the experiment name denotes the cycle interval or the length of data batch as ‘n’ minutes; the Pn indicates only ‘n’ minutes of data centred at the

analysis time are used and S at the end of SE5MS means that the data used are connected synchronously at the analysis time.

Experiment Analysis Analysis Analysis Data Temporal Forecast
name scheme start time end time batches correlation scale start time

SE1M EnSRF 21 88 1 min N/A 49
PE1M PEnSRF 21 88 1 min 6 min 49
SE3M EnSRF 22 88 3 min N/A 49
AE3M 4DEnSRF 22 88 3 min 6 min 49
SE5M EnSRF 23 88 5 min N/A 48
SE5MS EnSRF 23 88 5 min N/A N/A
AE5M 4DEnSRF 23 88 5 min 6 min 48
SE10M EnSRF 25 85 10 min N/A 45
AE10M 4DEnSRF 25 85 10 min 6 min 45
SE10MP5 EnSRF 25 85 5 min N/A 45
AE10MP5 4DEnSRF 25 85 5 min 6 min 45
SE20M EnSRF 25 85 1st cycle 10 min, others 20 min N/A 45
AE20M 4DEnSRF 25 85 1st cycle 10 min, others 20 min 12 min 45
SE20MP10 EnSRF 25 85 10 min N/A 45
AE20MP10 4DEnSRF 25 85 10 min 6 min 45
SE20MP5 EnSRF 25 85 5 min N/A 45
AE20MP5 4DEnSRF 25 85 5 min 6 min 45

Therefore, only the RM DTE and RM HydroDTE for SE1M
are plotted in Figure 4. Also, the forecast from PEnSRF
analysis is similar to that from EnSRF analysis. In Figure 5,
it can be seen that the locations of forecast updraft cores
in PE1M and SE1M are very close to the truth for both LC
and RC, with the position errors being less than 2 km in
both experiments. The updraft maxima in both experiments
reach 30 m s−1 and 20 m s−1 for RC and LC respectively,
capturing the updraft strength well. These results suggest
that the way updated observation priors are obtained (the
only difference between the two experiments) does not affect
the results much in our case even though nonlinearity exists
with the reflectivity and radial velocity operators.

Next, we compare the results between slightly longer
3 min cycle length experiments. It can be seen in Figure 4
that the analysis RM DTE and RM HydroDTE for SE3M
and AE3M are mostly similar to each other; however, there
are two clear differences. One is that the RM HydroDTE is
reduced more slowly in AE3M than that in SE3M before
30 min. This probably is caused by the highly nonlinear
model, because Eqs (13) and (14) are strictly valid only
when the model is linear. Poor quality temporal covariance
used in AE3M during the earlier cycles can be another
reason. Another difference is that the analysis error in AE3M
becomes smaller than that in SE3M in later cycles. In Figure 6
it can be seen that the 4DEnSRF analysis at 88 min matches
the truth well at all levels, while the EnSRF analysis is not as
good, especially within the dashed rectangle. In this area, the
EnSRF analyzed fields lag behind (displaced to the west of)
the truth fields. The radar beams plotted in Figure 6 indicate
that the analysis in this area is produced using data observed
at 87 min, which is 1 min earlier than the analysis time.
Due to this timing error, spatial displacement error results
in the EnSRF analysis for this moving storm (the storm
movement speed is about 21 m s−1 in this period). When
a deterministic forecast is launched from the analysis, the
forecast error in AE3M is clearly smaller than that in SE3M.
In Figure 5, even though the forecast storms in AE3M and
SE3M look qualitatively similar, the w errors (red contours)
are larger in SE3M (Figure 5(e)). In the RC region, w error
exceeds 20 m s−1 in SE3M while that in AE3M is less than

10 m s−1. The location errors with the updraft cores are also
smaller with AE3M. These results indicate that even for a
short 3 min cycle length, the asynchronous formation still
improves the storm analysis and forecast.

We now go back to experiment SE1M to see if the short
1 min cycle length is beneficial. Figure 4 shows that the
minimum analysis errors are reached at around 55 min
in all three experiments; after that time, the errors remain
level or increase somewhat, especially in SE1M. The analysis
RM DTE in SE1M increases to 3.2 m s−1 at 88 min compared
with 2.1 m s−1 at 55 min, and among the three experiments
the errors of SE1M are actually the largest at the end of
the assimilation window. We believe this is at least partially
caused by the analysis of incomplete volumes of data, two to
three elevations at a time, when using 1 min cycles. Doing
so has a tendency to introduce spatial discontinuity and
hence imbalance in the model state. Evidence can be seen in
Figure 7(a) that the error at the upper levels is large (over
10 m s−1), accompanied by wave-like fluctuations having
periods of 3–5 min, roughly matching the intervals at which
radar observations at these levels are introduced into the
system. The problem is more significant at the upper levels
because the vertical resolution of observations is lower, and
as a result the high-frequency gravity wave oscillations in the
stratosphere are more difficult to analyze accurately from
radar data. Another reason for the increased error level is the
frequent stopping and restarting of the WRF model. Even
without the assimilation of any data, a restart of a WRF run
using its ‘cold start’ input file does not exactly reproduce
the forecast of an otherwise non-stop run. It is because
the WRF stores some state variables and diagnoses others,
causing (small) differences in the model state after restart
(such small differences are generally inevitable with typical
weather models unless restart files with a full state dump
are used). Figure 7(b) shows that the forecast error grows in
time with a signature of downward error propagation. These
results indicate that there is additional benefit of doing four-
dimensional asynchronous EnKF even when computational
cost is not an issue.
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(a) (b)

Figure 4. The (a) RM DTE and(b) RM HydroDTE for experiments SE1M, AE3M and SE3M. Solid lines represent the analyses and dashed lines represent
the forecasts launched from the analysis ensemble mean at 49 min.
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Figure 5. Horizontal wind (vector), w (black contours at intervals of 10 m s−1, with the zero w contours also plotted) and qg (shaded) at 5 km above
ground level for (a) truth simulation and forecasts from (b) PE1M, (c) AE3M, (d) SE1M and (e) SE3M at 90 min, where the red triangle (dot) marks
the location of updraft maximum of right (left) moving storm in truth simulation. The red contours (at intervals of 5 m s−1) in (c) and (e) are for the
absolute w forecast errors.

4.2. Assimilation experiments with longer cycle lengths

In this section we compare the performance of 4DEnSRF
and EnSRF with longer cycle lengths. We first compare
SE5M and AE5M, for which RM DTE and RM HydroDTE
are plotted in Figure 8. From Figure 8(a) and (b) we
can see that 4DEnSRF performs worse than EnSRF in

the early cycles but become much better later on (after
50 min or six cycles). At the end of assimilation, the
analysis errors in AE5M are only half as large as those
in SE5M for both RM DTE and RM HydroDTE. Similar
behaviours were also observed earlier with SE3M and AE3M.
Poor quality temporal covariance and model nonlinearity
are suspected to be the causes. In other words, during
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Figure 6. Vertical cross-sections of reflectivity at Y = 58 km for truth simulation (colour shaded and white dashed contours) and analyses (black solid
contours) for (a) AE3M and (b) SE3M at 88 min. The purple straight lines represent the radar beam centres. The labels on the beams denote their
observation times.

the earlier cycles when the state estimation and associated
covariance is poor, data timing error in the regular EnSRF
is secondary. Fortunately, as the state estimation improves,
the asynchronous 4DEnSRF becomes superior (Figure 8(a)
and (b)).

The time evolution of error profiles during the analysis
and forecast periods are plotted in Figure 9 for AE5M and
SE5M. We can see that analysis errors at the lower levels
begin to increase after 60 min in SE5M (Figure 9(a)). Such
errors are similar to the spatial displacement errors obtained
earlier in SE3M, only larger in magnitude with the 5 min data
batches (Figure 10). At this time in SE5M (Figure 10(a)),
the analysis clearly lags behind the truth at the lower levels
where data measured 2 min earlier are used (Figure 10(b)).
The analysis in AE5M fits the observations almost perfectly
(Figure 10(c)); correspondingly, the low-level errors in
AE5M are much smaller late into the analysis period
(Figure 9(b)). For forecasts launched from the analyses
at 45 min, the error growth is also much slower in AE5M
than SE5M, leading to the forecast errors at 90 min being
substantially smaller in AE5M than SE5M (Figures 8(a) and
(b) and 9(c) and (d)).

To demonstrate further that the larger error in SE5M
came primarily from data timing error, experiment SE5MS
is performed, which is identical to SE5M except that all
simulated data were created (collected) at the exact times of
analysis, 5 min apart. Therefore there is no timing error with
the data. Figure 8(a) and Figure 8(b) show that the errors

of SE5MS are very close to those of AE5M, supporting our
belief.

In addition, comparing Figure 9(b) with Figure 7(a)
for AE5M and SE1M, respectively, clear differences are
found at the upper levels. In AE5M, upper level errors
gradually decrease as more data are assimilated while those
in SE1M actually grow, again indicating the benefit of the
asynchronous algorithm.

To further evaluate the performance of 4DEnSRF
with longer cycle intervals, we examine the results from
experiments having 10 or 20 min cycle lengths. In these cases,
more than one radar full volume scan is available; they are
either completely or partially used (Table 1). The analysis and
forecast errors for these cases are shown in Figure 8(c)–(f).
For these longer cycle lengths, the differences between
4DEnSRF and EnSRF algorithms are even larger. For a
10 min cycle length, the analysis errors in AE10M are below
those of SE10M starting from just the second analysis cycle
(Figure 8(c) and (d)), suggesting that the timing error in
SE10M dominates possible poor state estimation even during
early cycles (unlike the shorter cycle cases). At 45 min, the
analysis RM DTE in AE10M and AE10MP5 are reduced to
about 2.4 m s−1, as small as those in AE5M, and it remains
at a similar level throughout the assimilation window. For
RM HydroDTE, the error level actually decreases further
with cycles. Conversely, in SE10M and SE10MP5, the error
levels are much higher; asymptotic levels of RM DTE and
RM HydroDTE in SE10M and SE10MP5, at the end of
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Figure 7. Time–height plots of RM DTE for SE1M (a) analyses and(b)
forecasts, where the bold contour represents the RM DTE with value of
3 m s−1.

assimilation cycles, are about 4.8 m s−1 and 0.6 g kg−1,
roughly twice those of AE10M and AE10MP5 (Figure 8(c)
and (d)). It is also worth noting that the analysis errors of
AE10M and AE10MP5 are similar, with those of AE10M
being slightly lower, suggesting that when the asynchronous
algorithm is used, the inclusion of observations beyond one
volume scan interval can help the analysis (it at least does
not harm). On the other hand, the errors at the end of
the assimilation cycles are higher in SE10M compared with
SE10MP5, indicating that the inclusion of additional data
with larger timing error can actually harm the analysis.

Due to the smaller analysis errors, the errors of forecasts
launched at 45 min are also smaller in AE10M and AE10MP5
than those in SE10M and SE10MP5 throughout the forecast
period (Figure 8(c) and (d)). This advantage of the four-
dimensional asynchronous algorithm becomes even larger
when the cycle length is extended to 20 min. Figures 8(e)
and 8(f) show that among all experiments with a 20 min
cycle length, AE20M produces the lowest analysis and
forecast errors while SE20M has the highest error levels.
The differences in error are due, once again, to the large data
timing errors that can occur in a 20 min cycle window. For
such long cycle lengths, discarding data with large timing
errors aids the regular EnSRF, as errors of SE20MP10 are
lower than those of SE20M and errors of SE20MP5 are
even lower. Note that the differences between SE20M and
SE20MP10 are larger than those between SE20MP10 and
SE20MP5 (Figure 8(e) and (f)). The errors of SE20MP5 are
still higher than those of each asynchronous experiment. It
is worth noting further that the analysis errors in AE20M

during the later cycles are not much higher than those
of AE10M or even AE5M, which is important due to the
associated computational savings using longer intervals.

Forecasts of the wind components and graupel mixing
ratio at 90 min are plotted in Figure 11, together with
absolute w forecast errors (in red contours). At this time,
the forecast storm in AE5M looks very similar to the
truth in almost all aspects; no non-zero w error contour
is found in Figure 11(b) because its magnitude is smaller
than 10 m s−1, the contour interval. In comparison, there are
large errors in w forecast in SE5M, with the error maximum
exceeding 30 m s−1, mostly associated with the lagging
spatial displacement error with RC. This is consistent with
the large errors at the end of the forecast in Figure 8(a) and
(b). As the cycle length increases, the differences between
4DEnSRF and EnSRF become more evident. The northern
cell in the forecasts of AE10MP5 and AE20M matches the
truth well, with the absolute w forecast error being less
than 10 m s−1. In contrast, the errors associated with LC
are much larger in SE10MP5 and SE20M in both graupel
and w forecast fields, with the absolute w forecast error
exceeding 10 m s−1 and 20 m s−1 in them, respectively. The
updraft of the northern cell is mostly missing in SE20M
(Figure 11(g)). Similar differences also can be found with
the southern cell, but are more significant. Overall, the
forecast storm pattern is clearly the worst in SE20M. The
comparisons again confirm the benefit of 4DEnSRF over the
regular EnSRF when assimilating frequent radar data using
a cycle length 5 min or longer.

5. Summary and conclusions

In this study, a four-dimensional ensemble square root
filter algorithm (4DEnSRF) is proposed for assimilating
high-frequency asynchronous observations, such as those
from weather radars. Given the serial nature of EnSRF, the
4DEnSRF algorithm precalculates observation priors from
ensemble model states at observation times and updates
the observation priors at asynchronous observational times
to their posteriors using the filter; these posteriors, or
the most recently updated observation priors, are used
to update model state variables at the analysis time. Such
an algorithm has the benefit of being able to utilize more
observations collected over time using fewer analysis cycles,
thereby reducing computational costs and potentially also
improving filter performance. In our current 4DEnSRF
implementation, a hybrid approach that combines static
spatiotemporal localization with adaptive localization based
on the hierarchical ensemble filter idea of Anderson
(2007) is employed; the latter is in principle able to take
into account system movement when localizing spatial
covariances involving a time shift.

We tested the 4DEnSRF using simulated data from a
single Doppler radar for a supercell storm. The radar data
are simulated elevation by elevation and are grouped into
data batches with different time intervals and assimilated
with analysis cycles of the same lengths. Parallel sets of
experiments using 4DEnSRF and the regular EnSRF are
performed to compare their performance. Data batch or
cycle lengths between 1 and 20 min are examined. The
EnSRF always assumes that all data used in a given cycle are
valid at the same analysis time. When the cycle length is 10
or 20 min, some experiments use only data taken within a 5
or 10 min time window centred on the analysis time.
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Figure 8. As in Figure 4, but for experiments with cycle lengths equal to or longer than 5 min. The experiments shown in each row are indicated in the
legends in the right panels.

It is shown through OSSEs that 4DEnSRF performs better
than EnSRF when the cycle length is 3 min or longer.
Observation timing error is the main cause of the poorer
performance of EnSRF for the analyses and for forecasts
launched half way through the assimilation cycles; the longer

the cycle length, the larger the difference. For long cycle
lengths, 4DEnSRF produces better analyses when utilizing
all data at their correct times within the cycle window, but
for EnSRF discarding data far away from the analysis time
yields better analyses than using all data (those have timing
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Figure 9. As in Figure 7, but for experiments (b, d) AE5M and (a, c) SE5M.

error). Assimilating only a couple of elevations at a time
using very short (∼1 min) cycles with regular EnSRF tends
to introduce imbalances into the model state that degrades
the subsequent analyses and forecasts.

More specifically, when the assimilation cycles are 3 min
long, the 4DEnSRF analysis errors are smaller than those
of EnSRF after the first few analysis cycles. The increase
in error level in EnSRF was shown to be related mostly to
the spatial displacement error of features that have moved
between the times radar measurements were taken and the
times at which such data are assimilated. This timing error
in EnSRF comes from the assumption that all data were
valid at the analysis time. The 4DEnSRF correctly uses the
measurements at the times they were taken. The results with
a 5 min cycle length were similar; although the differences
between 4DEnSRF and EnSRF analyses and forecasts were
somewhat larger.

When cycle interval is increased to 10 min or 20 min, the
advantage of using 4DEnSRF becomes even more evident.
In these cases, the impact of timing error dominates over
other issues with the filters. With 4DEnSRF, the filter is able
to reduce the analysis errors to levels close to those obtained
using a 5 min cycle length even when a 20 min cycle length
is used, while the error levels of the corresponding EnSRF
analyses are about twice as large. The large error differences
are also maintained in the forecasts launched from analyses
midway through the analysis cycles.

Based on the OSSE results, several conclusions can be
drawn: (i) the ‘parallel’ EnSRF algorithm that updates
observation priors at the analysis time as part of the extended
state vector performs comparably with regular EnSRF when
tested with 1 min data batches/cycle length (hence data
timing error is negligible); (ii) in the presence of data timing
error with regular EnSRF, 4DEnSRF works better than

EnSRF; (iii) the advantage of 4DEnSRF becomes larger as
the cycle increases, especially when the data span more than
one radar volume scan interval; (iv) very short assimilation
intervals (∼1 min) can introduce shock and imbalance into
the model state, which degrade the analysis and forecast; (v)
when the assimilation cycle spans more than one volume
scan, it is better for the regular EnSRF to use only the data
from the closest scan volume in order to reduce the impact
of timing errors in the data, while for 4DEnSRF using all
data yields better results; (vi) overall, using 4DEnSRF with
5 to 10 min cycle lengths yields the best results for our test
problem but the final analysis errors using a 20 min cycle
length are only slightly larger. Considering the significant
computational cost saving, the use of the four-dimensional
algorithm with ∼20 min cycles is attractive, especially for
real-time applications. The 4DEnSRF algorithm also has
been implemented in the full EnKF framework of the ARPS
model with embedded (within the model) observation prior
calculations. The system is being tested with real radar data
and the results will be reported in a future article.
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