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1. Introduction 
 

*Since its first introduction by Evensen (1994), the 
ensemble Kalman filter (EnKF) technique for data 
assimilation has received much attention. A number 
of studies have been done to exploit its applications 
and performances. The EnKF was designed to sim-
plify the computation of the flow-dependent error sta-
tistics without the use of approximate closure scheme 
as extended Kalman filter does. Rather than solving 
the equation for the time evolution of the probability 
density function of the model state, EnKF applies the 
Monte Carlo method to estimate the forecast error 
statistics. A large ensemble of model states are inte-
grated forward in time using the dynamic equations, 
the moments of the probability density function are 
then calculated from this ensemble of model states for 
different times (Evensen 2003). 

In the recent decades, various techniques have 
been developed for analyzing and retrieving atmos-
pheric state at the convective scale from Doppler ra-
dar data. These methods range from purely kinematic 
to expensive 4D variational method that employs a 
nonhydrostatic prediction model and its adjoint (e.g., 
Gal-Chen 1978; Sun et al. 1991; Qiu and Xu 1992; 
Shapiro et al. 1995; Sun and Crook 1997; Gao et al. 
1999; Wu et al. 2000; Weygandt et al. 2002). Most of 
the latter work deals with retrieval and assimilation of 
radial velocity and/or reflectivity data from single Dop-
pler radar. For the purpose of initializing NWP models, 
the 4DVAR method (e.g., Sun and Crook 1997; Gao 
et al. 1998) promises to provide an initial condition 
that is consistent with the prediction model and is able 
to effectively use multiple volume scans from radar. 
However, due to the need for an adjoint that should 
include detailed physics parameterizations and the 
high computational cost, 4DVAR assimilations of 
Doppler radar data have been limited to using rela-
tively simple model configurations.  

Compared to the 4DVAR method, the EnKF 
scheme is more flexible and much easier to set up. 
Under the right assumptions, its solution is equivalent 
to the optimal 4DVAR analysis. In fact, EnKF has 
recently been applied to the assimilation of simulated 
Doppler radar data for a convective storm (Snyder 
and Zhang 2003; Zhang et al. 2003) and of real radar 
data by Dowell et al. (2003). All three studies used the 
same anelastic cloud model of Sun and Crook (1997). 
Simple warm-rain microphysics scheme is used in 
these as well as afore-quoted 4DVAR studies with Wu 
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et al (2000) being one exception. In the latter, the ice mi-
crophysics scheme used was simplified and microphysical 
variables, among others, were analyzed from dual-
polarization radar data. In the study, water and ice phase 
microphysical variables are first derived from the polariza-
tion reflectivity data before being assimilated into the 
model. 

In this study, we report on the development of an 
EnKF system based on a general-purpose compressible 
nonhydrostatic model, and the application of the system to 
the assimilation of simulated single Doppler radar radial 
velocity and/or reflectivity data. A sophisticated ice micro-
physics scheme is employed. The performance of the 
EnKF scheme in 'recovering' complete model structures, 
including wind, temperature, pressure fields and all water 
and ice categories are examined. The impact of radial 
velocity and reflectivity data as well as their spatial cover-
age on the analysis are investigated. Section 2 describes 
the EnKF assimilation system and design of OSS (Observ-
ing System Simulation) experiments, and section 3 pre-
sent and discussed the experiment results. A concluding 
section is given at the end. 

 
2. Assimilation System and Experimental Design 

 
a) The prediction model and truth simulation 
 

In this study, we test our EnKF assimilation system 
using simulated data from a classic May 20, 1977 Del City, 
Oklahoma supercell storm case (Ray et al. 1981).  Such 
simulation experiments are commonly referred to as Ob-
serving System Simulation Experiments (OSSE, see, e.g., 
Lord et al. 1997). The forecast model used is the Ad-
vanced Regional Prediction System (ARPS; Xue et al. 
2000), In this study, the ARPS is used in a 3D cloud model 
mode and the prognostic variables include three velocity 
components , , ,u v w  potential temperature θ , pressure p, 
and six categories of water substances (water vapor spe-
cific humidity qv, cloud water mixing ratio qc, rainwater mix-
ing ratio qr, cloud ice mixing ratio qi, snow mixing ratio qs 
and hail mixing ratio qh). The microphysical processes are 
parameterized using the modified three-category ice 
scheme of Lin et al. (1983) and its implementation follows 
Tao and Simpson (1993). 

For all experiments unless otherwise noted, the physi-
cal domain is 64 64 16km km km× × . The model grid com-
prises of 35 35 35× × grid points, with grid intervals of 2 km 
in both x and y directions and of 0.5 km in the vertical. The 
truth simulation or nature run was initialized from a modi-
fied real sounding plus a 4K  ellipsoidal thermal bubble 
centered at 48x km= , 16y km=  and 1.5z km= , and with 

radius of 10km  in x and y  and 1.5km  in vertical direc-
tions. Open boundary conditions are used at the lateral 
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boundaries. A radiation condition is also used at the 
top boundary. Free-slip conditions are applied to the 
bottom boundary. The length of simulation is 75 min-
utes. A constant wind of 3u =  ms-1 and 14v =  ms-1 
is subtracted from the original sounding to keep the 
primary storm cell near the center of model grid. De-
spite a relatively coarse resolution, the evolution of 
the simulated storms is very similar to those docu-
mented in Xue et al. (2001). 
 

b) Simulation of  radar observations 
 
        The simulated observations are assumed to be 
available on the grid points. The radial velocity is cal-
culated from 
 cos sin cos cos sinrV u v wα β α β α= + +   ,          (1) 
where α is the elevation angle and β the azimuth 
angle of radar beams, and u, v and w are velocities 
from the simulation.  
 The logarithmic reflectivity is estimated from 
equations as follows: 
 10 log( )dBZ Z= ,                                                 (2) 
 r s hZ Z Z Z= + + ,                                                 (3) 
where Zr, Zs, Zh are contributions from rain, snow and 
hail. The rain component of the reflectivity is calcu-
lated from 
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where C is a constant, 31000 /r kg mρ = is the density 
of rainwater, ρ is the density of air. If the temperature 
is less than zero centigrade then the snow component 
of reflectivity is 
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otherwise , 
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where 3100 /s kg mρ = is the density of snow and 
3917 /i kg mρ = is the density of ice. The hail compo-

nent is calculated from 
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where 3913 /h kg mρ = is the density of hail. 
The radar is located at the southwest corner of 

the computational domain. For the data sampling and 
data assimilation, we assume the observation opera-
tor to be perfect. As with most 4DVAR and EnKF 
studies, the prediction model is also assumed perfect, 
i.e., no model error is explicitly taken into account. 
 

c) The EnKF data assimilation procedure 
 

Our EnKF implementation is based on the algorithm 
described by Evensen (1994), Burgers et al. (1998) and 
Houtekamer et al. (1998). The analysis equation is 

1[ ] ( )a f f T f o f
i i i ix x P H HP H R y HxΤ −= + + − ,           (8) 

where i represents the ith ensemble member and f
ix  is the 

first guess obtained from the ith ensemble forecast. fP is 
the forecast error covariance and R is the observation 
error covariance. Perturbed sets of observations are used 
to update each ensemble member and o

iy is the ith per-
turbed observation. H is the observation operator, which 
converts the model states to the observation parameters. 
The forecast error covariances are calculated from  
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where the overbar denotes the ensemble mean and N is 
the number of ensemble members. 

We start the initial ensemble forecast at the 20 min-
utes of the model simulated storm. To initialize the en-
semble members, Gaussian noises with zero mean are 
added to the horizontally homogeneous initial guess that is 
based on the environmental sounding. The standard de-
viation of the random noises is 3 ms-1 for u , v and w and 
3K for potential temperature. The pressure and moisture 
fields are not perturbed. The first analysis is performed at 
25 minutes. One hundred ensemble members are used for 
the assimilation experiments.  

The observations are assimilated every 5 minutes. 
The observation errors are assumed to be uncorrelated; 
therefore, observations can be and are analyzed sequen-
tially one at a time. We limit the influence region of each 
observation to a rectangular region with half width of 2 grid 
intervals in both horizontal and vertical directions, a pro-
cedure known as covariance localization. Observations 
are perturbed by adding Gaussian noises, with the stan-
dard deviations being 1 ms-1 for radial velocity and 5 dBZ 
for reflectivity. 

Table 1 gives a list of ten experiments reported in this 
paper. First the assimilation scheme is tested by only as-
similating the simulated radial velocity data with full data 
coverage or data covering regions with significant reflectiv-
ity only. The impact of using reflectivity data is evaluated 
among other experiments. 

 
3. The Assimilation Experiments 
 
a) Assimilations using radial velocity data only 
 

In experiment VrFull we assume that the radial veloc-
ity data cover the entire computational domain. In experi-
ment VrCloudy the same data are available only in cloudy 
regions where reflectivity is greater than 10dBZ. Although 
in real cases, the radial velocity data are generally un-
available or are unreliable outside the cloudy regions, we 
would like to see how data coverage impacts the quality of 
EnKF assimilation.  



Extended Abstract, 20th Conf. Weather Analysis and Forecasting/ 
16th Conf. Numerical Weather Prediction 

American Meteorological Society, Seattle, Washington, 2004 
 

 3

Table 1. List of Data Assimilation Experiments 
 

 
Experiment 

Observation: Radial 
velocity (Vr) and/or 

Reflectivity (Z) 

 
Update pres-

sure 

 
Update qi, qs, qh 

Update u, v, w, qv, qc, qi 
when assimilating  

reflectivity 
VrFull Vr yes yes  
VrFLD The same as VrFull, except for a 2.5 times as large a domain in the y direction 

VrCloudy Vr (Z > 10 dBZ) yes yes  
VrCnop Vr (Z > 10 dBZ) no yes  
ZCloudy Z (Z > 10 dBZ) no yes yes 
VrZCa Vr & Z (Z > 10 dBZ) no yes yes 
VrZCb Vr & Z (Z > 10 dBZ) no yes no 
VrZCc Vr & Z (Z > 10 dBZ) no yes yes, start from 4th cycle 

VrCZfull Vr (Z > 10dBZ) & Z no yes yes, start from 4th cycle 
VrCnoice Vr (Z > 10 dBZ) no no  
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Figure 1. Vertical velocity (m s-1; shaded), horizontal wind vectors (m s-1), and perturbation poten-
tial temperature 'θ (K; contour) at z=6 km for truth simulation (a)~(d), experiments VrFull (e)~(h) 
and VrCloudy (i)~(l) at T=40, 60, 80 and 100 min. 
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Figure 2. The vertical cross-sections of wind vectors (m s-1), perturbation potential temperature 
(K; shaded), which pass through the maximum updraft, for the truth simulation (a)~(d), experi-
ment VrFull (e)~(h) and experiment VrCloudy (i)~(l) at T=40, 60, 80 and 100 min. 

 
As one can see by comparing with the truth fields, 

the wind, temperature, and microphysical variable 
fields can be accurately retrieved by experiment 
VrFull (Figs. 1, 2, 10). At 80 minutes (the end of 12th 

assimilation cycle), the maximum updraft is 40.5 ms-1, 
which is very close to the 40.7 ms-1 of truth simulation 
(Fig. 2 though the specific maximum values are not 
shown). The strength of the low level cold pool, repre-
sented by the minimum perturbation potential tem-
perature at the first scalar level (250m) above ground, 
is -5.42 K for the simulation and -5.0 K for experiment 
VrFull (not shown). The overall structure and evolu-
tion of the assimilated storm is very close to the true 
storm at this stage, indicating that the assimilation of 
radial velocity data using the EnKF scheme is suc-
cessful. 

Compared to VrFull, VrCloudy is also able to es-
tablish the basic structures of the model storm well. 
The evolution of the model storm, including the cell 
splitting between 40 and 60 minutes and further split-
ting after 80 minutes are all well reproduced (Fig. 1). 
However, the strength of the updraft, the edge and 
strength of the low level cold pool (not shown) and 
also the distribution of the six water substances are 
not as accurate as in VrFull (Figs. 1, 2 and 10). Since 
we added perturbations to the initial guess every-

where and covariance localization was made, the envi-
ronmental state in the clear air regions can not be updated 
by the analysis directly when data are limited to the cloudy 
regions. The model fields are therefore somewhat noisy.  
In real cases, other data representative of the environment 
can be used to improve the environmental analysis. 

We use the rms error of the mean of ensemble analy-
ses and forecasts to judge the quality of the mean analysis. 
The rms errors are averaged over those grid points where 
the reflectivity is greater than 10 dBZ. The errors for VrFull 
and VrCloudy are plotted in Fig. 3. The rms errors of ve-
locities, temperature and hydrometeor variables are seen 
to decrease rapidly in the first four assimilation cycles 
(over 20 minutes). The rms errors are much smaller when 
the data covers the entire domain. 

The EnKF data assimilation scheme works well for all, 
except pressure fields. Figure 3(e) shows that for the case 
when pressure field is analyzed (updated by the analysis), 
the pressure field becomes less accurate than the back-
ground forecast after each analysis. In fact, in this case 
and for almost all cycles, it is the model forecast that re-
duces the error in pressure. When data coverage is limited 
to the cloudy regions, the situation becomes even worse 
(the red curve in Fig. 3 (e)). The model pressure field (not 
shown here) indicates excessive acoustic oscillations in 
the analysis and forecast solutions, especially at 
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Figure 3. The rms errors of the mean of ensemble forecasts and analyses, averaged over points at 
which the reflectivity is greater than 10dBZ for: a) u (ms-1), b) v (ms-1), c) w (ms-1) and d) perturbation 
potential temperature 'θ (K), e) perturbation pressure 'p (Pa), f) qc  (g kg-1) g) qr (g kg-1), h) qv (g kg-1; 
thick curve), qi (g kg-1), i) qs (g kg-1), j) qh (g kg-1), for experiment VrCloudy (red), experiment VrFull 
(black) and experiment VrFLD (only the rms error of 'p  is shown, which is the blue curve in (e)). 
 

the lower levels. The problem results from the com-
pressible nature of the forecast model. Because the 
background error correlations associated with the 
acoustic modes cannot be reliably estimated (mainly 
because of its high frequency), it is hard for the analy-
sis to exactly satisfy the mass continuity equation.  

When the continuity equation is not satisfied, 
acoustic modes get excited. The problem is more 
severe during the earlier assimilation cycles and/or 
when data coverage is incomplete. The acoustic wave 
amplitudes actually decreases in the subsequent 
model forecast, due to dynamic adjustment and built-
in damping of acoustic modes in the model. When the 
data coverage is complete, it takes only a few cycles 
for the pressure field to adjust and become close to 
the truth, except in the lower layer. The situation is 
worse when data coverage is incomplete because in 
the clear air regions, the model variables are not up-
dated by the analysis and large imbalances occur at 
the edge of cloudy regions, large amplitude acoustic 
waves are excited there. As a result, the forecast er-
ror covariance computed from the ensemble states 
becomes incorrect and the analysis update does not 
improve the background forecast of pressure. In the 
cloud-scale EnKF assimilation studies that use an 
anelastic model, pressure is diagnosed from the wind 
field. When wind field does not satisfy the anelastic 
mass continuity equation, similar problem may occur 
although this issue has not been discussed in the 
literature. 

The open lateral boundary condition used in our simu-
lations is another possible source of mass continuity error.  
To examine the boundary effect, another experiment 
VrFLD is performed that is the same as VrFull, except the 
domain 2.5 times as long in the y direction. As the lateral 
boundaries are further removed from the storms, the pres-
sure analysis and forecast errors are significantly reduced 
(as shown by the blue curve in Fig 3 b).  

Since the analysis update to pressure generally hurts 
the model solution, the update to pressure should not be 
performed. This is so in our later experiments, and in gen-
eral, the model is able to establish a pressure field that is 
consistent with the wind and other fields.  

 
b) Impact of assimilating reflectivity data 
 

Reflectivity is a measurement that is provided by all 
types of weather radar. In this section, we examine if re-
flectivity data alone is sufficient for the model to reproduce 
the true storm, and we also study its value when used in 
combination with radial velocity data (which is unavailable 
from non-Doppler radars). We note that the observation 
operator for reflectivity is nonlinear and there exist more 
uncertainties in the operator with reflectivity data than with 
radial velocity. In our model with ice microphysics, the 
rainwater, snow and hail mixing ratios, qr, qs, and qh, are 
directly related to the reflectivity (Eqs. 3-6). The experi-
ments therefore further test the performance of EnKF 
scheme in the case of nonlinear observation operator. In 
the first experiment ZCloudy, only simulated reflectivity 
greater than 10dBZ is assimilated. 
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Figure 4. The rms errors of the mean of ensemble forecasts and analyses, averaged over points at which 
the reflectivity is greater than 10dBZ for: a) u (ms-1), b) v (ms-1), c) w (ms-1) and d) perturbation potential 
temperature 'θ (K), e) perturbation pressure 'p (Pa), f) qc  (g kg-1) g) qr (g kg-1), h) qv (g kg-1; thick curve), qi 
(g kg-1), i) qs (g kg-1), j) qh (g kg-1),for experiments ZCloudy (red) and VrCnop (black). 
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Figure 5. As Fig. 4 for experiments VrCnop (black) and VrZCa (red). 
 

As can be seen in Fig. 4 (red curves), the analysis 
starts to reduce the rms errors for qr and qh first (start-
ing from the second cycle) and then for w, 'θ , qc, qv, qs 
and qi. Significant reduction in u and v errors did not 
start until after six to seven cycles. We compare this 
experiment with VrCnop, which is the same as 
VrCloudy, except that the pressure field is not updated. 
The accuracy of the retrieved snow and hail fields is 

better while the accuracy of retrieved rain and ice fields 
is comparable. For water vapor field, the rms error is 
smaller than that of VrCnop in the later part of the analy-
sis period. But the velocity and temperature fields are 
not as good as those of VrCnop. The result is reason-
able, because the relation between reflectivity and the 
wind and temperature fields is indirect. The information 
of reflectivity can be used to effectively correct errors in 
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Figure 6. As Fig. 4 but for experiments VrZCa (red) and VrZCb (black). 
 

 
the wind and temperature fields only after the EnKF 
system produces correct forecast error covariances 
between the variables. 

In the next set of experiments, we combine the 
radial velocity and the reflectivity data into the assimi-
lation process. In experiment VrZCa, both the radial 
velocity and reflectivity in cloudy regions are assimi-
lated (red curve in Fig. 5). Compared to VrCnop, we 
can see that when additional reflectivity data are as-
similated the analysis errors of qs, qh, qr and qi are 
smaller than those in VrCnop. Whereas for most of 
the other control variables, in the first part of assimila-
tion period (before 65 min), including reflectivity data 
hurts the model solution. In the later part of the period, 
the analysis update of all variables, except pressure, 
is better or is as good as in VrCnop. Our explanation 
is that at the early stage of the assimilation period, 
background error covariances between reflectivity and 
the fields not directly related to reflectivity were not 
reliable. Updating these variables based on reflectivity 
data and the unreliable covariances therefore hurts 
the analysis. As the model state gets closer to truth, 
the covariances estimated are improved, leading to 
direct positive impact on other fields. 

We note that in Dowell et al. (2003) that uses 
warm rain microphysics, only qr is updated when as-
similating reflectivity observations.  We performed a 
corresponding experiment, VrZCb, in which only qr, qs, 
and qh were updated when assimilating reflectivity 
(black curve in Fig. 6). With respect to the wind and 
temperature fields, this does lead to better results 
before the sixth cycle. However, after the sixth cycle, 
the accuracy of the wind and temperature fields is not 
as good as the case that we do update all variables 
(except for pressure). As discussed earlier, in the 

EnKF system, there is clearly a delay before reliable co-
variances between reflectivity and the wind and thermody-
namic fields are established. After the initial delay, the 
reflectivity becomes directly beneficial in retrieving the 
wind and thermodynamic fields and the assimilation of it 
leads to overall better analysis. For this reason, we do not 
believe it appropriate to exclude wind and temperature 
from the analysis update based on reflectivity data. 

To see if we can further improve the analysis, in 
VrZCc we apply the update due to reflectivity to qr, qs, and 
qh only before the fourth cycle. After the fourth cycle, all 
control variables (except for pressure) are updated based 
on reflectivity. Figure 7 shows that by doing so, the analy-
ses for all control variables are improved and so is the 
forecast of pressure field. 

 In the previous experiments, only reflectivity larger 
than 10 dBZ is assimilated. In reality, zero reflectivity out-
side the cloudy regions also contains valid information. 
One can assume that the assimilate reflectivity data cover 
the entire analysis domain. In our next OSS experiment, 
named VrCZfull, such assumption is made, but radial ve-
locity data are still only available in cloudy regions (Z > 10 
dBZ). As was done in experiment VrZCc, the velocities (u, 
v, w), perturbation potential temperature 'θ , qv, qc, and qi 
are updated starting from the fourth cycle when assimilat-
ing reflectivity. Figure 8 shows that with the complete re-
flectivity coverage, not only the microphysical fields are 
much improved, but also the wind and temperature fields. 
The complete coverage of reflectivity data can remove 
spurious disturbance that can otherwise develop in the 
data void regions. Experiment VrCZfull produces the best 
result among those that does not assume complete cover-
age of Vr data. 
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Figure 7. As Fig. 4 but for experiments VrZCb (black) and VrZCc (red). 
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Figure 8. As Fig. 4 but for experiments VrZCc (red) and VrCZfull (black). 
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Figure 9. As Fig. 4 but for experiments VrCnop (black) and VrCnoice (red). 
 

 
c) Retrieval of microphysical fields 
 

The microphysics retrieval is an important aspect 
of convective-scale data assimilation. Relatively few 
previous studies have focused on this problem. Most 
of these studies used only simple microphysical 
parameterization and the ice phase is usually ex-
cluded. The recent attempt of Wu et al (2000) uses a 
4DVAR data assimilation system to assimilate dual-
polarization radar data into a model of deep convec-
tive cloud with both liquid and ice phase microphysics. 
In their study, the microphysics scheme is simplified 
and consists of only three categories: rain, hail and 
cloud liquid-ice. The reflectivity and differential reflec-
tivity data were converted to rain and hail mixing ratios 
first, rather than being directly assimilated. The differ-
ential reflectivity data were necessary for such a con-
version. In our study, the original detailed ice micro-
physics parameterization is used and only regular 
reflectivity measurement is assumed available. Our 
problem is more difficult here because more water and 
ice species have to be determined and no dual polari-
zation information is available. Figure 10 shows the 
distribution of the five categories of hydrometeor for 
the true run and for assimilation experiments VrFull, 
VrCnop, VrCnoice, ZCloudy and VrCZfull. The figure 
shows that the EnKF data assimilation system is able 
to establish detailed microphysical structures that 
have very good fidelity. The quality of actual analysis 
does depend on the usage and availability of data, as 
seen earlier by the error plots.  

To better understand the way the EnKF scheme works 
when retrieving the microphysical fields, we performed 
another experiment, named VrCnoice, in which qi, qs, and 
qh (as well as pressure) are not updated by the analysis 
and only radial velocity in cloudy regions are assimilated. 
For these three variables, the difference between VrCnoice 
and VrCnop is relatively small before the 6th cycle, but be-
comes significant after that time (Fig. 9). For the early pe-
riod, the relatively small difference reflects relatively weak 
or unreliable link (through background error covariance) 
between the observation (Vr) and these three variables. 
The link apparently becomes stronger and more effective 
in correcting errors in these fields at the later stage. On the 
other hand, despite of the lack of direct correction to qi, qs, 
and qh  by Vr, the errors in the former are still reduced in 
time in general. Such reductions are achieved through 
model dynamics – when other model fields are improved, 
fields that are not directly updated have to adjust and be-
come consistent with these other fields. The more accurate 
hydrometeor fields, in turn, help improve the overall model 
state. The link through model dynamics is more important 
at the early period of assimilation when background error 
covariances are less reliable.  

Despite the effectiveness of radial velocity assimilation, 
the reflectivity is most important for retrieving the micro-
physical fields because it has the most direct link to the 
hydrometeors. Experiment ZCloudy helps us understand 
this point. With only reflectivity, we cannot obtain as good 
an analysis for wind and thermodynamic fields, but the 
microphysical fields can be retrieved accurately (Fig. 4 and 
Fig. 10). 
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Figure 10. The cross-sections of qc, qr, qi, qs and qh (g kg-1) fields that pass through the maximum up-

draft for the truth simulation (1-a)~(1-e), and experiments VrFull (2-a)~(2-e), VrCnop (3-a)~(3-e), 
VrCnoice (4-a)~(4-e), ZCloudy (5-a)~(5-e) and VrCZfull (6-a)~(6-e) at T=65 min. 

 
 
4. Concluding and Discussion 
 

In this study we applied the ensemble Kalman fil-
ter technique to the assimilation of simulated radar 
radial velocity   and reflectivity data using a com-
pressible model with a complex microphysics scheme. 
The method is shown to have great potentials for the 
assimilation of such data. Through flow-dependent 
forecast error covariance estimation from the ensem-
ble states, not only the wind and thermodynamic 

fields can be retrieved accurately, all five categories of 
hydrometeor can also be retrieved successfully. Reliable 
covariances between the observations and variables not 
directly related to them can be obtained after a few assimi-
lation cycles even when they are started from initial guess 
made of an environmental sounding plus random pertur-
bations. After the initial number of cycles, useful observa-
tional information can be spread to the indirectly related 
variables through reliable forecast error covariances. Up-
dating indirectly related variables after the first few cycles 
when assimilating reflectivity data produces the best 
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analysis. Using reflectivity information in clear air re-
gions is also beneficial. When using a compressible 
model, acoustic wave mode can be excited by errors 
in the wind and pressure analyses and it is recom-
mended that pressure be excluded from the analysis 
update. This choice is shown to work the best. 

Of course, caution should be applied when inter-
preting OSSE results. Both forecast model and for-
ward observation operators are assumed perfect, 
which happens to work well for OSSE data. Despite a 
recent success in applying EnKF to real radar data 
(which still used a model in idealized settings), much 
work is still needed in moving us in the direction of 
real case and real data. 
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