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1 .  INTRODUCTION        * 
 
The development and testing over the recent 

years have demonstrated that the ensemble Kal-
man filter method (1994; Burgers et al. 1998; 
1998; Evensen 2003) and its variations form a vi-
able approach to atmospheric data assimilation, 
for both large-scale (Houtekamer and Mitchell 
2001; Houtekamer et al. 2005) and small-scale 
(e.g., Snyder and Zhang 2003; Dowell et al. 2004; 
Zhang et al. 2004; Tong and Xue 2005; Xue et al. 
2005) applications. The most important advantage 
of the ensemble-based data assimilation scheme 
(Houtekamer and Mitchell 1998; Anderson 2001; 
Bishop et al. 2001; Whitaker and Hamill 2002; 
Tippett et al. 2003) is that it provides a practical 
way to calculate and evolve the error statistics by 
using an ensemble to represent the probability 
density function (PDF) of the error and by propa-
gating the PDF through ensemble forecasts 
(Evensen 1994). In the context of convective scale 
data assimilation, the flow-dependent multivariate 
background error covariances, provided by the 
ensemble, play an essential role, and with them it 
has been shown that dynamically consistent wind, 
thermodynamic and microphysical fields can be 
retrieved accurately from simulated radar radial 
velocity and reflectivity observations (Snyder and 
Zhang 2003; Zhang et al. 2004; Tong and Xue 
2005). Encouraged by mostly Observing System 
Simulation Experiment (OSSE) results, research-
ers have been moving towards using real data 
(e.g., Dowell et al. 2004; Houtekamer et al. 2005) 
and exploring the possibility of operational imple-
mentation of this data assimilation method 
(Houtekamer et al. 2005). 

In most OSSE studies, only forecast errors 
due to uncertain initial conditions are taken into 
account, while forecast errors due to model defi-
ciencies are neglected. However, in real-world 
applications, the first significant challenge that 
might be encountered by the ensemble Kalman 
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filter (hereafter EnKF) is the model error. The es-
sential part of the EnKF is the error covariance, 
which to a large extent determines the accuracy of 
the analysis. Convective-scale data assimilation, 
which depends mainly on the radar observations, 
is more of a retrieval problem, since most of the 
state variables are not directly observed. There-
fore, multivariate error covariance is more impor-
tant for convective-scale data assimilation.  The 
flow-dependent and multivariate covariances are 
estimated and evolved through the model evolu-
tion of each ensemble member. Whether they can 
be determined correctly depends on whether the 
model evolutions are correct. Systematic model 
errors can cause the ensemble member not being 
drawn from the distribution that produces truth be-
cause the model attractor and the system attractor 
differ (Hansen 2002). 

Systematic errors can result from uncertain 
parameters used in the model. One way to ac-
count for the model error of this type is through 
parameter estimation, so that the parameters can 
be more adequately constrained by available ob-
servations. Different techniques, such as the 
maximum likelihood method (Dee 1995), extended 
Kalman filter (Hao et al. 1995) and variational 
method (Derber 1989; Yu and O'Brien 1991; Zou 
et al. 1992), have been applied to the parameter 
estimation problem in meteorology. Navon (Navon 
1997) reviewed the variational approach via an 
adjoint model for parameter estimation and dis-
cussed the issue of parameter identifiability. Re-
cently, Crook et al. (2004) applied the 4DVAR 
method to estimate a coefficient in a hydrometeor 
terminal velocity formulation of their cloud model. 

Anderson (2001) first suggested that the EnKF 
can be used for parameter estimation by including 
the model parameters as part of the model state 
and being estimated simultaneously with the 
model state. Annan et al. (2005a) applied the 
EnKF method to simultaneously estimate 12 pa-
rameters in a low-resolution coupled atmosphere-
ocean model with steady-state dynamics, which 
works successfully with identical twin experiments. 
Annan and Hargreavers (2004) also successfully 
applied this method to perform multivariate pa-
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rameter estimation in the presence of chaotic dy-
namics with the Lorenz model. More recently, they 
extended their results to a realistic intermediate 
complexity atmospheric GCM with both identical 
twin experiments and reanalysis data (Annan et al. 
2005b). However, in contrast to weather predic-
tion, the climate forecasts depend strongly on 
parameterizations rather than initial conditions 
(Annan et al. 2005a). Kivman (2003) found that 
the EnKF performed poorly when applied to simul-
taneous state and parameter estimation in the Lo-
renz model. He attributed this to utilizing only two 
statistical moments in the analysis step by all Kal-
man filter-based methods, which are unable to 
deal with highly non-Gaussian probability distribu-
tions in the parameter space. Aksoy et al. (2005) 
applied the EnKF method to simultaneous estima-
tion of up to 6 parameters and the model state 
with a two-dimensional, hydrostatic, non-rotating, 
and incompressible sea-breeze model. They found 
that the estimation of single imperfect parameters 
with the EnKF is successful, while the quality of 
estimation deteriorates when the number of esti-
mated parameters increases. 

For convective-scale numerical weather pre-
diction (NWP), explicit microphysics schemes are 
used to predict the evolution of cloud and precipi-
tation. Most cloud models utilize bulk microphysics 
scheme, in which the particle or drop size distribu-
tions (DSDs) are parameterized in functional 
forms. McCumber et al. (1991) tested the sensitiv-
ity of tropical convective system simulations to the 
changes in size distribution parameters. Ferrier et 
al. (1995) also performed a microphysical parame-
ter sensitivity study when simulating squall sys-
tems in the mid-latitude and tropical environments. 
More recently, Gilmore et al. (2004) examined the 
precipitation uncertainty of simulated midlatitude 
multicell and supercell storms due to variations in 
particle parameters. All these studies demonstrate 
that the structure and evolution of simulated con-
vective systems are sensitivity to microphysical 
parameterizations. Variations in microphysical pa-
rameters, such as collection efficiencies, DSD pa-
rameters and particle densities, have profound 
effects upon the characteristics of precipitation 
systems and their associated dynamical proc-
esses. 

As indicated by these sensitivity studies, the 
microphysical parameterization could be an impor-
tant source of model error for convective-scale 
data assimilation and prediction. The purpose of 
this study is to examine the impact of the errors in 
some of the microphysical parameters on the re-
trieved model state and to correct these errors, 
when possible, using the EnKF method through 

parameter estimation. To our knowledge, this is 
the first attempt as such. 

The remainder of this paper is organized as 
follows. Section 2 outlines our ensemble square 
root filter (EnSRF) data assimilation system and its 
configurations.The EnSRF can be considered a 
variation of the ensemble Kalman filter method. In 
section 3, we describe our parameter estimation 
procedure. The results of data assimilation and 
parameter retrieval experiments, based on simu-
lated data for a supercell storm, are discussed in 
section 4. Conclusions and further discussions are 
given in section 5. 

2 .  DATA ASSIMILATION ENVIRONMENT 

2.1. The Model and the Natural Simulation 
The forecast model used in this study and the 

truth simulation used to create the simulated data  
are inherited from Tong and Xue (2005, hereafter 
TX05). Briefly, the Advanced Regional Prediction 
System (Xue et al. 2000; Xue et al. 2001; Xue et 
al. 2003), a fully compressible and nonhydrostatic 
atmospheric prediction system is used. The ARPS 
contains 12 prognostic state variables, including 
three velocity components u, v, w, potential tem-
perature θ, pressure p, the mixing ratios for water 
vapor qv,  cloud water qc, rainwater qr, cloud ice qi, 
snow qs and hail qh, plus the turbulence kinetic 
energy used by the 1.5-order subgrid-scale turbu-
lence closure scheme.   

The truth simulation or the nature run is for the 
May 20, 1977 Del City, Oklahoma supercell storm 
case (Ray et al. 1981). The physical model do-
main is 64×64×16 km3. The grid spacing is 2 km in 
the horizontal directions and 0.5 km in the vertical. 
A sounding of 3300 J kg-1 CAPE (Xue et al. 2001) 
is used to define the environmental condition and 
a 4 K ellipsoidal thermal bubble is used to initiate 
the storm. Open conditions are used at the lateral 
boundaries. Free-slip conditions are applied to the 
top and the bottom boundaries. A constant wind of 
u = 3 m s-1 and v = 14 m s-1 is subtracted from the 
observed sounding to keep the primary storm cell 
near the center of model grid. More detailed infor-
mation about the natural run can be found in 
TX05. The actual sounding used by the truth simu-
lation can be found in Xue et al. (2001) and the 
general evolution of the storm is similar to that 
documented in the same paper. 

2.2. Simulated Radar Data 
We assume that the radial velocity and reflec-

tivity data are available from a WSR-88D radar 
located at the south-west corner of the model do-
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main. The WSR-88D radar is assumed to operate 
in standard precipitation-mode, having 14 eleva-
tions with the lowest elevation at 0.5º and the high-
est at 19.5º. The maximum range is 230 km. The 
effects of the curvature of the earth and the beam 
bending due to vertical change of refractivity are 
taken into account by using the simple 4/3 effec-
tive earth radius model discussed in Doviak and 
Zrnic (1993).  

Following Xue et al. (2005, hereafter XTD05), 
the simulated observations are assumed to be 
available on the original radar elevation levels, i.e., 
the data are on the radar plan position indicator 
(PPI) rather than at the model vertical levels. We 
do assume that on each elevation level, radar ob-
servations are already interpolated from the radar 
polar coordinates to the Cartesian coordinates; in 
another word, the observations are found in the 
vertical columns through the model scalar points. 
A simplified radar emulator that does power-gain-
based sampling in the vertical direction is used to 
project the data from the model vertical levels to 
the radar elevation levels: 
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where eη  and gη  are respectively the elevation 
level and grid point values of either radial velocity 
(Vr) or reflectivity factor (Z in mm6 m-3). ∆z is the 
depth of the layer in which grid point value gη  is 
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following Wood and Brown (1997), where φw is the 
one degree beam width. φg is the elevation angle 
for the grid point value and φ0 the elevation at the 
beam center. 

The grid point values of radial velocity involved 
in the numerator of are calculated from 

( ) gt

gggrg

ww

vuV

φ

γφγφ β

sin

coscossincos

−+

+=
, (3)  

where φg is the local elevation angle (as defined 
earlier) and γg the azimuth angle of the radar beam 
that goes through the given grid point. u, v and w 
are the model air velocity components interpolated 
to the scalar point of a staggered model grid. wt is 
the fall velocity calculated at scalar points. The fall 
velocity is calculated from 
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where Zer, Zes and Zeh are the equivalent reflectivity 
factors (in mm6 m-3) of rain, snow and hail respec-
tively. wtr, wts and wth are the mass-weighted mean 
terminal velocities of rain, snow and hail. We em-
ploy Eqs. (11), (12) and (13) of Lin et al. (1983) to 
calculate these terminal velocities, which are func-
tions of the mixing ratios of the respective species 
and are consistent with those used in the ice mi-
crophysics scheme of our assimilation model, the 
ARPS. After Vr is sampled from the grid using Eq. 
(1), random errors drawn from a normal distribu-
tion with zero mean and a standard deviation of 1 
m s-1 are added as the simulated observation er-
rors. 

When Eq. (1) is applied to reflectivity, the grid 
point values of equivalent reflectivity, in mm6 m-3, 
is calculated from the mixing ratio of rainwater, 
snow and hail, using the formulations found in 
TX05, except that we now also include the reflec-
tivity equation for dry hail, following Smith et al. 
(1975). A transition zone from dry to wet hail is 
defined to be between -2.5°C and 2.5°C. After the 
values of equivalent reflectivity on elevation levels 
are obtained, they are transformed into the com-
monly used reflectivity, Z, in dBZ (Z=10 log10(Ze )). 
In our system, reflectivity Z, in dBZ, is directly as-
similated. 
 

2.3. The EnSRF Data Assimilation Method 
The ensemble square root filter (EnSRF) 

method following Whitaker and Hamill (2002) is 
used in this study. The method does not involve 
perturbing the observations. For the control OSS 
experiment (CNTL), the model is assumed to be 
perfect, i.e., the default values of the microphysical 
parameters in Lin et al. (1983) microphysics used 
in the ARPS, i.e., the intercept parameters for rain, 
snow and hail, and the densities of snow and hail, 
(Table 1) are used and assumed to be the true 
values. The procedure of initializing the ensemble 
is different from that in TX05. Spatially smoothed 
perturbations are added to the first guess of the 
initial condition, which is horizontally homogene-
ous as defined by the sounding. For each model 
variable at grid point (l, m, n), the spatially 
smoothed perturbation is calculated as 

∑
∈

=
Skji
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where ),,( kjir is a random number sampled in-
dependently from a normal distribution with zero 
mean and standard deviation of 1. ),,( kjiW is a 
3D distance-dependent weighting function. Ε is a 
scaling parameter to obtain the right variance of 
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the perturbation field. The fifth-order correlation 
function (Eq. 4.10) of Gaspari and Cohn (1999) is 
used here for W. The sum is over all grid points, 
which are located within the 3D radius of influence 
that is set to 6km. This value is chosen based on 
the typical correlation length scale of errors for this 
type of problems and is actually the same cut off 
radius used by the covariance localization (more 
later). 

After the initially smoothed perturbations are 
obtained, they are rescaled, i.e., E in Eq. (5) is 
determined, so that the standard deviation equals 
to that of the specified value for each variable. The 
standard deviations of the perturbations are, re-
spectively, 2 m s-1 for velocity components, 2 K for 
perturbation potential temperature, 0.6 g kg-1 for 
qv, qr and qh, 0.4 g kg-1 for qi and qs, and 0.2 g kg-1 
for qc. For the mixing ratio of hydrometeors, the 
perturbations are only added within 6 km horizon-
tal distance from the first observed precipitation 
region. They are further limited to the vertical lev-
els, where the specific hydrometeors are ex-
pected. Negative values of perturbed mixing ratios 
are set to zero. The perturbations for velocity 
components, potential temperature and specific 
humidity are added to the entire domain except for 
the boundary zone. Spurious cells that may be 
triggered by adding perturbations in non-
precipitation regions can be suppressed by assimi-
lating reflectivity data everywhere.  

It is found that by using the spatially smoothed 
initial perturbations, the ensemble spread of most 
model variables grows quickly within the first 5 
minutes of forecast. Perturbing microphysical 
fields also contributes to larger ensemble spread 
in microphysical variables. Larger initial ensemble 
spread results in smaller ensemble mean rms er-
rors in early assimilation period (see Fig. 6). We 
also found that with this new method of initial per-
turbations, updating model variables that are indi-
rectly related, via observation operator, to reflectiv-
ity no longer, as it did in TX05, hurts the analysis 
during the earlier assimilation cycles. Therefore, in 
our current configuration, we do not withhold the 
updating of those indirectly related variables when 
assimilating reflectivity data. 

The same background error covariance local-
ization procedure as used in TX05 and XTD05 are 
applied here to avoid the influence of unreliable 
covariances at large distances from the observa-
tions. No covariance inflation is applied here, be-
cause we found that the difference of the analysis 
rms (root-mean-square) errors caused by covari-
ance inflation is not as large as that caused by 
different realizations of the initial perturbations, 
i.e., by using different sets of initial ensemble 

members. We do find some sensitivity of the 
analysis to the realization of the initial perturba-
tions and mostly in the first few cycles, but the 
sensitivity is not as large as that found in Snyder 
and Zhang (2003).  

Forty ensemble members are used. The first 
ensemble forecast start at 20 minutes of truth 
simulation time. Forecast ensemble members are 
integrated for 5 minutes before the first analysis. 
Both radial velocity and reflectivity, including re-
flectivity in non-precipitation regions, are assimi-
lated in all experiments. 

3 .  THE DESIGN OF THE PARAMETER 
ESTIMATION EXPERIMENTS 

3.1. Microphysics Scheme and Selection of 
Parameters to be Estimated 

 
The ice microphysics scheme in the ARPS is a 

5-class (cloud water, rain, cloud ice, snow and 
hail/graupel) single moment scheme after Lin et al. 
(1983). The scheme assumes that the DSD func-
tions for rain, snow and hail/graupel have an ex-
ponential form: 

( ) ( )xxxx DnDn λ−= exp0 , (6) 
where x represents r (rain), s (snow) or h (hail). 

( )xn D Dδ  is the number of drops per unit volume 

between diameters D and D+δD. xn0  is the so-
called intercept parameter, which is the value of 

xn for D=0. The slope parameter, which equals to 
the inverse of the mean size diameter of each dis-
tribution, is diagnosed as: 

25.0
0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

x

xx
x q

n
ρ

πρ
λ , (7)  

where ρx is the constant particle density, ρ is the 
air density and qx is the hydrometeor mixing ratio. 

The limitation of the single moment bulk mi-
crophysics scheme is that the intercept n0x and the 
density ρx are prescribed constants. It can be seen 
from Eqs. (6) and (7) that for a given mixing ratio 
qx, the larger is the intercept parameter or the den-
sity, the more the hydrometeor spectrum is 
weighted towards smaller drops. For model simu-
lations, adjusting these constant parameters can 
directly impact the bulk terminal velocity and the 
number concentration of species, which can result 
in the change of the trajectories of the hydrome-
teors within the cloud and the particle growth 
rates. These changes in the microphysical proc-
esses will affect the water budgets within the cloud 
and hence the latent heating and hydrometeor 
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loading, which in turn lead to the changes of the 
buoyancy and subsequent updraft and downdraft 
patterns. 

One limitation of the typical 3-ice microphysics 
scheme is that the parameterization cannot repre-
sent the convective clouds in a variety of large-
scale environments and are not necessarily suit-
able for all precipitation systems. For example, the 
parameterization of LFO83 microphysical scheme 
is formulated for the intense continental storms 
with the presence of high-density hails. The 3-ice 
scheme of Rutledge and Hobbs (1983; 1984) is 
more suitable for oceanic systems, because it 
represents the larger precipitating ice in the form 
of graupel. The differences come from either the 
treatment of the microphysical processes or using 
different parameters, such as the hydrometeor 
densities and intercept parameters. 

The way to treat the microphysical proc-
esses is not the focus of this study. What we are 
interested in is how much our storm-scale data 
assimilated can be influenced by prescribing those 
adjustable parameters and whether we can correct 
the incorrectly specified parameters by using the 
data, i.e., by retrieving the parameters as well as 
the model state variables using radar observations 
of the storm. The parameters selected for this 
study are the intercepts parameters of rain, snow 

and hail drop size distributions, and the density of 
snow and hail. Observational and sensitivity stud-
ies (e.g. Passarelli 1978; Ferrier et al. 1995) indi-
cate that the coefficients associated with the for-
mula for hydrometeor fall speeds and the collec-
tion efficiency parameters are also uncertain and 
can affect the microphysical processes signifi-
cantly. In this study, we focus ourselves on the 
density and intercept parameters, partly because 
they are easily adjustable parameters in the model 
code. Estimating fall speed and collection effi-
ciency parameters could be done in the future. 

3.2. Parameter Estimation with EnSRF 
 

With the single-moment bulk microphysics 
scheme, the intercept parameters and the bulk 
densities of snow and hail are assumed to be con-
stant in space and time. The default values of the 
intercept parameters for rain, snow and hail size 
distributions in the ARPS are 8×10-2 cm-4, 3×10-2 

cm-4 and 4×10-2 cm-4, respectively, following 
LFO83. The densities of rainwater, snow and hail 
are specified to be 1.0 g cm-3, 0.1 g cm-3 and 
0.913 g cm-3, respectively (see Table 1), by de-
fault.

 
Table 1 List of experiments and the first guess values of microphysical parameters 

 
Experiments* n0r (cm-4) n0s (cm-4) n0h (cm-4) ρs (g cm-3) ρh (g cm-3) 

CNTL 0.08 0.03 4x10-4 0.1 0.913 
Experiments retrieving or with wrong hail parameters 

In experiment names HNaρb or HNaρbNE, a is the exponent without the minus sign in the in-
tercept parameter, e.g., 4x10-a, and b is the first digit after the decimal point in density. 

HN6ρ9/HN6ρ9NE 0.08 0.03 4x10-6 0.1 0.913 
HN3ρ9/HN3ρ9NE 0.08 0.03 4x10-3 0.1 0.913 
HN4ρ4/ HN4ρ4NE 0.08 0.03 4x10-4 0.1 0.4 
HN3ρ4/ HN3ρ4NE 0.08 0.03 4x10-3 0.1 0.4 

Experiments retrieving or with wrong snow parameters 
In experiment names SNaρb or SNaρbNE, a and b represent the digits after the decimal point in 

the intercept parameter and density, respectively. 
SN007ρ1/SN007ρ1NE 0.08 0.007 4x10-4 0.1 0.913 

SN1ρ1/ SN1ρ1NE 0.08 0.1 4x10-4 0.1 0.913 
SN3ρ1/ SN3ρ1NE 0.08 0.3 4x10-4 0.1 0.913 

SN03ρ4/ SN03ρ4NE 0.08 0.03 4x10-4 0.4 0.913 
SN007ρ4/ SN007ρ4NE 0.08 0.007 4x10-4 0.4 0.913 

Experiments retrieving or with wrong rain parameters 
In the experiment names, RNa and RNaNE, a represents the digits after the decimal 

point in the intercept parameter. 
RN8/RN8NE 0.8 0.03 4x10-4 0.1 0.913 
RN3/RN3NE 0.3 0.03 4x10-4 0.1 0.913 

RN03/RN03NE 0.03 0.03 4x10-4 0.1 0.913 
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Experiments retrieving or with three wrong intercept parameters 
RSHNa/ RSHn0aNE 0.30 0.1 4x10-3 0.1 0.913 
RSHNb/ RSHn0bNE 0.30 0.007 4x10-3 0.1 0.913 

* In the experiment names, H, S, R, N and ρ denote hail, snow, rain, intercept parameter and density, re-
spectively. The experiment with the name ending with ‘NE’ means that the parameter estimation or re-
trieval is not performed, and the wrong initial guesses of the parameters are kept throughout the assimila-
tion cycles. The numbers in bold represent initial guesses that deviate from the true values. 

 
 
A number of observational studies indicate 

that the intercept parameters of hydrometeor dis-
tribution can vary widely among precipitation sys-
tems occuring in different large-scale environ-
ments. Also, within the same precipitation system 
the intercept parameters can vary spatially and 
with the evolution of the system. The hail/graupel 
intercept parameter, hn0 , as reviewed by Gilmore 
et al. (2004) (See their Table 2), ranges from 10-6 
to greater than 100 cm-4. Observed snow intercept 
parameter, n0s, varies from 10-3 cm-4 to 100 cm-4 
(Passarelli 1978; Houze et al. 1979; Houze et al. 
1980; Lo and Jr. 1982; Mitchell 1988; Braham 
1990). For raindrop spectra, several studies  (Joss 
and Waldvogel 1969; Sekhon and Srivastava 
1971; Srivastava 1971; Waldvogel 1974) demon-
strate that n0r cannot be a constant as defined by 
Marshall and Palmer (1948), but a function of rain-
fall rate. Joss et al. (1968) found that n0r varies 
between 3×10-2 cm-4 and 100 cm-4 (Pruppacher 
and Klett 1978). Sudden change in the raindrop 
spectra, recognized as ‘n0r jump’, were observed 
by Waldvogel (1974), when the precipitation 
changed from one type to another and even when 
the precipitation type remained the same. The 
changes in n0r were attributed to the changes in 
the microphysical processes occurring in the cloud 
system (Pruppacher and Klett 1978) 

In the LFO83 scheme, the term hail is used 
loosely to represent high density graupel, ice pel-
lets, frozen rain and hailstones. According to 
Pruppacher and Klett (1978), the bulk density of 
hail has been found to vary between 0.7 and 0.9 g 
cm-3 and the observed density of graupel ranges 
from 0.05 g cm-3 to 0.89 g cm-3. The term snow in 
the LFO83 scheme is used to represent snow 
crystals, snowflakes and low-density graupel parti-
cles. The bulk density of snow particles ranges 
from 0.05 to 0.89 g cm-3 (Pruppacher and Klett 
1978; Lin et al. 1983).  

Based on the above observational studies of 
hydrometeor size spectrum, we designed several 
parameter retrieval experiments (Table 1). In this 
study, we still assume that the true values of these 
microphysical parameters, which are used in ex-
periment, do not change in space or time. No pa-

rameter estimation is performed in CNTL. In the 
parameter retrieval experiments, the starting or 
first guess values of one or more of the five pa-
rameters are different from those of CNTL, but 
within the range of observed values (Table 1). For 
the intercept parameters, we typically choose their 
initial values to be an order of magnitude different 
from the corresponding true values, so that the 
sensitivity and retrieval results can be compared 
directly among them. We pick the first guesses of 
hail intercept and density parameters based on the 
sensitivity study of Gilmore et al. (2004). For snow 
and rain intercept parameters, we also use two 
other first guesses that are larger or smaller than 
but closer to the true values and that are more 
often observed. We randomly pick a larger snow 
density as the first guess. 

As mentioned earlier, the parameter estima-
tion with the EnKF is realized by considering the 
parameters as part of the model state, an ap-
proach that is often referred to as the state vector 
augmentation. For each ensemble member, the 
perturbations to the parameter to be estimated are 
sampled from a normal prior distribution with a 
zero mean. Ideally, the initial ensemble spread, 
i.e., the standard deviation of the prior distribution, 
should represent the error of the first guess; it is 
therefore specified to be the initial error of each 
parameter. However, the initial error is usually un-
known in reality. Therefore, we also test a nar-
rower prior distribution in experiment HN6ρ9 (Ta-
ble 1), in which the hail intercept of ensemble 
members are sampled from the prior distribution 
with the standard deviation width equaling to half 
of its initial error. 

The uncertainty associated with the intercept 
parameters can be more than an order of magni-
tude. Initial sampling of the parameter ensemble 
from a broad prior distribution can easily result in 
unphysical negative values. Any inaccuracy in the 
analysis can also result in negative intercept and 
density. Therefore, the five microphysical parame-
ters are logarithmically transformed and multiplied 
by 10 before the analysis, and then transformed 
back in the forecast step. 
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At each analysis step, the covariances be-
tween the parameters and the observations are 
calculated and used in the update equation of the 
EnSRF. For the parameter retrieval purpose, only 
reflectivity data greater than 10 dBZ are used be-
cause they are believe to be more strongly linked 
to the microphysics.  These data are assimilated 
sequentially. 

An important issue we were confronted with 
during the parameter estimation is the ‘filter diver-
gence’.  The tendency of filter divergence is much 
more pronounced with parameter retrieval than 
with model state estimation because of two rea-
sons. First, at each analysis step, about 400 (in 
the first cycle) to more than 4000 (in the last cycle) 
reflectivity observations are used to update the 
few parameters, while the data used to update a 
model variable at certain grid point are limited 
through spatial covariance localization. The pa-
rameter ensemble spread narrows quickly by the 
repeated application of the data. Another reason 
causing the continuous narrowing of the parame-
ter ensemble is that they remain constant during 
the forecast step, while errors and ensemble 
spread associated with model state variables can 
grow during the forecast step, based on the model 
equations. 

To compensate the infinitely shrinking of the 
parameter ensemble, a minimum standard devia-
tion is pre-specified, so that when the posterior 
standard deviation becomes smaller than the 
minimum value, the parameter ensemble spread is 
adjusted back to the minimum value. A similar 
variance inflation procedure was applied in Aksoy 
et al. (2005). We found in our case that the mini-
mum standard deviation, as small as 5% of the 
initial standard deviation is required. The ensem-
ble spread can decrease to 5% of its initial amount 
within the first two assimilation cycles, because a 
large amount of data is used to estimate the pa-
rameters. The sensitivity of the parameter retrieval 
to the variance inflation procedure will be dis-
cussed. 

4 .  RESULTS 

4.1. Sensitivity of EnSRF analyses to micro-
physical parameters 
Whether the chosen parameters can be re-

trieved from the observational data depends on 
whether the model output, in the forms of observa-
tions, is sensitive to these parameters. To test the 
sensitivity of the analyzed model state to the five 
parameters that we want to retrieve, we calculate 
the difference between the observations and the 

corresponding analysis projected to the observa-
tions: 

2( )a obs

n
dη η η= −∑ ,  (8) 

where η represents the radial velocity or reflectiv-
ity. The sum is over the data points with observed 
reflectivity greater than 10dBZ, which are the data 
used for parameter estimation. Without the super-
script ‘a’ in the equation, it is actually the observa-
tion term without the weighing coefficient of the 
cost function used in typical variational analysis.  
 The sensitivities to the five individual parame-
ters are calculated from the output of five assimila-
tion experiments, that are, respectively, HN3ρ9NE, 
SN3ρ1NE, RN8NE, HN4ρ4NE and SN03ρ4NE 
listed in Table 1. In the five experiments, the 
wrong initial guesses of the individual parameters 
are kept the same throughout the assimilation cy-
cles and the parameter retrieval is not performed. 
The sensitivity measures how different the results 
of analysis are from the experiment with correct 
parameter values. The relative sensitivities of the 
analyzed reflectivity to the five parameters are 
plotted in Fig. 1. The relative sensitivity is defined 
as dη normalized by that of experiment CNTL. For 
all cases, the first analysis is performed at 25 min-
utes of the truth storm and the analysis cycles end 
at 100 minutes. 
 

0.8

1.0

1.2

1.4

1.6

20 40 60 80 100
t (min)

dη
/d

ηc

 
 

Fig. 1. The sensitivity of the analyzed reflectivity 
to the hail intercept n0h (red, corresponding to 
HN3ρ9 but without parameter retrieval), snow in-
tercept n0s (blue, SN3ρ1), rain intercept n0r 
(green, RN8), hail density ρh (pink, HN4ρ4) and 
snow density ρs (orange, SN03ρ4) from data as-
similation experiments with wrong parameters 
and without parameter retrieval. dη defined by 
Eq. (8) is normalized by that of experiment CNTL.  

 
 It can be seen from Fig. 1 that among all five 

parameters, the analyzed reflectivity is most sensi-
tive to n0h, the intercept parameter of hail. The 
analyzed reflectivity is least sensitive rain intercept 
parameter, n0r, and the sensitivity to snow inter-
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cept parameter n0s is in-between those of hail and 
rain. Generally, the sensitivity increases with as-
similation cycles for n0h and n0s. In early period of 
assimilation, except for the first analysis cycle, the 
retrieved reflectivity shows larger sensitivities to 
n0h and the density of hail ρh but smaller sensitivi-
ties to n0s and n0r. At the later stage, the reflectivity 
shows larger sensitivities to n0h and n0s and is rela-
tively insensitive to n0r and ρs. The retrieved radial 
velocity (not shown) is much less sensitive to 
these five microphysical parameters than the re-
trieved microphysical fields are, although the sen-
sitivity is still highest for n0h. For this reason, we 
will not use radial velocity data to retrieve (or up-
date) these microphysical parameters. They are 
used, however, to update the state variables. 

When an incorrect value of n0r. or ρh is used in 
the model to perform the data assimilation, the 
ensemble mean forecast and analysis rms (root-
mean squre) errors of all model state variables 
increase (blue curves in Fig. 6, not shown for ρh). 
The qs is most sensitive to the change of hail pa-

rameters. Less qs in the anvil and more qh aloft are 
found in the ensemble mean analysis when larger 
hail intercept or smaller hail density is used in the 
model (Fig. 2b and 2d) and more qs in the anvil 
and less qh aloft are found in the ensemble mean 
analysis when smaller hail intercept is used (Fig. 
2d). The sensitivity of the precipitation structure to 
the hail intercept and the hail density is similar to 
what was found in Gilmore et al. (2004). Larger 
hail intercept results in higher number concentra-
tions, smaller mean particles sizes of hail and 
smaller terminal velocity and vise versa. The ter-
minal velocity of hail can also be greatly reduced 
by decreasing the particle density. Increasing the 
number of smaller drops and reducing the terminal 
velocity of hail both result in enhanced upward 
fluxes of qh, higher-altitude transport of qh, longer 
residence time of qh aloft, more collection of snow 
in the updraft region and lower amounts of snow 
transported to the anvil region. Larger upward flux 
of qh also leads to smaller qr and qh at the low lev-
els. 
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Fig. 2. Vertical cross section of qr (red, with intervals of 1 g kg-1), qh (blue, with intervals of 1 g kg-1) 
and qs (green, with intervals of 0.2 g kg-1) through the point of domain-wide maximum vertical veloc-
ity of the ensemble mean analysis at 60 min for (a) CNTL, (b) HN3ρ9NE, (c) HN6ρ9NE, and (d) 
HN4ρ4NE. The last three experiments use incorrect microphysical parameters without parameter 
estimation. 

 
Snow, cloud ice and cloud water are the three 

species that are most sensitive to the changes in 
the intercept parameter and density of snow. 
Other model state variables, including qr and qh 
are relatively insensitive to these parameters (c.f., 
blue curves in Fig. 7). We can see from Fig. 3 that 
the model storm has systematically more/less 
snow and less/more cloud water and ice (Fig. 3b 
and 3c) when larger/smaller snow intercept pa-
rameter is used. The snow distribution becomes 
more heavily weighted toward smaller particles 
and the bulk terminal velocity decreases when the 

intercept parameter of snow is increased. In the 
model, the accretional growth of snow through the 
interaction of snow with cloud water and ice are 
proportional to the snow intercept parameter. 
Therefore, the snow content increases by accret-
ing more cloud water and ice when snow intercept 
parameter increases. With smaller terminal veloc-
ity due to larger n0s, the centroid of qs is located at 
higher altitudes (see Fig. 3b and 3c). The two ac-
cretion terms in the model are inversely propor-
tional to the snow density, therefore, larger snow 
density leads to less snow content (Fig. 3d). 
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Fig. 3. Vertical cross section of qc (red, with intervals of 0.5 g kg-1), qi (blue, with intervals of 0.4 
g kg-1) and qs(green, with intervals of 0.4 g kg-1) through the maximum vertical velocity of the 
ensemble mean analysis at 60 min for (a) CNTL, (b) SN3ρ1NE, (c) SN007ρ1NE and (d) 
SN03ρ4NE at 60 min. Panels (b) – (d) are for the experiments with incorrect parameters with-
out parameter estimation. 

 
Larger/smaller rain intercept parameter results 

more/less rain (compare Fig. 4 with Fig. 2a). Tem-
perature and vertical velocity are more sensitive to 
the changes in the rain intercept parameter than to 
the changes in the snow parameters (blue curves 
of Fig. 7c and 7d, and Fig. 8c and 7d). Larger in-
tercept parameter of rain results in more raindrops 
with smaller sizes, which contributes to stronger 
downdraft and low-level cold pool via evaporation. 

 
4.2. Results of Experiments Retrieving Single 

Parameters 
 

First, we performed ten experiments, in which 
the five parameters are initialized with wrong val-
ues and estimated individually. In each of these 
experiments, only the parameter that is to be esti-
mated is perturbed among the ensemble members 
around its first guess value and updated using the 
reflectivity data; all other parameters are kept at 
their true values. Fig. 5 shows the time series of 
the ensemble mean (red curves) and the standard 
deviation (blue curves) of the estimated parame-
ters alone with their true values (black lines) dur-
ing the 80 minutes of assimilation. The values at 
20 min indicate the prior distributions of these pa-
rameters.
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Fig. 4. As Fig. 2, but for experiments (a) RN8NE and (b) RN03NE, that have incorrect values of rain 
intercept parameter. 

 
As can be seen from Fig. 5a(1), the estimated 

hail intercept of experiment HN3ρ9 reaches the 
true value at the end of the third assimilation cycle 
and then oscillates around the true value in the 
rest of the cycles. The estimated hail intercept ap-
proaches the true value slower in experiment 
HN6ρ9 (Fig. 5a(2)) and even more so when the 
initial prior distribution is narrower (Fig. 5a(3)). For 
the hail intercept parameter retrieval experiments, 
the minimum standard deviation specified here is 
0.35 in logarithmic units. The rate of convergence 
towards the truth for this parameter is comparable 
to those of the ensemble mean rms errors of most 
model state variables. The errors of the estimated 
hail intercept from these three experiments are 

around 0.0001 cm-4 when converted back to its 
original units, where the true hail intercept pa-
rameter is 0.0004 cm-4. The estimated model state 
is generally insensitive to this amount of parame-
ter error, as shown by Fig. 6 that the rms errors of 
most state variables (red curves) are almost indis-
tinguishable from those of CNTL experiment 
(black curves) that uses true parameters.  Ideally, 
the posterior ensemble spread of the parameter 
provides a good measure of the parameter error. 
Obviously, the error here is underestimated by the 
posterior ensemble spread. A larger pre-specified 
minimum spread will result in larger oscillations 
around the truth in the estimated parameter, which 
will be discussed in more detail later.  
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Fig. 5. Time series of ensemble mean (red curves) and standard deviation (blue curves) of the en-
semble of estimated parameters from single-parameter retrieval experiments (a) 10log(n0h) from (1) 
HN3ρ9, (2) HN6ρ9 and (3) HN6ρ9b (the same as HN6ρ9, but with smaller initial spread) (b) 
10log(ρh) from (1) HN4ρ4 and (2) HN4ρ4b (the same as HN4ρ4, but with larger pre-specified mini-
mum standard deviation) , (c) 10log(n0s) from (1) SN3ρ1, (2) SN1ρ1 and (3) SN007ρ1, (d) 10log(ρs) 
from SN03ρ4, (e) 10log(n0r) from (1) RN8, (2) RN3 and (3) RN03 (f) the same as (c) but with differ-
ent realizations of the initial random perturbations to the parameter. The true values of the parame-
ters are shown as straight black lines, 
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Fig. 6. The rms errors of ensemble-mean forecast and analysis, averaged over points at which the true re-
flectivity is greater than 10dBZ for (a) u, (b) v, (c) w, (d) 'θ , (e) 'p , (f) qc, (g) qr, (h) qv (the curves with lar-
ger values) and qi (the curves with lower values), (i) qs and (j) qh, for experiment CNTL (black), HN3ρ9 
(red), HN3ρ9NE (blue) and the ensemble spread of CNTL (green). Units are shown in the plots. The drop 
of the error curves at specific times corresponds to the reduction of error by analysis. 

 
We performed three parameter retrieval ex-

periments with three different initial guess values 
for snow and rain intercept parameters. One of the 
experiments, SN3ρ1 or RN8, has an initial guess 
one order of magnitude different from the true 
value, so that it can be easily compared with the 
retrieval experiment for the hail intercept parame-
ter HN3ρ9, but this value is rarely observed for 
snow or rain. The other two experiments, SN1ρ1 
and SN007ρ1 for snow intercept parameter or 
RN3 and RN03 for rain intercept parameter, have 
their first guesses set to more realistic values. The 
pre-specified minimum standard deviation is 0.35 
for the snow intercept and 0.5 for the rain intercept 
in logarithmic units. It can be seen from Fig. 5c(1), 
e(2) that with the same magnitude of initial errors, 
the retrieved snow and rain intercept parameters 
converge more slowly than the hail intercept pa-
rameter. This is consistent with our earlier sensitiv-
ity analysis; initially, the retrieved model state is 
not very sensitive to n0s and n0r therefore the re-
trieval of them is difficult. We can also see that the 
retrieved n0s in all three experiments first arrives at 
values that are lower than their first guesses (Fig. 
5c) while the retrieved value of n0r first rise above 
their first guess values (Fig. 5e). Such behaviors 
are found to be related to the initial sampling er-
rors. A repeat of the same set of experiments for 
n0s, i.e., experiments SN3ρ1, SN1ρ1 and 

SN007ρ1, but with different realizations of the ini-
tial random perturbations to the parameter can 
result in different evolutions of the retrieved values, 
as seen in Fig. 5f; the retrieved parameter eventu-
ally converges to a value that is close to the truth 
in all cases, however. 

The error of the retrieved n0s is around 0.01 
cm-4 after the estimation converges, while the true 
value is 0.03 cm-4. The model state analysis is not 
sensitive to this amount of error, as can be seen in 
Fig. 7; the retrieved model variables are as good 
as those of CNTL starting from 45 min or the fifth 
cycle. The error of the retrieved n0r is around 0.03 
cm-3 for experiment RN8 while the truth value is 
0.08 cm-3. The errors of most retrieved state vari-
ables are comparable to those of CNTL starting 
from 70 min, except for qv whose errors are still 
smaller than those when no parameter estimation 
is performed (Fig. 8). When the initial errors in the 
snow or rain intercept parameters are less than an 
order of magnitude, the impact of the parameter 
estimation on the model state retrieval is limited, 
because the analysis is relatively insensitive to 
small errors in these parameters. Even though all 
retrieved parameters are closer to their true values 
than their initial guesses, whether the retrieved 
model state is improved at the end of assimilation 
cycles depends on the rate of convergence of 
these retrieved parameters towards their true val-
ues. The convergence rate, on the other hand, is 
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found to be very sensitive to the realization of the 
initial random perturbations to the parameters (see, 
Fig. 5c and 5f). 

Both retrieved hail and snow densities, ρh and 
ρs, approach their true values very quickly (Fig. 5b 
and 5d) in the single-parameter retrieval experi-
ments. The pre-specified minimum spread for 
snow density is 0.3 in logarithmic unit. The error of 
the retrieved ρs after convergence is less than 
0.015 g kg-1, which is very low. The rms error of 
the retrieved model state is indistinguishable from 
that of CNTL (not shown). For ρh, we tried two 
minimum standard deviations, a smaller one of 0.1 
and a larger one of 0.35 in logarithmic units. It can 
be seen from Fig. 5b that with the larger minimum, 
the retrieved ρh shows large oscillations around 
the true value. This kind of oscillations was also 
seen in the retrieval experiments for other parame-

ters. The model state retrieval with the smaller 
minimum is also as good as the CNTL (not 
shown). With the larger minimum, the retrieved 
model state is still very good except for qv, qs and 
qh (Fig. 9). A large increase in ensemble mean rms 
forecast error in qh can be seen at 50, 65, 80 and 
95 minutes (Fig. 9j), which is caused by the re-
trieved ρh being much larger than the truth at 45, 
60, 75 and 90 minutes (Fig. 5b). Since our stan-
dard deviation restoration procedure for the pa-
rameters is somewhat artificial, the specification of 
the ensemble spread thresholds require some 
care. A larger threshold can result in significant 
oscillations of the retrieved parameter. Too smaller 
a threshold can lead to slow convergence. Often, 
numerical experiments are required to arrive at the 
most suitable thresholds. 
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Fig. 7. As Fig. 6 but for experiments CNTL (black), SN3ρ1 (red) and SN3ρ1NE (blue). The ensemble spread 
curves for CNTL are not plotted. 
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Fig. 8. As Fig. 7 but for experiments CNTL (black), RN8 (red) and RN8NE (blue). 
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Fig. 9, As Fig. 7 but for experiments CNTL (black), HN4ρ4 (red) with pre-specified minimum standard 
deviation of 0.35 in logarithmic unit, and HN4ρ4NE (blue) 

 
To understand how the microphysical parame-

ters are retrieved from reflectivity data, i.e., to ex-
amine the issue of parameter identifiability (Navon 
1997), we calculate the error correlation coeffi-
cients between each individual parameter and the 
forecast reflectivity. It is the cross correlation be-
tween the parameter and the forecast reflectivity 
that determines how the parameter can be ad-
justed from the reflectivity observations.  

Significant and meaningful correlation coeffi-
cient can be found between the forecast reflectivity 
and n0h, ρh, n0s and ρs (Fig. 10). The color shades 
in Fig. 10a and c show the observed reflectivity at 
the first radar elevation. The echoes of the right 
cell are located 40 to 70 km away from the radar. 
Based on the radar geometry, the reflectivity at the 
first elevation level represents the precipitation 
between surface and 1.5 km AGL. The reflectivity 
at the seventh elevation level (Fig. 10b and 10d) 
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represents the precipitation between 4 and 9 km 
AGL. It can be seen from Fig. 10a and 10c that a 
negative/positive correlation coefficient between 
reflectivity and n0h/ρh is found at low level heavy 
precipitation region. A positive/negative correlation 
coefficient center between forecast reflectivity and 
n0h/ρh is located at the transient region between 
the updraft and anvil (Fig. 10b and 10d). This is 
consistent with the sensitivity of the analysis to 
these two parameters. Larger n0h or smaller ρh 
results in less qr and qh at low levels, leading to 
lower reflectivity. The reflectivity is therefore nega-
tive correlated with n0h and positively correlated 

with ρh. At the middle levels, larger n0h or smaller 
qh results in more qh being transported to high alti-
tudes, leading to higher reflectivity at the updraft-
to-anvil transient region. The reflectivity in the 
transient region is therefore positively correlated 
with n0h and negatively correlated with qh. At the 
higher altitude anvil region, the reflectivity and n0h 
are negatively correlated (Fig. 10b), because lar-
ger hail intercept parameter leads to smaller qs 
and therefore smaller reflectivity there. Significant 
correlation coefficients between reflectivity and the 
snow intercept parameter and snow density are 
also found in the anvil region (Fig. 10e and 10f). 
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Fig. 10.  Forecast error correlation coefficients at intervals of 0.1, between reflectivity and (a) n0h on  
the 1st elevation level from HN3ρ9, (b) n0h on the 7th elevation level from HN3ρ9, (c) ρh on the 1st 
elevation level from HN4ρ4, (d) ρh on the 7th elevation level from HN4ρ4, (e) n0s on the 6th elevation 
from SN3ρ1, (f) ρs on the 6th elevation level from SN03ρ4,  calculated from the ensemble at t = 70 
min. 
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4.3. Results of Multiple Parameter Retrievals  
 

It was shown in the last section that the five 
microphysical parameters can be retrieved rea-
sonably well individually from the radar reflectivity 
data together with the model state variables. In this 
section, we further explore the ability of the EnKF 
in simultaneously retrieving more than one pa-
rameter. Four experiments are presented here for 
this purpose. First, the two parameters defining the 
hail size distribution (HN3ρ4) then the two parame-
ters defining the snow size distribution (SN007ρ4) 
are estimated, in separate experiments. Then, the 
three intercept parameters are estimated simulta-
neously, starting from two different combinations of 
their first guesses  

For the two-parameter case HN3ρ4, the com-
bination of the first guesses of the hail intercept 
and the hail density is for a storm with the pres-
ence of moderate-density graupel rather than high 
density hail (see Table 1). The ‘true’ storm is a 

typical mid-latitude continental storm producing 
mainly high density hail. It can be seen from Fig. 
11a and 11b for experiment HN3ρ4 that the re-
trieved hail intercept parameter approaches the 
true value at the eighth assimilation cycle. The es-
timated hail density first deviates to values much 
higher than the true value but is gradually drawn 
back and reaches the true value during the last two 
assimilation cycles. The parameters approach their 
true values much slower than when they are re-
trieved individually. The retrieved model state is 
much better than the case without parameter esti-
mation (see the red and blue curves in Fig. 12), but 
is not as good as that from CNTL or the corre-
sponding experiments retrieving single parameters. 
Similarly, the intercept parameter and density of 
snow can also be simultaneously retrieved from 
reflectivity data (Fig. 11c and 11d) and the re-
trieved model state in this case is generally better 
than the case with incorrect parameters. 
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Fig. 11. As Fig. 5, but (upper panel) for experiment HN3ρ4 (a) 10log(n0h) , (b)10log(ρh) and (lower 
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Fig. 12. As Fig. 6, but for experiments CNTL (black), HN3ρ4 (red) and HN3ρ4NE (blue). 
 
In the first three-parameter retrieval experi-

ment, the three intercept parameters start from first 
guesses that are larger than their true values 
(RSHNa, Table 1). The retrieval results are shown 
in Fig. 13. It can be seen that the intercept parame-
ters of both hail and rain can be estimated cor-
rectly, but at a slower rate. The retrieval of the 
snow intercept parameter is, however, not suc-
cessful. The structure of correlation coefficient be-
tween hail intercept parameter and forecast reflec-
tivity is similar to that of single-parameter retrieval 
experiment HN3ρ9, but the maximum value of the 
correlation coefficient is smaller (not shown). No 
significant correlation is found for the intercept pa-
rameter of snow, explaining the failure of retrieval. 
Despite this problem, the retrieved model state is 
still improved over the case where none of the 
three intercept parameters are corrected via re-
trieval (Fig 14), but it is worse than that of CNTL.  

In the other experiment that tries to retrieve the 
three intercept parameters (RSHNb, Table 1), the 
initial guess of the snow intercept parameter is set 
to 0.007 cm-4, smaller than the true value of 0.03 
cm-4. It is otherwise the same as RSHNa.  With this 
set of initial guesses, none of the three parameters 
can be correctly retrieved. Their values occasion-
ally approach the level of true value and but stay 
away from it most of the other times (not shown). 
The reason for this failure will be investigated fur-
ther. 

 

5 .  SUMMARY AND DISCUSSIONS 
 

In this study, we first examined the impact of 
errors in several uncertain parameters in the ice 
microphysics scheme used in the ARPS model, on 
the retrieval of the model state for a simulated su-
percell thunderstorm. We then explored the possi-
bility of correcting this type of model errors through 
simultaneous retrieval of these uncertain parame-
ters as well as the model state using an ensemble 
square-root Kalman filter (EnSRF). Radar reflectiv-
ity data are used for the parameter retrievals. The 
microphysical parameters examined include the 
intercept parameters of assumed drop size distri-
butions (DSDs) for rain, snow and hail, and the 
densities of hail and snow.  

The EnSRF performs very well when retrieving 
a single error-containing parameter. The times for 
the parameters to approach their true values de-
pend on the specific parameter to be retrieved. 
Generally, a parameter is easier to retrieve when 
the model output is more sensitive to the parame-
ter. The analyzed model state is most sensitive to 
the parameters of hail DSD; hence the hail inter-
cept parameter and hail density are the most re-
trievable among the five parameters. The analyzed 
model state, when the hail intercept parameter and 
density are properly retrieved, is as good as that of 
the experiment with perfect parameters. The snow 
density, and the snow and rain intercept parame-
ters can also be successfully retrieved from reflec-
tivity data, even though the model output is less 
sensitive to these parameters. Significant and 
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physically meaningful spatial error correlations 
were shown to exist between the retrieved micro-
physical parameters and the model reflectivity out-
put, and such correlations play a key role in suc-
cessful parameter estimation. 
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Fig. 13. As Fig. 6, but for experiment RSHNa. (a) 
10log(n0h), (b) 10log(n0s), and (c) 10log(n0r). 
 
It is found that the parameter retrieval is very 

sensitive to the realization of initial perturbations 
sampled for the initial parameter ensemble. This is 
mainly caused by the limited ensemble size used 
here. The random variations in the initial sampling 
can directly affect the rate at which the parameter 
converges to the true value, and in some cases 
even the success or failure of the retrieval. The 
amount that the retrieved model state can be im-
proved by the parameter estimation highly de-
pends on the rate of convergence of the retrieved 

parameter, because when the convergence is 
slow, most of the analysis cycles are then per-
formed with the wrong values of the parameters. 
This is especially important for the snow and the 
rain intercept parameters, because the realistic 
ranges of these two parameters are not as wide as 
that of hail intercept; even with the same magni-
tude of errors in the parameters, the model output 
is less sensitive to the intercept parameters of 
snow and rain DSDs. 

It is also found that the results of parameter re-
trieval are very sensitive to the variance-inflation 
procedure applied to the retrieved parameters. The 
specification of both the width of initial prior distri-
bution and the imposed minimum variance thresh-
old can affect the convergence rate and the accu-
racy of the final parameter estimate. In our case, 
rather small minimum variance thresholds are 
needed and larger variances can cause large oscil-
lations around the true value in the retrieved pa-
rameters. The need for parameter variance infla-
tion is because that a huge number of reflectivity 
data, taken from the entire storm body, is used to 
estimate single or few parameters. The correlation 
information determines the direction to which the 
parameter should be adjusted, while the variance 
determines the amount of adjustment. If a major of 
the data provides the same direction of adjustment, 
the application of adjustments due to many data 
quickly diminishes the ensemble spread of the re-
trieved parameter. On the other hand, constantly 
inflating the variance can cause overadjustment, 
leading to large oscillations around the truth. A bet-
ter, optimal, procedure is needed to make the evo-
lutions of the error and ensemble spread consis-
tent during the analysis. This will become more 
important when we start to deal with real data, 
where the truth is unknown. 

The results of multiple parameter retrievals are 
generally not as good as those of single-parameter 
retrieval, not surprisingly because of the added 
errors in the initial guesses of the parameters. The 
two parameters defining the hail or the snow distri-
bution, i.e., the intercept parameter and density, 
can be simultaneously retrieved sucessfully from 
the reflectivity data. The retrieval of the hail pa-
rameters may be especially important for storm-
scale NWP and data assimilation, because 
hail/graupel can significantly influence the quantity 
and type of precipitation in many types of mid-
latitude storms (Gilmore et al. 2004). When all 
three intercept parameters contain errors and are 
simultaneously estimated, the retrieval results are 
very sensitive to the initial guesses of the parame-
ters. 
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Fig. 14. As Fig. 6, but for experiments CNTL (black), RSHNa (red) and RSHNaNE (blue). 
 

The sensitivities of the analysis and fore-
cast to the microphysical parameters, and 
therefore, the identifiability of these parame-
ters, are probably case dependent and may 
differ for different types of convective systems. 
In this study, we applied the parameter esti-
mation to a supercell storm only. Some pa-
rameters may be more retrievable with other 
convective systems, such as the squall line 
systems that contain both vigorous convection 
and the stratiform precipitation regions. Other, 
such as the dual-polarization data, may be 
very helpful for microphysical parameter re-
trieval. Work in assimilating polarimetric Dop-
ple radar data using EnKF is in progress (Jung 
et al. 2005). 

We should point out that currently we con-
sidered only the uncertainties in the micro-
physical parameters in the model. The five 
parameters retrieved are actually also involved 
in the observation operators of reflectivity. In 
this study, this involvement is not considered; 
true values of these parameters are used in 
the observational operators. Preliminary tests 
showed that the analysis is very sensitive to 
parameter errors in the observation operators 
because they directly affect what the model 
thinks the observational data are. We have not 
obtained any successful retrieval so far, based 
on a limited number of experiments, when 
these uncertainties with the observation op-
erators are taken into account. Future work 
should investigate how to correct the errors in 

both prediction model and the observation 
operators.  
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