
Simultaneous Estimation of Microphysical Parameters and Atmospheric State with
Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter

Estimation Experiments

MINGJING TONG AND MING XUE

Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

(Manuscript received 31 October 2006, in final form 22 August 2007)

ABSTRACT

The ensemble Kalman filter method is applied to correct errors in five fundamental microphysical
parameters that are closely involved in the definition of drop/particle size distributions of microphysical
species in a commonly used single-moment ice microphysics scheme, for a model-simulated supercell storm,
using radar data. The five parameters include the intercept parameters for rain, snow, and hail/graupel and
the bulk densities of hail/graupel and snow. The ensemble square root Kalman filter (EnSRF) is employed
for simultaneous state and parameter estimation.

The five microphysical parameters are estimated individually or in different combinations starting from
different initial guesses. A data selection procedure based on correlation information is introduced, which
combined with variance inflation, effectively avoids the collapse of the spread of parameter ensemble, hence
filter divergence. Parameter estimation results demonstrate, for the first time, that the ensemble-based
method can be used to correct model errors in microphysical parameters through simultaneous state and
parameter estimation, using radar reflectivity observations. When error exists in only one of the micro-
physical parameters, the parameter can be successfully estimated without exception. The estimation of
multiple parameters is less reliable, mainly because the identifiability of the parameters becomes weaker
and the problem might have no unique solution. The parameter estimation results are found to be very
sensitive to the realization of the initial parameter ensemble, which is mainly related to the use of relatively
small ensemble sizes. Increasing ensemble size generally improves the parameter estimation. The quality of
parameter estimation also depends on the quality of observation data. It is also found that the results of
state estimation are generally improved when simultaneous parameter estimation is performed, even when
the estimated parameter values are not very accurate.

1. Introduction

Various studies over the recent years have demon-
strated that the ensemble Kalman filter (EnKF) method
(Evensen 1994; Burgers et al. 1998; Houtekamer and
Mitchell 1998; Evensen 2003) and its variations (Ander-
son 2001; Bishop et al. 2001; Whitaker and Hamill
2002) form a viable approach to atmospheric data as-
similation, for both large-scale (Houtekamer and
Mitchell 2001; Houtekamer et al. 2005) and small-scale
(Snyder and Zhang 2003; Dowell et al. 2004; Zhang et
al. 2004; Tong and Xue 2005a; Xue et al. 2006) appli-
cations. For the convective-scale radar data assimila-

tion, the flow-dependent multivariate background error
covariances provided by the ensemble-based assimila-
tion method play an essential role, because most state
variables are not directly observed at the convective
scale. It has been shown that dynamically consistent
wind, thermodynamic, and microphysical fields can be
retrieved accurately using EnKF methods from simu-
lated radar radial velocity and reflectivity observations
(Snyder and Zhang 2003; Zhang et al. 2004; Tong and
Xue 2005a; Xue et al. 2006). Encouraged by these ob-
serving system simulation experiment (OSSE) results,
researchers have been moving toward using real data
(e.g., Dowell et al. 2004; Houtekamer et al. 2005; Tong
2006) and exploring the possibility of operational
implementation of ensemble-based data assimilation
methods (e.g., Houtekamer et al. 2005).

In most OSSE studies, only forecast errors due to
uncertain initial conditions are taken into account,
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while forecast errors due to model deficiencies are ne-
glected. However, in real-world applications, signifi-
cant challenge can be encountered due to the presence
of model error. With the EnKF, the flow-dependent
multivariate covariances are estimated and evolved
through the model evolution of each ensemble mem-
ber. Whether they can be determined correctly depends
on whether the model evolutions are correct and sys-
tematic model errors can cause the ensemble member
not being drawn from the distribution that produces
truth because the model attractor and the system at-
tractor differ (Hansen 2002).

Systematic errors can result from uncertain param-
eters used in the prediction model. One way to account
for the model error of this type is through parameter
estimation, so that the parameters can be more ad-
equately constrained by available observations. Differ-
ent techniques, such as the maximum likelihood
method (Dee 1995), extended Kalman filter (Hao and
Ghil 1995), and variational method (Yu and O’Brien
1991; Zou et al. 1992), have been applied to the param-
eter estimation problem in meteorology and oceanog-
raphy. Recently, Crook et al. (2004) applied the four-
dimensional variational data assimilation (4DVAR)
method to estimate a coefficient in a hydrometeor ter-
minal velocity formulation of their cloud model.

Anderson (2001) first suggested that the EnKF can
be used for parameter estimation by including the
model parameters as part of the model state and esti-
mating them simultaneously with the model state. An-
nan et al. (2005a) successfully applied the EnKF
method to simultaneously estimate 12 parameters in a
low-resolution coupled atmosphere–ocean model with
steady-state dynamics. Annan and Hargreaves (2004)
also successfully applied this method to perform multi-
variate parameter estimation in the presence of chaotic
dynamics with the Lorenz model. More recently, they
extended their results to a realistic intermediate com-
plexity atmospheric GCM with identical twin experi-
ments and reanalysis data (Annan et al. 2005b). How-
ever, in contrast to weather prediction, the climate fore-
casts depend strongly on parameterizations rather than
initial conditions. Kivman (2003) found that the EnKF
performed poorly when applied to simultaneous state
and parameter estimation in the Lorenz model. He at-
tributed this to utilizing only two statistical moments in
the analysis step by all Kalman filter–based methods,
which are unable to deal with highly non-Gaussian
probability distributions in the parameter space. Ex-
periments assimilating simulated surface observations
into a parameterized 1D PBL model as well as estimat-
ing the parameter of soil moisture availability by
Hacker and Snyder (2005) suggested that the EnKF

may help mitigate model error via parameter estima-
tion. Aksoy et al. (2006b) applied the EnKF method to
simultaneous estimation of up to six parameters and the
model state with a two-dimensional, hydrostatic, non-
rotating, and incompressible sea-breeze model. They
found that the estimation of single imperfect param-
eters with the EnKF is successful, while the quality of
estimation deteriorates when the number of estimated
parameters increases.

Errors in microphysical parameterization have direct
impact on simulation (e.g., Gilmore et al. 2004) and
data assimilation (e.g., Crook et al. 2004) for convective
systems. The basic assumption for the bulk microphys-
ics scheme is that the particle or drop size distributions
(DSDs) can be represented in functional forms. For a
single-moment bulk microphysics scheme, a large part
of the error lies with the uncertain values assigned to
the parameters that are used to define the drop size
distributions, which are usually predetermined con-
stants. In reality, those parameters can vary with space
and time and among systems in different large environ-
ment. The purpose of this two-part study is to examine
the impact of the errors in these microphysical param-
eters on the retrieved model state and to correct these
errors, when possible, using the EnKF method through
parameter estimation. To our knowledge, this is the
first attempt as such.

The microphysics scheme used in the Advanced Re-
gional Prediction System (ARPS) model (Xue et al.
2000, 2001, 2003), on which our EnKF data assimilation
system is based, is the five-class (cloud water, rain,
cloud ice, snow, and hail/graupel) single-moment bulk
scheme after Lin et al. (1983, hereafter LFO83). Addi-
tional information of the microphysics scheme can be
found in the first part of this study (Tong and Xue 2008,
hereafter Part I). The microphysical parameters to be
estimated include the intercept parameters of hail,
snow, and rain drop size distributions, and the densities
of hail and snow. The sensitivity of the model forecast
within data assimilation cycles for a simulated supercell
thunderstorm to these parameters is analyzed in detail
in Part I, together with discussions on issues associated
with parameter identifiability. In this second part, we
focus on estimating those microphysical parameters us-
ing the EnKF method and radar data.

The remainder of this paper is organized as follows:
in section 2, we describe our parameter estimation pro-
cedures. The results of parameter estimation experi-
ments, based on simulated data for a supercell storm,
are discussed in section 3. Parameter identifiability is
further discussed in section 4. Summary and conclu-
sions are given in section 5.
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2. The design of parameter estimation experiments

a. General configuration

As the first attempt to estimate uncertain micro-
physical parameters, OSSEs are conducted. The infor-
mation of the prediction model and the truth simulation
can be found in Part I. In short, the ARPS (Xue et al.
2000, 2001, 2003) model is used in a 3D cloud model
mode and the prognostic variables include three veloc-
ity components, potential temperature, pressure, and
six categories of water substances: water vapor specific
humidity, and mixing ratios for cloud water, qc; rainwa-
ter, qr; cloud ice, qi; snow, qs; and hail, qh. These prog-
nostic variables are the state variables to be estimated.
We do not update the turbulent kinetic energy, which is
also predicted by the model. The truth simulation is for
the 20 May 1977 Del City, Oklahoma, supercell storm
case (Ray et al. 1981; Xue et al. 2001). The horizontal
and vertical grid spacings are 2 km and 500 m, respec-
tively, in both truth simulation and assimilation experi-
ments. The model grid is 64 km � 64 km � 16 km, and
the radar is located at the southwest corner of the grid.

The ensemble square root filter (EnSRF; Whitaker
and Hamill 2002) is used for state and parameter esti-
mation. The EnSRF data assimilation configurations as
well as the observation operators are described in Part
I. Briefly, the initial ensemble was generated by adding
spatially smoothed perturbations to the first guess of
the initial condition that is horizontally homogeneous
as defined by the 20 May 1977 Del City, Oklahoma,
supercell sounding. The first ensemble forecast cycle
starts at 20 min of the simulated supercell storm. Radar
volume data are assimilated every 5 min. Both radial
velocity and reflectivity, including reflectivity in non-
precipitation regions, are used for state estimation
while reflectivity data only are used for parameter es-
timation. Forty or 100 ensemble members are used in
the experiments to be reported in this paper.

As mentioned earlier, the parameter estimation with
the EnSRF is realized by considering the parameters as
part of the model state, an approach that is often re-
ferred to as the state vector augmentation. In the single-

moment bulk microphysics scheme of LFO83 used by
the ARPS, the DSD parameters are spatially and tem-
porally invariant. We will first estimate the five DSD
parameters individually, and then increase the number
of simultaneously estimated parameters gradually from
two to five. The parameters that are not estimated as-
sume their true values.

Suppose vector p � (p1, . . . , pL)� is the L-dimen-
sional vector of the unknown DSD parameters that are
to be estimated, where L varies from 1 to 5 in our study.
The prior information on the unknown DSD param-
eters is their range of variations. The admissible set of
p based on parameter range (Pad � {p|pi � pi � pi,
i � 1, 2, . . . , L}�) has been discussed and given in Part
I. To investigate the uniqueness of the inverse problem
that is intimately related to parameter identifiability,
our parameter estimation experiments start from dif-
ferent initial guesses of p, which are chosen from Pad.
An initial parameter ensemble is constructed by ran-
domly sampling the parameters from their prior distri-
butions. The uncertainty associated with the intercept
parameters can be more than an order of magnitude
(see Part I). Initial sampling of the parameter ensem-
ble from a broad prior distribution can easily result in
unphysical negative values. Problems in the analysis
can also result in negative intercept parameter and
density. Therefore, the five microphysical parameters
are logarithmically transformed and multiplied by 10.
The use of the logarithmic form may also improve the
Gaussian assumption on the parameter error distri-
bution. Table 1 lists the true values of the logarithmi-
cally transformed parameters and their upper and
lower bounds. Working with the new parameter vector
P � 10 log10(p) � (P1, . . . , PL)�, the initial ensemble of
Pi is randomly drawn from N(Pi0, �2

Pi
), where Pi0 is an

initial guess of Pi. Ideally, the initial ensemble spread of
parameter Pi, that is, the standard deviation, �Pi

, of the
prior distribution of the parameter, should represent
the error in the first guess, Pi0. However, the initial
error is usually unknown in reality. In this study, the
ensemble spread of each DSD parameter is initialized
to be roughly half of its largest admissible deviation

TABLE 1. List of the true value of each microphysical parameter and the true value Pi
t, the upper bound Pi, and lower bound Pi of

each logarithmically transformed microphysical parameter Pi � 10 log10(pi). Here �Pi
stands for the standard deviation of the initial

parameter perturbations for Pi, and �Pi
is minimum ensemble spread of Pi used in ensemble inflation.

Parameter pi /Pi pt
i Pi

t Pi Pi �Pi
�Pi

n0h (m�4)/10 log10(n0h) 4 � 104 46.02 26.02 66.02 10 1.0
n0 s (m�4)/10 log10(n0 s) 3 � 106 64.77 56.9897 80 7 1.0
n0 r (m�4)/10 log10(n0 r) 8 � 106 69.03 64.77 79.03 5 1.0
�h (kg m�3)/10 log10(�h) 913 29.6 26.02 29.6 2 0.5
�s (kg m�3)/10 log10(�s) 100 20.0 13.01 26.02 3.5 0.5
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from its default values in the model, that is, �Pi
� 0.5

max(|Pi � Pt
i | , |Pi � Pt

i | ) (see Table 1), for all param-
eter estimation experiments.

The first requirement of parameter identifiability is
that all estimations must converge to the same point Pt

regardless of the starting point P0 (Sun et al. 2001).
Therefore, different initial guesses are tested for the
estimation of each parameter vector P. However, nu-
merical experiments can only be conducted with limited
number of starting points P0. The conclusions taken
from the limited number of numerical trials should be
more robust, if the randomness in the filter configura-
tion is taken into account. The randomness comes from
the realization of the initial ensemble for parameters as
well as model state variables and the realization of the
observation errors. In this study, different realizations
of the initial ensemble are applied to the experiments
estimating the same parameter vector P with different
initial guesses P0. The radar observation data used in
different experiments estimating the same P are also
generated with different realizations of observation er-
rors.

In our EnSRF system, at each analysis time, the co-
variances between the parameters and the observations
are calculated and used to update the parameters. Our
sensitivity analysis in Part I showed that the forecast
radar reflectivity is more sensitive to the microphysical
parameters than radial velocity. The reflectivity also
has a higher correlation with each of the microphysical
parameters than radial velocity. Our initial test using
radial velocity data alone for parameter estimation was
not successful. As a result, only reflectivity data greater
than 10 dBZ will be considered for parameter estima-
tion.

b. Data selection procedure

A critical problem we were confronted with during
the parameter estimation is “filter divergence.” The
tendency of filter divergence is much more pronounced
with the estimation of global parameters than with
model state because of two reasons. First, at each analy-
sis step, about 400 (in the first cycle) to more than 4000
(in the last cycle) reflectivity data are available for up-
dating the few global parameters, while the data used to
update model variables at certain grid points are lim-
ited through spatial covariance localization. The pa-
rameter ensemble spread narrows quickly by the re-
peated application of the data. Another reason for such
continuous narrowing is that these parameters are not
dynamic; their errors do not grow during the forecast as
those of state variables do. In our case, without a spe-
cial treatment that prevents filter divergence, the pa-
rameter ensemble becomes useless after only two or

three assimilation cycles and the parameters can no
longer be influenced by observations before they con-
verge to their true values.

To compensate for the indefinite diminishing of the
parameter ensemble, a similar ensemble inflation pro-
cedure as used in Aksoy et al. (2006b) is employed. A
minimum standard deviation �Pi

is prespecified, so that
when the prior standard deviation becomes smaller
than �Pi

, the parameter ensemble spread is adjusted
back to �Pi

. For successful parameter estimation, the
error in the ensemble mean should have negligible im-
pact on the state estimation. We found that the model
state estimations are not sensitive to the errors in the
parameters, if the absolute error of the logarithmically
transformed intercept parameters is no larger than 1
and that of the bulk densities is no larger than 0.5.
These values will be used as the minimum ensemble
spreads �Pi

for parameter ensemble inflation.
However, our early single-parameter estimation ex-

periments show that if all reflectivity data larger than 10
dBZ are used, the minimum ensemble spread �Pi

has to
be much smaller than that given in Table 1; otherwise,
the estimated parameter is overadjusted, which is mani-
fested as large oscillations in the estimated parameter
time series around the true value (Tong and Xue
2005b). The overadjustment to the estimated param-
eter is again caused by the large number of data used
for parameter estimation. In the estimation system, the
correlation information determines the direction to
which the parameter should be adjusted, while the vari-
ance determines the amount of adjustment. As shown
in Part I, the reflectivity in a large part of the storm is
highly correlated with the individual parameters, which
implies that a major portion of the data could provide
the right direction of adjustment, but constantly inflat-
ing the variance after each parameter adjustment can
cause overadjustment.

In Part I, we also found that the correlations between
the DSD parameters and the reflectivity decrease as the
number of uncertain parameters increases. In many re-
gions of the storm, the correlations become very weak
(|r | � 0.2) for some parameters. This may explain why
the results of our early multiple-parameter estimation
experiments, in which all reflectivity data are used to
correct the values of the parameters, are poor, because
the data in weak correlation regions cannot provide
reliable direction information. Since not all reflectivity
data within the storm are effective in correcting the
errors in the parameters, in this study we introduce a
new data selection procedure based on prior correla-
tion information.

At each analysis time, we first calculate the correla-
tion between each estimated parameter and the reflec-
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tivity at all data points from ensemble members. We
then sort the correlations and pick the data points with
larger correlations for the corresponding parameter.
We fix the minimum ensemble spread at the upper
bound of the ensemble mean error of the estimated
parameter �Pi

that would have a negligible impact on
the state estimation (Table 1). The number of data to
be used for parameter estimation is adjustable. We
tested the number of data from 20 to 60 based on
single-parameter experiments and decided on 30. A
smaller number of data leads to a slower convergence
rate in some experiments, and a number larger than 50
results in overadjustment to some parameters. There is

no significant difference between experiments using 30
and 40 data.

3. Results and discussions

a. Results of experiments estimating single
parameters

All single-parameter estimation experiments re-
ported here use 40 ensemble members. The results of
estimating the five microphysical parameters individu-
ally (with the other four having their true value) are
presented in Fig. 1. For each parameter, results from
three experiments are shown (in different columns of

FIG. 1. The evolution of the parameter distribution from single-parameter estimation experiments
through the assimilation cycles for (a)–(c) n0h, (d)–(f) n0s, (g)–(i) n0r, ( j)–(l) �s, and (m)–(o) �h. The three
columns are for different initial guesses of the parameters, which are given in Table 2. The straight
horizontal lines indicate the true values of the parameters. The stairlike curves indicate the ensemble
mean (solid) and the 1�Pi

ensemble width (dashed) of the estimated parameter before and after analysis.
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Fig. 1), with each starting from a different initial guess.
These initial guesses are listed in Table 2. Figure 1
shows the evolutions of the mean and spread of the
parameters during the 80-min assimilation period, from
20 to 100 min of model time. In each plot, the thick
solid steplike curve represents the ensemble mean
while the thin dashed lines indicate one standard de-
viation (1�Pi

) ensemble width. The values at 20 min
indicate the initial parameter distributions. The true
parameter values are shown by the thick straight hori-
zontal lines. The experiments shown in Fig. 1 also
have different random realizations of the initial en-
semble and observation errors, for reasons discussed in
section 2.

It can be seen from Fig. 1 that within a few (usually
four to five) assimilation cycles, the posterior ensemble
spread of the estimated parameter decreases to the pre-
specified minimum ensemble spread, �Pi

. The scenario
of a successful parameter estimation should be that the
absolute error of the estimated parameter is smaller
than or very close to �Pi

. In the former case, the true
value of the estimated parameter is located within the
1�Pi

ensemble width. This is because that �Pi
is assigned

to be the upper bound of the error that would have a
negligible effect on the model state estimation. Gener-
ally, the results show that all five parameters can con-
verge to their true values in these single-parameter ex-
periments, albeit at different rates. The estimations of
�h appear most effective (Figs. 1m–o); the estimated �h

converges to the true value after only five assimilation
cycles. After that, its error remains no greater than �Pi

.
The estimation of n0h is also very good. After ap-

proaching the true value after the first three–five cycles,
the estimated n0h remains very close to the true value
most of the time (Figs. 1a–c). In some experiments, the
estimated parameter oscillates around the true value,
sometimes outside the range of 1�P (e.g., the estimation
of n0s in Fig. 1f). In other cases, temporary deviation
from the true value occurs after the parameter has ap-
proached the true value (e.g., Figs. 1h,i,k).

In Part I, we found that the model forecast in terms
of reflectivity has a larger sensitivity to �h and n0h. The

minima of the response functions for the two param-
eters are located very close to their true values (Fig. 3
in Part I). The model also responds to changes in these
two parameters faster than to other parameters. How-
ever, we will see later that there are additional factors
that can affect the behaviors of the estimated param-
eters.

The experiments in Fig. 1 show that the estimated
parameter does not always consistently approach the
truth from the beginning. In the first one or two assim-
ilation cycles, the parameter can deviate farther away
from the truth. This has happened to all five parameters
(e.g., Figs. 1a,e,h,l,m). Such initial deviations can gen-
erally be corrected within the next one to two cycles
(e.g., Figs. 1a,m). However, in some cases, the deviation
can significantly affect the convergence rate of param-
eter estimation. For example, the ensemble means of
n0s in Fig. 1d and �s in Fig. 1l reach beyond their ad-
missible values within the first two assimilation cycles; it
takes several assimilation cycles to draw them back to
their reasonable and eventually true values. This sig-
nificantly slows down the parameter estimation pro-
cesses.

At least two factors can affect the convergence rate
of parameter estimation. One is with the magnitude,
speed, and accuracy of the estimated model response to
the parameter error during the data assimilation pro-
cess. Since our assimilations start from a very poor ini-
tial state, the forecast error tends to be dominated by
the initial condition error during the early cycles, mak-
ing the model response to the parameter errors hard to
identify. The parameter estimation improves as the
state estimation improves in later cycles.

Another factor is associated with the random sam-
pling of the initial parameter perturbations. Figure 2
shows the effect of the randomness in drawing the ini-
tial parameter ensemble from a specific distribution on
the results of parameter estimation. The estimation of
n0h and �s with first guesses of 4 � 105 m�4 and 400 kg
m�3, respectively, are presented. For each parameter,
five estimation experiments were perform, with the
only difference being with the realization of the initial
parameter ensemble. It can be seen that different real-
izations result in a different convergence rate of the
estimated parameter. Even though sensitivity experi-
ments N0h45 and �s400 in Part I show that the system
responds quicker to the corresponding change in n0 h

than that in �s, the quality of initial sampling can still
cause slow convergence for n0h (e.g., the thick gray
curve in Fig. 2a). On the other hand, the estimated �s

can approach the truth within three assimilation cycles
for some cases (e.g., the thick black curve in Fig. 2b).
Clearly, the realization of the initial parameter en-

TABLE 2. The three initial guesses for each parameter in its
original form pm

0 and the logarithmical form Pm
0 (m � 1, 2, 3),

which are used in single-parameter estimation experiments.

Parameter pi p1
0 P1

0 p2
0 P2

0 p3
0 P3

0

n0h (m�4) 4 � 103 36.02 4 � 105 56.02 4 � 106 66.02
n0s (m�4) 7 � 105 58.45 3 � 107 74.77 1 � 108 80
n0r (m�4) 3 � 106 64.77 2 � 107 73.01 8 � 107 79.03
�h (kg m�3) 400 26.02 700 28.45 750 28.75
�s (kg m�3) 50 16.99 300 24.77 400 26.02
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semble can have a significant impact on the conver-
gence rate.

The impact of parameter estimation on the model
state is shown in Fig. 3. The results of experiments
�h400, N0r87, and �s400 (dashed curves), for which
the initial guesses of �h, n0r, and �s are 400 kg m�3,
8 � 107 m�4, and 400 kg m�3, respectively, are pre-
sented. The corresponding parameter evolutions can be
found in Figs. 1m,i,l. The results of another set of ex-
periments (�h400NE, N0r87NE, and �s400NE), in
which the wrong initial guesses of the parameters are
kept without parameter estimation, as well as the re-
sults of CNTL (the perfect-parameter case) are also
shown in the figure for comparison purposes. Only the
rms errors for the microphysical species are shown here
because they are more directly affected by the micro-
physical parameter errors. The error curves for other
variables present a similar picture.

For cases of very successful parameter estimation,
such as experiment �h400 in Fig. 1m, the errors in the
estimated model variables are indistinguishable from
those of CNTL (Figs. 3a–e). In the experiment estimat-
ing n0r (N0r87), parameter estimation definitely im-
proves the model state estimation over the case without
parameter estimation (N0r87NE, Figs. 3f–j). The errors
of the state variables are very close to those of CNTL
most of the time, except for the larger errors in qr be-
tween 65 and 85 min, which is consistent with the larger
error in the estimated n0r during that time period (Fig.
1i). The third row of Fig. 3 shows the results of a rela-
tively poor case of �s estimation. With the parameter
estimation, the errors in the model state variables are
even larger than the case of no parameter estimation
(�s400NE) before 60 min. This is mainly due to the
incorrect estimation of �s within the first few assimila-
tion cycles; the error in the estimated �s is lager than its
initial error before 50 min (Fig. 1l). However, as the

estimated �s converges to the true value, the errors in
the state variables eventually become comparable to
those of CNTL, in the last three to four cycles.

Although a limited number of trials are presented
here for single-parameter estimation, in all cases that
we have tried, the estimated parameter eventually con-
verges to the true value regardless of the initial guess, as
long as it is within the admissible bounds. This is sup-
ported by the findings in Part I that the response func-
tion for each of the microphysical parameter has a
unique global minimum.

b. Results of multiple parameter estimation

In this subsection, we present the results of the ex-
periments in which multiple microphysical parameters
in different combinations contain error and are esti-
mated. The parameters not estimated are assumed per-
fect.

To investigate the uniqueness of the inverse solution
for multiple-parameter estimation and to reduce the
chance for the results to be fortuitous in some way, two
values are picked from the admissible set Pad for each
parameter and the combinations of the chosen values
are used as the initial guesses of the parameter vectors.
The chosen initial values for each microphysical param-
eter are listed in Table 3.

1) SIMULTANEOUS ESTIMATION OF TWO

PARAMETERS

Figure 4 shows the results of the experiments esti-
mating (n0h, �h) using 40 ensemble members. Four com-
binations of the initial guesses of these two parameters,
namely, (4 � 105 m�4, 400 kg m�3), (4 � 105 m�4,
700 kg m�3), (4 � 106 m�4, 400 kg m�3), and (4 � 106

m�4, 700 kg m�3), are tested. These four initial guesses

FIG. 2. The evolution of the ensemble means of estimated parameter for five single-
parameter estimation experiments (shown in different line patterns) starting from the same
initial guess but different realizations of the initial parameter ensemble: (a) the intercept
parameter of hail/graupel n0h and (b) the density of snow �s.
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represent qh distributions with the mass more heavily
weighted toward small graupel than that represented by
the true values of (4 � 104 m�4, 913 kg m�3). It can be
seen from Fig. 4 that the estimated parameters con-
verge to their truth values in all four cases, but gener-
ally at slower rates than those of corresponding param-
eters in the single parameter estimation experiments
(cf. Fig. 1).

Figures 5a–e and 5f–j show, respectively, the rms er-
rors of the estimated hydrometeor mixing ratios from
the experiments shown in the first and fourth columns
of Fig. 4. As can be seen, the errors in the two param-
eters, when they remain uncorrected, lead to rather
poor estimations of the hydrometeor species, especially
for qs and qh (gray curves). Through parameter estima-
tion, the analyses are significantly improved. In both
experiments, after the two parameters converge to their
true values, the mixing ratio rms errors become very
close to those of CNTL.

The results of simultaneous estimation of two snow
parameters, (n0s, �s), are shown in Fig. 6. The four

initial guesses used for the two parameters are (3 � 107

m�4, 300 kg m�3), (3 � 107 m�4, 50 kg m�3), (7 � 105

m�4, 300 kg m�3), and (7 � 105 m�4, 50 kg m�3). We
first performed experiments using 40 ensemble mem-
bers, which are shown by the gray curves in the figure.
It can be seen that the results are generally not very
good. In the four cases, either the two parameters con-
verge to the true values slowly (gray curves in the first
and third columns), or one or both parameters do not
converge to the true values at all (gray curves in the

TABLE 3. Two initial guesses of each parameter in the original
form pm

0 and the logarithmical form Pm
0 (m � 1, 2) used in mul-

tiple-parameter estimation experiments.

Parameter pi p1
0 P1

0 p2
0 P2

0

n0h (m�4) 4 � 105 56.02 4 � 106 66.02
n0s (m�4) 7 � 105 58.45 3 � 107 74.77
n0r (m�4) 3 � 106 64.77 2 � 107 73.01
�h (kg m�3) 400 26.02 700 28.45
�s (kg m�3) 50 16.99 300 24.77

FIG. 3. The rms errors of the ensemble mean forecast and analysis, averaged over points at which the reflectivity is greater than 10
dBZ for (first column) qc, (second column) qr, (third column) qi, (fourth column) qs, and (fifth column) qh, for the CNTL data
assimilation experiment (black), parameter estimation experiments (dashed), and data assimilation experiments with imperfect pa-
rameter kept throughout the assimilation cycles (gray). The experiments shown have (wrong) initial guesses of (a)–(e) �h � 400 kg m�3,
(f)–(j) n0r � 8 � 107 m�4, and (k)–(o) �s � 400 kg m�3, which correspond to the experiments in Figs. 1m,i,l.
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second and fourth columns). We repeated the four ex-
periments using 100 ensemble members (black curves
in Fig. 6). The large ensemble generally improved that
estimation, as seen, for example, from the second and
fourth columns of Fig. 6. However, even with 100 mem-
bers, the estimations of (n0s, �s) are still not as good as

those of the (n0h, �h) estimation case (cf. Fig. 4), in
terms of the convergence rate and estimation accuracy.
Consistently, the model state estimations are not as
good compared to Fig. 5, although improvement is still
significant compared to the case of no parameter esti-
mation (not shown).

FIG. 5. As in Fig. 3, but for the two-parameter set (n0h, �h). The experiments shown have initial guesses of (top) (n0h, �h) � (4 � 106

m�4, 400 kg m�3) and (bottom) (n0h, �h) � (4 � 105 m�4, 700 kg m�3), which correspond to the experiments in the first and the fourth
column of Fig. 4, respectively.

FIG. 4. The evolution of the parameter distributions (solid curves: ensemble mean, dashed curves: 1�Pi

ensemble width) vs true parameter values (straight lines) for experiments simultaneously estimating
(top) n0h and (bottom) �h. The four columns are for different initial guesses of the parameters, which are
(a), (e) (n0h � 4 � 106 m�4, �h � 400 kg m�3); (b), (f) (n0h � 4 � 106 m�4, �h � 700 kg m�3); (c), (g)
(n0h � 4 � 105 m�4, �h � 400 kg m�3); and (d), (h) (n0h � 4 � 105 m�4, �h � 700 kg m�3).
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2) SIMULTANEOUS ESTIMATION OF THREE

PARAMETERS

The results of simultaneously estimating three inter-
cept parameters together are presented in Fig. 7. Based
on the two initial guesses of each intercept parameter in
Table 3, eight combinations of initial guesses were used
for estimating these three parameters. The experiments
were first performed using 40 ensemble members, and
the results are shown in the left column of Fig. 7. The
different line types represent these eight different ex-
periments.

It can be seen from Figs. 7a,c,e that even with 40
ensemble members, the three intercept parameters can
generally converge to the levels that are close to the
true values. The estimation of n0h and n0r are better
than that of n0s, which has a larger variability among
different cases. The estimated n0s also approaches the
true value slower than the other two parameters. As the
estimation reaches to the end of the assimilation cycles,
the absolute ensemble mean errors of all three param-
eters, averaged over the eight experiments (gray curves
in Figs. 7b,d,f), decrease below 2�Pi

.
We repeated the above eight experiments using 100

ensemble members. Figure 7 shows that the large en-
semble size (solid black curves in right column) signifi-
cantly improves the estimation. The averaged errors of
three intercept parameters decrease faster and to a
lower level than in the 40-member case. The use of
error-free data further improves the parameter estima-

tion results (black dashed curves in the right column of
Fig. 7; more on this later).

3) SIMULTANEOUS ESTIMATION OF FOUR

PARAMETERS

In this set of experiments, the hail density is added to
the list of three intercept parameters. A total of 16
combinations of the initial guesses of n0r, n0s, n0h, and
�h were tested initially using 40 ensemble members.
The average absolute ensemble mean parameter errors
of the 16 experiments are shown by the gray curves in
Fig. 8. Compared to the three-parameter case (gray
curves in Figs. 7b,d,f), the simultaneous estimations of
four parameters are much worse. This indicates in-
creased difficulties when more parameters are uncer-
tain.

To improve the estimation, the experiments are re-
peated with 100 ensemble members. Even more signif-
icant improvement is found than the three-parameter
case. Figure 8 shows that in this case, the averaged
absolute error of n0r (black curves in Fig. 8a) decreases
below 2�Pi

after five assimilation cycles and is reduced
below 1�Pi

in the last three assimilation cycles. At the
end of the assimilation cycles, the errors of n0s, n0h, and
�h are all between 1�Pi

and 2�Pi
.

To illustrate the variations among the experiments
with different initial guesses, the evolution of the pa-
rameter distributions of 6 of the 16 experiments using
100 ensemble members are shown in Fig. 9. In the two

FIG. 6. As in Fig. 4, but for experiments simultaneously estimating (n0s, �s) starting from four different
initial guesses, which are (a), (e) (n0s � 3 � 107 m�4, �s � 300 kg m�3); (b), (f) (n0s � 3 � 107 m�4,
�s � 50 kg m�3); (c), (g) (n0s � 7 � 105 m�4, �s � 300 kg m�3); and (d), (h) (n0s � 7 � 105 m�4, �s �
50 kg m�3). The gray and black curves are for experiments using 40 and 100 ensemble members,
respectively.
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cases shown in the first column, all four parameters
converge to their true values; the resultant errors of all
four parameters are no larger than �Pi

. The two cases
shown in the second column of Fig. 9 represent some of
the cases where the four parameters approach the true
values but the ending errors for some of the parameters
are around 2�Pi

. In the two cases shown in the third
column, two or three parameters approach the true val-
ues slowly and some of them have errors larger than
3�Pi

at the end. The relatively poor estimation usually
happens to n0h and �h, and sometimes to n0s. The in-
tercept parameter of rain is estimated accurately in all
cases.

The impact of the four-parameter set on the state

estimation is shown in Fig. 10, in which the ensemble
mean rms errors of the mixing ratios from the three
experiments corresponding to the black curves in each
column of Fig. 9 are presented. The rms errors from the
experiment with successful parameter estimation (black
curves in Figs. 9a,d,g,j) are comparable to those of
CNTL after 60 min or eight assimilation cycles for all
five hydrometeors (first row of Fig. 10). The larger er-
rors in the estimated parameters in Figs. 9b,e,h,k result
in larger errors in qr, qi, and qs in certain assimilation
cycles (Figs. 10g,h,i) compared to those in Figs. 9b–d,
but the state estimation is still very good and is much
better than the corresponding case without parameter
estimation (the gray lines). For the experiment with

FIG. 7. (left) The ensemble means of (a) 10 log10(n0r), (c) 10 log10(n0s), and (e) 10 log10(n0h)
of the experiments estimating three intercept parameters simultaneously using 40 ensemble
members and error-containing data, for eight experiments starting from different initial
guesses that are different combinations of the values listed in Table 3. (right) The absolute
ensemble mean errors for the corresponding parameters averaged over the eight experiments
using 40 ensemble members with error-containing data (solid gray), 100 members with error-
containing data (solid black), and 100 members with error-free data (black dashed).
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relatively poor parameter estimation (black curves in
Figs. 9c,f,i,l), the model state estimation (dashed curves
in the third row of Fig. 10) is generally not as good as
that of CNTL (solid black curves in Fig. 10) but is also
much better than the case with no parameter estimation
(gray curves). For this case, we can also see that in the
last two assimilation cycles, the rms errors of the mixing
ratios are actually very close to those of CNTL, except
for qs. This, we believe, is because the estimations of n0h

and �h are poor in this experiment (Figs. 9i,l) and qs is
very sensitive to their errors, as indicated by the gray
curve in Fig. 10n.

4) SIMULTANEOUS ESTIMATION OF ALL FIVE

PARAMETERS

Using one of the two values for each parameter in
Table 3 as initial guess, 32 combinations of the initial
guesses were tested when estimating the five-parameter
set (n0r, n0s, n0h, �s, �h). In all of these experiments, 100
ensemble members were used.

The absolute ensemble mean errors of the five pa-
rameters averaged over the 32 experiments are pre-
sented in Fig. 11. The errors in n0h, n0s, and �h decrease
more slowly than the corresponding ones in the four-
parameter experiments (cf. Fig. 8). At the end of the
assimilation cycles, the errors of the parameters, except
n0r, are generally located between 2�Pi

and 3�Pi
. The

estimation of n0r is most successful with the absolute
error of n0r decreasing to 1�Pi

after six assimilation
cycles and remaining close to 1�Pi

in later assimilation
cycles.

Among the 32 experiments, there are four cases in
which all five parameters converge to the true values;
two of them are shown in the first column of Fig. 12.
There are a few cases in which only one of the param-
eters cannot converge to the truth. The black curves in
the second column of Fig. 12 represent one of such
examples, with the error in �h remaining larger than
1�Pi

in Fig. 12n. In other experiments, two or three
parameters have problems converging to their true val-
ues. The poorly estimated parameters could be (n0h, �h)
(e.g., gray curves in Figs. 12h,n); (n0s, �s) (e.g., black
curves in Figs. 12f,l); or (n0h, n0s, �h) (e.g., gray curves in
Figs. 12f,i,o). Similar to what was found in the four-
parameter experiments, n0r always converges to the
true value, no matter how poorly the other parameters
are estimated. As in the four-parameter estimation
case, the parameter estimation always improves that
state estimation, even when the parameter estimation is
not very accurate (not shown).

c. Data selection

In this study, we found that the data selection pro-
cedure is essential for successful parameter estimation.

FIG. 8. The evolution of the average ensemble mean absolute error of (a) 10 log10(n0r), (b)
10 log10(n0s), (c) 10 log10(n0h), and (d) 10 log10(�h), calculated from the 16 experiments with
different initial guesses that simultaneously estimate (n0r, n0s, n0h, �h) using 40 ensemble
members with error-containing data (solid gray), 100 members with error-containing data
(solid black), and 100 ensemble members with error-free data (black dashed).
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Its effect appears to be similar to the “covariance lo-
calization” used for state estimation. The covariance
localization is applied to avoid the influence of unreli-
able covariances at large distances from the observa-
tions due to sampling errors related to relatively small
ensemble sizes. As a result, the model state at each grid
point is only influenced by observation data found
within certain range. With our data selection proce-
dure, the estimated parameters are only influenced by
the data from which the parameters are most likely to
be identified, based on their correlations with the pa-
rameters. Both techniques act to alleviate filter diver-
gence. Aksoy et al. (2006a) offered a “spatial updating”
technique for their estimation of an eddy mixing coef-
ficient used in a PBL scheme. With their method, the
global mixing coefficient was treated and updated lo-
cally; the average of the local estimations was taken as
the finial estimate of this parameter. Such a technique
also helps alleviate filter divergence, but it may be more

useful for parameters whose impacts are more spatially
homogeneous.

Figure 13 shows the spatial distributions of the re-
flectivity data that were selected in the single-param-
eter estimation experiments that used 40 ensemble
members. When only 30 data were used, the selected
data (circles in Fig. 13) are mainly concentrated in the
anvil or anvil precipitation region for most of the pa-
rameters. A number of data within the convective re-
gion are selected for the estimation of n0r and �h. When
the number of data increases to 60, most of the addi-
tional data (triangles in Fig. 13) are still located in the
similar regions. These regions occupied by high-cor-
relation data basically coincide with the high sensitivity
regions found in Part I for these individual parameters
(cf. Fig. 6 of Part I). At earlier assimilation times, for
example, at 40 min, the selected data are found in the
anvil precipitation regions for n0h, n0s, �h, and �s (not
shown).

FIG. 9. As in Fig. 4, but for experiments estimating four parameters simultaneously, using 100 en-
semble members. Parameters shown are for (a)–(c) n0r, (d)–(f) n0s, (g)–(i) n0h, and ( j)–(l) �h. The results
of 6 (2 in each column) of a total of 16 experiments with different initial guesses of (n0r, n0s, n0h, �h) are
presented, with each experiment presented by the same gray level of curves in each column.

MAY 2008 T O N G A N D X U E 1661



The correlations at the selected data points generally
increase with time. For single parameter estimation ex-
periment, the maximum and minimum correlations of
the selected data for all five parameters are around 0.6
and 0.3, respectively, when 30 data are selected. At the

time shown in Fig. 13, the correlations are all above 0.8
for n0h and above 0.7 for n0s and �h, no matter whether
30 or 60 data are selected. The correlations are lower
for n0r and �s. We also checked the correlations for the
five-parameter estimation experiments. The correla-

FIG. 11. The evolution of average ensemble mean absolute errors of (a) 10 log10(n0r) (solid
black), 10 log10(n0s) (solid gray), 10 log10(n0h) (black dashed), and (b) 10 log10(�h) (solid gray)
and 10 log10(�s) (solid black), calculated from 32 experiments starting from different initial
guesses that simultaneously estimate (n0r, n0s, n0h, �h, �s) using 100 ensemble members.

FIG. 10. As in Fig. 3, but for 3 four-parameter (n0r, n0s, n0h, �h) estimation experiments, starting from initial guesses of (top) (n0r, n0s,
n0h, �h) � (0.2 cm�4, 0.3 cm�4, 0.004 cm�4, 700 kg m�3); (middle) (n0r, n0s, n0h, �h) � (0.03 cm�4, 0.007 cm�4, 0.04 cm�4, 400 kg m�3);
and (bottom) (n0r, n0s, n0h, �h) � (0.03 cm�4, 0.3 cm�4, 0.04 cm�4, 700 kg m�3), which correspond to the black curves in the first, second,
and third column of Fig. 9, respectively. To be consistent, 100 ensemble members are used in the control experiment shown here.
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tions averaged over the 32 experiments are significantly
smaller than those found in the single-parameter ex-
periments, with larger decreases found for n0h and �h.
The maximum correlations for all five parameters are
no larger than 0.6 most of the time. The differences
between the maximum and minimum correlations vary
between 0.1 and 0.15 for most parameters in the 30-data
case. For n0r, the difference varies from 0.15 to 0.2. The
difference between the minimum correlations of the 30-
and 60-data cases is less than 0.05 most of the time in all
single-parameter and five-parameter estimation experi-

ments. These results again indicate the increased diffi-
culties when multiple parameters are estimated simul-
taneously. It also says that the correlation information
is very useful for determining the value of observations
for parameter estimation.

For covariance localization applied for state estima-
tion, the optimal localization length scale normally in-
creases as ensemble size increases (e.g., Hamill et al.
2001), because a larger ensemble reduces sampling er-
rors. It is likely that the optimal data selection, a form
of covariance localization, depends on the ensemble

FIG. 12. As in Fig. 4, but for experiments estimating five parameters simultaneously, using 100 en-
semble members. Parameters shown are for (a)–(c) n0r, (d)–(f) n0s, (g)–(i) n0h, (j)–(l) �s, and (m)–(o) �h.
The results of 6 of a total of 32 experiments with different initial guesses of (n0r, n0s, n0h, �h, �s) are
presented (two in each column), with each experiment represented by the same gray level of curves in
each column.
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size. When using 100 ensemble members for multiple
parameter estimation, we also tested up to 100 data. We
did not find significant difference in the estimation as
the number of selected data is increased from 30 to 70.
The estimation became worse when more than 70 were
used. For this reason, the same number (30) of data is
used in all experiments shown.

4. Further discussion on parameter identifiability

In this section, we return to the issue of parameter
identifiability and discuss some factors that might affect
the parameter estimation using the EnKF method.

First, whether the uncertain parameters are identifi-
able is ultimately determined by whether the inverse
problem has a unique solution. A parameter is said to
be least squares identifiable if the least squares perfor-
mance or cost function for identifying the parameter
has a unique minimum in a given region and if the
minimization is continuously dependent on the mea-
surement errors (Sun et al. 2001). The EnKF algorithm
does not explicitly minimize the performance function,
which usually measures the difference between the
model solution and the observations, but the adjust-
ment made to the prior estimate in the EnKF is pro-
portional to that difference. If different values of a
single parameter or different combinations of multiple
parameters result in the same model solution or system

response in terms of observed quantities, then a correct
parameter estimation cannot be guaranteed because
multiple possible solutions exist.

Since it has been shown that single parameters can
always be estimated with good enough accuracies be-
cause of the unique global minima of the response func-
tions, we further discuss the identifiability of multiple-
parameter sets only. The results of four- and five-
parameter sets suggest that multiple local minima do
exist, which is not surprising because of the high non-
linearity of the microphysical processes and their inter-
actions with the model dynamics. The multiple minima
could significantly impact the estimation of multiple pa-
rameters. What is interesting to us is that in the experi-
ments with relatively poor estimations in the four-
parameter case, n0h and �h always converge to values
that are smaller than their true values in tandem (e.g.,
Figs. 9i,l). In 11 of the 32 estimation experiments in the
five-parameter case, the estimated n0h and �h are sig-
nificantly smaller (absolute error � 3�Pi

) than their
true values, and within 10 of the 11, the estimated n0s is
also smaller than its true value. Further, the evolutions
of the estimated n0h, �h, and n0s are similar in those
experiments, as can be seen in Figs. 12f,i,o.

Figure 14 shows the correlations between radar re-
flectivity and the five individual parameters, which are
calculated from the prior (5-min forecast) ensemble at
70 min. The results shown are from single-parameter

FIG. 13. The circles and triangles indicate the locations of the reflectivity data that were used in the single-parameter estimation
experiments, which correspond to (b), (e), (i), (l), and (m) in Fig. 1. The data points are projected to the (top) horizontal x–y and
(bottom) x–z vertical planes. The circles represent the data points when 30 data are used for parameter estimation. The triangles
represent the additional 30 data points when 60 data are used. The shading and thin solid contours represent composite or column
maximum reflectivity of the truth simulation in (a)–(e) z and (f)–(j) y directions. The maximum and minimum values of the correlation
coefficient at those data points are indicated by the plots.
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estimation experiments. Here, we try to understand the
possible model responses in terms of reflectivity to the
combined errors in the five parameters, from the cor-
relation information. Comparing Figs. 14a,f with Figs.
14d,i, we can see that the correlations are similar in
pattern, but the signs are reversed. This means if a
smaller n0h results in a smaller reflectivity value in the
southern anvil region (positive correlations in Fig. 14f),
a smaller �h can compensate for the reduction in reflec-
tivity in that region (negative correlations in Fig. 14i).
The correlation with n0s also shows a reversed pattern
with that with n0h in the anvil region. Therefore, the
change in Z in the anvil due to the change in n0h can be
somewhat compensated by the change in n0s of the
same sign. Similarly, the increase in Z at the low-level
convective region due to a smaller �h (Fig. 14d) can be
compensated for by a smaller n0h (Fig. 14a). The in-
crease in Z at the southern part of the anvil region due
to a smaller �h can be compensated for by a smaller n0s

(negative correlations in Fig. 14b). Therefore, the er-
rors of n0h, �h, and n0s can be combined in such a way
(e.g., with all of them being smaller than their true
values) that the difference between the model solution
and the observations is small in terms of Z. In other
words, such a combination could result in values of the
response function that are close to the minimum for the
multiparameter case. Even though the correlations are
still meaningful and the filter can adjust the parameters
in the right directions, the end values of parameter es-

timation may not be correct because the response func-
tion is already reduced to be close to the minimum. As
far as the estimation system, the response function has
been minimized.

In the five-parameter experiments, if neither n0h nor
�h converges to the true values, they usually have the
same bias. If neither n0s nor �s converges to the true
values, their biases are usually reversed in sign. This is
also true for the estimation of (n0s, �s) as shown in Fig.
6. Based on the correlation information, similar expla-
nations can be applied to these situations and to the
estimation of other multiple-parameter experiments. In
all multiple-parameter estimation experiments that in-
volve n0r, n0r always converges to the true value. This is
probably because the model responds more indepen-
dently to the changes in n0r, as can be seen from Fig. 13.
The locations of the selected data indicate the regions
that correspond to the most important model responses
to the parameter errors. The data selected for the esti-
mation of n0r are indeed located more differently from
those for other parameters (Fig. 13). From Fig. 13 we
can also see that the data selected for n0h and �h are
more different from each other than the data selected
for n0s and �s, which indicates that the model responses
to the errors in n0s and �s are more likely to cancel each
other. This probably explains why the estimation of
(n0s, �s) together is less satisfactory than the estimation
of (n0h, �h) together.

The identifiability of the parameters depends not

FIG. 14. Correlation coefficients calculated from the forecast ensemble at t � 70 min from single-parameter estimation experiments.
The correlation coefficients [thick solid (dashed) contours represent positive (negative) values at intervals of 0.2] between Z at the 1.5°
radar elevation and (a) n0h, (b) n0s, (c) n0r, (d) �h, and (e) �s; and the correlation coefficients between Z at 5.3° elevation and (f) n0h,
(g) n0s, (h) n0r, (i) �h, and ( j) �s. The shading with thin solid contours shows the Z fields from the truth simulation.
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only on the uniqueness of the inverse solution but also
on the quality of observational data. This dependence
can be clearly seen in Figs. 7 and 8. The dashed curves
represent the average absolute errors of the parameters
estimated using “error free” data. Although errors
were not added into the simulated data in these experi-
ments, the same observation errors, that is, 1 m s�1 for
Vr and 3 dBZ for Z, were assumed during the assimi-
lation. The estimated parameters are closer to their
true values when the observations are error free. For
the three-parameter estimation experiments, the errors
of all three intercept parameters are reduced to 1�Pi

within 50 min and kept below 1�Pi
in the later assimi-

lation cycles (Figs. 7b,d,f). For the four-parameter es-
timation experiments, the errors of all four parameters
are decreased below 1�Pi

at the end of the assimilation
cycles. We repeated the five-parameter experiments
with error-free data for 6 out of the 32 cases that had
poor parameter estimations. Using error-free data, the
parameters converge to the true values perfectly in five
of the six cases (not shown). This suggests a significant
sensitivity to the observation errors.

Parameter estimation using the EnKF method is also
found in this study to be very sensitive to the random
realization of the initial ensemble. For single-parameter
estimations, different realizations lead to different con-
vergence rates (Fig. 2). For multiple parameter estima-
tions, it even affects the success of the estimation. Fig-

ure 15 shows the results of four five-parameter estima-
tion experiments that differ only in the realization of
the initial parameter ensemble, for the four parameters
that often have problem. In two of the experiments, all
five parameters (n0r is not shown) converge to their
true values (solid black and black dashed curves in Fig.
15) but the convergence rates of n0h and �h are very
different. In the other two experiments, two or three of
the parameters cannot converge to the true values. The
random numbers sampled for the parameters appar-
ently directly affect the model response and the error
covariances estimated from the ensemble. Better and
more physical sampling strategies may need to be de-
veloped for future applications.

5. Summary and conclusions

The possibility of correcting model errors associated
with uncertain microphysical parameters found in a
popular single-moment ice microphysics scheme
through parameter estimation is investigated. The
EnKF method and radar data are used for the param-
eter as well as state estimations. The parameters esti-
mated include the intercept parameters of the assumed
exponential drop size distributions (DSDs) for rain,
snow, and hail and the densities of hail and snow. Sen-
sitivity analyses were performed for individual param-
eters in Part I, together with discussions on the param-

FIG. 15. The evolutions of the ensemble means together with the true values (straight lines)
of (a) 10 log10(n0h), (b) 10 log10(n0s), (c) 10 log10(�h), and (d) 10 log10(�s), from experiments
estimating (n0r, n0s, n0h, �s, �h) starting from (4 � 105 m�4, 3 � 107 m�4, 3 � 107 m�4, 50 kg
m�3, 400 kg m�3, respectively). The different line types in each panel represent experiments
using different realizations of the initial parameter ensemble.
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eter identifiability, to provide guidance for the param-
eter estimation experiments. In this second part, we use
the EnKF method to estimate those microphysical pa-
rameters individually or in different combinations. The
identifiability of multiple parameters is further investi-
gated based on the estimation results.

The experiments showed that when the microphysi-
cal parameters are estimated individually (with other
parameters being perfect), they all can closely converge
to their true values. This is not surprising because the
sensitivity analyses in Part I indicate that the inverse
problems for single-parameter estimation have unique
solutions. For this case of a well-posed problem, the
EnKF can be used effectively for simultaneous state
and parameter estimations.

The results of multiple-parameter estimations are not
as good as those of single-parameter estimations, but
the results estimating parameter sets (n0h, �h), (n0r, n0s,
n0h), and (n0r, n0s, n0h, �h) are very encouraging. The
difficulty in estimating some parameters appears to be
due to the fact that the model responses to the errors in
different parameters can cancel each other so that com-
binations of parameters with different errors can still
result in a good fit of the model solution to the obser-
vations, rendering the solution to the parameter esti-
mation problem nonunique. Further, estimation can be
sensitive to the quality of the observational data. It is
found that the realization of the initial parameter en-
semble can also affect the parameter estimation signifi-
cantly, especially in the multiparameter estimation
cases. In such cases, increasing the ensemble size (e.g.,
from 40 to 100) helps improve the accuracy and robust-
ness of the estimation.

In this study, we applied the parameter estimation to
a simulated supercell storm only. Some parameters or
combinations of the parameters may be more or less
identifiable in other types of convective systems. For
example, mature squall lines usually contain more
stratiform precipitation regions that develop and evolve
over a longer period of time, which may be helpful for
the parameter estimation. Additional observation
types, such as those from dual-polarization radars, may
be very helpful for microphysical parameter estimation
because of their information content on DSDs and hy-
drometeor types. At the least, the dual-polarization
data can provide additional constraints on the inverse
problem, which hopefully can improve the solution
uniqueness. Work in assimilating polarimetric Doppler
radar data and in including the data in microphysical
parameter estimation using the EnKF is in progress
(Jung et al. 2008a,b), and initial results are encouraging.

In real applications, parameter estimation will be
performed simultaneously with state estimation in con-

tinuous assimilation cycles. The latest estimation of the
uncertain parameters as well as the model state should
be used for subsequent forecasting. We note in the end
that for real data applications, the model error in pre-
cipitation microphysics is likely to be larger than what is
considered here. The estimation of other microphysical
parameters, such as the fall speed coefficients and col-
lection efficiencies, and other uncertain parameters
involved in microphysical conversion processes, are
worthy of investigations too. Additional difficulties are
expected when more uncertainties in microphysics
schemes are considered. Furthermore, other sources of
model error can make parameter estimation more dif-
ficult. Parameter estimation in the presence of other
sources of error is an interesting topic for future studies.
What is encouraging is that even in the most difficult
cases considered in this study, the errors of the esti-
mated parameters are usually significantly smaller than
their first-guess errors, and the results of state estima-
tion are almost always improved when simultaneous
parameter estimation is performed. It is clear that the
radar reflectivity data are effective in constraining er-
rors in the microphysical parameters in the cases con-
sidered here.
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