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ABSTRACT

This paper analyzes the scale and case dependence of the predictability of precipitation in the Storm-Scale

Ensemble Forecast (SSEF) system run by the Center for Analysis and Prediction of Storms (CAPS) during

the NOAA Hazardous Weather Testbed Spring Experiments of 2008–13. The effect of different types of

ensemble perturbation methodologies is quantified as a function of spatial scale. It is found that uncertainties

in the large-scale initial and boundary conditions and in the model microphysical parameterization scheme

can result in the loss of predictability at scales smaller than 200 kmafter 24 h.Also, these uncertainties account

for most of the forecast error. Other types of ensemble perturbation methodologies were not found to be as

important for the quantitative precipitation forecasts (QPFs). The case dependences of predictability and of

the sensitivity to the ensemble perturbation methodology were also analyzed. Events were characterized in

terms of the extent of the precipitation coverage and of the convective-adjustment time scale tc, an indicator

of whether convection is in equilibrium with the large-scale forcing. It was found that events characterized by

widespread precipitation and small tc values (representative of quasi-equilibrium convection) were usually

more predictable than nonequilibrium cases. No significant statistical relationship was found between the

relative role of different perturbation methodologies and precipitation coverage or tc.

1. Introduction

Predictability limitations of deterministic convection-

allowing models, related to the rapid upscale growth of

initial condition errors at small scales, as well as to

model design, make it necessary to develop reliable

probabilistic (ensemble) forecasting systems at these

scales in order to account for forecast uncertainty. Sig-

nificant effort has been devoted to understanding error

growth at the kilometer scale and to developing appro-

priate techniques for sampling initial and lateral

boundary condition (IC/LBC) uncertainties, as well as

uncertainties in physical parameterizations (e.g., Zhang

et al. 2006; Walser et al. 2004; Romine et al. 2014).

However, the best way of designing convection-allowing

ensembles is still not established. While the current per-

turbation approaches (such as large-scale IC/LBC per-

turbations, convective-scale IC perturbations, mixed

physics, stochastic perturbations in the physical schemes,

etc.) can be used together to increase ensemble spread,

achieving sufficient spread without negatively affecting

the skill of perturbed members is still challenging (Clark

et al. 2011; Vié et al. 2011; Romine et al. 2014; Schwartz

et al. 2014). Moreover, the sensitivity to the perturbation

method is both scale and case dependent (Johnson et al.

2014; Johnson and Wang 2016), thereby adding further

complexity to the matter.

Surcel et al. (2015, hereafter SZY15) and Surcel et al.

(2016, hereafter SZY16) characterized the scale and
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case dependences of precipitation predictability by a

Storm-Scale Ensemble Forecast (SSEF) system with

IC/LBC perturbations and variations in the model phys-

ical parameterization schemes (thereafter referred to as

IC/LBC/PHYS perturbations). This ensemble was run by

the Center for Analysis and Prediction of Storms

(CAPS) as part of the 2008 NOAAHazardous Weather

Testbed (HWT) Spring Experiment. The results showed

that this ensemble suffered a rapid loss of predictability

of precipitation at meso-g and meso-b scales, both in

terms of the agreement among the ensemble members

(increase in spread), and in terms of the comparison to

observations (decrease in skill). However, while pre-

dictive skill at scales smaller than 100 kmwas lost during

the first 12 h, the ensemble was still indicating some

predictability at these scales (i.e., there was some re-

semblance between the ensemble members). It is un-

known whether this inconsistency between skill and

spread at small scales is related to the ensemble being

underdispersive or to the ensemble being biased.

As mentioned in SZY15 and SZY16, these results

were applicable to an ensemble with IC/LBC/PHYS

perturbations, and they might differ for ensembles that

use other perturbation methodologies. In fact, the sen-

sitivity to the perturbation methodology has been re-

ported upon in previous studies. For example, Stensrud

et al. (2000) investigated the relative importance of IC

and model physics (PHYS) perturbations for two cases.

They showed that IC perturbations produced a more

skillful ensemble for an event with strong large-scale

forcing, while PHYS perturbations were more impor-

tant for a weak-forcing event. On the other hand, Kong

et al. (2014) found that IC/LBC perturbations derived

from a regional-scale ensemble caused a much larger

ensemble spread than the PHYS perturbations. They

also noted that perturbing the LBCs is important in

maintaining spread throughout the forecast time.

Vié et al. (2011) also compared the effects of un-

certainties in convective-scale ICs to the effects of LBC

uncertainty. For short lead times (less than 12h), IC

uncertainties had a dominant effect, but that effect was

shown to be case dependent. For longer lead times, the

LBC uncertainty was found to have the dominant effect.

Romine et al. (2014) investigated the impact of adding

LBC and stochastic PHYS perturbations to an ensemble

that had ICs derived from a continuously cycled en-

semble data assimilation system. While the additional

perturbation methodologies resulted in increased

spread, especially at longer forecast times, they also

had a negative impact on the deterministic QPF skill of

individual members. Johnson et al. (2014) analyzed the

multiscale characteristics and evolution of different

types of ensemble perturbations for precipitation

forecasts of the CAPS SSEF run during the spring of

2010. In particular, they investigated how small-scale IC

perturbations compare to larger-scale IC/LBC pertur-

bations obtained from the Short-Range Ensemble

Forecasting (SREF) system operational at NCEP (Du

et al. 2009) and to PHYS perturbations. They found that

on average large-scale IC/LBC/PHYS perturbations

have a dominant impact compared to the small-scale IC

perturbations. However, for one case study character-

ized by convection organizing upscale into a mesoscale

convective system, all perturbation methods generated

differences with respect to the control precipitation

forecast comparable to the forecast error. The sensitiv-

ity of precipitation predictability to the structure of IC

perturbations was further analyzed by Johnson and

Wang (2016) within the context of perfect model ob-

serving system simulation experiments (OSSEs). They

found that probabilistic evaluation measures indicate an

improvement in forecasting skill when multiscale IC

perturbations produced by ensemble data assimilation

are used rather than downscaling IC perturbations from

coarser-resolution ensembles.

While the 2008 CAPS SSEF consisted of only eight

IC/LBC/PHYS-perturbed members, more perturbation

methodologies were used during 2009–13. These meth-

odologies include PHYS perturbations, achieved

through varying only the microphysical parameteriza-

tion scheme (hereafter MP perturbations) or only the

planetary boundary layer scheme (PBL perturbations),

or by using a stochastic kinetic energy backscatter

scheme (SKEB perturbations). In 2010, additional ap-

proaches to simulate small-scale IC uncertainty were

attempted. Therefore, the ensemble precipitation fore-

casts produced during the 2008–13 Spring Experiments

allow further study of the effects of various sources of

uncertainty on the precipitation predictability by con-

vection-allowing models.

The work presented here is an extension to the studies

of SZY15 and SZY16. The scale and case dependences of

precipitation predictability by an ensemble employing

different perturbation methodologies is characterized. In

addition, the factors affecting the relative importance of

different sources of uncertainty are explored. The fol-

lowing issues are addressed through these analyses.

First, we investigate the influence of the perturbation

method on the quantitative estimates of predictability

limits. In previous predictability studies, IC uncertainty

was accounted for in various ways: through time-lag

forecasting techniques (Hohenegger et al. 2006; Walser

et al. 2004), by adding correlated or uncorrelated ran-

dom noise to the initial temperature or moisture fields

(Zhang et al. 2002, 2006; Done et al. 2012), or by using an

ensemble analysis system, such as the ensemble Kalman
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filter (EnKF; Snook et al. 2012; Schwartz et al. 2014;

Johnson and Wang 2016). While the results of such

studies are qualitatively similar and in agreement with

Lorenz’s (1969) speculations, the actual quantitative es-

timatesmight differ. Here, weoffer quantitative estimates

for the loss of predictability with spatial scale and forecast

lead time due to large-scale IC/BC uncertainty only

(IC/LBC member), IC/LBC and PHYS uncertainty

(IC/LBC/PHYSmembers), small-scale IC uncertainty

achieved by adding uncorrelated or correlated noise to

the initial temperature and humidity fields (hereafter

RAND and RC members, respectively), and uncer-

tainties in the representation of PHYS (achieved through

MP, PBL, and SKEB perturbations).

Then, we analyze the relative importance of the various

perturbations, and whether any of the perturbation

methodologies used in the CAPS SSEF generate spread

comparable to the forecast error. Furthermore, we ex-

plore whether the results are case dependent, as sug-

gested by Johnson et al. (2014) and Stensrud et al. (2000).

This paper is organized as follows. Section 2 presents

the ensemble forecasts and the verification data. Section 3

shows the effects of the different perturbations on the loss

of precipitation predictability with scale and forecast

time. Section 4 discusses the case dependences of pre-

dictability and of the sensitivity to different perturbation

methodologies. Finally, section 5 offers a brief summary

with conclusions.

2. Data description

a. CAPS SSEF ensemble forecasts

Forecasts from six Spring Experiments (2008–13) are

analyzed here. The main setup of the CAPS SSEF sys-

tem is similar from year to year. During April–June of

each year, convection-allowing (4-km grid spacing)

forecasts are initialized almost daily at 0000 UTC, and

are run for at least 30 h over a domain covering most of

the contiguous United States (CONUS).1 Each year, the

CAPS SSEF system uses the latest version of the Ad-

vanced Research version of the Weather Research and

Forecasting Model (WRF-ARW; Skamarock et al.

2008). The ensemble consists of two control members

(CN and C0), and a number of perturbed members.

The background ICs and the control LBCs are pro-

vided by the North American Mesoscale Forecast

System (NAM; Janjić 2003) 12-km analysis and fore-

casts. The control members CN and C0 have identical

model configurations, but CN has mesoscale data assim-

ilation (including radar), performed using the ARPS

3DVAR system (Gao et al. 2004; Hu et al. 2006a,b; Xue

et al. 2003), while C0 obtains the ICs directly fromNAM.

The perturbedmembers are configured exactly as for CN,

except for their perturbations, as described later (see

Table 2).

The IC/LBC perturbations are obtained directly from

the SREF system operational at NCEP (Du et al. 2009).

The SREF members are based on different dynamic

cores (ETA, WRF-NMM, and WRF-ARW) and are run

with a grid spacing of 32 or 45km. Therefore, the IC/LBC

perturbations do not have variability near the grid scale of

the 4-kmmembers. The IC perturbations are obtained as

the difference between 3-h forecasts of SREF members

and the SREF control. The perturbations of the u- and

y-wind components, potential temperature, and specific

humidity are rescaled to have root-mean-square values of

1ms21, 0.5K, and 0.02 gkg21, respectively.

The random (RAND) perturbations were added to

the temperature and humidity fields and have standard

deviations of 0.5K and 5%, respectively. The correlated

random (RC) perturbations have the same standard

deviations, but correlation distances of 12 km in the

horizontal and 3km in the vertical.

Each year, different model physical parameterization

schemes were varied between the members. In 2008 the

microphysical (MP), planetary boundary layer (PBL),

and shortwave radiation (SW) parameterization schemes

were varied for the perturbed members, while the land

surface model (LSM) and the longwave radiation (LW)

scheme were kept the same, as for the control CN. In

2009, the LSM was also varied for the perturbed mem-

bers. After 2010, the SW and LW schemes were kept

identical between themembers and PHYS variability was

accounted for only through the MP, PBL, and LSM

schemes. A more detailed description of the ensembles

is given in Table 3.

b. Verification data

The precipitation forecasts were verified against

NCEP’s Stage IV multisensor precipitation product

(Baldwin and Mitchell 1997). The Stage IV product con-

sists of hourly rainfall accumulations over the CONUS,

and was obtained from the NCEP website (www.emc.

ncep.noaa.gov/mmb/ylin/pcpanl/). These hourly precipi-

tation analyses are available on a 4-km grid and are de-

veloped at NCEP by mosaicking the regional hourly

multisensor (radar and rain gauge) precipitation analyses

produced by the NWS’s 12 River Forecast Centers over

the CONUS.

The entire verification was also performed for in-

stantaneous reflectivity fields, with respect to radar

1 Starting in 2010, the CAPS SSEF domain covered all of the

CONUS. However, to keep the evaluation objective, the analysis

domain has been kept the same from year to year.
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reflectivity mosaics similar to those presented by

SZY16. As the results were fully consistent for the dif-

ferent datasets, only the verification of forecasts of

hourly precipitation accumulations against the Stage IV

estimates is discussed herein.

c. Method

A total of 169 cases distributed over six Spring Ex-

periments (2008–13) were analyzed. Table 1 enumerates

the forecasts as labeled by starting dates. All runs were

initialized at 0000 UTC each year. The data were re-

mapped using a nearest-neighbormethod onto the Stage

IV product polar stereographic grid, which has a grid

spacing of 4.7625km at 608N (Fig. 1). This method as-

signs to a pixel in the new grid the exact same value as

the geographically closest pixel in the original grid

[somewhat differing from the nearest-neighbor-average

method of Accadia et al. (2003)].

3. The limits of the predictability of precipitation
for the 2008–13 Spring Experiments

It was shown in SZY15 that ensemble perturbations

result in errors that grow and propagate upscale

throughout the forecast integration time, causing a total

loss of the predictability of precipitation at increasingly

larger scales with forecast lead time. The loss of pre-

dictability with spatial scale and forecast lead time due

to IC/LBC/PHYS perturbations was quantified for the

2008 Spring Experiment in SZY15 in terms of the de-

correlation scale. The decorrelation scale is defined for

any two precipitation fields as the scale l0 below which

these two fields are fully decorrelated. A complete de-

correlation of two precipitation fields means that they

are as similar to each other as two random fields, and is

interpreted as a complete lack of predictability (i.e., one

of the fields cannot be used to predict the other).

To compute the decorrelation scale between any two

precipitation fields, X and Y, we must first compute the

power ratio as a function of spatial scale l:

R(l)5
Var

X
(l)1Var

Y
(l)

Var
X1Y

(l)
, (1)

where VarX(l) and VarY(l) represent the variances of

the fields X and Y at scale l and VarX1Y(l) represents

the variance of the field X1Y at scale l. If the value of

this ratio is equal to 1, then the fields X and Y are

TABLE 1. List of analyzed cases.

Year No. of cases Dates

2008 22 23, 24, 25 Apr

1, 2, 5, 6, 7, 8, 19, 20, 21, 22, 24, 27, 28, 29, 30 May

2, 4, 5, 6 Jun

2009 23 27 Apr

1, 2, 4, 5, 6, 7, 8, 11, 12, 18, 19, 20, 22, 26, 27, 28, 29 May

1, 2, 3, 4, 5 Jun

2010 34 29, 30 Apr

3, 4, 5, 6, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 27, 28 May

1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18 Jun

2011 29 2, 3, 4, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31 May

1, 2, 3, 6, 7, 8, 9, 10 Jun

2012 32 26, 27 Apr

1, 2, 3, 4, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 27, 30, 31 May

1, 4, 5, 6, 7, 8, 9, 10 Jun

2013 29 30 Apr

1, 2, 3, 6, 7, 8, 9, 10, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 31 May

3, 5, 6, 7, 12 Jun

FIG. 1. Analysis domain. The gray shading represents the cov-

erage of the Stage IV data, and the black contour indicates the

analysis domain. All the data were remapped onto the analysis

domain using nearest-neighbor interpolation.
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decorrelated at scale l, as the variance of a sum of two

variables is equal to the sum of the variances only when

the variables are not correlated.

To obtain the variance of a precipitation field at a given

scale, we compute the Fourier power spectrum of the

field. The values for R(l) vary between 1, which repre-

sents complete decorrelation between the fields, and 1/2,

which represents perfect resemblance between the fields.

The largest scale at which R(l) has a value of 1 is l0.

The decorrelation scale can only identify the scales at

which there is a complete lack of predictability (or skill),

without offering any measure of predictability at pre-

dictable scales. Therefore, to complement the analysis, we

have also quantified the similarity between precipitation

fields in terms of the normalized root-mean-square error

(NRMSE; Surcel et al. 2015) and the fractions skill score

(FSS; Roberts and Lean 2008).

The NRMSE is defined as

NRMSE5

�
I

i51
�
J

j51

[X(i, j)2Y(i, j)]2

�
I

i51
�
J

j51

[X(i, j)1Y(i, j)]2
, (2)

where X and Y are two different precipitation fields of

spatial dimensions I and J. Small values of NRMSE

signify good agreement between the two fields, while the

larger the values, the poorer the resemblance, with

values larger than 1 meaning that two forecasts are as

similar to each other as two random fields. To obtain

information on predictability at different spatial scales,

the NRMSE is computed for different scale components

of the precipitation fields, rather than the original fields.

In this case, X and Y are bandpass- or low-pass-filtered

precipitation fields. In this paper, similarly to Johnson

et al. (2014), a Haar wavelet transform is used to obtain

different scale components of the precipitation fields.

The normalization in the NRMSE is done to eliminate

the dependence of the metric on the variance of the

precipitation fields and, thus, makes the evaluation re-

sults less sensitive to forecast biases and to the changes

in precipitation variance due to the diurnal cycle.

The FSS is a neighborhood verification method often

used for the evaluation of high-resolution precipitation

forecasts (e.g., Roberts and Lean 2008; Schwartz 2016;

Dey et al. 2014). The FSS is computed as a function of

precipitation threshold and spatial scale. Given the two

precipitation fields X and Y mentioned above, a pre-

cipitation threshold p, and a neighborhood size r, two

fraction fields are obtained corresponding toX andY, fX
and fY , having the same dimensions as the initial pre-

cipitation fields. A fractional value for the grid point

(i, j) in fX is determined by the proportion of points

within r km of (i, j) in X with precipitation accumula-

tions greater than p, and similarly for fY . Then, the FSS

between X and Y is defined as

FSS5 12

�
I

i51
�
J

j51

[ f
X
(i, j)2f

Y
(i, j)]2

�
I

i51
�
J

j51

f 2X(i, j)1 �
I

i51
�
J

j51

f 2Y(i, j)

. (3)

In this paper, p is a percentile threshold (e.g., the

highest 0.5% of precipitation amounts) and the abso-

lute thresholds corresponding to p are determined in-

dependently for each separate precipitation field. The

neighborhood around each grid point (i, j) is considered a

square of size r km.

As in SZY15, to characterize the model predictability

of the atmospheric state, values of l0, NRMSE, and FSS

are computed for Stage IV–member pairs of hourly

rainfall accumulation fields for each of the cases listed in

Table 1. Similarly, to characterize the predictability of the

model state, l0, NRMSE and FSS are computed for

member–CNpairs of precipitation fields. The evolution of

l0(t) corresponding to different model configurations

shows the effects of different perturbationmethodologies.

Figure 2 shows l0(t) for eachmember–CN pair and for

Stage IV–CN, averaged over all the cases of each year, for

the years 2008–13. The color coding indicates the differ-

ently perturbedmembers, as described in the legend. The

number of members corresponding to each perturbation

methodology changed from year to year. For example, in

2008, there were seven IC/LBC/PHYS members, and

hence there are seven dark green lines in Fig. 2a.

For the IC/LBC and IC/LBC/PHYS members, l0(t)

with respect to CN increases with forecast lead

time following a power law, reaching 200 km after

18 h (see the evolution of the green lines in Fig. 2).

SZY15 showed that l0 increases faster with time for the

IC/LBC/PHYS members relative to the IC/LBC mem-

bers at the beginning of the forecast, whereas after the

first 12h they become similar for most cases. This is not

evident in the average l0(t) curves in Fig. 2a, but will be

investigated further in the next section. We have also

computed the average values of l0 for all Stage IV–

member pairs and they were similar between all mem-

bers, independent of their configuration (not shown).

Furthermore, the value of l0 for member–CN becomes

similar to the Stage IV–CN l0 only at the end of the

forecast period (i.e., t5 30h). The results relative to the

IC/LBC/PHYS members are consistent for all years.

Note that while the evolution of l0 is similar for all

IC/LBC/PHYS members, in 2008, 2010, 2011, and 2013,

there are some IC/LBC/PHYS members that show

consistently lower l0 values with respect to CN relative
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to the rest. These members have the same MP pa-

rameterization and LSM as CN. Similarities between

members that have the same MP schemes despite

IC/LBC/PHYS perturbations have been reported pre-

viously by Johnson et al. (2011) for the 2009 CAPS

SSEF system.

To allow for predictability studies, members with only

IC perturbations were added in 2010: RAND and RC.

The RAND member was configured identically to CN,

but random noise was added to the initial temperature

and humidity fields. As shown in Fig. 2, the values of l0

with respect to CN corresponding to this member are

much lower on average than for the IC/LBC/PHYS

members (orange line is lower than the dark green

lines), reaching only 100 km at the end of the forecast

period. When some spatial structure is imposed on the

RAND perturbations (by applying a recursive filter re-

sulting in a decorrelation distance of 12 km in the hori-

zontal and 3km in the vertical), as for member RC, the

values of l0 become much larger and comparable to

those corresponding to the IC/LBC/PHYS members

over the first 12 h (light blue line compared to dark green

lines in Fig. 2). After 12 h, the IC/LBC/PHYS pertur-

bations result in a larger decorrelation scale. This might

be due to the type of IC perturbations (large scale, de-

rived from a regional ensemble, versus small-scale, RC

perturbations), or to the effect of LBC and PHYS per-

turbations. Previous studies (e.g., Vié et al. 2011) noted

the importance of LBC perturbations for ensemble

spread, especially for later forecast times.

FIG. 2. The decorrelation scale l0 as a function of forecast time for members–CN averaged over all events of each year for the years

2008–13. The black line, denoted Stage IV–CN, corresponds to l0 between Stage IV estimates and CN, and the color lines correspond to

member–CN. The different-colored lines correspond to different types of members, as indicated in the legend: IC/LBC/PHYS, members

with both SREF-derived IC/LBC perturbations andmixed PHYS; PBL, members identical to CN except for the planetary boundary layer

parameterization; MP, members identical to CN except for the microphysics parameterization; IC/LBC/PHYS/RC, member with SREF-

derived IC/LBC perturbations, mixed PHYS, and random correlated noise added to the ICs (see text for details); RAND, random noise

added to the ICs, otherwise identical to CN; RC, random correlated noise added to the ICs; IC/LBC, only SREF-derived IC/LBC

perturbations; and SKEB, a member identical to CN but with SKEB perturbations.
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The rather constant l0 values corresponding to RC–

CN after the first 12 h may be due to the lack of LBC

perturbations in RC. These types of small-scale RC

perturbations are usually used in predictability studies

(e.g., Zhang et al. 2006; Hohenegger et al. 2006) to assess

intrinsic predictability limits. If the growth of such per-

turbations can indeed provide reliable estimates of in-

trinsic predictability limits, then this limit is still lower

than the practical predictability limit illustrated by the

IC/LBC/PHYS members, and lower still than the actual

forecast performance. Therefore, as noted by Durran

andGingrich (2014), there is still room for improvement

before reaching the limit of intrinsic predictability.

However, as Johnson et al. (2014) showed for this same

dataset (using a different analysis method), there are

some cases in which the error with respect to CN ob-

tained from RC perturbations is the same as the error

due to IC/LBC/PHYS perturbations and to the error of

CN. This is not the case for the decorrelation scale with

respect to CN, which after the first 2 h is always smaller

for the RAND member than for the IC/LBC/PHYS

members. At the beginning of the forecast period the

RAND perturbations result in spurious precipitation,

which also has a negative effect on QPF skill (Johnson

et al. 2014). Therefore, adding RC perturbations to an

IC/LBC/PHYS member can improve the spread with

respect to CN in the first 6 h, but also has a negative

effect in QPF skill at t 5 1 h.

So far, we have discussed the loss of precipitation

predictability due to IC/LBC/PHYS errors. After 2010,

PHYS members were added to the ensemble. As men-

tioned in section 2, these members have the same ICs/

LBCs and general configuration as CN, but they have

differences in their physical parameterization schemes

(see Table 2).

Figure 2 shows that the PBL members have the lowest

values of l0 with respect to CN, and all PHYS variations

lead to smaller decorrelation scales with respect to CN

than for the IC/LBC/PHYSmembers. Therefore, it seems

that the errors accounted for in the representation of

precipitation microphysics generate more spread on av-

erage than the errors in the PBL scheme. However, note

that the evaluation is done for precipitation fields, which

are directly impacted by theMP scheme. The errors in the

PBL parameterizations might appear more significant if

fields other than precipitation were analyzed. Also, the

evolution of the member–CN l0(t) with time is different

between the MP members and the other members,

showing a more rapid growth in the early forecast hours.

It seems from Fig. 2 that in 2011 there is larger vari-

ability in the decorrelation scale caused by PHYS varia-

tions. Some MP members have l0 values with respect to

CN as large as the IC/LBC/PHYS members. However, a

closer examination of the difference in predictability

metrics between 2010 and 2011 reveals that this apparent

difference is due to more PHYSmembers being available

in 2011 than in 2010, and to the Ferrier member in par-

ticular. There is no significant difference in the member–

CN l0, NRMSE, or FSS for a given MP member from

year to year.

Forecasts from a member that uses the SKEB scheme

as a way of perturbing PHYS were also available for

2012. In terms of the evolution of l0(t) with respect to

CN, the SKEBmember shows similar results to the PBL

members (purple line). Romine et al. (2014) showed that

SKEB schemes do increase ensemble spread when

added to an IC ensemble, especially at later forecast

times, but that they also caused forecast biases. Here,

the Stage IV–member l0 corresponding to the SKEB

member values are not systematically different than for

the other members (not shown).

It was shown that independent of the perturbation

method, the values of l0 formember–CNdo not reach the

values of l0 for Stage IV–CN for most forecast times.

From the different perturbationmethodologies employed

in the CAPS SSEF, the SREF-derived IC/LBC/PHYS

perturbations generate the largest l0 values on average.

The effect of ensemble perturbations was also quantified

in terms of the NRMSE and the FSS. The average

NRMSE and FSS results computed for different scales

show values consistent with the decorrelation scale. The

next section further explores the sensitivity to the type of

ensemble perturbations in terms of NRMSE and FSS, as

well as the case dependence of this sensitivity.

TABLE 2. List of ensemble perturbations discussed in the text.

Type Description Years

IC/LBC SREF-derived IC/LBC perturbations 2008

IC/LBC/PHYS SREF-derived IC/LBC perturbations and mixed PHYS 2008–11, 2013

RAND Uncorrelated random noise added to the initial moisture and temperature fields 2010

RC Correlated random noise added to the initial moisture and temperature fields 2010

MP Microphysical parameterization scheme different than for CN (Thompson) 2010–13

PBL Planetary boundary layer scheme different than for CN (MYJ) 2010–13

SKEB Stochastic kinetic energy backscatter scheme 2012
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4. The case-to-case variability of the predictability
of precipitation

The case dependence of the predictability of pre-

cipitation was investigated in SZY16 for the 2008

CAPS SSEF. It was found that both ensemble spread

and QPF skill were case dependent. The analyzed

events for which the evolution of precipitation was

controlled by the diurnal cycle of solar heating were

associated with larger ensemble spread and poorer

QPF skill than widespread events characterized by

strong large-scale forcing. On the other hand, the

evolution of l0(t) for the ensemble did not exhibit such

case dependence. In 2008, the CAPS SSEF consisted of

members with IC/LBC perturbations, derived from the

regional SREF system, and mixed PHYS, while other

types of ensemble perturbations were included in the

following years (as mentioned in section 2). Keil et al.

(2014) showed that the spread of an ensemble with only

varied PHYS depended on the weather regime, being

much lower for strongly forced cases than for weakly

forced cases. Conversely, they found that the pre-

dictability by an ensemble with only LBC perturbations

did not exhibit such case dependence. Also, Stensrud

et al. (2000) found that accounting for PHYS un-

certainty was more important for weakly forced cases,

while IC uncertainty had a dominant effect for strongly

forced cases. Moreover, Johnson et al. (2014) in-

vestigated the effect of different types of IC perturba-

tions. They found that in general IC perturbations

derived from regional ensembles have the dominant

impact for precipitation predictability. However, for

one case characterized by weak large-scale forcing,

all perturbation methodologies produced differences

with respect to CN that were comparable to the

forecast error.

Therefore, in this section we investigate two different

aspects of the case-to-case variability of predictability.

First, we determine whether the ensemble perturbations

used in 2009–13 show the same case dependence re-

ported in SZY16 for the 2008 ensemble, by analyzing the

relationships between forecast skill or ensemble spread

and event type. Second, we explore whether the relative

effect of different types of perturbations is case de-

pendent. For instance, are PHYS perturbations more

important for some types of events than for others?

Also, for which cases, if any, are the errors due to the

ensemble perturbations of similar magnitude to the

forecast error?

a. Case classification

In SZY16, we have attempted to discriminate be-

tween strongly and weakly forced events in terms of

synoptic-scale forcing. However, we found no statis-

tical relationship between the strength of the quasigeo-

strophic forcing for ascent and the predictability of

precipitation. On the other hand, we did find that the

domain-averaged, convective adjustment time scale and

the areal coverage of precipitation showed a relation to

predictability. The convective adjustment time scale was

proposed by Done et al. (2006) as a measure of differ-

entiating objectively between equilibrium and non-

equilibrium cases. Previous studies showed that when

convection is in equilibrium with the large-scale flow, the

properties of convective rainfall are set by the large-scale

environment and are thusmore predictable. On the other

hand, for nonequilibrium cases, the development and

evolution of convection are controlled by less predictable,

small-scale, local factors (SZY16; Done et al. 2006; Keil

et al. 2014). These studies have used the convective ad-

justment time scale as a loose indication of whether a

precipitation event is characterized by strong or weak

large-scale forcing. In reality, there can be events in

which large areas of instability are consumed by con-

vection that was initiated at small scales (such as

thunderstorms initialized by cold pools), and then

suffered upscale growth (coalescence of small storms

into larger mesoscale systems). Because these events

were triggered by small-scale features, it might be

inappropriate to consider them associated with large-

scale forcing (even though a beneficial large-scale en-

vironment might be necessary to allow for the upscale

growth in the first place). As finding the best estimate

and definition of the term large-scale forcing is outside

the scope of the current paper, and to prevent confu-

sion, hereafter we will avoid the use of this term.

However, finding a relationship between predictability

and the convective adjustment time scale would still be

useful, as this convective adjustment time scale can be

calculated a priori from the model output. If a re-

lationship did exist, then we could have a measure of

the expected performance and uncertainty of forecasts

associated with equilibrium and nonequilibrium cases.

The convective-adjustment time scale tc is defined as

the ratio between convective available potential energy

(CAPE) and the rate of change of CAPE:

t
c
;

CAPE

d(CAPE)/dt
. (4)

The rate of change of CAPE is controlled by the re-

moval of CAPE by supplying latent heat, and can be

calculated from the precipitation rate. Thus,

t
c
5

1

2

CAPE

P
3 49:58mms3 m22 h21 , (5)
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with units of seconds, and with the units of P and CAPE

being millimeters per hour and joules per kilogram, re-

spectively. Small values of tc indicate that CAPE is

rapidly consumed by convection and is interpreted as

convection being in equilibriumwith the large scales. On

the other hand, large values of tc are associated with

nonequilibrium cases. Thresholds of 3 or 6 h were used

in previous studies to differentiate between equilibrium

and nonequilibrium cases (Zimmer et al. 2011; Keil

et al. 2014).

Here, tc is calculated using the above formula as a

function of forecast lead time from maps of hourly

rainfall accumulations and most unstable CAPE

(MUCAPE, hereafter referred to simply as CAPE)

corresponding to the control member CN. As in Keil

et al. (2014), the CAPE and hourly accumulations fields

are smoothed using a Gaussian filter with a half-width of

60 km before computing tc, in order to eliminate noise in

the calculations, but to keep the level of detail repre-

sentative of scales at which convection occurs. For each

forecast time, the spatial values of tc are averaged over

all the data pixels with rain rates higher than 1mmh21 to

exclude dry areas over which tc cannot be computed.2

While only the values corresponding to CN are used

here for classification, note that all of the ensemble

members showed very similar values of tc and pre-

cipitation coverage.

It was reported by SZY16 and confirmed by Dey et al.

(2016) for a different forecasting system that a relation-

ship exists between precipitation coverage and pre-

dictability. It is expected for caseswith lower precipitation

coverage to be inherently less predictable andmore likely

to suffer from displacement errors, which will result in

poorer forecast performance.Wewill verify here whether

FIG. 3. (a) Precipitation coverage, (b) conditional intensity, (c) tc, and (d) CAPE corresponding to CN as

a function of forecast lead time (forecasts initialized at 0000 UTC), for the years 2008–13. The solid colored lines

represent averages for all cases of a given year according to the legend (red, 2008; orange, 2009; yellow, 2010; light

blue, 2011; indigo, 2012; purple, 2013). The dotted lines represent6s for each year. The thick black line represents

the average over all cases. Dashed green lines in (b) indicate the 3- and 6-h thresholds of tc used in previous studies

to differentiate between quasi-equilibrium and nonequilibrium cases.

2 This helps eliminate points over which tc values would be very

large as a result of division by a very small number. The threshold

of 1mmh21 is a subjective choice borrowed fromKeil et al. (2014).

Slightly modifying this threshold does not impact the results.

However, using a threshold higher than 5mmh21 would cause

much noisier tc values because of the small number of data points

with precipitation values larger than 5mmh21.
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the relation between precipitation coverage and pre-

dictability is maintained for the entire dataset.

Figures 3a–d show, respectively, the temporal evolu-

tion of the mean and the standard deviation of the pre-

cipitation coverage (defined as the fraction of all data

points with hourly accumulations of 0.2mmh21 or more),

the conditional rainfall intensity (defined as the average

precipitation intensity over raining areas), the domain-

averaged tc, and the CAPE for all years. Each metric

shows a diurnal maximum around 2000 UTC, confirming

the importance of the diurnal cycle of solar heating for the

evolution of convective precipitation over the CONUS

(Surcel et al. 2010). In terms of precipitation coverage, the

years 2009, 2011, and 2012 show both lower values and

less variability (smaller standard deviations) on average

than the other years. The years 2008 and 2013 show the

smallest average values of tc, with 2013 being the year

with the lowest values and the lowest variability of aver-

age CAPE as well. On the other hand, 2008 and 2013

differ in terms of average conditional intensity, with 2008

having the largest values of conditional intensity and 2013

the lowest overall totals. We note however that daily tc
values are often larger than the threshold of 3 or 6h used

to differentiate between equilibrium and nonequilibrium

cases in previous studies on the predictability of convec-

tive rainfall in Europe (Flack et al. 2016; Keil et al. 2014).

Therefore, in this paper, we do not attempt a case clas-

sification based on a categorical threshold. Instead, we

investigate whether a statistical relationship exists be-

tween spatially averaged tc values and precipitation

coverage and predictability metrics.

b. The case dependence of predictability

In SZY16 it was shown that no clear relationship existed

between l0 and precipitation coverage or tc. On the other

hand, ensemble spread and the skill of the control member

CN showedweather regime dependence. Therefore, in this

paper, rather than investigating the case-to-case variability

of l0, we investigate the variability of the skill and spread.

The skill of the control member CN is quantified in

terms of the NRMSE for scales larger than 128km and

FSS at the 100-km scale and for the 95th percentile

threshold computed with respect to Stage IV pre-

cipitation accumulations. We have chosen to show the

relationship between the event classifier and the skill and

spread metrics at scales of roughly 100km because, as

Fig. 2 indicates, predictability is lost very rapidly at scales

smaller than 100km. Figure 4 illustrates the correlation

between NRMSE (Figs. 4a,b) and FSS (Figs. 4c,d) and

precipitation coverage and tc, respectively, as indicated in

the panels’ titles. Precipitation coverage is usually nega-

tively correlated with NRMSE, and positively correlated

with FSS, consistent with events of limited extent showing

on average lower skill than for widespread events. On the

other hand, tc is generally positively correlated with

NRMSE and negatively correlated with FSS, consistent

with quasi-equilibrium events, characterized by small tc
values showing better predictability than nonequilibrium

events. For simplicity, the relationship between the pre-

dictability metric and the event classifier is shown in Fig. 4

either in terms of the correlation coefficient r or as 2r,

depending on the sign, such that we always show a range

from 0 to 1. The thick lines in Fig. 4 indicate that the

correlation coefficients are significantly different than

0 for an a5 0:05 confidence level, while the thin lines

reflect that no statistical significance is found for the

a5 0:05 level and hence the relationship is not deemed

significant.

Except for 2008, during the first 15–20h of the fore-

casts, about 20%–30% of the variability in QPF skill is

explained by the variability in precipitation coverage,

such that higher precipitation coverage values are as-

sociated with better QPF skill (lower NRMSE and

higher FSS values). In other words, it seems that QPFs

of widespread precipitation systems are more skillful

than for events with less extensive precipitation cover-

age. As indicated in Fig. 4, there is generally a lower

correlation between the skill and coverage in the after-

noon hours, which is probably associated with the

maximum in the diurnal cycle of precipitation. It was

shown previously by Berenguer et al. (2012) that the

models evaluated here had some difficulties in fore-

casting accurately the timing of the diurnal maximum.

The relationship between skill and tc is stronger here

than was reported in SZY16 (Fig. 4). This is due to the

fact that in this paper the values of tc are estimated dif-

ferently than in SZY16, being calculated using output

from the member CN, rather than using NAM data. The

relationship between CN skill and tc is similar to that

between skill and coverage, with anywhere between 20%

and 30% of the variance in skill being explained by the

variance in tc, and with weaker relationships during af-

ternoon hours. In agreement with Keil et al. (2014), large

tc values, representative of nonequilibrium convection,

are weakly associated with poor QPF skill.

The strength of the relationship between skill and

event type varies somewhat from year to year. The re-

lationship between skill and coverage is weaker or not

statistically significant for 2008, while the relationship

between skill and tc is not significant for 2009 and 2013.

Note from Fig. 4 that the results are not sensitive to

whether the skill is quantified using NRMSE or FSS at

similar scales. The relationships presented in Fig. 4 hold

also when NRMSE and FSS are computed for larger

scales, but no longer hold when the skill is quantified for

scales smaller than 100 km. This is related to all events
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showing poor QPF skill (independent of the evaluation

metric) at scales smaller than 100 km for most forecast

hours, in agreement with the values of the decorrelation

scale presented in Fig. 2. Therefore, we find that the

QPF skill of the control member CN at scales larger than

100km shows a case-by-case variability consistent with

poorer performance for small-coverage, nonequilibrium

events, and better performance for large-coverage,

equilibrium events. However, the QPF skill at scales

smaller than 100km does not show any systematic case

dependence. These results are consistent with small-scale

convective events, with low precipitation coverage being

inherently less predictable than widespread events.

However, the fact that all events show poor skill at small

scales might indicate that all events suffer from similar

errors at small scales, while more extensive precipitation

systems allow for verification of skill at predictable scales.

As for both metrics the scores increase with increasing

scales and as FSS is computed for percentile thresholds,

thus eliminating the sensitivity of the results to forecast

bias, the lack of sensitivity of the results to the evaluation

metric might be an indication that the main types of er-

rors are displacement errors, which becomes less impor-

tant as the verification scale increases.

Unfortunately, it is worth noting that all the statistical

relationships presented here are quite weak. Therefore,

it would be difficult to make quantitative use of these

relationships to gain insights into the predictability of

precipitation systems a priori.

Asmentioned before, it was reported byKeil et al. (2014)

that the sensitivity of ensemble spread to the weather re-

gime is dependent to the type of ensemble perturbations.

The case dependence of ensemble spread is also in-

vestigated here for two subensembles: IC/LBC/PHYS and

FIG. 4. The correlation coefficient r (or2rwhen r, 0) between (a),(c) the skill of CN and precipitation coverage

and (b),(d) tc. The skill is measured in terms of the Stage IV–CNNRMSE computed at scales larger than 128 km in

(a) and (b), and in terms of the Stage IV–CNFSS for a scale of 100 km and a 95th percentile threshold in (c) and (d).

The thick lines indicate that the correlation coefficient is statistically significantly different than 0 at the a5 0:05

confidence level. The values of the correlation coefficient have been smoothed in time using a 3-h runningmean for

illustration purposes.

SEPTEMBER 2017 SURCEL ET AL . 3635



MP. Tomaintain consistency with the rest of the paper, and

to allow an investigation of spread as a function of spatial

scale, rather than computing the traditional spread metric

for the two subensembles, we define here ensemble spread

in terms of the average of NRMSE and FSS with respect to

CNcorresponding to the IC/LBC/PHYSandMPmembers,

respectively. In particular, the spread of a subensemblewith

Nmembers in terms of NRMSE is defined as

S
NRMSE

5
1

N
�

all members

NRMSE
member-CN (6)

and similarly for the spread in terms of FSS as

S
FSS

5
1

N
�

all members

FSS
member-CN . (7)

Figure 5 shows the correlation coefficient computed

between SNRMSE at 128km and SFSS at 100km and for the

95th percentile threshold and precipitation coverage and

tc, respectively, for the two subensembles (solid lines for

IC/LBC/PHYS and dashed lines for MP), for each year.

Independent of the perturbation type, the relation be-

tween precipitation coverage and ensemble spread is

more consistent in time than the relationship between tc
and ensemble spread. This is probably due to tc being a

noisier variable, as it is proportional to the ratio of two

variables that exhibit themselves large spatial and tem-

poral variability at small scales (precipitation andCAPE).

This also suggests that while tc could have some quali-

tative predictive value for the predictability of a case in

general, it should be used with caution in quantitative

applications. For all years, Fig. 5 indicates that the

FIG. 5. The correlation coefficient r (or 2r when r , 0) (a),(c) between spread and precipitation coverage and

(b),(d) between spread and tc. The spread ismeasured in terms of themember–CNNRMSE computed at scales larger

than 128 km and averaged over perturbedmembers in (a) and (b), and in terms of the member–CN FSS for a scale of

100 km, a 95th percentile threshold, and averaged over perturbed members in (c) and (d). The solid lines correspond

to the IC/LBC/PHYS subensembles, while the dashed lines correspond to theMP subensembles. The thick lines indicate

that the correlation coefficient is statistically significantly different than 0 at the a5 0:05 confidence level. The values of

the correlation coefficient have been smoothed in time using a 3-h running mean for illustration purposes.
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correlation between spread and both precipitation cov-

erage and tc is stronger in the first 15 h of the forecast,

this being especially true for 2010 and 2011. While the

values of the correlation coefficient corresponding to

the IC/LBC/PHYS subensemble seem higher than those

for the MP subensemble, this is likely not significant

considering that the number of ensemble members is

higher for the IC/LBC/PHYS subensemble than for the

MP. Finally, there is no relationship between precipitation

coverage and tc and ensemble spread at scales smaller than

128km, consistent with the results of SZY16 (not shown).

c. The relative importance of ensemble perturbation
methodologies

Wehave shown in section 3 the effect of different types

of perturbations on average, for each of the years. In this

section, we are interested in determining whether the

relative importance of different perturbation methodolo-

gies depends on the weather regime. For instance, does the

addition of PHYS perturbations to an IC/LBC ensemble

result in more variability for convective-equilibrium or

for nonequilibrium cases? Therefore, the results pre-

sented in this section are consistent with, but comple-

mentary to, the results shown in section 3, as here we

show the relative contributions of different types of errors

as a function of precipitation coverage and tc.

First, we analyze the case dependence of the effect of

adding PHYS perturbations to the IC/LBC perturba-

tions, by plotting the ratio of the n2–CN NRMSE to the

n1–CN NRMSE as a function of precipitation coverage

and tc for all cases during 2008 (Fig. 6). The 2008n2

member was the only member that had only IC/LBC

perturbations. Themember n1 is just one of the members

run in 2008 that had IC/LBC/PHYS perturbations, using

the FerrierMP scheme, theGoddard SWscheme, and the

Yonsei University (YSU) PBL scheme (see Table 3 for

more details on the ensemble configuration). The

NRMSE was computed for large scales (i.e., low-pass-

filtered precipitation fields with a cutoff scale of 256km)

and medium scales (i.e., bandpass-filtered fields between

64 and 256km). This ratio ismore often larger than 1 than

smaller than 1, meaning that in most cases adding PHYS

perturbations results in increased spread, consistent with

the average results illustrated in Fig. 2. This effect is more

important at the beginning of the forecasts (left panels of

Fig. 6), whereas after t 5 24h, about 30% of the cases

show n2–CNNRMSEvalues larger than n1–CNNRMSE

values (right panels). This could mean that PHYS per-

turbations are important in the increasing spread at early

forecast times, whereas for late forecast times thee en-

semble spread is mostly dominated by the IC/LBC per-

turbations. Also, from these diagrams, it seems that the

error ratio has values closer to 1 for events with larger

precipitation coverage.Moreover, the ratio values aremore

often larger than 1 for tc values greater than 3h, especially

for t . 24h, hinting that PHYS perturbations are more

important for nonequilibrium, small-coverage events. The

error ratio at scales smaller than 64km is around 1 for all

cases (not shown), most likely because of the errors being

saturated at these scales for all types of perturbations.

We also investigate in more detail the effects of the

different types of ensemble perturbations used in 2010

(Table 3). Figures 7 and 8 show how the effects of other

types of perturbations compare to the effects of the

IC/LBC/PHYS perturbations traditionally used in the

CAPS SSEF in previous years at large andmedium scales

in terms of the error ratio. Figure 7 shows the error ratios

at large scales (larger than 256km), while Fig. 8 shows the

error ratios at medium scales (between 64 and 256km).

The ratios in Fig. 8 are less variable and closer to 1 than at

large scales. This is related to the actual NRMSE values

being larger and having a smaller dynamical range at

medium scales. In other words, the different perturba-

tions have a similar effect at medium scales. Otherwise,

the relative effects of the different perturbations are

consistent between the medium and large scales. For

example, the effect of the RAND perturbations is less

important than the effects of IC/LBC/PHYS perturba-

tions both at the medium and large scales.

As shown in Figs. 7a and 7b, using simply random noise

as the IC perturbation almost never generates as much

variability as the IC/LBC/PHYS perturbations (the

NRMSE ratios are almost always smaller than 1). If the

RAND perturbations have some spatial structure, as for

member RC, the upscale growth is large at first, resulting

in variability comparable to that caused by IC/LBC/PHYS

perturbations up to t 5 6 h. Afterward, only in a few

cases do RC perturbations have an effect comparable to

the IC/LBC/PHYS perturbations (fewer data points fall

around the 1 ratio line in Figs. 7c and 7d at later forecast

times). Furthermore, it seems that most of the points sit-

uated above the 1 ratio line are associated with small

precipitation coverage and large tc values. Accounting for

small-scale IC uncertainty by adding RC perturbations

to a member with IC/LBC/PHYS perturbations has the

largest effect at lead times shorter than 18h and for events

with small precipitation coverage and large tc values.

Figures 7g–j and 8g–j show how the relative effects of

the IC/LBC/PHYS and PHYS perturbations vary with

precipitation coverage and tc. For the majority of

events, PHYS perturbations have a much smaller effect

than IC/LBC/PHYS perturbations, and no systematic

dependence on precipitation coverage or tc is evident.

This result also remains valid for the years 2011–13, with

the caveat that the MP perturbations had a larger relative

effect in 2011 than during the other years (not shown).
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FIG. 6. Scatterplots of the ratio between n1–CN and n2–CN NRMSEs, and

(a)–(d) precipitation coverage and (e)–(h) tc at large (larger than 256 km) andmedium

(between 64 and 256 km) scales, as indicated in the figure. The different colors cor-

respond to different lead times, with early lead times in the right panels and later lead

times in the left.
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FIG. 7. The ratios of NRMSE computed between a perturbed member

(as described in the different panels) and CN and the m6–CN NRMSE

(m6 is a IC/LBC/PHYS member) at scales larger than 256 km plotted

against (left) precipitation coverage and (right) tc. The different colors

correspond to different forecast lead times, as shown in the legend.
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FIG. 8. As in Fig. 7, but here the error is computed for medium scales

(64–256 km).
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We note that Johnson et al. (2014) present a case,

20May 2010, for which all IC perturbationmethodologies

resulted in differenceswith respect to the controlmember

comparable to the forecast error. In fact, we find that this

is the only case for which the RAND and RC perturba-

tions have an effect comparable to the IC/LBC/PHYS

perturbations. Unfortunately, this event is not charac-

terized by very small precipitation coverage or very large

tc values. This is consistent with the strength (or lack

thereof) of the statistical relationship found between

predictability and precipitation coverage and tc.

As it was found that the IC/LBC/PHYS/RC perturba-

tions generate the most spread on average, we investigate

whether the error attributable to these perturbations is

comparable to the forecast error. Figure 9 shows a scatter-

plot of the ratio NRMSEm52CN/NRMSEStageIV2CN against

precipitation coverage (Figs. 9a–d) and tc (Figs. 9e–g). At

early forecast times (Fig. 9, left), the forecast error (Stage

IV–CNNRMSE) is larger than the difference caused by the

ensemble perturbations (most points lie below the 1 line).

Toward the end of the forecast time (Fig. 9, right), the error

due to the perturbations becomes equal to and even sur-

passes the forecast error both at medium and large scales.

Furthermore, we note that the m5–CN NRMSE is larger

than the Stage IV–CN NRMSE, especially for events with

small values of precipitation coverage and tc values

larger than 3 h. The difference between the results

presented here and those of Johnson et al. (2014) may

be due to the use of different analysis methods. In

particular, the predictability measures used here are

presented in normalized units to remove the variability

due to the diurnal cycle of precipitation, in contrast to

Johnson et al. (2014), who use absolute error.

We have also investigated whether the perturbations

affect the deterministic QPF skill of the perturbed

members. Romine et al. (2014) found that while sto-

chastic PHYS perturbations increased ensemble spread,

they also negatively affected the deterministic QPF skill

of the perturbed members, noting that SKEB perturba-

tions had the least negative impact. In addition, Johnson

et al. (2014) found that adding RAND perturbations to

temperature and humidity resulted in spurious pre-

cipitation at very early forecast times and, thus, decreased

QPF skill. We show in Fig. 10 how the skill levels of the

IC/LBC/PHYS/RCmembers compare to theQPF skill of

the control CNat scales larger than 256km in terms of the

NRMSE and as a function of precipitation coverage and

tc. We limit our investigation to those scales, as it was

shown both here and in SZY15 that the model pre-

dictability of the atmospheric state is lost in a matter of a

few hours at meso-g and meso-b scales. While for early

forecast hours the skill of the two members is similar

(Fig. 10, left), at late forecast times, the IC/LBC/PHYS/RC

member shows poorer skill (larger NRMSE values) than

CN for the majority of cases. This is more often the case

for events with low precipitation coverage. Finally, the

rest of the perturbed ensemble members do not seem to

have a significantly different skill than CN (not shown).

5. Conclusions

This paper has investigated the scale and case de-

pendence of the predictability of precipitation by the

CAPS SSEF system run during NOAA’s HWT Spring

Experiments of 2008–13. Depending on the year, the en-

semble consisted of members with IC/LBC perturbations

derived from a regional ensemble, small-scale IC pertur-

bations, and different types of PHYS perturbations.

The scale dependence of the predictability of pre-

cipitation was analyzed following the methodology of

SZY15, in terms of the decorrelation scale l0. In agree-

ment with previous studies, IC/LBC perturbations de-

rived from a regional ensemble system, representative of

large-scale IC/LBCerrors, were found to sample themain

source of forecast uncertainty for storm-scale models.

Perturbing the model physical schemes in addition to the

IC/LBC perturbations leads to slightly higher values of

l0, but their values are not sufficient to reach those of l0

for Stage IV–CNuntil 24h into the forecast, and for scales

larger than 200km. Adding small-scale RC perturbations

to the initial temperature and humidity fields resulted in

increased l0 values with respect to CN, but with results

still smaller than the Stage IV–CN l0.

From the different methodologies of perturbing PHYS,

varying the MP schemes had the largest effect both in

terms of the differences in the precipitation forecasts with

respect to CN and on the QPF skill of the perturbed

members. The uncertainty in the model microphysical

parameterization scheme is sufficient to cause the loss of

predictability atmeso-b scales after about 1 day. The other

types of PHYS perturbations (PBL, SKEB) resulted in

smaller values of l0 with respect to CN throughout the

forecast lead time. This study evaluated the effect of en-

semble perturbations on precipitation forecasts only. Pre-

cipitation is the direct result of microphysical processes,

and thus it is reasonable that accounting for MP errors

would lead to variability in QPF. On the other hand, the

effects of uncertainties in other physical schemes might be

more evident in fields other than precipitation.

The case-by-case variability of the precipitation pre-

dictability of the CAPS SSEF systemwas also investigated

following the methodology of SZY16. Both the model

performance and the ensemble spread showed relation-

ships with both precipitation coverage and tc. In the

case of ensemble spread, it seems that the spread of an

IC/LBC/PHYS subensemble showed higher correlation
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FIG. 9. Comparison of the effects of IC/LBC/PHYS/RC perturbations (member m5)

quantified in terms of the NRMSE with respect to CN to the forecast error of CN

(NRMSEbetweenCN and Stage IV). The ratio between them5–CN and Stage IV–CN

NRMSEs is plotted against (a)–(d) precipitation coverage and (e)–(h) tc. TheNRMSE

is shown for large scales (larger than 256 km) and medium scales (64–256 km), as in-

dicated in the figure. The different colors correspond to different forecast lead times,

with early lead times on the left and late lead times on the right.
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with tc than the spread of an MP subensemble during

2010 and 2011. Moreover, the analysis highlighted the

large effect of the diurnal cycle of precipitation for both

model skill and ensemble spread. Given the importance

of the diurnal cycle of solar heating on the evolution of

severe weather over the continental United States, future

research should investigate in more detail whether the

models have a bias in depicting the intensity and phase of

the diurnal cycle, or whether the presence of more con-

vective instability is simply the cause for faster error

growth as suggested by previous studies.

With respect to the case dependence of the relative

effect of ensemble perturbations, the results were in-

conclusive. While the addition of PHYS perturbations

to an IC/LBC ensemble seems to have a larger effect on

events of small precipitation coverage and large tc
values, this relationship is too weak to be usable in a

quantitative sense.

In conclusion, in agreement with Johnson et al. (2014),

we found that accounting for large-scale IC/LBC and

microphysics uncertainties is most important for quanti-

tative precipitation forecasts over the continental

United States. While other types of perturbation

methodologies (such as varying the PBL scheme or

SKEB perturbations) might be important for other

applications, their effect is negligent for QPF. How-

ever, accounting for small-scale IC uncertainties seems

important, and future work should focus on finding the

best way of accounting for IC errors across scales.
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