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ABSTRACT

NOAA’s National Severe Storms Laboratory is actively developing phased-array radar (PAR)

technology, a potential next-generation weather radar, to replace the current operational WSR-88D radars.

One unique feature of PAR is its rapid scanning capability, which is at least 4–5 times faster than the scanning

rate ofWSR-88D. To explore the impact of such high-frequency PARobservations compared with traditional

WSR-88D on severe weather forecasting, several storm-scale data assimilation and forecast experiments are

conducted. Reflectivity and radial velocity observations from the 22 May 2011 Ada, Oklahoma, tornadic

supercell storm are assimilated over a 45-min period using observations from the experimental PAR located

in Norman, Oklahoma, and the operational WSR-88D radar at Oklahoma City, Oklahoma. The radar ob-

servations are assimilated into the ARPS model within a heterogeneous mesoscale environment and 1-h

ensemble forecasts are generated from analyses every 15min. With a 30-min assimilation period, the PAR

experiment is able to analyze more realistic storm structures, resulting in higher skill scores and higher

probabilities of low-level vorticity that align better with the locations of radar-derived rotation compared with

the WSR-88D experiment. Assimilation of PAR observations for a longer 45-min time period generates

similar forecasts compared to assimilating WSR-88D observations, indicating that the advantage of rapid-

scan PAR ismore noticeable over a shorter 30-min assimilation period.An additional experiment reveals that

the improved accuracy from the PAR experiment over a shorter assimilation period is mainly due to its high-

temporal-frequency sampling capability. These results highlight the benefit of PAR’s rapid-scan capability in

storm-scale modeling that can potentially extend severe weather warning lead times.

1. Introduction

Since 2003, engineers and scientists at the National

Oceanic and Atmospheric Administration’s (NOAA)

National Severe Storms Laboratory (NSSL) have been

actively working on the applications for phased-array

radar (PAR) technology, a potential replacement can-

didate for the current operational Weather Surveillance

Radar-1988 Doppler (WSR-88D) network across the

United States (Weber et al. 2007; Zrnić et al. 2007;Corresponding author: Timothy A. Supinie, tsupinie@ou.edu
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Heinselman and Torres 2011; Curtis and Torres 2011).

An experimental S-band PAR research radar is located

at the National Weather Radar Testbed (NWRT) in

Norman, Oklahoma (Forsyth et al. 2005), and has been

used to explore the feasibility of this technology for se-

vere weather applications. There are several significant

differences between the NWRT PAR and WSR-88D

technology. While the WSR-88D collects data over a

3608 azimuthal sector with a fixed 0.958 beamwidth, the

NWRT PAR, containing only a single panel at this time,

scans only up to a 908-wide sector and the beamwidth

varies with azimuth (from 1.68 at boresight to 2.38 at

6458 off boresight). Thus, the WSR-88D observations

have a larger spatial coverage area and higher spatial

resolution compared with the PAR observations.

However, one unique feature of PAR technology that

makes it very attractive to the field of meteorology is its

electronic steering ability, which enables it to scan one

complete volume of observations in less than a minute

(Heinselman and Torres 2011). In contrast, the WSR-

88D takes about 4.5min to scan one complete volume

of observations because of its mechanically steered

beam.

Several studies during the past decade have demon-

strated the advantages of high-temporal-resolution

NWRT PAR observations in better understanding

rapidly evolving complex features of a variety of severe

convective systems ranging from microbursts, hail-

storms with associated lightning activity (Heinselman

et al. 2008; Emersic et al. 2011), quasi-linear convective

systems (Newman and Heinselman 2012), and tornadic

supercell storms (Tanamachi et al. 2015). In addition,

the Phased Array Radar Innovative Sensing Experi-

ments (PARISE) conducted at NSSL over the past

several years show that the rapid volumetric PAR ob-

servations of ongoing convectionmore closelymatch the

NWS forecasters’ conceptual models of storm evolution

compared with 4–5-min volumetric updates provided by

the operational WSR-88Ds (Heinselman et al. 2012,

2015; Bowden et al. 2015). The rapid-scan PAR obser-

vations also increase the forecasters’ situational aware-

ness, resulting in longer tornado warning lead times

compared with the traditional WSR-88D radar updates

(Heinselman et al. 2012, 2015; Kuster et al. 2015). While

the rapid-scan PAR observations have already shown

promise toward improved understanding of convective

weather and longer severe weather warning lead times,

there is also considerable interest in evaluating the im-

pact of the rapid-scan capability of PAR in storm-scale

numerical weather prediction (NWP) as compared with

the WSR-88Ds. This evaluation is particularly impor-

tant within the context of NOAA’s Warn-on-Forecast

(WoF; Stensrud et al. 2009, 2013) program, which

envisions incorporating storm-scale NWP models into

the severe weather warning-decision process of NWS

operational forecasting.

One advanced data assimilation (DA) approach for

storm-scale NWP is the ensemble Kalman filter (EnKF;

Evensen 1994), with the ensemble square root filter

(EnSRF; Whitaker and Hamill 2002) being one of the

most popular variants. Results from studies during the

past decade show that assimilating WSR-88D obser-

vations using EnSRF in both homogeneous, single-

sounding idealized frameworks (e.g., Snyder and Zhang

2003; Dowell et al. 2004; Tong and Xue 2005; Xue et al.

2006; Aksoy et al. 2009, 2010; Yussouf and Stensrud

2010, 2012; Dowell et al. 2011; Dawson et al. 2012) and

heterogeneous mesoscale environments (e.g., Lei et al.

2009; Dowell et al. 2010; Snook et al. 2011, 2012; Jung

et al. 2012; Yussouf et al. 2013; Putnam et al. 2014;

Wheatley et al. 2014; Snook et al. 2015; Yussouf et al.

2015) creates a good representation of convection in

both analyses and forecasts. However, the impact of

assimilating high-temporal-resolution PAR observa-

tions in NWP models for severe weather forecasting is

not clear. Yussouf and Stensrud (2010) conducted sev-

eral observing system simulation experiments (OSSEs)

using an EnSRF data assimilation technique and dem-

onstrated that, with only a short 15-min data assimi-

lation period, assimilating high-temporal-frequency

PAR observations yields significantly better analyses

and ensemble forecasts than those produced using

WSR-88D observations. The findings of Yussouf and

Stensrud (2010) are consistent with the findings of Xue

et al. (2006), who also found that simulated radar scan

volumes at 1-min intervals significantly shorten the

time needed to obtain good analyses of a convective

storm.

However, the OSSEs conducted in both of the above

studies are based on a perfect model assumption in

which model error does not play a role. Given the ideal-

ized nature of such OSSE studies, their results may be

too optimistic, although they do provide an upper-limit

estimate of the benefit of rapid-scan PAR in NWP.

Demonstrating similar impacts using real PAR obser-

vations in a realistic atmospheric environment is more

challenging, where model errors are inevitable and can

arise from inaccuracies in model physics parameteriza-

tions, insufficient resolution, numerical approximations,

errors in initial and boundary conditions, etc. (Aksoy

et al. 2009, 2010; Potvin and Wicker 2013). Moreover,

assimilating such high-temporal-frequency PAR obser-

vations using the three-dimensional (3D) EnSRF tech-

nique involves shorter assimilation cycles of 1min or

less, which are computationally very expensive. In ad-

dition, the frequent stopping and restarting of the model
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with a very short assimilation frequency can potentially

introduce imbalances and can generate noise in the

prediction system every time a new analysis is per-

formed (S. Wang et al. 2013; Lange and Craig 2014). On

the other hand, using longer assimilation cycles (10min

or more) can save computational cost and avoid im-

balances due to frequent model updates. But using

longer assimilation cycles with a 3D EnKF algorithm

can introduce data timing errors when the observations

taken at different times within the assimilation win-

dows are assumed to be valid at the analysis time. If

observations away from the analysis time are dis-

carded, important features associated with the evolving

storms may be missed, leading to poorer analyses and

forecasts.

To counteract these problems with 3D EnKF, Sakov

et al. (2010) proposed a generic asynchronous or four-

dimensional (4D) EnKF called AEnKF that allows for

the assimilation of observations distributed over time.

The algorithm involves calculating updates using ob-

servations from the time of actual observation rather

than from the time of analysis, as in the traditional 3D

EnKF. Therefore, the AEnKF technique is able to uti-

lize more observations collected over time with fewer

analysis cycles, reducing the frequent model stopping

and restarting.

Recently, S. Wang et al. (2013) developed a 4D asyn-

chronous implementation of the EnSRF (which they

called 4DEnSRF) that is most commonly used for storm-

scale radar DA. They tested the 4DEnSRF technique for

radar DA using OSSEs with assimilation cycle lengths

ranging from 1 to 20min. The results indicate that

4DEnSRF outperforms the traditional 3D EnSRF when

the assimilation cycle frequency is longer than 1min

(S.Wang et al. 2013). The 4DEnSRF technique assimilates

high-frequency observations distributed over a specified

time interval using a single update, thereby reducing the

number of analysis cycles, which is desirable for reducing

the computational cost and potential noise generation.

This advantage of the 4DEnSRF technique in handling

high-temporal-frequency observations is attractive for

PAR DA.

To evaluate and compare the impact of assimilating

rapid-scan PAR and the traditional WSR-88D obser-

vations in storm-scale severe weather forecasting, sev-

eral 4DEnSRF DA and forecast experiments are

conducted using WSR-88D, rapid-scan PAR, and PAR

observations subsampled at a WSR-88D-like temporal

resolution. The study is conducted within a heteroge-

neous mesoscale environment using the 22 May 2011

Ada, Oklahoma, tornadic supercell event. The radar

observations are assimilated every 5min for a 45-min-

long assimilation period prior to tornadogenesis, and 1-h

ensemble forecasts are launched after 15, 30, and 45min

of radar DA. The goal is to see if the findings from the

OSSE study of Yussouf and Stensrud (2010) hold true

in a realistic mesoscale environment using real radar

observations.

The rest of this paper is organized as follows. A brief

description of the supercell event is documented in

section 2. Section 3 describes the experiment design and

the radar observations used in the DA and forecast ex-

periments. Section 4 presents the results and discussions,

followed by a summary in section 5.

2. Overview of the 22 May 2011 Ada, Oklahoma,
tornadic supercell event

The 22 May 2011 Ada, Oklahoma, tornadic supercell

was a weakly tornadic event with a tornado rating of

EF0 on the enhanced Fujita (EF) scale. The tornadoes

started at;0119 UTC and ended at;0141 UTC (based

on tornado reports; Table 1). Several operational WSR-

88D radars and the NWRT PAR documented the life

cycle of this supercell storm. During the late afternoon

and evening of 21May 2011, a dryline extended from the

Big Bend area of Texas (southwest Texas) through

central Oklahoma and into south-central Kansas where

it intersected the Pacific front. A midlevel jet rotating

through the base of an upper low increased the effective

shear. The bulk wind difference through 0–6kmAGL in

the 0000 UTC 22 May 2011 Norman, Oklahoma,

sounding was 43kt (22.1m s21); values greater than 40kt

(20.6m s21) favor supercell storms. Convection initiated

along the dryline in south-central Oklahoma, and by

0000 UTC on 22 May, a storm (storm A) evolved into a

supercell in south-central Oklahoma (Fig. 1a). Several

smaller cells developed north of storm A (Figs. 1a–c),

and the one (storm B) closest to storm Amatured into a

supercell with a hook echo feature by 0045 UTC

(Fig. 1d). There was one tornado report associated with

storm A at 0040 UTC in Murray County, Oklahoma

(SPC storm report database). During the next 30min,

storm B grew stronger, and storm A quickly dissipated

when it encountered storm B (Figs. 1e–h). There were

TABLE 1. Tornado reports associated with storm B on 22 May

2011 obtained from the Storm Prediction Center (http://www.spc.

noaa.gov/climo/reports/110521_rpts.html).

Time

(UTC) Location

County

in OK Lat (8) Lon (8)

0119 3.22 kmNW Vanoss Pontotoc 34.79 296.89

0130 12.88 kmW Ada Pontotoc 34.78 296.80

0134 8.05 kmW Ada Pontotoc 34.78 296.75

0141 6.44 km WNW Ada Pontotoc 34.80 296.73
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four tornado reports (Table 1) associated with storm B,

all of which were rated as 0 on the EF scale. The first

tornado report was at 0119 UTC and located 3.2 km

northwest of Vanoss, Oklahoma. The supercell contin-

ued east toward Ada. The last tornado report from

storm B was at 0141 UTC, located 6.44 km west-

northwest of Ada. There is no damage track available

for this event. The storm starts to dissipate after 0200UTC

(Figs. 1i–k). The storms were sampled by bothWRD-88D

radars and NWRT PAR. The observations from both

radar platforms are assimilated separately into a storm-

scale ensemble forecast system in order to compare the

ability of the radars in forecasting the storm and its as-

sociated low-level mesocyclone.

FIG. 1. Observed reflectivity (dBZ, from theNSSLNMQ system) at 2 kmMSL at (a) 0000, (b) 0025, (c) 0030, (d) 0045, (e) 0100, (f) 0115,

(g) 0130, (h) 0145, (i) 0200, (j) 0215, and (k) 0215 UTC 22 May 2011 over the area of interest. The black circle indicates the location of

Vanoss and the black star indicates the location of Ada. (l) The black triangles are the four tornado reports from storm B (Table 1).
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3. Data, model, and experiment design

a. The WSR-88D (KTLX) observations

The storm associated with the Ada tornado was

;80km away from the operational WSR-88D radar at

Twin Lakes, Oklahoma (KTLX). The WSR-88D radar

sampled the storm at ;4.2-min intervals with a volume

coverage pattern that consisted of 14 tilts (elevation

angles) ranging from 0.468 to 19.458 (Table 2). The level
II reflectivity and radial velocity observations from the

WSR-88D at KTLX are quality controlled using an

automatic procedure within the Advanced Regional

Prediction System (ARPS) package to eliminate noise

and ground clutter from the reflectivity observations

and to unfold the aliased radial velocity observations

(Brewster et al. 2005). The quality controlled reflectivity

and radial velocity observations from both radars are

interpolated onto themodel grid horizontally, but remain

on the radar elevation levels vertically; this procedure is

used inmany real-data studies with the ARPSEnKFDA

system (e.g., Jung et al. 2012; Snook et al. 2012).

b. The NWRT PAR observations

The NWRT PAR sampled the evolution of the Ada

supercell with a 908 sector at a rapid ;50 s for volume

updates. The volume coverage pattern spanned tilts

from 0.58 to 608 with a higher number of tilts at lower

levels of the atmosphere. In this study, the lowest 14

elevation angles from 0.58 to 19.58 are assimilated

(Table 3) into the model during the 45-min DA period.

However, because of mechanical failures, several vol-

ume scans of NWRT PAR observations are missing be-

tween 0045 and 0108 UTC (listed in Table 3) and

therefore are not assimilated in the experiments. The

NWRT PAR observations are quality controlled using

the sameARPS quality control package and interpolated

in the same manner as the WSR-88D observations.

There are a few caveats to using the PAR data. The

first is that the scan sector is free to change between

volume scans; this occurs twice for this case. The first

and most substantial change occurs between the 0045

and 0050 UTC analyses, when the sector shifts ap-

proximately 218 counterclockwise. The second sector

change is between the 0050 and 0055 UTC analyses; the

scan sector shifts a further 28 counterclockwise. The

effect of a sector change is that storms that were outside

of the radar coverage area are now observed by the

radar, which affects the observation space statistics.

This will be discussed in more detail in later sections. In

addition, because the PAR scans over a limited sector in

azimuth, there is no way to suppress spurious convec-

tion outside the scan sector from the PAR. This can

result in spurious convection interacting with the

assimilated storms and degrading the quality of the

forecast. To mitigate this, the zero-reflectivity obser-

vations from the most recent KTLX volume are used

outside the PAR scan sector in the following manner. If

the composite reflectivity from KTLX is less than or

equal to 0 dBZ, the corresponding column of PAR ob-

servations is set to 0 dBZ. Otherwise, the entire column

of PAR observations is set to ‘‘missing.’’

c. The mesoscale ensemble DA and forecast

The storm-scale radar DA experiments are per-

formed on a grid with 2-km grid spacing, nested

within a mesoscale grid of 18-km grid spacing that

covers the continental United States (CONUS;

Fig. 2a). ARPS (Xue et al. 2000, 2001, 2003) is used as

the prediction model for the DA and forecast experi-

ments while the EnSRF system developed for the

ARPS system (Xue et al. 2006; Jung et al. 2012; Snook

et al. 2012, 2015; Y. Wang et al. 2013; Putnam et al.

2014) and extended to the 4DEnSRF algorithm

(S. Wang et al. 2013) is used for the ensemble DA.

The mesoscale domain contains 243 3 163 3 51 grid

points over the continental United States (Fig. 2a). The

vertical grids are stretched with a vertical spacing of

50m near the surface and 900m at the model top. The

model top is at 25 km with a Rayleigh damping layer

above 12km. A 40-member mesoscale ensemble is ini-

tialized from the 20-member National Centers for En-

vironmental Prediction (NCEP) Short-Range Ensemble

Forecasting (SREF; Du et al. 2006) analyses (at 40-km

horizontal grid spacing) at 2100 UTC 21 May 2011, but

using two sets of physics parameterizations (Table 2).

The schemes used in the first set of 20 ensemble mem-

bers are the Betts––Miller–Janjić cumulus parameteri-

zation scheme (Betts 1973) and the Sun and Chang

TKE-based planetary boundary layer (PBL; Sun and

Chang 1986; Xue et al. 1996) scheme. The remaining 20

ensemble members use the Kain–Fritsch cumulus pa-

rameterization scheme (Kain and Fritsch 1990, 1993)

and the Yonsei University (YSU) PBL scheme (Hong

and Pan 1996). In addition, the single-moment Lin (Lin

et al. 1983) microphysics scheme, stability-dependent

surface-layer physics, a two-layer soil model initialized

from NCEP’s Eta Model analysis, and the National

Aeronautics and SpaceAdministration (NASA)Goddard

Space Flight Center (GSFC) (Chou 1990, 1992; Chou

and Suarez 1994) long- and shortwave radiation schemes

are used in all 40 ensemble members except for differ-

ences in the transmission functions used. The trans-

mission function in the radiation scheme is computed

using the k-distribution method for the first 20 members

and using a lookup table for the remaining 20 ensem-

ble members. The physics diversity in the mesoscale
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ensemble is used to represent model error in

the ensemble system and to help account for ensemble

underdispersion in the assimilation system (Yussouf

and Stensrud 2012; Snook et al. 2012). This mesoscale

ensemble is used to provide initial and boundary condi-

tions for the one-way nested storm-scale ensemble system.

Routinely available surface (i.e., horizontal u and

y wind components, temperature T, and dewpoint Td),

wind profiler (u and y), and radiosondes (u, y, poten-

tial temperature u and Td; only available at 0000 UTC

22 May 2011) observations are assimilated into the

mesoscale domain every 1 h starting from 2200 UTC

21 May 2011 out to 0000 UTC 22 May 2011 (Fig. 2b)

using the ARPS EnSRF (Xue et al. 2006; Y.Wang et al.

2013) system. Radar data are not assimilated onto the

mesoscale grid. The covariance localization function is

based on the fifth-order correlation function from

Gaspari and Cohn (1999) with a horizontal cutoff ra-

dius of 300 km and 800 km used for the surface and

upper-air (both wind profiler and radiosonde) obser-

vations, respectively. A 6-km cutoff radius in the ver-

tical is used for all observations (Snook et al. 2015). To

help maintain the ensemble spread, multiplicative in-

flation (Anderson 2001) with a factor of 5% is applied

everywhere in the model domain to all model state

variables. The mesoscale ensemble analyses at 0000

UTC are used to create the initial conditions for the

storm-scale ensemble. Meanwhile, 2-h ensemble fore-

casts are generated from the mesoscale ensemble

analyses at 0000 UTC 22 May 2011 out to 0200

UTC 22 May 2011 to provide ensemble boundary con-

ditions for the storm-scale ensemble.

d. Storm-scale ensemble DA and forecast

The physics packages used by the ARPS on the 2-km

nested grid are the same as the first 20 members of the

mesoscale ensemble, except that the double-moment

Milbrandt and Yau (2006a,b, hereafter MY) micro-

physics scheme and the YSU PBL scheme are used,

while the cumulus parameterization scheme is turned off

(Table 2).

A 40-member 2-km storm-scale ensemble is down-

scaled from themesoscale ensemble analyses at 0000UTC

22 May 2011 in a one-way nested configuration. The

domain is centered on Ada and covers most of Okla-

homa and the northern part of Texas with 203 3 163 3
51 grid points (Fig. 2c). To introduce smaller-scale per-

turbations into the convective-scale ensemble, samples

from a Gaussian distribution with zero mean are drawn

at each grid point in the domain. Then, a two-

dimensional recursive filter (Jung et al. 2012) with a

decorrelation length scale of 6 km is applied to these

TABLE 2. Physics options for the 40-member ARPS mesoscale and storm-scale ensemble system.

Parameterization

scheme

Mesoscale ensemble

members 1–20

Mesoscale ensemble

members 21–40

Storm-scale ensemble

members 1–40

Cumulus Betts–Miller–Janjić Kain–Fritsch —

PBL Sun and Chang YSU YSU

Long- and shortwave

radiation

NASA GSFC; transmission

functions are computed using

the k-distribution method

NASA GSFC; transmission

functions are computed using

lookup table

NASA GSFC; transmission

functions are computed using

the k-distribution method

Cloud microphysical scheme Lin scheme Lin scheme MY two-moment scheme

TABLE 3. List of experiments conducted and the number of volume scans of radar observations assimilated during the 45-min DA period

from 0030 through 0115 UTC 22 May 2011.

Expt WSR-88D PAR PAR-reducedtilts

Tilts (elevation angle, in 8) in a com-

plete volume scan

0.46, 0.88, 11.25, 1.75,

2.35, 3.08, 3.98, 5.11,

6.35, 7.97, 10.00,

12.46, 15.57, and 19.45

0.50, 0.90, 1.30, 1.80, 2.40, 3.10,

4.00, 5.10, 6.40, 8.00, 10.00,

12.50, 15.60, and 19.50

0.50, 0.90, 1.30, 1.80, 2.40, 3.10,

4.00, 5.10, 6.40, 8.00, 10.00,

12.50, 15.60, and 19.50

Total No. of volume scans in 15-min

DA period (valid 0030–0045 UTC)

5 17 (missing observations at 0045,

0046, and 0047 UTC)

4 (missing observations at 0045,

0046, and 0047 UTC)

Total No. of volume scans in 30-min

DA period (valid 0030–0100 UTC)

8 26 (missing observations at 0045,

0046, 0047, 0048, 0049, 0051,

0053, 0054, and 0055 UTC)

6 (missing observations at 0045,

0046, 0047, 0048, 0049, 0051,

0053, 0054, and 0055 UTC)

Total No. of volume scans in 45-min

assimilation period (valid 0030–0115

UTC)

12 38 (missing observations at 0045,

0046, 0047, 0048, 0049, 0051,

0053, 0054, 0055 0103, 0107,

and 0108 UTC)

10 (missing observations at

0045, 0046, 0047, 0048, 0049,

0051, 0053, 0054, 0055 0103,

0107, and 0108 UTC)
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samples horizontally, and a homogeneous Gaussian fil-

ter with a decorrelation length scale of 4 km is applied

vertically. This generates smoothed, spatially correlated

perturbations, and these are added to the interpolated

mesoscale ensemble at 0000 UTC. The smoothed per-

turbations have zero mean and standard deviations of

2m s21 for the horizontal velocity components u and

y and 1K for potential temperature u over the entire

domain. The perturbation standard deviations of the

mixing ratios for water vapor qy, cloud water qc, rain-

water qr, ice qi, snow qs, hail qh, and graupel qg are set to

10% of their values at each grid point where the observed

reflectivity is larger than 10dBZ. Only positive perturba-

tions are retained for u, qy, qc, qr, qi, qs, qh, and qg. The

effect of the recursive filter is similar to but computation-

ally more efficient than that used by Tong and Xue (2008).

Oklahoma Mesonet (Brock et al. 1995; McPherson

et al. 2007) observations (i.e., 10-m u, y; 2-m temperature

FIG. 2. (a) The mesoscale domain (d01) covering the CONUS and the nested storm-scale domain (d02). (b) The

timeline of the mesoscale DA experiments. (c) The storm-scale domain with county borders (d02, enlarged) and

locations ofWSR-88D (KTLX, blue triangle), PAR (blue triangle), andAda (black square). (d) The timeline of the

storm-scale DA and forecast experiments.
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T; and relative humidity rh) are assimilated every 5min

into the storm-scale ensemble starting from 0005 UTC

and ending at 0020 UTC using 3D EnSRF (Fig. 2d) DA.

A cutoff radius of 50 km is used in the horizontal and

6km in the vertical for covariance localization [as in

Snook et al. (2015), similar to Sobash and Stensrud

(2015)]. A 15% multiplicative inflation factor and

relaxation-to-prior spread (RTPS; Whitaker and Hamill

2012) with a relaxation factor of 0.85 are applied over

the whole domain to all model variables to help main-

tain ensemble spread during the period of mesonet data

assimilation. These values are selected based on several

sensitivity studies (not shown).

The radar reflectivity and radial velocity observations

from the WSR-88D or PAR are assimilated into the

storm-scale ensemble starting at 0030 UTC using the

4DEnSRF (Fig. 2d), and the assimilation continues until

0115 UTC with a 5-min assimilation window. To show

the effect of the radar data assimilation without the ef-

fect of other observation types, OklahomaMesonet data

are not assimilated during this period.

Both the PAR and WSR-88D radar observation

times are reassigned into 1-min batches, as in a tradi-

tional EnSRF approach. For example, a;50-s complete

volume scan of PAR observations is reassigned to

the nearest minute and the ;4.2-min volume scan

WSR-88D observations, which consist of 14 elevation

angles, are separated into single-elevation angles and

regrouped at 1-min intervals based on the times of the

tilts. Therefore, these 1-min data batches contain be-

tween two and three tilts for WSR-88D observations

rather than full volume scans that are often treated as

being collected simultaneously in 3D EnSRF (S. Wang

et al. 2013; Yussouf and Stensrud 2010). The 4DEnSRF

scheme precalculates the observation prior H(x) for all

these observations every 1min to perform an analysis

every 5min (S. Wang et al. 2013). Specifically, to pro-

duce an analysis valid at time t, the 4DEnSRF uses five

batches of data and their priors at t2 2min, t2 1min, t,

t 1 1min, and t 1 2min, with each batch consisting of

observations within 30 s of the batch time.

The standard deviations of the WSR-88D reflectivity

and radial velocity observation errors are assumed to be

5 dBZ and 3m s21, respectively, following Putnam et al.

(2014). After several sensitivity experiments, the same

observation error standard deviations as those for the

WSR-88D dataset are used for the PAR dataset as well.

The cutoff radius used in covariance localization for the

storm-scale ensemble is 6 km in both the horizontal and

vertical, the same as those used in Jung et al. (2012),

while the time localization is assumed to be 5min, fol-

lowing S.Wang et al. (2013). To help maintain ensemble

spread, RTPS with a relaxation factor of 0.9 is applied

over the entire region, and multiplicative inflation of

20% is applied to the prior ensemble in regions directly

influenced by the radar data during the period of radar

data assimilation. These values are selected based on

several sensitivity studies and the guidance of earlier

studies.

Three DA and forecast experiments are conducted

(Table 3) on the 2-km grid, forced by the same meso-

scale ensemble at the lateral boundaries. The first

experiment assimilates the KTLX WSR-88D radar

observations only (referred to as the WSR-88D experi-

ment hereafter), while the second experiment assimi-

lates the full-volume PAR observations (referred to

as the PAR experiment hereafter). The third experi-

ment assimilates PAR observations but uses only those

tilts that closely match the times of the tilts of the WSR-

88D observations (referred to as the PAR-reducedtilts

experiment hereafter). Four to five volume scans of

PAR observations are needed to reproduce one volume

scan of PAR-reducedtilts observations that has the

same temporal frequency as in WSR-88D. An example

radar observation dataset that is assimilated in the

WSR-88D, PAR, and PAR-reducedtilts experiments

during a 5-min DA window is shown in Table 4. As

mentioned earlier, while the PAR observations have

higher temporal resolution than the WSR-88D obser-

vations, the PAR observations have a slightly coarser

spatial resolution than the WSR-88D observations.

Therefore, while experiments WSR-88D and PAR-

reducedtilts have similar temporal resolutions, the lat-

ter has a coarser spatial resolution. The differences

between the PAR and PAR-reducedtilts results will

reveal the impact of the higher temporal frequency of

the PAR observations. Additional information re-

garding the experiments is found in Table 2. Finally, 1-h

deterministic forecasts are initialized from the ensemble

mean analyses and three sets of 1-h ensemble forecasts

are initialized from the ensemble analyses for all three

experiments after 15-, 30-, and 45-min of ensemble radar

DA (Fig. 2d). The analyses and forecasts are used to

investigate how quickly and accurately the rapid-scan

PAR observations initialize and forecast the storm.

4. Results and discussions

a. Innovation statistics during the DA period

The three DA and forecast experiments assimilate

radar observations from two different radar platforms

(i.e., the WSR-88D and PAR). To evaluate the perfor-

mance of the ensemble filter during the 45-min assimi-

lation period, the root-mean-square innovation (RMSI),

mean innovation, total ensemble spread (TES), and

consistency ratio statistics are calculated in observation
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TABLE 4. An example list of tilts of PAR observations that are assimilated in the PAR-reducedtilts experiment. Listed are the tilts and

corresponding times of observation used in the WSR-88D, PAR, and PAR-reducedtilts experiments from 0028 to 0031 UTC.

Time (UTC)

WSR-88D expt time

[UTC (tilt, in 8)]
PAR expt time

[UTC (tilt, in 8)]
PAR-reducedtilts exp time

[UTC (tilt, in 8)]

0028 0027:34 (0.5) 0027:37 (0.51) 0027:37 (0.51)

0028:07 (0.9) 0027:44 (0.9) 0027:44 (0.9)

0027:50 (1.3)

0027:55 (1.8)

0028:01 (2.4)

0028:04 (3.1)

0028:07 (4.0)

0028:09 (5.1)

0028:11 (6.4)

0028:12 (8.0)

0028:13 (10.0)

0028:14 (12.5)

0028:15 (15.6)

0028:15 (19.5)

0029 0029:02 (0.51)

0029:09 (0.9)

0028:39 (1.4) 0029:15 (1.3) 0029:15 (1.3)

0028:54 (1.8) 0029:20 (1.8) 0029:20 (1.8)

0029:09 (2.4) 0029:26 (2.4) 0029:26 (2.4)

0029:23 (3.0) 0029:29 (3.1) 0029:29 (3.1)

0029:32 (4.0)

0029:34 (5.1)

0029:36 (6.4)

0029:37 (8.0)

0029:38 (10.0)

0029:39 (12.5)

0029:40 (15.6)

0029:40 (19.5)

0030 002945 (0.51)

0029:51 (0.9)

0029:57 (1.3)

0030:03 (1.8)

0030:08 (2.4)

0030:12 (3.1)

0029:38 (4.0) 0030:15 (4.0) 0030:15 (4.0)

0029:52 (5.0) 0030:17 (5.1) 0030:17 (5.1)

0030:05 (6.3) 0030:19 (6.4) 0030:19 (6.4)

0030:19 (8.0) 0030:21 (8.0) 0030:21 (8.0)

0030:22 (10.0)

0030:23 (12.5)

0030:23 (15.6)

0030:24 (19.5)

0031 0030:30 (0.51)

0030:37 (0.9)

0030:44 (1.3)

0030:50 (1.8)

0030:56 (2.4)

0031:01 (3.1)

0031:05 (4.0)

0031:09 (5.1)

0031:12 (6.4)

0031:15 (8.0)

0030:33 (10.2) 0031:17 (10.0) 0031:17 (10.0)

0030:46 (12.4) 0031:18 (12.5) 0031:18 (12.5)

0031:00 (15.6) 0031:20 (15.6) 0031:20 (15.6)

0031:14 (19.7) 0031:21 (19.5) 0031:21 (19.5)
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space against the observations that each experiment

assimilated and are shown in Fig. 3. The statistics are

calculated at the time of the observations and only at

locations where the observed or model reflectivity is

greater than 15dBZ. The RMSI is calculated using the

following equation (Dowell and Wicker 2009):

RMSI5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(d2 hdi)2i

q
and (1)

d5 y0 2H(xf ) or d5 y0 2H(xa) , (2)

and the brackets indicate an average over all observa-

tions in a radar volume. Here, y0 is the observation;H is

the observation operator, which maps the model state to

the observation type and location; x represents the

model state vector; the superscript f indicates a prior

estimate (i.e., before the observation is assimilated); and

the superscript a indicates a posterior estimate (i.e., after

the observation is assimilated). The TES is defined in

terms of the observation prior as

TES5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 1

*
1

N2 1
�
N

n51

½H(x
n
)2H(x)�2

+vuut , (3)

where N is the number of ensemble members (40 in our

experiment), n is an index that identifies a particular

ensemble member, and the observation error standard

deviation s is assumed to be 5.0 dB for both WSR-88D

and PAR reflectivity observations, as mentioned earlier.

Finally, the consistency ratio is defined as in Dowell and

Wicker (2009):

consistency ratio5

�
TES

RMSI

�2

5

s2 1

�
1

N2 1
�
N

n51

½H(xfn)2H(xf )�2
�

h(d2 hdi)2i .

(4)

All three experiments start with an analysis RMSI of

;15dBZ (Fig. 3b); by the end of the assimilation period,

the analysis RMSI is reduced to;5–7dBZ. The forecast

and analysis RMSI values from the PAR experiment are

generally less than those from the other experiments.

Additionally, the effect of the missing PAR volumes

between 0045 and 0055 UTC (see Table 3) is apparent

in the increased RMSI near 0055 UTC in both the an-

alyses and forecasts in the PAR-reducedtilts experi-

ment. However, by the 0115 UTC cycle, the RMSI is

stabilized (Fig. 3a), which suggests that the missing

PAR observations have minimal effect by the end of

the assimilation period.

Furthermore, the TES (Figs. 3c,d) is similar for all

experiments in either the forecasts or the analyses,

FIG. 3. Observation-space diagnostic statistics. (a) Forecast and (b) analysis RMSI. (c),(d)As in (a),(b), but for TES. (e),(f)As in (a),(b),

but for mean innovation (positive values denote that the observations are larger than the ensemble mean). (g) Forecast consistency ratio

for reflectivity (dBZ) from the three data assimilation and forecast experiments. Calculations are limited to locations where observed

and/or ensemble mean reflectivity exceeds 15 dBZ.
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suggesting the ensembles are fairly configured. The

consistency ratios are also comparable in magnitude

between the experiments, with values between 0.1 and

0.4 (Fig. 3g). These values are well below 1, suggesting

underdisperson in the ensemble, which is commonly

seen in storm-scale real-data ensemble DA studies (e.g.,

Jung et al. 2012; Yussouf et al. 2013, and references

therein). Despite the spread deficiency, the filter shows

no sign of divergence during the 1-h assimilation period,

indicating the reasonable robustness of the DA system.

The mean innovation (Figs. 3e,f) is largely positive,

indicating that the model reflectivity is lower than the

observed reflectivity. The underprediction of reflectivity

in the model during the assimilation period is also seen

in other studies (Dawson et al. 2012; Yussouf et al.

2015). As expected, the forecast and analysis mean

innovation results generally decrease with time asmore

data are assimilated. There are some apparent oscilla-

tions in the forecast mean innovation in the early part

of the assimilation period that are the result of the

overprediction of spurious echoes and the under-

prediction of the geographical extent of storms before

the forecast is sufficiently improved. The intensity of

the storms is underpredicted at 0035 UTC, while the

spatial coverage of the reflectivity is overpredicted,

leading to a small mean innovation. Radar DA at this

time is too aggressive at removing reflectivity, resulting

in a large positive mean innovation and large RMSI at

0040 UTC. Both spurious echoes and the under-

prediction of storm intensity are improved at 0045

UTC, as more data are assimilated at 0040 UTC,

leading to a smaller mean innovation. The main reason

for the large positive mean innovation at 0050 UTC is

different. As mentioned earlier, the PAR scan sector

shifts approximately 218 counterclockwise at 0050

UTC, meaning the PAR is observing storms that were

previously not in the PAR coverage area. Those storms

have yet to spin up in the model, leading to under-

prediction and a large positive mean innovation

(Figs. 3e,f) during the 0050 UTC assimilation. After

0055 UTC, both mean innovation and RMSI continue

to decrease, indicating that the filter is stable.

b. Analyzed near-surface cold pool and vertical
vorticity

Studies by Dawson et al. (2010) and Putnam et al.

(2014) have shown the importance of the analyzed and

predicted cold pool in convective storms on their dy-

namics and evolution. To evaluate the analyzed cold

pools and associated low-level mesocyclones, the en-

semble mean analyses of equivalent potential tempera-

ture ue, horizontal winds, and vertical vorticity at the first

model level or about 25m above ground from the three

experiments after 15 (valid 0045 UTC), 30 (valid 0100

UTC), and 45min (valid 0115 UTC) of DA cycles are

shown in Fig. 4.

After 15min of DA, the cold pool in storm B in the

PAR experiment is the coldest out of all three experi-

ments (minimum ue of 319K in Fig. 4d). Assimilating

more reflectivity observations in the PAR experiment

leads to a stronger cold pool, likely because of the neg-

ative correlation between reflectivity and temperature

in the cold pool (Dowell et al. 2011). The low-level

mesocyclones are also relatively weak in all experi-

ments, though the WSR-88D experiment has the

strongest examples (1.9 3 1023 s21), followed by the

PAR experiment (1.73 1023 s21), and then by the PAR-

reducedtilts experiment (1.4 3 1023 s21). As 4DEnSRF

uses a 5-min assimilation window, the missing PAR

observations during the last assimilation cycle from the

initial 15min of the DA period (Table 3) directly impact

the analysis and may be partly responsible for weaker

low-level mesocyclone PAR-reducedtilts.

After 30min ofDA, the PAR (Fig. 4e) experiment has

stronger cold pools than the other two experiments, in

general, in storm A and storm B. Additionally, the PAR

experiment has the strongest low-level mesocyclone for

both storms A and B. The peak of 5.4 3 1023 s21 is in

storm A. By this time, 8, 26, and 6 volume scans of ob-

servations are assimilated into theWSR-88D, PAR, and

PAR-reducedtilts experiments, respectively (Table 3),

leading to the weakest mesocyclone being found in the

PAR-reducedtilts experiment.

After an additional 15-min of DA (valid 0115 UTC),

the PAR experiment continues to have the strongest

vorticity values associated with storm B, with the max-

imum vertical vorticity reaching 6.6 3 1023 s21 (Fig. 4f)

while the other two experiments produce much smaller

maximum values (Figs. 4c,i). In addition, the minimum

ue for both the WSR-88D and PAR experiments are in

the cold pool for storm A; the minimum ue values are

similar between these two experiments. For stormB, the

cold pool has approximately the same minimum ue in all

three experiments. However, approximating the outline

of the cold pool as the 336-K contour, the PAR exper-

iment has a slightly more widespread cold pool.

c. Analyses and forecasts of reflectivity

To evaluate the impacts of DA on the forecasts, the

observed National Mosaic and Multi-Sensor QPE

(NMQ) 3D radar reflectivity mosaic product (Zhang

et al. 2011) reflectivity is compared with the analyses

and 15-min forecasts from the ensemble member

closest to the mean (Figs. 5 and 6). This member is

chosen in a similar way to that in Yussouf et al. (2013). It

is defined as the member with the smallest normalized
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root-mean-square difference from the mean in potential

temperature and u and y wind components. The re-

flectivity analyses at 2km MSL valid at 0045 UTC (after

15min of DA or three assimilation cycles) are able to

capture both storms A and B in all three experiments,

though storm A in particular has lower reflectivity in the

analyses than the observations (Figs. 5a,d,g,j). Because

the PAR does not observe the cells to the north of storm

B until 0050 UTC, they are not well represented at this

time in the PAR and PAR-reducedtilts experiments

(Figs. 5g,j). In particular, both experiments have one in-

tense storm instead of two weaker storms.

As PAR observations of the two cells to the north of

stormB start when the scan sector changes at 0050UTC,

the reduction in intensity of these cells induced by the

PAR observations is apparent in the PAR experiment

at 0100 UTC (Fig. 5h). While seven full volumes are

assimilated in the PAR experiment, only two partial

volumes are assimilated in the PAR-reducedtilts ex-

periment because of the missing data discussed earlier.

As a result, those storms are still poorly resolved at

0100 UTC (Fig. 5k). Otherwise, only minor structural

differences are evident between the experiments. By the

0115 UTC analyses, all three experiments show similar

storm structures, suggesting sufficient observations are

assimilated by this time (Figs. 5f,i,l).

The 15-min forecast from the member closest to the

ensemble mean is examined in Fig. 6. In the forecasts

FIG. 4. The ensemble mean analyses of vertical vorticity (black contours at intervals of 1003 1025 s21; maximum vorticity is shown in

each panel with unit 31025 s21), horizontal wind vectors and ue (colored; in 4-K increments; minimum is shown in each panel) after 15

(valid 0045 UTC), 30 (valid 0100 UTC), and 45 (valid 0115 UTC) min of DA from (a)–(c) WSR-88D, (d)–(f) PAR, and (g)–(i) PAR-

reducedtilts experiments at the first model grid level (;25m) above ground. Green contours represent 35-dBZ reflectivity analyses.
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initialized at 0045 UTC, the intensity and structure of

storm A in the PAR experiment matches the observa-

tions more closely (Figs. 6a,d,g,j). However, storm B,

which is located near the boundary of the PAR coverage

area, is merging with a spurious supercell outside of the

PAR coverage area. In the forecasts initialized at

0100UTC, the overall structure of stormB in theWSR-88D

and PAR-reduced tilts experiments is more realistic than

the corresponding initialization (see Figs. 5e,k). Addi-

tionally, the ensemble member closest to the mean hap-

pens to develop much less spurious cells to the east

of storms A and B in the PAR and PAR-reducedtilts

FIG. 5. (a)–(c) The NMQ reflectivity observations (colored, in 5-dBZ increments) and analyses from the member closest to the mean at

(left) 0045, (center) 0100, and (right) 0115 UTC from the (d)–(f) WSR-88D, (g)–(i) PAR, and (j)–(l) PAR-reducedtilts experiments.

Reflectivity at 2 km AGL is color filled. The 0.004 s21 vertical vorticity contours are given in solid black. The verification domain for

the skill scores in Figs. 8 and 9 are shown by the black box. The portion of the domain shown here is over southeast OK.
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experiments compared with the WSR-88D experiment.

All other ensemble members (not shown) show similar

results, and this is consistent with our observation that

northern storms outside of the PAR coverage area are

underpredicted in the PAR and PAR-reducedtilts ex-

periments, producing less convection.

Additionally, the reflectivity in storm A is much more

intense in all three experiments than in the observations,

and the simulated storms continue to display hook

echoes, whereas the observed storm does not. In fact,

storm A does not dissipate through the end of the 1-h

forecast in any of the experiments (not shown). Thus, the

reflectivity forecasts from 15min through the end of the

run are considered poor. Furthermore, the 15-min fore-

casts initialized at 0115 UTC (Figs. 6f,i,l) are largely

similar, except that the PAR experiment and, to a lesser

FIG. 6. As in Fig. 5, but for 15-min deterministic forecasts initialized from the ensemble member closest to the mean. Note that the

verification domain for the skill scores is omitted.
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extent, the PAR-reducedtilts experiment develop a spu-

rious vorticity maximum in the northeastern quadrant of

storm B. Also, storm A in the 0115 UTC forecasts is still

much stronger than was observed, though it does begin to

dissipate near the end of the run.

One problem seen in all three experiments is the

faster propagation of supercells to the north and east

compared with the observations. Similar problems have

been seen in many prior storm-scale radar DA studies

(e.g., Dawson et al. 2012, 2015; Xue et al. 2014; Yussouf

et al. 2015, 2016; Stensrud andGao 2010, to name a few).

Stensrud and Gao (2010) suggest that this may be be-

cause the model is unable to develop midlevel pressure

perturbations that lead to deviant motion in supercells.

Xue et al. (2014) speculate that this may be due to errors

in analyzing the storm environment, which leads to in-

correct steering winds in the model. Fiori et al. (2010)

found that the storm motion depends on the turbulence

closure model and grid spacing. Reducing errors asso-

ciated with supercell motion in storm-scale NWP is

worthy of further investigation, however addressing it is

beyond the scope of this paper.

d. Forecast probability of low-level vorticity

The 2-km model horizontal grid spacing used in

this study is far too coarse to explicitly resolve torna-

does and is barely capable of resolving mesocyclone-

scale features of the supercell. To infer the amount

of low-level rotation from the three experiments,

the ensemble forecast probability of low-level vor-

ticity is compared with the surface–2 km MSL meso-

cyclone circulations generated by the Warning Decision

Support System–Integrated Information (WDSS-II;

Lakshmanan et al. 2007) (Miller et al. 2013) from

KTLX radar observations (Stensrud and Gao 2010;

Dawson et al. 2012; Yussouf et al. 2013, 2015; Xu et al.

2015). The vorticity probabilities are calculated at the

first model level above ground level (;25m AGL)

during the 0–1-h forecast period. The forecast output

(which is written out at 5-min intervals) from each

ensemble member initialized from a certain analyses

time is checked to see whether the vorticity exceeds a

threshold value within a radius of 4 km in the hori-

zontal direction around each horizontal grid point at

any output time during the 1-h forecast period, and

the vorticity probabilities are calculated from the

number of members exceeding the threshold values.

A threshold of 0.0015 s21 is used for vertical vorticity.

The 1-h forecast probability of vorticity is examined

every 15min from after 15, 30, and 45min (valid 0045,

0100, and 0115 UTC initialization times) of radar DA

and is compared with the WDSS-II rotation track

(Fig. 7).

The 1-h forecast probability of low-level vorticity ex-

ceeding 0.0015 s21 initialized at 0045 UTC shows largely

low (,40%) probabilities of vorticity (Figs. 7a,d,g). The

PAR experiment (Fig. 7d) has the largest overlap be-

tween the forecast vorticity swath and the WDSS-II

rotation track. The WSR-88D experiment (Fig. 7a)

shows the highest probability values (;50%) displaced

well to the north and west of theWDSS-II track, and the

PAR-reducedtilts experiment shows only weak proba-

bilities overlapping the WDSS-II track.

The forecast probabilities of strong low-level rotation

increase with an additional 15min of DA (Figs. 7b,e,h),

and the forecast vorticity swaths are aligned better with

the observed WDSS-II track compared with the 0045

UTC forecasts. The WSR-88D experiment (Fig. 7b)

has very low probability over the beginning part of the

observed strong rotation track but increases to high

probabilities over the later part of the track. The PAR-

reducedtilts experiment (Fig. 7h) has coverage of mid-

range probabilities (40%–60%) over the first part of the

track, but the probabilities never increase above;60%.

On the other hand, the PAR experiment (Fig. 7e) has

coverage of high probabilities over the first part of the

observed rotation track and at least midrange proba-

bilities over the rest of the track. Thus, the assimilation

of the higher temporal frequency PAR observations

clearly produces more reasonable probabilistic forecasts

of vorticity with only 30min of DA compared to the

assimilation of WSR-88D data.

The forecast of low-level vorticity initialized after

45min of DA generates relatively large areas with

probability. 90% in all three experiments (Figs. 7c,f,i).

These areas are displaced slightly south of the WDSS-II

track in all experiments. As in the forecasts initialized

at 0115 UTC, the PAR experiment (Fig. 7f) has better

coverage in the early part of the track as compared

to the WSR-88D and PAR-reducedtilts experiments

(Figs. 7c,i). Additionally, the spurious vorticity maxi-

mum seen in the 2 km MSL vorticity from the PAR and

PAR-reduced tilts experiments (see Figs. 6i,l) does not

extend down to the surface. However, aside from the

coverage in the early part of the rotation track, few

differences are apparent between experiments in the

forecasts initialized at 0115 UTC.

Though the above analysis has primarily focused on

storm B, the forecasts for storm A show similar results.

In particular, in the forecasts initialized at 0100UTC, the

PAR experiment shows higher probabilities of vorticity

for storm A than the WSR-88D and PAR-reducedtilts

in the early part of the swath, where there is observed

rotation from the WDSS-II track. Additionally, the

probabilities of vorticity for storm A increase with

eastward extent in the WSR-88D and PAR-reducedtilts
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experiments, which is not reflected in the WDSS-II ro-

tation track. In contrast, the vorticity probabilities in the

PAR experiment remain approximately the same with a

slight reduction in value with eastward extent. This is

consistent with storm A being underpredicted during

early DA cycles in the WSR-88D and PAR-reducedtilts

experiments and dissipating much later than the obser-

vations. However, the PAR experiment was able to re-

trieve the intensity and the spatial coverage much better

during early cycles although dissipation was delayed as

in the other two experiments.

e. Skill scores of ensemble reflectivity forecasts

To quantify the accuracy of reflectivity forecasts from

the 40-member ensembles during the 1-h forecast

period, the equitable threat scores (ETSs; Wilks 2006)

are calculated from the three experiments for reflectivity

exceeding thresholds of 25 and 40dBZ (Fig. 8) using the

NMQ reflectivity observations. These thresholds are

chosen to focus on light precipitation areas and heavy

convective cores, respectively. Ensemble members are

aggregated by summing the number of hits, misses, and

false alarms from each ensemble member in the ETS

calculation. That is,

ETS5
h2 h

r

h1m1 f 2 h
r

; h
r
5

(h1m)(h1 f )

n
, (5)

where h5�ihi and hi is the number of hits in ensemble

member i. The quantities m, f , and n are misses, false

FIG. 7. The 1-h forecast neighborhood ensemble probability of vertical vorticity exceeding a threshold of 0.0015 s21 at the first model

level above ground from (a)–(c) WSR-88D, (d)–(f) PAR, and (g)–(i) PAR-reducedtilts experiments initialized after (left) 15min (valid

0045 UTC), (center) 30min (valid 0100 UTC), and (right) 45min (valid 0115 UTC) of DA. The black contours overlaid are theWDSS-II-

generated KTLX low-level mesocyclone rotation exceeding 0.01 s21 vorticity during the 0–1-h forecast periods.
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alarms, and the total number of grid points, respectively,

and are defined in a similar manner to the hits. This is

similar, though not equivalent, to taking the mean of the

ETS from the members. An ETS of 0 indicates no skill,

while an ETS of 1 indicates a perfect forecast by all

ensemble members. To eliminate areas that were not

observed by the PAR, which would unfairly penalize

that experiment, verification regions were created at the

0045, 0100, and 0115 UTC analysis times (see Fig. 5).

Each region is entirely contained within the PAR scan

sector at that time. The verification regions were trans-

lated during the respective forecasts along with the

storms to keep the entirety of the observed and forecast

storms in the region. Additionally, the ETS is computed

over the entire depth of the storm.

The ETSs are found largely to increase with de-

creasing forecast lead time as expected in all three

experiments, declining to near or below 0 by the end of

the forecast periods. In general, the PAR experiment

has a higher ETS for both the 25- and 40-dBZ

thresholds than the WSR-88D experiment for the

forecasts (Fig. 8) despite the missing observations and

lower spatial resolution. We suspect that those limita-

tions are responsible for a similar or slightly higher

ETS in the WSR-88D experiment in general compared

with the PAR-reducedtilts experiment. The differences

between the WSR-88D and PAR experiments are

evident only for the first 30min of the forecasts ini-

tialized at 0045 UTC (Figs. 8a,d), while differences are

noticeable almost to the end of the 1-h forecast period

for forecasts initialized at 0100 and 0115 UTC (Figs.

8b,c,e,f). The ETS of the PAR-reducedtilts experiment

remains lower than that of the PAR experiment for

the duration of all 1-h forecasts, indicating the benefit

of high-temporal-frequency observations.

The area under the relative operating characteristic

(ROC; Mason 1982) curve (AUC) is calculated

for a range of reflectivity thresholds (10–50 dBZ), and

results are shown in Fig. 9 for the analyses and

forecasts. As discussed in Snook et al. (2012), ROC

FIG. 8. ETSs vs forecast times (UTC) for reflectivity thresholds of (top) 25 and (bottom) 40 dBZ from the three experiments. Forecasts

are initialized after (a),(d) 15min (valid 0045 UTC), (b),(e) 30min (valid 0100 UTC), and (c),(f) 45min (valid 0115 UTC) of DA.

Calculations are performed over a small subdomain (see text for details).
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measures hit and false alarm rates at varying pro-

bability thresholds (Mason and Graham 1999); it

therefore provides information on the ability of a

probabilistic forecast system to correctly discriminate

between events and nonevents. A forecast with perfect

skill has an AUC of 1.0 and 0.5 means zero skill.

All three experiments have highAUCs in the analyses

(Figs. 9a,d,g) and the value decreases as the forecast

lead times increases (cf. Figs. 9b,e,h and 9c,f,i). The

30-min forecasts after 15min of DA are just below

the skillful range (AUC . 0.7), and the 60-min fore-

casts have very small AUCs, indicating no ability to

discriminate (AUC , 0.5). The 30-min forecasts after

30 and 45min of DA increase the AUCs to above 0.7

for most thresholds for the PAR experiment, sug-

gesting that at least eight radar volume scans (;30min

of DA) are needed to produce operationally useful

forecasts.

The reasons for the improved ETS scores and AUCs

can be seen in Fig. 10, which shows the 10-min forecast

from the 0100 UTC initialization of the number of hits,

misses, and false alarms at the 25-dBZ threshold at each

grid point, summed over all members of the ensemble.

All three experiments have large numbers of hits where

the observed storms overlap with the storms in the en-

semble. The majority of the misses in all three experi-

ments occur to the south and west of storms A and B

(Figs. 10d,e,f), and the majority of false alarms occur to

FIG. 9. AUC results from the (left) analyses after 15, 30, and 45min of DA; (center) 30-min forecasts; and (right) 1-h forecasts for

reflectivity thresholds ranging from 10 to 50 dBZ. Calculations are performed over a small subdomain (see text for details).
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the northeast of storms A and B (Figs. 10g,h,i), likely

as a result of the faster propagation of storms in the

model, as noted earlier. The three experiments are

largely similar, except the PAR experiment better

captures the southern extent of both storms A and B,

resulting in fewer misses and more hits in those re-

gions. This directly increases the ETS score and also

results in larger AUCs because of the higher proba-

bility of detection, which is used in computing the

ROC curve.

Overall, the PAR experiment generates the highest

AUCs and the PAR-reducedtilts experiment the lowest

AUCs during the 1-h forecast period. In the analyses,

these differences are largest after 15min of DA and

decrease as more data are assimilated. However, the

largest differences in the 30-min forecasts are after

30min of DA, and in the 60-min forecasts, theAUCs are

largely the same between experiments. These results

suggest that the PAR data are most useful in DA win-

dows that are ;30min long.

5. Summary and discussions

To evaluate the impact of high-temporal-resolution

PAR observations compared with the current opera-

tional WSR-88D observations on convective storm

prediction, three DA and forecast experiments are

conducted for the 22 May 2011 Ada, Oklahoma, tor-

nadic supercell event using radial velocity and reflec-

tivity observations from both rapid-scan NWRT PAR

and WSR-88D KTLX. The experiments are conducted

with the ARPS model and its 4DEnSRF DA system

using a heterogeneous mesoscale environment. The

first experiment assimilates traditional WSR-88D ra-

dar observations, the second experiment assimilates

observations from the NWRT PAR, and the third

FIG. 10. The 10-min forecast from the 0100UTC initialization of the number of (top) hits, (middle)misses, and (bottom) false alarms at the

25-dBZ threshold at each grid point, summed over all ensemble members, at 2 km MSL.
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experiment assimilates PAR observations with WSR-

88D-like temporal frequency (PAR-reducedtilts ex-

periment). The WSR-88D and PAR experiments are

designed to compare the accuracy of the forecasts due

to two different temporal resolutions from the different

radar platforms. The PAR-reducedtilts experiment

picks a subset of elevations from the rapid-scan PAR

observations from the observation dataset to mimic the

WSR-88D-like coarser-temporal-resolution observa-

tions (even though spatial resolution differences exist

between PAR and WSR-88D observations) and is

designed to examine the differences in the analyses and

forecasts due to high-temporal-resolution PAR obser-

vations. All three experiments assimilate radar obser-

vations for a continuous 45-min DA period at every

5-min assimilation frequency. There are some missing

PAR volume scans during this period. Finally, 1-h

forecasts are launched at the end of the 15-, 30-, and

45-min assimilation periods, respectively. The goal is to

evaluate how quickly and accurately the rapid-scan

PAR observations can initialize and forecast the tor-

nadic supercell storm.

The observation-space diagnostic statistics compared

against the assimilated observations reveal that the filter

shows no sign of forecast divergence during the 45-min

assimilation period. All three experiments are able to

analyze reflectivity structures that are similar to the

observations even after a short 15-min DA period. The

15-min forecasts from the member closest to the en-

semble mean largely captured the storm evolution,

though storm A was too strong in the 0100 and 0115

UTC initializations. The 1-h forecast probabilities of

low-level vorticity after 15, 30, and 45min of DA from

all three experiments indicate that the placement and

alignment of the swath of high probabilities from the

PAR experiment more closely match the WDSS-II-

derived rotation track, particularly from the forecast

initialized after only 30min of DA. For this forecast, the

low-level rotation from the WSR-88D does not cover

the initial part of the WDSS-II rotation track, and the

probability values from the PAR-reducedtilts experi-

ment are comparatively low. The ETS score and the

AUC also indicate that the PAR experiment forecasts

showed improved skill compared with the WSR-88D

and PAR-reducedtilts experiments, particularly over

15- and 30-min-long assimilation periods. The improved

skill in the PAR experiment is the result of better cap-

turing the southern extent of the reflectivity coverage in

both storms A and B.

The overall results indicate that the WSR-88D and

PAR-reducedtilts experiments perform most similarly

to each other, and the PAR experiment performs better

than those two experiments. From this, we conclude that

the assimilation of high-frequency PAR observations

results in improved accuracy over traditional WSR-88D

observations. Furthermore, we conclude that this im-

provement in accuracy is the result of the increased data

volume from the PAR. The improved accuracy is more

pronounced with a short or moderately long (15–30min)

assimilation period. The positive impact of the higher

temporal resolution of the PAR observations decreases

for a longer assimilation period (45min in this study).

This is similar to the findings of the OSSE studies of

Xue et al. (2006) and Yussouf and Stensrud (2010).

The ultimate goal of storm-scale radar DA and fore-

casts is to extend severe weather warning lead times

(Stensrud et al. 2009). Within the context of the WoF

paradigm, the overall results obtained from this study

provide reasons for cautious optimism. A hypothetical

real-time prediction system would require at least 12

volume scans, or about 45min of operational WSR-88D

data, to produce a reasonably good forecast. In contrast,

the length of the NWRT PAR data assimilation period

could be reduced to as little as 15min, potentially in-

creasing severe weather forecast lead times. These

rapid-scan observations would be particularly beneficial

in a rapidly evolving severe weather situation. The re-

sults from this study are consistent with the findings from

the OSSE study in Yussouf and Stensrud (2010). How-

ever, the case we used for this study involves only two

supercell storms. To lay a foundation for the value of

the next-generation PAR technology beyond the cur-

rent WSR-88D network in storm-scale modeling, more

rigorous testing on how to best assimilate PAR obser-

vations in a variety of severe weather systems (e.g.,

quasi-linear convective systems, microbursts, hail-

storms, nontornadic as well as tornadic supercell storms,

etc.) is still needed. Additionally, the impact of the

unique flexible adaptive scanning capability from

NWRTPAR [e.g., dense vertical scanning and elevation

prioritized scanning strategies; Heinselman and Torres

(2011)], particularly when the storm is close to or far

away from the radar, on the model analyses and fore-

casts also needs to be investigated. Moreover, errors in

storm motion in storm-scale modeling warrant further

investigation. Accurate forecasts of storm position are

necessary for the skillful prediction of storm-associated

hazards, a primary research goal of WoF.
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