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ABSTRACT

Several data assimilation and forecast experiments are undertaken to determine the impact of

special observations taken during the second Verification of the Origins of Rotation in Tornadoes

Experiment (VORTEX2) on forecasts of the 5 June 2009 Goshen County, Wyoming, supercell. The

data used in these experiments are those from the Mobile Weather Radar, 2005 X-band, Phased Array

(MWR-05XP); two mobile mesonets (MM); and several mobile sounding units. Data sources are divided

into ‘‘routine,’’ including those from operational Weather Surveillance Radar-1988 Dopplers (WSR-88Ds) and

the Automated Surface Observing System (ASOS) network, and ‘‘special’’ observations from the VORTEX2

project.

VORTEX2 data sources are denied individually from a total of six ensemble square root filter (EnSRF)

data assimilation and forecasting experiments. The EnSRF data assimilation uses 40 ensemble members on a

1-km grid nested inside a 3-km grid. Each experiment assimilates data every 5min for 1 h, followed by a 1-h

forecast. All experiments are able to reproduce the basic evolution of the supercell, though the impact of the

VORTEX2 observations was mixed. The VORTEX2 sounding data decreased the mesocyclone intensity in

the latter stages of the forecast, consistent with observations. The MWR-05XP data increased the forecast

vorticity above approximately 1 km AGL in all experiments and had little impact on forecast vorticity below

1 km AGL. The MM data had negative impacts on the intensity of the low-level mesocyclone, by decreasing

the vertical vorticity and indirectly by decreasing the buoyancy of the inflow.

1. Introduction

The ultimate goal of the NOAA Warn-on-Forecast

project (Stensrud et al. 2009) is to issue reliable proba-

bilistic tornado warnings based upon explicit numerical

ensemble predictions of tornadoes, rather than based on

radar detection. Achieving this goal faces many chal-

lenges, including the needs ranging from understanding

the behavior of tornadoes and their parent supercell

thunderstorms to understanding the behavior of data

assimilation and numerical prediction systems used.

Given these difficulties and knowing that the forecast

will never be perfect, probabilistic information can be

useful in the decision-making process. Recent results

using ensemble Kalman filter (EnKF) methods (Evensen

2003) to initialize convective-scale ensembles for the

prediction of low-level vertical vorticity swaths yield fa-

vorable comparisons to observed tornado damage tracks

(Dawson et al. 2012; Yussouf et al. 2013), providing hope

that the goal of theWarn-on-Forecast project is attainable.

Snook et al. (2012, 2015) also demonstrated probabilistic

forecasting skills for low-level mesovortices associated

with observed tornadoes within a mesoscale convective

system, when EnKF was used for data assimilation.

In addition to a rigorously developed data assimila-

tion algorithm, however, we require data that resolve

the features of interest. Radar data provide the best

opportunity for resolving supercells. However, one

problem for detecting tornadoes is that because of the

curvature of Earth, a single radar can only observe the

lowest levels of the atmosphere over a very short range.
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Low-level radar observations have already proven

useful in EnKF analyses of a supercell (Tanamachi

et al. 2013) and in EnKF analyses and forecasts of a

tornadic mesoscale convective system (Snook et al.

2011), suggesting that it is important to have low-level

radar observations.

One source of low-level radar observations is the

second Verification of the Origins of Rotation in Tor-

nadoes Experiment (VORTEX2; Wurman et al. 2012)

conducted during the springs of 2009 and 2010. The

purpose of the experiment was to build integrated data-

sets of supercell thunderstorms using many observation

platforms, including multiple mobile Doppler radars.

Approximately 50 thunderstorms were sampled during

the VORTEX2 campaign, many of which were non-

tornadic or weakly tornadic, and observations from

several mobile radars often are available.

One tornadic storm in particular from the 2009

campaign has already received much attention in the

literature: the Goshen County, Wyoming, storm of

5 June 2009. Most of the work thus far has focused on

physical understanding of supercell and tornado dy-

namics (e.g., Markowski et al. 2012a,b; Wakimoto

et al. 2011; Atkins et al. 2012; Marquis et al. 2014;

Kosiba et al. 2013). Work by Marquis et al. (2014) is

unique in that it used EnKF analyses of the storm in

order to close gaps in data coverage of the storm,

though the study focused on physical understanding.

Some preliminary forecasting work has been done

using this supercell, notably by Dowell et al. (2010).

Their experiments used a continental United States

(CONUS)-scale outer ensemble at 15-kmgrid spacing and a

nest along theFrontRangeof theRockyMountains at 3-km

grid spacing. They did not assimilate observations from

VORTEX2, but they did assimilate observations from the

Meteorological AssimilationData Ingest System (MADIS)

and six WSR-88Ds. Their experiments found that assimi-

lation of the WSR-88Ds improved the correspondence be-

tween observed storm reports and areas of high probability

of updraft helicity generated by their ensembles.

After a forecast, either deterministic or ensemble,

has been obtained, one must decide the best way to

evaluate the performance of that forecast. Several

methods have been used in the literature. For de-

terministic forecasts, various observation-space statis-

tics can be generated, as in Aksoy et al. (2010),

including mean difference (bias), root-mean-square

difference, and equitable threat score (ETS). Direct

comparisons of model-predicted fields with radar ob-

servations in the radar coordinates had also been per-

formed (e.g., Xue et al. 2014). On finescale grids the

positioning error becomes more prominent than on

coarse-scale grids and double penalization, which is

penalizing the model for having a feature where it did

not occur and not having a feature where it did occur,

becomes an issue. One way to alleviate this problem is

to use ‘‘neighborhood’’ scores, such as the fractions skill

score (FSS; Roberts and Lean 2008), which evaluate

not only at a given grid point, but all grid points within a

certain radius. For ensemble forecasts, one could use

probabilistic skill scores, such as relative operating char-

acteristic (ROC) score, and ensemble probability. For

example, Snook et al. (2012, 2015) used a neighborhood

ensemble probability for reflectivity and low-level verti-

cal vorticity exceeding certain thresholds to alleviate

double penalty, and ROCwas used in Snook et al. (2015)

for evaluating probabilistic forecasting skills of pre-

cipitation. Object-based methods can also be used for

tracking discrete convective-scale features in numerical

predictions (e.g., Johnson et al. 2013; Clark et al. 2014).

One subjective method used by Dawson et al. (2012) is

to use visual comparisons of the probability of time-

maximum vorticity at a given level being greater than a

threshold against an actual tornado track.

In this study, data-denial experiments are conducted

to determine the impact of special VORTEX2 observa-

tions on the analysis andprediction of theGoshenCounty

supercell storm. As the study is part of the larger Warn-

on-Forecast goal, there is a focus on the utility of these

observations in an operational NWP setting. This study

is similar in design to Dowell et al. (2010), but it deals

specifically with special observations taken during

VORTEX2 and evaluating their importance to create a

realistic forecast of supercell behavior. Similar experi-

ments have also been conducted byMarquis et al. (2014).

Tanamachi et al. (2013) are the closest in spirit to the

current study, as they investigated the impact of Uni-

versity of Massachusetts, mobile, X-band, polarimetric

Doppler radar (UMass X-Pol) data on analyses of the

Greensburg, Kansas, supercell of 4 May 2007. However,

they did not examine storm-scale (1h) forecasts resulting

from these analyses. Snook et al. (2012) examined the

impact of data from limited-range X-band radars on 3-h

forecasts of a mesoscale convective system. This study is

unique in examining the relative impact of special

VORTEX2 observations on convective-scale analyses

and forecasts of a tornadic supercell. Studies looking

at convective-scale forecasts but not investigating the

impact of different data sources based on ensemble data

assimilation methods include Dawson et al. (2012),

Yussouf et al. (2013), and Jung et al. (2012).

The rest of this paper is organized as follows. Section 2

gives information about the observations used and the

design of the experiments. The general evolution of the

simulated supercell and comparisons to observed data

are discussed in section 3. Section 4 focuses on the
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impact of the observations on the analyses forecasts.

Conclusions are given in section 5.

2. Experiment design

a. Prediction model configurations

The Advanced Regional Prediction System (ARPS;

Xue et al. 2000, 2003), version 5.3, is used for the forward

prediction model, and the ensemble square root filter

(EnSRF; Whitaker and Hamill 2002) is used as the data

assimilation method. The data assimilation and forecast

experiments are performed on two domains: an inner

domain with 1-km grid spacing one way nested inside an

outer domain with 3-km grid spacing (Fig. 1), each with

40 ensemble members. Each member on the inner do-

main receives boundary conditions from the corre-

sponding member on the outer domain. The location for

the inner domain is centered on one of the VORTEX2

soundings launched in the inflow region to the supercell,

and it is large enough to contain the storm throughout

its life cycle (Fig. 1). Full physics and terrain are used

for all experiments, including Lin et al. (1983) micro-

physics, with the rain intercept parameter reduced by a

factor of 20 from the default value, as suggested by

Snook and Xue (2008) and Dawson et al. (2010). The

Lin scheme was used instead of a theoretically more

accurate, but more computationally expensive, double-

or triple-moment scheme in order to mimic a potential

operational configuration. A planetary boundary layer

scheme based on Sun and Chang (1986) is used for all

experiments. More details on the physics options can be

found in Xue et al. (2001). Selected configuration set-

tings for the experiments for both domains are given in

Table 1. These parameter settings were chosen after

numerous experiments. For example, smaller observa-

tion error standard deviations (OESD) often led to filter

FIG. 1. The locations and range rings of the radars used for the experiments in the (a) outer domain and (b) inner domain. (c) The

timeline (UTC) and availability of radar and MM data for the experiments. The location of the inner domain is plotted as a thick black

square in (a), observed 40-dBZ contours from KCYS are plotted in (b), and the time of the tornado is given in (c).
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divergence because of the large volume of data. Using

larger OESDs helped prevent filter divergence and

maintain ensemble spreads at desirable levels.

b. Ensemble filter configurations

The EnKF data assimilation system based on the

EnSRF algorithm is the one developed for the ARPS

modeling system, as documented in a number of papers,

including Xue et al. (2007), Tong and Xue (2008), and

Y. Wang et al. (2013). The initial ensemble on the outer

domain was generated by adding initial perturbations to

the North American Mesoscale Forecast System (NAM)

analysis at 1800 UTC 5 June 2009. Similar to Jung et al.

(2012), the added initial perturbations were spatially

correlated and generated by applying a recursive filter

(Lorenc 1992) to random Gaussian perturbations. This

procedure is a computationally more efficient alternative

to the perturbation smoothing procedure introduced into

the ARPS EnKF data assimilation system by Tong and

Xue (2008) and used inmany later studies (e.g., Xue et al.

2009, 2010). In addition, perturbations with a smaller

spatial correlation scale were added to the 1-km inner

domain ensemble at the start of this nested grid ensemble

to introduce additional convective-scale perturbations.

On the outer and inner domains, the horizontal decorre-

lation length scales of the perturbations were 12 and 6km,

respectively, and the vertical decorrelation length scale

was 3km for both domains. The perturbation magnitudes

in terms of standard deviations were 2ms21 for the zonal

and meridional components of wind (u and y, re-

spectively), 1K for potential temperature u, 0.6 gkg21 for

water vapor mixing ratio qy on the outer domain, and

0.4gkg21 for qy on the inner domain. These magnitudes

were chosen by trial and error to give as much spread as

possible in the initial conditions without initiating too

much spurious convection.

Deep convection initiated along the Laramie Moun-

tains in southeastern Wyoming after 1930 UTC 5 June

2009, with the convection showing supercellular char-

acteristics after 2100 UTC (Markowski et al. 2012a).

Thus, on the outer domain (cf. Fig. 1), routine radar and

surface data are assimilated every 30min between 1800

and 2100 UTC, while sounding and profiler data are

assimilated every hour during the same period. Between

2100 and 2200 UTC, radar and surface data are assimi-

lated every 5min, with profiler and sounding data still

assimilated every hour. Clear-air reflectivity observa-

tions from all three WSR-88D radars are assimilated in

order to suppress spurious convection (Tong and Xue

2005). Data from all WSR-88Ds are assimilated on the

outer domain, while MWR-05XP data are not. On the

inner domain, radar and surface data are assimilated

every 5min between 2100 and 2200 UTC, with sounding

and profiler data assimilated every hour. Data from the

KRIW radar (Riverton, Wyoming) are not assimilated

on the inner domain because of the distance of the radar

from the domain. See Fig. 1c for a timeline of the ex-

periment and radar data assimilation configurations.

Spread during the assimilation period is maintained

using a combination of static multiplicative (Anderson

2001) and adaptive relaxation to prior spread (RTPS;

Whitaker and Hamill 2012) covariance inflation. For

TABLE 1. Forward prediction model and filter configurations for the inner domain and outer domain experiments. 3DVAR 5
three-dimensional variational data assimilation.

Parameter Outer domain Inner domain

Grid size 411 3 411 3 51 255 3 255 3 51

Horizontal grid spacing 3 km 1 km

Vertical grid spacing Hyperbolic tangent stretching, 50-m minimum

Integration time step 6 s 1 s

Initial conditions 1200 UTC 5 Jun 2009 NAM 1 3DVAR 2100 UTC outer domain

Lateral boundary conditions NAM Outer domain analyses

Microphysics Lin et al. (1983)

Rain intercept parameter (N0r) 4 3 105m24

Snow intercept parameter (N0s) 3 3 106m24

Hail intercept parameter (N0h) 4 3 104m24

Radiation Shortwave: Chou (1992); longwave: Chou and Suarez (1994)

Planetary boundary layer 1.5-order TKE closure (Sun and Chang 1986)

Radar localization radius 6 km 6 km

Radar error standard deviation 5 dBZ, 3 m s21 7 dBZ, 5 m s21

Sounding localization radius 150 km 25 km

Sounding error standard deviation 2K, 2.5m s21

Surface localization radius 300 km (mesonet: 50 km)

Surface error standard deviation 1K, 1.5m s21 (mesonet: 1.11K, 1.5m s21)

Profiler localization radius 150 km

Profiler error standard deviation 2.5m s21
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the first two cycles, multiplicative inflation with inflation

factor amult 5 1.03 is used over the entire domain. From

there (1930 UTC) on, a combination of multiplicative

inflation with amult 5 1.20 in regions where the re-

flectivity of the ensemble mean is greater than 15dBZ

and RTPS everywhere in the domain with aadapt 5 0.9 is

used. Other filter parameter configurations, including

localization radii and assumed OESDs for the various

observation types, are found in Table 1.

c. Observations

The data used in the experiments are divided into two

groups: routine observations and special observations

(i.e., those taken as part of the VORTEX2 experiment).

Routine observations include surface temperature,

moisture, and horizontal wind from the Automated

Surface Observing System (ASOS) network, horizontal

wind from the NOAA profiler network, and level II

reflectivity and radial velocity from three WSR-88Ds:

Cheyenne, Wyoming (KCYS); Denver, Colorado

(KFTG); and KRIW. As mentioned earlier, the radar

data assimilation includes clear-air reflectivity observa-

tions to help suppress convectionwhere precipitation is not

observed. As the experiments take place between synoptic

times, no routine rawinsonde data are available. Manual

quality control was performed on data from KCYS and

KFTG, including velocity unfolding and ground clutter

removal. Data from KRIW were not manually quality

controlled, as the radar was out of range of the supercell;

however, those data were subjected to automated quality

control routines, such as velocity unfolding and automated

ground clutter removal [see Brewster et al. (2005) for

details].

Special observations include surface temperature,

moisture, and horizontal wind from the NSSL mobile

mesonet (NSSL MM; Straka et al. 1996) and the Texas

Tech University StickNet (Weiss and Schroeder 2008),

and upper-air temperature, moisture, and horizontal

wind from mobile sounding units. The locations of the

assimilated conventional data can be found in Fig. 2.

Because of limitations in the implementation of the data

assimilation algorithm, we retain the synoptic-scale as-

sumption that each sounding profile is representative of

the column above its release point at the beginning of

the hour following its release. These are represented

by the dashed lines in Fig. 2.

The NSSLMM probes were mounted on cars, labeled

P1–P8, excluding ‘‘P7,’’ and thus could be mobile while

taking data. The StickNet probes were stationary once

deployed. Both datasets included several quality control

flags for suspicious readings of the observed quantities.

The high temporal resolution of these datasets, obser-

vations at 1 s or less intervals, allowed for a strict quality

control procedure while keeping temporal errors in the

observations used for assimilation low; thus, observations

were discarded if any of the quality control flags were set.

The NSSL MM cars also have two temperature sensors:

a ‘‘slow’’ and ‘‘fast’’ response sensor, and a flag is included

in the data file that specifies whether the sensors are well

aspirated. The slow-response sensor is used wherever the

sensors were well aspirated; the fast-response sensor is

FIG. 2. Locations of all conventional observations assimilated

(a) between 2105 and 2200 UTC on the inner domain and

(b) between 1830 and 2200UTCon the outer domain. See Fig. 1 for

more information about the domains. The dashed lines on the x–z

and y–z plots indicate the assumed horizontal location for sounding

(red) and profiler (green) observations.
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used otherwise. The time constant for the slow-response

sensor is 1min, and errors due to finite instrument response

time are considered negligible.

In addition, superobservations (superobs) were cre-

ated from the MM data with the 11 closest observations

to the target time. To create the superobs, the minimum

and maximum observations for each quantity over the

11-s interval were removed and the remaining obser-

vations were averaged together. If the wind direction

observations fell over three or more quadrants, then

the winds were set to missing. None of the raw obser-

vations that were averaged to create a given superobwas

more than 180 s apart in time or 1 km apart in space.

An additional source of special observations is the

Mobile Weather Radar, 2005 X-band, Phased Array

(MWR-05XP; Bluestein et al. 2010; French et al. 2013).

For the 5 June 2009 deployment, the volumetric update

interval is 6–9 s, and volumes are scanned up to 208 in
elevation. A nice property of the phased-array radar for

data assimilation is that elevation sweeps are taken

nearly simultaneously in the context of the scan. This

reduces or eliminates position differences between eleva-

tion angles associated with the scanning strategies of dish

radars. Additionally, MWR-05XP data begin at 2143 UTC,

9min before tornadogenesis. Furthermore, while the

MWR-05XP scanned up to 208 in elevation, Doppler on

Wheels (DOW) radars scanned up to 168 in elevation

(Kosiba et al. 2013), the NOAA/NSSL mobile, X-band,

dual-polarization radar (NOXP) scanned up to 118
(Schwartz and Burgess 2010), and the UMass X-Pol

scanned up to 14.48 (J. Snyder 2013, personal communi-

cation). Thus, using MWR-05XP allows for better sam-

pling of the midlevels of the storm than the other mobile

radars scanning the storm.

The angular resolution of the MWR-05XP is fairly

coarse: the half-power beamwidth is 1.88 and 2.08 in

azimuth and elevation, respectively, and the sampling

intervals are 1.58 in both directions. This is permissible

for this study because the radar is located no more than

25 km, and sometimes as close as 10 km, away from the

updraft region of the storm, during the assimilation pe-

riod (French et al. 2013). The angular sampling interval

results in a maximum azimuthal gate spacing of;650m

at a range of 25 km, while the radial gate spacing is

150m. Since these are both less than the grid spacing

used for the inner domain, even in the worst case, the

data density is greater than the grid density. Addition-

ally, the focus for this study is on the low-level meso-

cyclone, which is well resolved by the MWR-05XP data

and mostly unobserved by the nearest WSR-88D. In

addition to the relatively coarse angular resolution, an-

other drawback is that the MWR-05XP truck is not

level, which can introduce position errors in the data.

Fortunately, for the 5 June 2009 deployment, the road

on which the radar truck was sited was relatively level

[see Fig. 1a of French et al. (2014)]. Thus, for this

dataset, the position errors are likely less than 500m and

considered to be negligible for purposes of this study.

The MWR-05XP Doppler velocity data were deal-

iased and data contaminated by ground clutter were

removed (French et al. 2013). Because a radar beam at

X-band wavelength attenuates strongly in heavy pre-

cipitation, reflectivity data are not used directly in the

assimilation, as this would require attenuation correc-

tion in the forward operator and increase the complexity

of the experiments. Because of the large resolution

volumes in the MWR-05XP data, the velocity data are

prone to sidelobe contamination in regions of strong

reflectivity gradients, such as along the forward flank. To

mitigate this contamination, radial velocity data are

used only in areas where reflectivity fromMWR-05XP is

greater than 30dBZ.

All radar data are interpolated linearly to model grid-

point locations (see the next section) in the horizontal

direction. In the vertical direction, the data are left on the

original conical sweep surfaces, and all elevation angles

from all radars are used.WSR-88D volumes are available

approximately every 4–5min, and data are assimilated by

volume. For each assimilation time, the closest volume

prior to the assimilation time is used, meaning the nom-

inal time for the assimilation always occurs during the

scan. The relatively slow forward speed of the storm

(;10ms21) allows for volume-by-volume use of data in

this manner without incurring large errors.

The total number of observations is heavily skewed

toward the radar data. At 2200 UTC on the inner do-

main, the number of observations of radial velocity from

KCYS is 63 618, those from KFTG are 9495, and those

from MWR-05XP are 1059. Also at this time, there are

638 138 reflectivity observations from KCYS and

284 715 reflectivity observations from KFTG (including

clear-air reflectivity observations). For each radar and

each observed quantity, the number of radar observa-

tions is the same order of magnitude across time steps.

By comparison, there are just four soundings with 224

sounding observations of each quantity at 2200 UTC,

three ASOS observations, and nine MM observations.

d. Data-denial experiments

The control (CTRL) run assimilates all routine ob-

servations, including those from the WSR-88Ds, as well

as MWR-05XP, MM, and sounding data. To investigate

the impact of each VORTEX2 data source individually,

MWR-05XP data, MM data, and sounding data were

removed from the assimilation in turn. These experi-

ments will be referred to as NO_MWR, NO_MM, and
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NO_SND, respectively. Additionally, MWR-05XP and

MM data were removed together in one experiment

(NO_MM_MWR), and all three experiments were re-

moved in another experiment (NO_V2). VORTEX2

data were only denied on the inner domain in order to

have a consistent set of boundary conditions and thereby

reduce the number of potential sources of variability.

3. Analyses and evolution of the supercell

First, the model reflectivity is examined to determine

the basic evolution of the supercell in the model.

Reflectivity is computed using a beam-weighting tech-

nique on radar scan surfaces to facilitate direct com-

parison to radar observations. The technique is the same

as that used in Xue et al. (2006), and this is referred to as

‘‘simulated reflectivity.’’ Instead of examining the en-

semble mean, which has a tendency to ‘‘smear’’ the

storm as placement errors increase, we examine the

ensemble member closest to the mean, which is identi-

fied in the same manner as Yussouf et al. (2013). The

storm motion of the member closest to the ensemble

meanmirrors that of the observed storm (Fig. 3), though

the observed storm moved more slowly. The major dif-

ference is that the reflectivity in all five experiments

shown weakens significantly by 2220 UTC in compari-

son to that observed. This behavior is observed in a few

previous studies of high-resolution supercell simulations

(Yussouf et al. 2013; Lei et al. 2009). Lei et al. (2009)

suspected that smaller-scale structures, such as the low-

level rotation, could be underpredicted at 1-km grid

spacing. Additionally, in the forecasts, by 2240 UTC, a

secondary storm has developed to the southwest and has

become the dominant storm by 2300 UTC. The devel-

opment of the secondary storm occurred in the observed

atmosphere between 2300 and 0000 UTC (not shown),

and the secondary storm produced a second weak tor-

nado at 2349UTC. The storm in the NO_V2 experiment

had the strongest updraft at the end of the forecast pe-

riod. The storm in the NO_MWR_MM experiment

evolved in largely the same fashion as that in NO_V2

and is therefore not shown.

In terms of the observation-space statistics [Fig. 4;

summarized below; see Dowell and Wicker (2009) for a

full description of the parameters], the experiments are

largely the same. The consistency ratios are similar

across all experiments as RTPS covariance inflation and

multiplicative inflation were applied to help maintain

the ensemble spread. Even with the covariance infla-

tion, the observation-averaged ensemble spread is less

than the root-mean-square innovation throughout the

assimilation period and forecast, a typical sign of under-

dispersion. The under- or overdispersion of an ensemble

can be quantified by the consistency ratio (Fig. 4b);

values near or above 1, as seen in these experiments,

typically mean the ensemble is properly dispersed.

This is mostly due to a large OESD, 7 dBZ, which

appears in the numerator of the consistency ratio

equation [Eq. (3.4) of Dowell andWicker 2009] and is

likely inflating the statistic. Thus, we consider the en-

semble to be underdispersed. However, as noted earlier,

this underdispersion did not necessarily degrade the

filter performance, consistent with previous studies

(Tanamachi et al. 2013; Dawson et al. 2012; Snook

et al. 2011).

In the case of bothMM andMWR-05XP data, neither

involve direct assimilation of reflectivity observations,

so it is through cross covariances among model state

variables and interactions between the variables during

the prediction that establish the storm reflectivity in the

model. The behavior of the observation-space statistics

for radial velocity (yr) is similar.

To quantitatively evaluate the performance of the

ensemble, the areas under ROC curves (AUCs; Mason

1982; Wilks 2006) are computed and presented in Fig. 5.

The score is derived fromROCcurves, andAUChas the

ability to discriminate between events and nonevents.

The range of values for AUC is 0.0–1.0, with 1.0

representing a perfect probabilistic forecast and 0.5

representing probabilistic forecasts no better than ran-

dom. To compute AUC, simulated reflectivity is com-

puted for each ensemble member for all 14 tilts from

KCYS. The verifying observations were taken from

KCYS only, which covered the majority of the inner

domain, save the far northeastern corner (see Fig. 1).

The AUCs for all experiments start near 0.95 for

reflectivity$25dBZ and near 0.9 for reflectivity$45dBZ

(Fig. 5). For the 25-dBZ threshold, which corresponds to

areas of any precipitation, the score for each experiment

falls steadily until the skill reaches 0.5 by the 1-h forecast.

The primary reason for the decrease in performance with

increasing lead time is the increase in false alarms; that is,

regions where reflectivity $25dBZ was forecast but not

observed. The false alarms can be seen in Fig. 3, particu-

larly in regions northwest of the supercell, where convec-

tion was forecast but not observed. For the 45-dBZ

threshold (Fig. 5b), which corresponds to areas of heavy

precipitation, the AUC score remains higher than that for

the 25-dBZ threshold until approximately the 45-min

forecast. At this point, the performance starts to de-

crease and by 2255 UTC it drops below the 0.7 value

suggested byKong et al. (2011) as the threshold for a useful

forecast. The relatively steadyAUC in the early part of the

forecast is likely becausemost areas of spurious convection

in the forecast have reflectivity less than 45dBZ. Thus,

they do not show up as false alarms for that threshold.
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FIG. 3. Simulated base reflectivity fromKCYS and 1-kmAGL vertical velocity and horizontal wind vectors from

the ensemble member closest to the mean. Vertical velocity is contoured every 2m s21, with negative values

dashed, and simulated reflectivity is color filled. Additionally, observed base reflectivity from KCYS is shown in

color fill in the top row.
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Additionally, the NO_V2 and NO_MWR_MM ex-

periments have the highest AUC for both thresholds

throughout each experiment, though statistically in-

significant for the 25-dBZ threshold. However, a close

look at the reflectivity patterns reveals that all experi-

ments but CTRL show splitting storms that do not match

observations (see Fig. 3). AUCs for high thresholds are

less confident because of displacement errors of re-

flectivity cores and underestimation of areal coverage of

those cores in CTRL, in addition to the small sample size.

The performance of the ensemble, in terms of en-

semblemean forecast, is also evaluated againstMMdata

(Fig. 6). Three MM instruments are used in the com-

parison: one StickNet site (‘‘102B’’ in Fig. 6) and two

NSSLMMcars [probes 2 and 4 (P2 and P4, respectively)

in Fig. 6)]. Experiments assimilating MM data generally

better fit the analyses and forecasts at all three sites. The

102B site starts on the forward-flank gust front at

2200 UTC and transitions to the rear-flank cold pool by

2215 UTC. The corresponding increase in u occurs

10min too soon in the ensembles, suggesting that the

cold pool is advancing faster in themodel than in the real

atmosphere. The same behavior is noted for P4, which

starts in the inflow at 2130 and transitions to the rear-

flank cold pool by 2215 in the observed atmosphere. This

transition occurs 5min too early in the ensembles, again

suggesting that the ensemble cold pool is too fast. P2

starts in the inflow as well and transitions to the rear-

flank cold pool very near the mesocyclone around

2150UTC. The P2 car alsomoves eastward and transitions

FIG. 4. The (a) RMS innovation and domain-averaged spread and (b) consistency ratio for

reflectivity from the KCYS radar. In (a) and (b), the vertical dotted line denotes the time of the

last analysis. In (a) the horizontal dotted line denotes the observation error standard deviation

(7 dBZ). In (b) the horizontal dotted line denotes the ideal consistency ratio (1). Statistics are

only computed where either the observed or model reflectivity is greater than or equal to

15 dBZ.
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back to the inflow by 2240. These transitions are captured

in the temperature fields of the ensembles but less so in the

u wind fields. The early transitions from inflow to rear-

flank cold pool suggest that, more so than the observed

storm, the modeled storm is being forced by the cold pool,

which helps explain the faster propagation of the ensemble

storm when compared to the observed storm.

This can be seen in Fig. 7. In the CTRL experiment,

P1 and P4 in the inflow are much colder than the en-

semble mean, meaning the ensemble mean forecast is

too warm. However, the temperature at P2 just behind

the rear-flank gust front is near the ensemble mean. The

same can be seen from the difference plots for other

experiments; the differences between the forecasts are

approximately the same between the inflow and outflow,

but the P2 is closer to the CTRL experiment than P1 and

P4, meaning the gradient is stronger in the ensemble. In

addition, the assimilation of MM y observations at the

time of Fig. 7 (2150 UTC) cooled the region just west of

the gust front, and the assimilation of MM potential

temperature observations had little effect on the cold

pool temperature. The effect of these is that the pro-

pensity of the gust front to propagate like a density

current is enhanced compared to the real atmosphere.

Overall, however, the ensembles are able to capture the

general trend of the observations well, even though the

ensemble is generally warmer and drier than observed.

Finally, in Fig. 6, clustering of experiments with and

without MM observations is evident. This is likely a

product of the near-surface nature of the observations,

which is subject to the land surface model and boundary

layer scheme in the forward prediction model. These

both are constant across all members and experiments,

meaning that the evolution of the near-surface envi-

ronment has little variability. This issue could be alle-

viated using a multiphysics ensemble (Berner et al.

FIG. 5. ROC area for (a) reflectivity $25 dBZ and (b) reflectivity $45 dBZ. The dotted black

line denotes an AUC of 0.5, at which point the forecast is no better than a random forecast.

438 MONTHLY WEATHER REV IEW VOLUME 144



2011). In any case, these results suggest the ensembles

are capturing the general evolution of the supercell

reasonably well.

4. Forecast mesocyclone tracks

In examining the forecast mesocyclone tracks in these

experiments, we use the updraft helicity (UH) metric

(Fig. 8). UH is used as defined in Kain et al. (2008),

except herein the limits of integration are from the

surface to 3km AGL so as to pick out low-level rotating

updrafts. Additionally, instead of a nine-point smoother, a

neighborhood ensemble probability has been computed

using a circular neighborhood 2.5km in radius. Here, the

probability of UH represents a mesocyclone-scale circu-

lation as a proxy for a tornado track. The results presented

here use a UH threshold of 75m2 s22, but they are rela-

tively insensitive to the threshold used.

TheUH swaths are compared to theWarningDecision

Support System–Integrated Information (WDSS-II) ro-

tation swath product (Smith and Elmore 2004). The peak

probabilities in the forecast mesocyclone tracks from all

six experiments generally follow the WDSS-II rotation

track in space, as expected for having initialized the 1-h

forecasts after tornadogenesis. This again supports the

conclusion that the ensembles are capturing the evolution

of the mesocyclone in the forecast. However, some dif-

ferences are apparent between the individual experi-

ments, discussed in the next sections.

a. Impact of mobile sounding observations

Omitting the sounding data results in a larger area of

UH probabilities greater than 50% in the latter half of

the forecast than assimilating sounding data (Fig. 8).

This suggests higher probabilities in the NO_SND and

NO_V2 experiments than the other experiments, while

the WDSS-II rotation track suggests a weaker mesocy-

clone during this period of the forecast.

To examine the reason for the higher UH proba-

bilities in the experiments without soundings, we ex-

amine the difference between CTRL and NO_SND

experiments and between the NO_MM_MWR and

NO_V2 experiments (Fig. 9). The source of the de-

creased UH in the CTRL and NO_MM_MWR ex-

periments appears to be from the sounding launched

farthest southeast. That sounding produces southeast-

ward increments in the velocity, which corresponds to a

decrease in wind speed in the inflow to the storm. The

information from the soundings is advected north-

westward with the wind in the inflow. The effect on the

storm is that the soundings decrease vertical velocity

at 500m AGL and therefore decrease low-level vor-

ticity stretching. Both of these have a direct impact on

the UH.

b. Impact of mobile radar observations

The MWR-05XP data appear to have no systematic

effects on theUH probability swaths. However, additional

FIG. 6. Time series graphs comparing MM observations (thick dashed black) and the

ensemble mean forecasts from each experiment (solid).
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information can be extracted by examining how the low-

level vorticity field (Fig. 10) evolves with time. The CTRL

and NO_MM experiments have initialized the most in-

tense mesocyclone in terms of vertical vorticity z in the

ensemble mean. The next-most-intense mesocyclone in

the mean is the NO_MWR_MM experiment, followed

by the NO_MWRexperiment, which is the least intense in

the ensemble mean. As expected, the experiments assim-

ilating MWR-05XP data have a more intense mean low-

level mesocyclone than those experiments not assimilating

them. This is consistent with the findings of Tanamachi

et al. (2013). Without MWR-05XP data, the members of

the NO_MM_MWR experiment show larger variability in

the placement of the z 5 0.015 s21 contours, whereas the

FIG. 8. Neighborhood ensemble probability of UH $ 75m2 s22 over the duration of the 1-h

forecast. UH is integrated over the 0–3-km AGL layer, and the neighborhood is 2.5 km in

radius. The 0.25 probability contour is given in (a) and the 0.5 probability contour is given in

(b). The WDSS-II rotation swath product is in grayscale.

FIG. 7. (a) Temperature of the CTRL experiment and (b)–(d) differences from the CTRL

experiment and winds from a 5-min forecast valid at 2150 UTC at the lowest model level above

ground (25m AGL). Dots in (a) are colored according to observed temperature, and dots in

(b)–(d) are colored according to the observed temperature difference from the CTRL forecast.

Forecast simulated reflectivity from KCYS is contoured in gray every 10 dBZ. In addition,

observed wind barbs (m s21) are plotted.
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individual members of the CTRL and NO_MM experi-

ments are relatively consistent on the placement of those

contours. This suggests that the high-spatial-resolution

MWR-05XP data reduce the uncertainty in the place-

ment of the vortex. Larger variability in the placement of

the z maxima in the ensemble is partially responsible for

the lessened ensemble mean z in experiments without

MWR-05XP data.

By the 5-min forecast (Fig. 11), themesocyclones in all

four experiments have weakened considerably. The

most dramatic weakening is in the CTRL experiment,

which has one of the strongest mesocyclones in the

analysis and one of the weakest mesocyclones in the

5-min forecast. The decrease in intensity of the en-

semble mean z in this experiment appears to be pri-

marily the result of the decreased intensity in the

individual members. The NO_MM and NO_MM_

MWR members also exhibit a reduction in intensity,

but the magnitude of reduction is smaller than the

CTRL and NO_MWR experiments. A rapid reduction

in mesocyclone intensity has also been observed in the

5-min forecast of a mesoscale convective system using

an EnKF (Snook et al. 2011). Some of the weakening in

the NO_MM and NO_MWR_MM experiments ap-

pears to be associated with differences in placement of

the vortex. The vertical vorticity analyses of Atkins

FIG. 9. Difference in ensemble mean vertical velocity w (color fills) and horizontal wind

(vectors) at 500m AGL between experiments. Simulated base reflectivity from the ensemble

member closest to the mean is contoured in gray in 10-dBZ increments, starting at 10 dBZ.

Triangles denote locations of assimilated soundings.

JANUARY 2016 SUP I N I E ET AL . 441



et al. (2012) suggest that the observed low-level me-

socyclone undergoes a general intensification be-

tween 2200 and 2210 UTC, but this is not seen in any

of the ensembles here, as they are likely still in the

adjustment period of the initial forecast (Putnam

et al. 2014).

Furthermore, during the assimilation period, MWR-

05XP data increased the ensemble mean of the maximum

z over the domain, particularly between approximately 2.5

and 4kmMSL (1–2.5kmAGL; Fig. 12).However, there is

no discernible difference between the 5-min z forecasts at

300m AGL from the NO_MM and NO_MM_MWR ex-

periments in Fig. 11. We view this as evidence that the

inclusion of MWR-05XP data do not always increase

near-surface z in a forecast, even though the influence is

apparent in the analysis.

c. Impact of mobile mesonet observations

An examination of Fig. 8b shows that the NO_MWR

experiment has the least area of 50% UH probability

out of all the experiments in the first part of the forecast,

implying that adding MM observations without the

presence of the MWR-05XP data decreased the in-

tensity of the mesocyclone in the ensemble. In addition,

z at 300mAGL decreases drastically in the first 5min of

the 1-h forecast (Figs. 10 and 11) in experiments that

assimilate MM data (CTRL and NO_MWR). Further-

more, two side experiments are performed that are

identical in configuration to the CTRL experiment, ex-

cept that in one, MM wind observations were omitted,

and in the other MM thermodynamic observations were

omitted. In both of these experiments, the ensemble

mean z at 300mAGL is larger, though this appears to be

mainly due to better agreement among the members in

placement of the mesocyclone. Further, z decreases in

the 5-min forecast as quickly in both side experiments as

in the CTRL experiment. The MM observations were

anticipated to provide better information on surface

conditions around the storm, so a decrease in mesocy-

clone intensity and longevity resulting from MM as-

similation was unexpected during an intense period in

the observed storm.

FIG. 10. Ensemble mean z at 300m AGL at the final analysis (2200 UTC). Storm-relative wind vectors at 300m

AGL are also plotted, and simulated base reflectivity fromKCYS is contoured every 20 dBZ, starting at 20 dBZ, in

gray. Individual member z $ 0.015 s21 are contoured in thin black lines.
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A possible reason for the unexpected behavior of the

mesocyclones can be found in examining the forecast

z during the analysis period (Fig. 12). Whereas the last

10min of the assimilation period in the NO_MM and

NO_MWR_MM experiments feature a general increase

in ormaintenance of forecast low-level z, the same period

in the CTRL and NO_MWR experiments features a de-

crease in forecast low-level z. Atkins et al. (2012) and

Kosiba et al. (2013) found that 2150 UTC begins a period

of intensification in the observed low-level mesocyclone,

so the low-level mesocyclones in the CTRL and NO_

MWR experiments do not mimic the observed. Addi-

tionally, the experiments assimilating MM data decrease

z in the 2150 UTC analyses, where the forecast z at

2150 UTC is already weaker in those experiments than in

the experiments not assimilating MM data.

To explain the decrease in z at the 2150 UTC analysis,

we examine the analysis increment of z produced by

wind observations from individual MM cars (Fig. 13).

It is apparent that the y-wind observation from P2 con-

tributes the overwhelming majority of the z decrease,

withmost of the contributions from the other observations

being neutral or slightly positive. This is partially the

result of the large deviation of the ensemble mean

y wind from the observed y, 5.6m s21, with the en-

semble mean wind being much stronger than observed.

This is consistent with the cold pool being too strong, as

noted above.

In addition to the cold pool being too cool, the MM

observations decrease the temperature of the near in-

flow to the storm (Fig. 7). This affects the buoyancy of

the parcels lifted in the updraft; less buoyant parcels will

not be lifted as quickly. This is reflected in the ensemble

mean of the domain-maximum forecast ›w/›z (Fig. 14),

particularly in the 2155 and 2200 UTC forecasts. The

quantity ›w/›z was chosen to evaluate the stretching of

z while removing the effect of the z already present. It

also reflects the vertical acceleration, which is pro-

portional to the buoyancy of the inflow air. One would

expect low-level ›w/›z to be higher in cases with larger

low-level buoyancy (Markowski and Richardson 2014),

and this is consistent with Fig. 14. Both the CTRL

and NO_MWR experiments have lower buoyancy in

the inflow, and they both exhibit lower ›w/›z than the

FIG. 11. As in Fig. 10, but for a 5-min forecast valid 2205 UTC.
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NO_MM and NO_MM_MWR experiments. Thus, pre-

existing z undergoes less stretching in experiments that

assimilate MM observations, which accounts for the

weaker low-level mesocyclone in those experiments. In

addition to the forecast ›w/›z, which is at least partially a

reflection of the low-level buoyancy in the model, the

increases in ›w/›z by the data assimilation are greater in

the NO_MM experiment than in the CTRL experiment.

The same is true to a lesser extent in the NO_MM_MWR

experiment versus the NO_MWR experiment. Thus, the

assimilation of MM data is also directly decreasing ver-

tical acceleration, and therefore the stretching of z.

5. Conclusions

We have presented data assimilation and forecast

experiments using data from the 5 June 2009 Goshen

County, Wyoming, supercell. This storm was well

observed by the VORTEX2 project, including by the

MWR-05XP mobile, X-band, phased-array radar; two

mobile mesonets (MMs); and several sounding teams.

Data were divided into ‘‘routine’’ and ‘‘VORTEX2’’

(V2) observations; groups of V2 observations were re-

moved one by one or all together from the assimilation

in each experiment to determine the impact of special

high-resolution observations on forecasts of the super-

cell. Data were assimilated at 5-min intervals for an hour

into an outer mesh at 3-km resolution and an inner mesh

at 1-km resolution, which produced a realistic initial

state for the storm. The subsequent 1-h forecasts from

all experiments captured the evolution of the supercell

structure reasonably well and captured some observed

trends in surface observations.

WhilemostV2 data sources were found to be beneficial

to the analyses and subsequent forecasts, one dataset

exhibits a negative impact on the forecasts. Special

FIG. 12. Time–height plot of the ensemble mean of the maximum vertical vorticity (color fills) from the ensemble

forecasts during the analysis period and first 5min of the 1-h forecast. The maximum is taken over the entire

domain. The difference between ensemblemeanmaximumvertical vorticity in the analyses and that in the forecasts

is given in contours, every 2 3 1023 s21. Solid contours are positive (analysis greater than forecast), and dashed

contours are negative (forecast greater than analysis). The dotted line represents the time of the final analysis.
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soundings were found to generally have a positive impact

on the latter stages of the 1-h forecast. Specifically, the

sounding data from the upstream inflow region resulted

in a negative velocity increment in the inflow, which de-

creased the strength of the updraft in the storm. Both the

increase in updraft and subsequent increase in low-level

vorticity stretching account for the increased UH seen

in the latter stages of the forecast.

Furthermore, theMWR-05XP radial velocity data were

found to have the effect of increasing the mean low-level

vorticity in the analyses, consistent with that found by

Tanamachi et al. (2013). The increase in vertical vorticity z

FIG. 13. Analysis increments of vorticity (color fills) and horizontal wind (vectors) from the

CTRL experiment by (left) u and (right) y observations from eachMM site. Forecast simulated

base reflectivity from KCYS is contoured in gray every 10 dBZ; d represents the ensemble

mean deviation from the observation yo 2 H(x).
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was at least partially a result of reducing vortex place-

ment differences in the members. Additionally, while the

MWR-05XP data are useful in increasing z aloft in a

forecast, it is less useful in increasing forecast z near the

surface. Collectively, these results are consistent with the

assimilation of radar data, which provide kinematic in-

formation about the mesocyclone, but convey little di-

rectly about the storm environment and therefore the

conditions that at least partially contribute to the main-

tenance of the mesocyclone.

The MM data were found to have a negative impact,

through both direct and indirect means. Directly, the

MM observations decrease vertical vorticity in the

2150 UTC analysis through covariances between ob-

served y and ensemble u and y. This is likely because

outflow in the model background is too strong, which in

turn is because the contrast between the cold outflow

and warm inflow is greater than observed. Indirectly, the

MM observations also decrease the temperature of the

inflow to the storm, which also decreases the low-level

stretching of parcels from the inflow.We applied several

forms of quality control to the MM data, including cre-

ating superobs and removing data that did not meet

supplied quality control metrics. Markowski et al.

(2012a,b) and Marquis et al. (2014) used similar quality

control procedures for the same MM data in their

studies. Additionally, Marquis et al. (2014) assimilated

thermodynamic MM data and found it had a positive

impact on the analyses; however, they did not examine

the forecasts from those analyses. Despite extensive

efforts in quality controlling the data, and in tuning the

assimilation configurations, we were not able to obtain a

positive impact of the MM data. This is not necessarily

because the analyses were not fitting the observations

(see Fig. 6), but because fitting the observations moves

the ensemble state into one less favorable for sustaining

a mesocyclone. While such results are not expected in a

statistical sense, it can happenwith individual cases, when

model errors, background state errors, and errors from

other observations can work in complex ways against the

realization of the benefit of one particular data type. We

consider the current case one of such examples.

The computational requirements for these experiments

were quite steep; each forecast step took approximately

10min to run, and the EnSRF program took about

15min. Thus, an optimal configuration would take 25min

for a 5-min cycle, much too slow for operational im-

plementation.While the radar data composed the bulk of

the assimilated data volume, the efficient parallelization

for radar data (Y. Wang et al. 2013) meant that the

conventional data assimilation required a disproportion-

ate amount of time. Unfortunately from this perspective,

sounding data had the greatest positive impact on the 1-h

forecast, and the MWR-05XP data had a negligible

FIG. 14. As in Fig. 12, but for ›w/›z.
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impact after the first 10min of the 1-h forecast. Addi-

tionally, we note that the sounding data contain mostly

information on the environment, while the MWR-05XP

data contain mostly information on the storm itself.

These suggest that, for operational forecasting at 1-km

grid spacing, it is important to invest computational time

in assimilating data that describe the environment, rather

than the storm itself.

In addition to the data used in the assimilation, the

microphysics scheme used in the prediction model has

been shown to have a strong influence on the structure

and evolution of simulated storms (Dawson et al. 2012).

Whereas a single-moment microphysics scheme, such

as the Lin scheme, keeps a constant intercept parameter

on the Marshall–Palmer distribution, double-moment

schemes let those intercept parameters vary. Several

studies show that reflectivity structure, cold pool in-

tensity, and polarimetric signatures simulated with mul-

timoment schemes are more consistent with observations

(e.g., Dawson et al. 2010, 2014; Jung et al. 2012; Putnam

et al. 2014). Thus, a future avenue for work will be to

investigate any structure and evolution changes to the

storm with different microphysics and whether the MM

data have a more positive impact given a more complex

and hopefully more accurate microphysics scheme. This

could also lead to using polarimetric observations in the

data assimilation, such as in Jung et al. (2008).

Finally, the phased-arrayMWR-05XP produced 6–9-s

volume scans that were not fully utilized in these experi-

ments. Future work could assimilate data more frequently

than 5min, which would allow for more MWR-05XP

volumes to be utilized. The 4D EnSRF implementation

by S. Wang et al. (2013) would be suitable, which assimi-

lates frequent data collected over a time span in a single

filter step. This allows one to relax the assumption that all

observations are valid at the same time in each assimilation

cycle, which reduces the timing errors of observations and

reduces model adjustments at the beginning of each cycle.
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