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ABSTRACT: To help inform physics configuration decisions and help design and optimize a multi-physics Rapid Refresh
Forecasting System (RRFS) ensemble to be used operationally by the National Weather Service, five FV3-LAM-based
convection allowing forecasts were run on 35 cases between October 2020 and March 2021. These forecasts used ∼3-km
grid spacing on a CONUS domain with physics configurations including Thompson, NSSL, and Ferrier–Aligo microphysics
schemes, Noah, RUC, and NoahMP land surface models, and MYNN-EDMF, K-EDMF, and TKE-EDMF PBL schemes.
All forecasts were initialized from the 0000 UTC GFS analysis and run for 84 h. Also, a subset of 8 cases were run with
15 combinations of physics options, also including the Morrison–Gettelman microphysics and Shin–Hong PBL schemes, to
help attribute behaviors to individual schemes and isolate the main contributors of forecast errors. Evaluations of both
sets of forecasts find that the CONUS-wide 24-h precipitation . 1 mm is positively biased across all five forecasts. NSSL
microphysics displays a low bias in QPF along the Gulf Coast. Analyses show that it produces smaller raindrops prone to
evaporation. Additionally, TKE-EDMF PBL in combination with Thompson microphysics displays a positive bias in pre-
cipitation over the Great Lakes and in the ocean near Florida due to higher latent heat fluxes calculated over water.
Furthermore, the K-EDMF PBL scheme produces temperature errors that result in a negative bias in snowfall over the
southern Mountain West. Finally, recommendations for which physics schemes to use in future suites and the RRFS
ensemble are discussed.

KEYWORDS: Model errors; Model evaluation/performance; Numerical weather prediction/forecasting; Regional
models

1. Introduction

The U.S. National Weather Service (NWS) is in the process
of building its entire operational numerical weather prediction
(NWP) suite around the nonhydrostatic finite volume cubed-
sphere (FV3) dynamical core (Harris et al. 2020; Putman and
Lin 2007; Lin 2004), which serves as the foundation of the
nation’s Unified Forecast System (UFS). According to the plan,
the current operational convection-allowing model (CAM) fore-
casting systems including the North American Mesoscale (NAM)
3-km nest, High-Resolution Rapid Refresh (HRRR), High Reso-
lution Window (HiResW), and High-Resolution Ensemble Fore-
cast (HREF) system will be replaced with a rapidly updated
CAM ensemble forecast system called the Rapid Refresh Fore-
cast System (RRFS). The RRFS will use the limited area model
version of the FV3 dynamic core (FV3-LAM; Black et al. 2021)
and will likely employ more than one optimized suite of physics
parameterizations and potentially include stochastic physics per-
turbations in its forecast ensemble.1 A multi-physics architecture

is chosen for the future RRFS ensemble because a multi-physics
ensemble has been found to have superior performance to single-
physics ensembles (Berner et al. 2011, 2015), and stochastic phys-
ics perturbations have been found to improve the representation
of forecast uncertainty (Berner et al. 2015; Jankov et al. 2017). As
one of the first steps toward the goal of transitioning to FV3-
LAM, candidate physics parameterization schemes implemented
within the FV3-based UFS system through the Common Com-
munity Physics Package (CCPP; Firl et al. 2021) need to be sys-
tematically evaluated for specific applications of the UFS, in our
case RRFS forecast ensemble.

NOAA testbed experiments such as the Hazardous Weather
Testbed (HWT) Spring Forecasting Experiment (SFE; Clark
et al. 2020; Roberts et al. 2020), the Flash Flood and Intense
Rainfall (FFaIR) Experiment (Barthold et al. 2015) and
the Winter Weather Experiment (WWE; Harnos et al. 2021) of
the Hydrometeorology Testbed (HMT) provide ideal environ-
ments for running experimental CAM forecasting systems and
evaluating the performance of the forecasts, both subjectively by
experiment participants in real time and objectively post hoc by
forecast users and modelers. The HWT SFE and HMT FFaIR
have received more attention so far for spring and summer se-
vere weather and heavy precipitation forecasting, respectively,
while winter weather has received less attention, in terms of
forecasting performance by CAMs, especially those with new
capabilities. For this reason, we choose to focus on evaluation of
cool season CAM forecasts run during the 11th HMTWWE.Corresponding author: Timothy A. Supinie, tsupinie@ou.edu

1 While the proposed forecast ensemble is a multi-physics en-
semble, the proposed data assimilation ensemble is a single-
physics ensemble, which avoids the non-Gaussianity inherent in a
multi-physics ensemble.
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Many methods exist for CAM forecast evaluation. One
method is to pick a physical process and see how well the
model represents that process using observations (e.g.,
Tessendorf et al. 2021; Ikeda et al. 2013). Another is to define
an object in in the forecast grid and compare to objects in an
observed or analysis grid (so-called object-based methods).
This is the approach taken by, among others, Griffin et al.
(2017b), Bytheway et al. (2017), Skinner et al. (2018), Flora
et al. (2019), and Duda and Turner (2021). Gridded forecasts
can also be evaluated against an analysis grid (Clark et al.
2010; Sobash and Kain 2017; Snook et al. 2019; Sobash et al.
2016). Gallo et al. (2021) compared grid-based methods and
object-based methods and found that each illuminated a dif-
ferent aspect of model performance.

Gridpoint-based verification methods can use a variety of
statistics and forecast fields for comparison. For accumulated
precipitation, simulated radar reflectivity, or updraft helicity
fields, statistics based on a 2 3 2 contingency table are com-
monly used, such as the critical success index [CSI; e.g., Loken
et al. (2017)] and equitable threat score [ETS; e.g., Snook et al.
(2019) and Zhang et al. (2019)]. However, gridpoint-based
methods are prone to double penalty: for example, penalizing
a model which exhibits phase error in a convective line for
both having precipitation in the wrong place and not having it
in the correct place. To alleviate this, neighborhood methods
were developed (e.g., Schwartz et al. 2009). Among these are
methods for creating neighborhood-based contingency tables
by Clark et al. (2010) and McMillen and Steenburgh (2015).
One popular metric developed specifically as a neighborhood
metric is the fractions skill score (Roberts and Lean 2008),
used by Cintineo et al. (2014) and Griffin et al. (2017a).

Because the application of the FV3 dynamical core at the
convective scale is relatively new, many CAM evaluation
studies have been based on the Weather Research and Fore-
casting (WRF) Model as the dynamical core, rather than the
relatively new FV3-LAM. To the best of the authors’ knowl-
edge, no published literature has examined the performance
FV3 on the convective scale during the cool season. However,
a few recent studies have examined the performance of FV3
for CAM forecasts, primarily for the warm season (Potvin
et al. 2019; Zhang et al. 2019; Griffin et al. 2021). Zhang et al.
(2019) evaluated hourly precipitation forecasts from FV3-
based CAM forecasts with different physics configurations
run during the 2018 HWT SFE. They found that the choice of
microphysics had a much larger effect on forecast perfor-
mance than the choice of planetary boundary layer (PBL)
scheme. The Thompson microphysics scheme (Thompson
et al. 2004, 2008) slightly outperformed the NSSL microphys-
ics scheme (Mansell et al. 2010; Mansell and Ziegler 2013) in
hourly precipitation forecasts, particularly in day-2 and day-3
forecasts, and FV3 overall performed comparably to WRF.
Griffin et al. (2021) evaluated simulated brightness tempera-
tures in an object-based framework for FV3-based CAM fore-
casts with different physics configurations run in spring 2019.
They found that Thompson microphysics with the MYNN
PBL scheme (Nakanishi and Niino 2009; Olson et al. 2019)
performed the best when evaluated on cloud objects, while
NSSL microphysics tended to over predict cloud object number

and extent. Additionally, changing the PBL scheme from
MYNN to Shin–Hong (Shin and Hong 2015) or K-EDMF
(Han et al. 2016) generally resulted in slightly lower object
accuracy.

The purpose of this study is to evaluate various FV3-LAM
physics configurations to help inform the design of the opera-
tional RRFS ensemble. While ensembles considered as a
whole provide much useful information on convective scales
(Roberts et al. 2020), the focus of this study is on the individ-
ual physics configurations and their performance. The perfor-
mance of the ensemble as a whole will be considered in a
future study. The remainder of this study is laid out as follows:
the physics configurations tested and the methods for testing
them are introduced in section 2. Evaluation is presented for
surface fields in section 3, precipitation forecasts in section 4,
and snowfall forecasts in section 5. Finally, conclusions are
discussed in section 6.

2. Forecast configuration and evaluation methods

a. Forecast configuration

During the 11th HMT WWE (hereafter referred to as the
“HMT forecasts”), CAPS ran five FV3-LAM forecasts per
case day. The forecasts were initialized at 0000 UTC on
35 days between October 2020 and March 2021 (see Fig. 1b),
which covers the period of the WWE plus additional signifi-
cant winter weather events in late October 2020 and mid-
March 2021. The model domain (Fig. 1a) covers the contigu-
ous United States (CONUS) at approximately 3-km grid
spacing with 64 vertical levels. Initial and lateral boundary
conditions at 0.258 grid spacing and 3-h time intervals were
taken from the corresponding operational run of the NCEP
Global Forecast System (GFS) v15 for all forecasts. Different
forecasts used different physics configurations (see the italicized
rows in Table 1). The microphysics schemes included Thompson,
NSSL, and Ferrier–Aligo (Aligo et al. 2018). As part of this
work, the NSSL fully two-moment microphysics scheme was
added to the CCPP by this research team, thus making it avail-
able in FV3-LAM. The PBL schemes used were scale-aware
MYNN-EDMF (hereafter referred to as “MYNN”), K-EDMF,
and TKE-EDMF (Han and Bretherton 2019). The MYNN PBL
scheme was used with its corresponding surface layer scheme
(Nakanishi and Niino 2009; Olson et al. 2021), while the
K-EDMF and TKE-EDMF were used with the GFS opera-
tional surface layer scheme (Long 1986, 1990). The land sur-
face models (LSMs) used were the Noah (Ek et al. 2003),
RUC (Smirnova et al. 2016), and NoahMP (Niu et al. 2011)
models. All forecasts used the Rapid Radiative Transfer
Model for General Circulation Models (RRTMG; Mlawer
et al. 1997) as their radiation scheme and the GFS near-
surface sea temperature (NSST) scheme, a modified version
of Fairall et al. (1996), for latent and sensible heat fluxes over
water. In Table 1, the “M,” “B,” and “L” in the forecast names
refer to microphysics, PBL, and LSM, respectively, while the
numbers 0, 1, 2, 3 refer to the specific scheme. The schemes
used in control forecast M0B0L0 all have “0” designation. The
specific physics configurations of the HMT forecasts were
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chosen to reflect the current and proposed operational regional
model configurations of NWS. Specifically, the control physics
configuration M0B0L0 has options similar to those of the pro-
posed control member of operational RRFS, except for the
LSM; NoahMP is proposed, but our preliminary evaluations indi-
cate that NoahMP does not perform as well as Noah. Therefore,
the latter was chosen for our control forecast. M0B0L2 used the
same options as the current operational High-Resolution Rapid

Refresh (HRRR) while M1B0L0 used the options of experimen-
tal Warn-on-Forecast System (WoFS). M0B2L1 used options
planned for the next operational version of NCEP GFS while the
options of M3B3L0 resemble those of North American Meso-
scale (NAM) model and planned Hurricane Analysis and Fore-
casting System (HAFS).

To isolate the effects of the individual physics schemes on
the forecasts, we ran a set of 15 forecasts on a subset of eight

FIG. 1. (a) The native FV3-LAM domain boundary used for all forecast runs is given in gray.
The verification subregions are given by the colored outlines: MW, NC, NE, SC, and SE denot-
ing the mountain west, north-central, northeast, south-central, and southeast regions, respec-
tively. The union of all five subregions is the CONUS verification region. (b) Dates for the
forecasts. All 15 physics configurations were run on dates highlighted in green. Only the HMT
set of physics configurations were run on dates highlighted in blue. All forecasts are initialized at
0000 UTC on their respective dates.
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cases from the full dataset (the green colored days in Fig. 1b).
These forecasts use additional physics combinations beyond
the five used in the HMT forecasts. We will call this the
“expanded set of physics configurations” to distinguish it from
the HMT forecasts that were run in real time for the HMT
WWE. The expanded set selects PBL and LSM options to
create more forecast pairs with only one physics parameteri-
zation difference at a time so that differences among the fore-
casts can be attributed to individual schemes rather than
certain combinations only. For example, the M0B2L0 physics
configuration is the same as the M0B0L0 physics configura-
tion except that the TKE-EDMF PBL scheme is used instead
of the MYNN scheme. The M0B0L1 physics configuration
has the options of the proposed control member of the opera-
tional RRFS. In addition, the Morrison–Gettelman micro-
physics scheme (Morrison and Gettelman 2008), another fully
two-moment microphysics scheme, and the Shin–Hong PBL
scheme (Shin and Hong 2015), a scale-aware PBL scheme based
on the widely used K-profile nonlocal YSU scheme, are added
to allow for their examination of their relative performance.

All forecasts except for M3B3L0 use the NOAA Global
Systems Laboratory (GSL) fork of FV3-LAM, checked out
from https://github.com/NOAA-GSL/ufs-weather-model on
16 October 2020. The NSSL microphysics scheme used in the
M1B0L0 physics configuration is merged with this version.
M3B3L0 uses the Hurricane Analysis and Forecasts System
(HAFS) community fork of FV3-LAM checked out from https://
github.com/hafs-community/ufs-weather-model on 11 October
2020. The reason for the version discrepancy is that at the time,
the Ferrier–Aligo scheme was not working in the GSL version.
To the best of the authors’ knowledge, these version differences
do not make a substantial impact on the results.

In addition to the CAM forecasts, 6-hourly output from the
operational GFSv15 forecast, which uses the FV3 dynamic
core on a global 13-km grid and uses GFDL microphysics,
K-EDMF PBL, GFS surface layer, and Noah LSM, is used as

a point of comparison. The GFS and forecasts herein share
the same initial conditions, and both use the FV3 dynamic
core, so the grid spacing and physics are the main differences.
GFS forecasts also allow for comparison of the full 84-h
length of the forecasts herein. In contrast, the operational
High-Resolution Rapid Refresh (HRRR) uses different
IC/LBCs and a different dynamic core, and its forecasts
only go to 48 h.

b. Evaluation methods

All evaluations are performed using the Model Evaluation
Tools (MET) software package v9.1, specifically the grid_stat
program, for grid-to-grid evaluations. Many different grids
must be considered, and several methods are used for re-
gridding depending on the scales involved. Re-gridding from
coarse to fine scales (“downscaling”) uses MET’s budget
method, which conserves mass in a grid box. Re-gridding
from fine to coarse scales (“upscaling”) uses MET’s area-
weighted mean method. Re-gridding between grids on the
same scale uses MET’s nearest-neighbor method. The analy-
sis products used for verification cover the CONUS and
nearby ocean regions, but we restrict our evaluations to the
areas over or within 50 km of the CONUS (Fig. 1a) to avoid
poorly observed areas far from land. Also, the CONUS is di-
vided into five verification subdomains to allow regional veri-
fication (Fig. 1a).

Upper-air geopotential height, wind, temperature, and rela-
tive humidity forecasts at various levels are evaluated using
the 6-hourly GFS 0.258 final analyses as truth. All model grids
are interpolated to the GFS 0.258 grid using the area-weighted
mean method. In addition, the verification fields are masked
where pressure surfaces are below ground level to remove
data that are not physically meaningful. In addition to the
upper-air fields, surface fields such as 2-m temperature and
dewpoint and 10-m wind are evaluated against the Unrestricted
Mesoscale Analysis (URMA). The URMA is similar to the

TABLE 1. Forecast physics configurations. Italicized rows indicate that configuration was run during the 2020–21 HMT WWE. All
forecasts use the RRTMG shortwave and longwave radiation scheme, the Cooperative Institute for Research in Environmental
Sciences (CIRES) unified gravity wave drag scheme, and the GFS near-surface sea temperature algorithm. In the prototype column,
“WoFS” stands for the Warn-on-Forecast System, “NAM” stands for the North American Mesoscale model, and “HAFS” stands for
the Hurricane Analysis and Forecasting System.

Name Prototype Microphysics PBL Surface layer LSM

M0B0L0 RRFS control Thompson MYNN-EDMF MYNN Noah
M0B0L1 Thompson MYNN-EDMF MYNN NoahMP
M0B0L2 HRRR Thompson MYNN-EDMF MYNN RUC
M0B1L0 Thompson Shin–Hong GFS Noah
M0B2L0 Thompson TKE-EDMF GFS Noah
M0B2L1 Future GFS Thompson TKE-EDMF GFS NoahMP
M1B0L0 WoFS NSSL MYNN-EDMF MYNN Noah
M1B0L1 NSSL MYNN-EDMF MYNN NoahMP
M1B1L0 NSSL Shin–Hong GFS Noah
M1B2L0 NSSL TKE-EDMF GFS Noah
M2B0L0 Morrison–Gettelman MYNN-EDMF MYNN Noah
M2B0L1 Morrison–Gettelman MYNN-EDMF MYNN NoahMP
M2B1L0 Morrison–Gettelman Shin–Hong GFS Noah
M2B2L0 Morrison–Gettelman TKE-EDMF GFS Noah
M3B3L0 NAM, HAFS Ferrier–Aligo K-EDMF GFS Noah
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Real Time Mesoscale Analysis (RTMA; De Pondeca et al.
2011) except it runs 6 h later on the same grid in order
to use observations that arrive too late to be incorporated
into the RTMA (Pondeca et al. 2015). The URMA is de-
signed to have high fidelity to surface observations, so
it is acceptable to use for forecast validation. The surface
fields from all CAMs are interpolated to the 2.5-km URMA
grid using the nearest-neighbor method. For the GFS,
the budget method is used for interpolation. For both sur-
face and upper-air fields, bias and root-mean-square error
are evaluated.

Precipitation is compared to the NCEP Stage-IV QPE anal-
ysis (Nelson et al. 2016). The Stage-IV analysis is created by
blending rainfall estimates from the WSR-88D radars with
observations from rain gauges, followed by human correc-
tions. All datasets are interpolated to the 4-km Stage-IV grid
for comparisons. The convective-scale forecasts use the near-
est-neighbor method for interpolation, and the operational
GFS forecast uses the budget interpolation method as with
the URMA grid. In addition to QPF, snowfall is evaluated
against the National Operational Hydrologic Remote Sensing
Center (NOHRSC) snowfall analysis version 2, which is a
blend of Stage-IV QPE, HRRR, RAP analyses, and snowfall
reports. For the forecasts, snowfall is taken from the snow
and cloud ice mass reaching the surface in the microphysics
scheme and the accumulation is converted to a snow depth us-
ing a 10:1 snow-liquid depth ratio. At locations where the pre-
cipitation type algorithm does not diagnose snow, snowfall is
set to zero. For all forecasts except M3B3L0, the HRRR ex-
plicit precipitation type algorithm (Benjamin et al. 2016) is
used. The HRRR precipitation type algorithm cannot be ap-
plied directly to the M3B3L0 forecast because the Ferrier–
Aligo microphysics does not have separate snow and grau-
pel categories, as required by the algorithm. Therefore, a
column-temperature-based algorithm (Manikin 2005) is used
for this forecast as a fallback. In addition, accumulated snowfall
is not available in the archived GFS forecasts; however, snow
depth is available. Therefore, the change in snow depth over
the accumulation interval is considered for the GFS instead of
accumulated snowfall, and instances where the snow depth
change is negative are set to zero. The implications of this are
discussed in section 5. All CAM snowfall forecasts are interpo-
lated to the NOHRSC grid using the nearest-neighbor method,
while re-gridding the operational GFS snowfall forecast uses
the budget method.

For each forecast lead time and case, a 2 3 2 contingency
table is constructed from the model and analysis snowfall and
QPF using several thresholds. A threshold of 1 mm is used to
distinguish precipitation from no precipitation, and thresholds
of 25 and 50 mm are used to identify heavier precipitation. A
threshold of 2.5 cm is used to distinguish snow from no snow.
From these contingency tables, equitable threat score (ETS)
and frequency bias are computed as in Mason (2003). To com-
pute aggregated statistics, the elements of the contingency ta-
bles for all cases are summed, and then ETS and frequency bias
are computed from the aggregated contingency table. In previ-
ous work, ETS has been found to reward forecasts with a higher
bias for a given displacement error for rare events (Baldwin

and Kain 2006). However, because of the low precipitation
threshold, long accumulation period, and the usual stratiform
nature of winter precipitation, and because this dataset contains
a disproportionately large number of cases with widespread
precipitation coverage, the event frequency of QPF$ 1 mm for
this dataset is 19.4%. This is closer to Baldwin and Kain’s
(2006) “common event” frequency level (28%) at which the ap-
parent reward by ETS for a high bias is greatly reduced. Also,
despite the advantages of neighborhood-based contingency
tables, for simplicity, we do not use a neighborhood when com-
puting contingency tables herein. The results are qualitatively
the same with and without a neighborhood (not shown), likely
because the 24-h accumulations have a relatively large spatial
coverage and already implicitly allow for temporal error (see
sections 4 and 5).

Additionally, we use the resampling method of Hamill (1999)
for statistical significance testing of verification scores. Essen-
tially, we propose the null hypothesis that QM1 2 QM2 = 0,
where Q is a contingency table statistic (e.g., frequency bias)
and M1 and M2 denote forecasts from two different physics
configurations. To test this hypothesis, we create a 1000-sample
null difference distribution by resampling the contingency tables
as in Hamill (1999), and the null hypothesis is rejected at signifi-
cance level p if the actual QM1 2 QM2 = 0 falls outside the p/2
to 1 2 (p/2) percentile range of the null difference distribution.
For these experiments, p = 0.01, i.e., 1%.

3. Surface field verification

The 2-m temperature bias in most of the HMT forecasts
(Fig. 2a) across the CONUS displays a strong diurnal cycle in
all forecasts: generally, a cool bias, with the bias being smaller
in magnitude overnight and in the early part of the day
(0600–1800 UTC) and larger in magnitude during the day and
into the evening. The exception is the M3B3L0 forecast
which, along with the GFS, generally has a warm bias over-
night and a cool bias during the day. The warm bias overnight
is particularly pronounced over the southern plains (not
shown). Both the M3B3L0 and GFS forecasts use the K-EDMF
PBL scheme, suggesting that this scheme tends to produce a
warm bias during the overnight hours. The reasons for this are
being investigated in depth in a separate study. In addition to
M3B3L0 and GFS generally having comparable or smaller lev-
els of bias than other forecasts, they also generally exhibit lower
RMSE (Fig. 2b) than all the other forecasts. Furthermore, the
M0B0L0 and M1B0L0 forecasts, which differ only in the use of
Thompson versus NSSL microphysics, broadly display very lit-
tle difference either in bias or RMSE, despite the two forecasts
generally being statistically significantly different than each
other. On one hand, this is not unexpected, as 2-m temperature
is most directly impacted by PBL, surface-layer, and land sur-
face processes and less so by the microphysics. However, the
microphysics can impact the surface temperature through dif-
ferences in radiation due to clouds, differences in snow cover,
or differences in latent heating and cooling. These results sug-
gest that if these differences exist between Thompson and
NSSL, they are either not large enough or not systematic
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enough (e.g., overall cloud cover may be small) in the cool sea-
son to noticeably impact the bulk seasonal statistics.

For 2-m dewpoint temperature bias (Fig. 3a), all forecasts
generally have a moist bias. The exception is the M0B2L1
forecast that uses the NoahMP LSM. M0B2L1 displays a
prominent negative bias starting at 15 h into the forecast
(largest at 18–21 h, during the afternoon hours over the
CONUS). The forecast with the largest moist bias is the
M0B0L2 forecast, again peaking during the afternoon and
early evening. The M3B3L0 forecast and the operational GFS
are closest to being unbiased and are again among the lowest
in terms of RMSE (Fig. 3b). Sharing the same PBL, surface
layer physics, and LSM is the likely reason for the similarity
between these two forecasts.

To diagnose the reason for the differences in the 2-m dew-
point forecasts, we examine the total daily latent heat flux
(Fig. 4). Latent heat flux in the control forecast (Fig. 4a) is
generally higher over bodies of water, with enhanced latent
heat flux over the Gulf Stream. M0B0L2 (Fig. 4b) exhibits a
similar pattern; the calculation in the GFS NSST scheme for
latent heat flux over water uses the surface exchange coeffi-
cient for heat computed by the surface layer scheme, and
both M0B0L0 and M0B0L2 use the MYNN surface layer
scheme. Additionally, latent heat flux is generally higher in
M0B0L2 than in M0B0L0 over areas of the southeastern
United States and mountain west, while areas of Texas and
northern Mexico have lower latent heat flux. These differ-
ences are attributable directly to the LSM used, as over land,
latent heat flux is calculated within the LSM. The latent heat

flux in M0B2L1 (Fig. 4c), which uses NoahMP, is nearly uni-
versally lower over land and higher over water than in
M0B0L0. M3B3L0 (Fig. 4d), despite having the same LSM
(Noah) as the control, exhibits some notable differences.
First, latent heat flux over water is higher in M3B3L0 than
M0B0L0 (though still less than M0B2L1), and latent heat
flux over the mountains of the northwest United States and
southwestern Canada is also higher in M3B3L0 than in
M0B0L0. Additionally, artifacts are visible in the southeastern
United States (Fig. 4d) caused by the relatively coarse resolu-
tion of the vegetation type data used for the M3B3L0 fore-
casts. The GFS surface layer used in M3B3L0 is more sensitive
to changes in vegetation type than the MYNN surface layer,
so the artifacts are particularly obvious. These artifacts do not
have a substantial negative impact on the overall forecast per-
formance based on sensitivity experiments performed (not
shown).

The higher latent heat flux computed by the RUC LSM
over land helps explain the larger positive bias of 2-m dew-
point in M0B0L2 versus M0B0L0. Additionally, the lower la-
tent heat flux computed by the NoahMP LSM over CONUS
in M0B2L1 helps explain its low bias in the bulk dewpoint sta-
tistics (Fig. 3a), with the increases in latent heat flux caused
by using the GFS surface layer scheme in M0B2L1 versus the
MYNN surface layer scheme in M0B0L0 over water falling
largely outside the verification region, which extends only
50 km from the coastline. These results are supported by spatial
patterns in the dewpoint bias, which generally mirror those in
the latent heat flux (not shown).

FIG. 2. (a) Bias and (b) RMSE for 2-m temperature for the HMT forecasts over the CONUS as a function of lead
time for all cases in the winter season. All forecasts are initialized at 0000 UTC. The background shading is darkest at
0600 UTC (approximately midnight local time over the CONUS) and lightest at 1800 UTC (approximately noon local
time over the CONUS). The error bars give the 2.5–97.5 percentile of the quantity bootstrap resampled 1000 times
over all cases. Colored dots above each bar indicate other forecasts that are statistically significantly (p = 0.01) differ-
ent than that forecast.
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4. Precipitation evaluation

a. Bulk statistics

Frequency bias for 24-h precipitation at a threshold of
1 mm (rain or snow liquid equivalent) from the HMT fore-
casts over the full CONUS domain (Fig. 5) is generally small,
but positive (i.e., greater than 1), indicating that all forecasts
generally over predict total precipitation coverage. M1B0L0
has the lowest frequency bias of all the forecasts at all
lead times, followed by M0B0L0 (Fig. 5a). Both M0B0L0
and M1B0L0 outperform the operational GFS forecast, and
M0B2L1, which has the largest positive bias. ETS (Fig. 5b)
slightly decreases over the forecast period, and forecasts are
generally more similar to each other in ETS than in fre-
quency bias, though some differences exist. In particular,
M0B2L1 has the lowest ETS. Also, although M1B0L0 has
significantly lower bias than all other forecasts, its ETS is
generally not significantly different.

For the higher threshold of 50 mm in 24 h (Fig. 6), the posi-
tive bias in precipitation coverage in the CAM forecasts is re-
duced, particularly at the 60- and 84-h forecasts, but still
present at 36 h, suggesting the positive frequency bias occurs
primarily, but not exclusively, with light precipitation. In addi-
tion, the operational GFS forecast has large negative biases
(i.e., less than 1) at the 50 mm threshold, which also drive
down its ETS compared to several of the other forecasts
(Fig. 6b). The low bias with heavy precipitation is consistent
with Jiang et al. (2017, see their Fig. 4a), and Ganai et al.
(2021, see their Fig. 1) also find that the GFS has low precipi-
tation biases with heavier ($15 mm) 24-h precipitation. Also,
Zhu et al. (2018) find that 24-h warm-season precipitation has
a low bias for thresholds $ 50 mm in 24 h in four global oper-
ational forecasting systems, while 4-km forecasts based on the
WRFModel have high biases.

On the subset of cases used for the expanded set of physics
configurations (Fig. 7), many of the same behaviors with pre-
cipitation are present as in the full set of cases used for the
HMT forecasts. Overall, the precipitation bias is strongly clus-
tered by microphysics scheme (the bars in Fig. 7 are grouped
by microphysics scheme), except for M0B2L0 and M0B2L1.
The clustering by microphysics scheme is consistent with the
findings of Zhang et al. (2019). The M1B0L0, M1B0L1,
M1B1L0, and M1B2L0 physics configurations, which have the
NSSL MP scheme in common, generally perform well}they
are generally the closest to being unbiased (i.e., a frequency
bias of 1) and among the forecasts with the highest ETS. The
M2B0L0, M2B0L1, M2B1L0, and M2B2L0 configurations,
which have the Morrison–Gettelman MP scheme in common,
are generally negatively biased (in contrast with the positive
bias of the other forecasts) and have lower ETS than many of
the Thompson and NSSL MP forecasts.

In addition, we can contrast M0B0L0, M0B2L0, M1B0L0,
and M2B0L0 (which have the Noah LSM in common) to
M0B0L1, M0B2L1, M1B0L1, and M2B0L1 (which have the
NoahMP LSM in common). These forecasts are chosen for
comparison because they are pairs of physics configurations
that only differ in the LSM (e.g., M0B0L0 uses the Noah LSM
andM0B0L1 uses the NoahMP LSM, but the two are otherwise
identical). The NoahMP LSM forecasts have smaller (i.e., closer
to 1) bias, except for M2B0L1, which has a larger negative bias.
Also, the NoahMP forecasts generally have slightly higher
ETSs than the Noah forecasts for all pairs of forecasts at all
lead times, suggesting that changes in NoahMP from Noah act
to reduce precipitation in cool season CAM forecasts.

The expanded set of physics configurations allows us to iso-
late which parameterizations are responsible for the behaviors
noted in the set of five HMT forecasts. For 24-h QPF, the pat-
terns in skill scores in HMT forecasts (Fig. 5) generally hold

FIG. 3. As in Fig. 2, but for 2-m dewpoint temperature.
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when run on the subset of 8 cases used for the expanded set
of physics configurations. For example, on this subset of cases,
M0B2L1 has the highest frequency bias and lowest ETS, and
M1B0L0 has the lowest bias (Fig. 7a). These are the same be-
haviors displayed on the full set of 35 cases (Fig. 5a). This
gives us confidence to draw conclusions from the expanded
set of physics configurations despite the comparatively smaller
sample size. In this case, the similarity between M0B2L0 and
M0B2L1 noted above suggests that the TKE-EDMF PBL
scheme in combination with Thompson microphysics, rather
than the NoahMP LSM, is primarily responsible for the poor
performance of M0B2L1. This is confirmed by M0B0L1,
which uses the MYNN PBL scheme instead of TKE-EDMF
PBL, and the scores of M0B0L1 and M0B0L0 are much
closer. In contrast to M0B2L1, M0B1L0, using the Shin–Hong
PBL scheme, is comparable to M0B0L0 for bias and ETS for
all lead times.

To better understand the behaviors of the different fore-
casts, we look at the spatial distribution of hits, misses, false
alarms, and correct nulls (Fig. 8) for forecasts of $1 mm of
precipitation in 24 h. The color in this figure is based on a

ternary plot, which considers the values of three variables
that sum to 1. The contingency table components sum to
1 everywhere in the domain, so each point in the domain is
colored based on its position in the ternary plot, based
on the key at the bottom of Fig. 8. The hits and correct
nulls are summed for one axis of the ternary plot in order
to reduce the number of variables to three and leave misses
and false alarms with their own axes. Thus, areas in orange
on Fig. 8 have more cases with false alarms, areas in blue
have more cases with misses, and areas in dark gray have
an even mix. The areas in white have a perfect forecast.
This has the advantage over a frequency bias plot in that it
distinguishes between areas with few misses and false
alarms and areas where misses and false alarms cancel each
other.

Over the CONUS as a whole, false alarms slightly outnum-
ber misses (not shown), consistent with all forecasts having a
positive bias in Fig. 5a. The false alarms are not concentrated
in just a few cases, suggesting over prediction of precipitation
coverage is a systemic feature of these forecasts. Additionally,
prominent areas of much higher false alarms appear over the

FIG. 4. Total daily latent heat flux for the 24-h period ending at F36. Shown here is the mean of 30 cases for
(a) M0B0L0. Additionally, (b) M0B0L2, (c) M0B2L1, and (d) M3B3L0 are shown as percentages of M0B0L0.
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eastern Great Lakes and northern Appalachians (Fig. 8) in all
forecasts. M0B2L1 (Fig. 8e) has many more false alarms than
other physics configurations over Lakes Superior, Huron, and
to a lesser extent Michigan. M1B0L0 (Fig. 9b) is unique in
having a relatively large number of misses in the Gulf Coast
states, which accounts for the lower CONUS-wide bias in
those forecasts. The operational GFS and M0B2L1 (Figs. 9f
and 9e, respectively) also have a much higher proportion of
false alarms offshore in south Florida than other forecasts.

Because the positive bias in precipitation coverage noted in
Fig. 7 is driven by over prediction of QPF in these regions,
and this positive bias only occurs in M0B2L0 and M0B2L1,
this implies that the higher false alarm count over south
Florida and the Great Lakes seen in M0B2L1 in Fig. 8 is the
result of the TKE-EDMF PBL scheme in combination with
Thompson microphysics. Similarly, the NSSL microphysics
scheme is responsible for the higher miss count along the gulf
coast.

FIG. 5. (a) Frequency bias and (b) equitable threat score for 24-h QPF over CONUS as a function of lead time for
all cases in the winter season. A QPF threshold of 1 mm is used. The colored dots and error bars are as in Fig. 2, but
the cases are bootstrap resampled 10000 times to create the error bars.

FIG. 6. As in Fig. 5, but with a 24-h QPF threshold of 50 mm.
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b. NSSL microphysics behavior

The six cases with the most prominent miss count in M1B0L0
are 15 December, 29 December, 25 January, 30 January,
4 February, and 2 March. Many of these are associated with
weak convection in low-CAPE environments (not shown).
From these cases, 30 January is chosen as a representative
case for further examination. The contingency table compo-
nents for the 36-h forecast of 24-h QPF for this case for all
forecasts are shown in Fig. 10. M1B0L0 (Fig. 10b) has by far
the most misses (and few hits and false alarms) in Louisiana
and southern Mississippi and Alabama. By contrast, most
other forecasts, including the operational GFS, nearly exclu-
sively have hits and false alarms in this region.

One reason for this can be found in comparing profiles
from M0B0L0 and M1B0L0 over Louisiana and southern
Mississippi (Fig. 11). As expected from the differences in
precipitation coverage, the 98th percentile of rain mixing ratio
in M0B0L0 is much higher at the surface than M1B0L0
(Figs. 11c,g), indicating more precipitation reaching the sur-
face in M0B0L0. In both forecasts, all precipitation is created
as rain, which is consistent with the moist layer in both fore-
casts being entirely below the freezing level (Figs. 11a,e).
Consistent with the differences in rain mixing ratios, the mean
mass diameter (MMD) of the raindrop size distributions in
M0B0L0 are much larger than in M1B0L0 (Figs. 11d,h), indi-
cating that the Thompson scheme produces larger drops than
the NSSL scheme. Furthermore, the 98th percentile of rain
mixing ratio in the NSSL scheme decreases toward the sur-
face, while the MMD increases toward the surface, which is
consistent with the evaporation of the smaller drops in the
size distributions due to the smaller drops having a larger sur-
face area to volume ratio (Dawson et al. 2010). This suggests
evaporation of the smaller drops plays a major role in the QPF
differences between the Thompson and NSSL schemes. The
differences in drop sizes arise despite few differences in the ver-
tical velocity distribution (Figs. 11b,f) and the environmental
temperature and moisture profiles (Figs. 11a,e), suggesting that
they are inherent to the formulations of the respective schemes.

c. The TKE-EDMF PBL scheme behavior

Next, we examine the causes of the higher bias in M0B2L1
for precipitation near the Great Lakes. The localized nature
of the precipitation enhancements near bodies of water sug-
gests enhanced latent heat flux as a cause. Indeed, the total
daily latent heat flux is higher in M0B2L1 than in M0B0L0
(Fig. 4c). Supporting this, the 850-hPa relative humidity bias
over the northeast verification region (Fig. 12b) is positive for
M0B2L0 and M0B2L1 in the expanded set of physics configura-
tions even starting at the 6-h forecast. These two physics configu-
rations have the TKE-EDMF PBL scheme and Thompson
microphysics in common, again suggesting the combination
of these two schemes is responsible for the high precipitation
bias. M1B2L0 and M2B2L0, also using the TKE-EDMF PBL
scheme, but with the NSSL and Morrison–Gettelman micro-
physics schemes, respectively, rather than the Thompson
microphysics scheme, also show a positive bias in 850-hPa
relative humidity, though not to the extent as in the runs
with Thompson microphysics. M0B2L0 and M0B2L1 have
the lowest 850-hPa relative humidity RMSE (not shown),
consistent with the higher biases, at least in the first 36 h of
the forecast. The primary reason for the positive relative hu-
midity biases appears to be a positive bias in dewpoint at
850 hPa (Fig. 12c). Temperature bias at 850 hPa (Fig. 12a) is
negative, which also contributes to a positive relative hu-
midity bias; however, the magnitude of the temperature bias
is smaller than that of the dewpoint bias.

M3B3L0 also has enhanced latent heat flux over the
Great Lakes compared to M0B0L0 (Fig. 4d), though to
a lesser degree than M0B2L1. M3B3L0 and M0B2L1 share
the GFS surface layer scheme which, as mentioned above,
has a strong control over the latent heat flux calculation
over water via the surface exchange coefficient for sensible
and latent heat. However, M3B3L0 has a low bias in 850-hPa
relative humidity. The differences between M3B3L0 and
M0B2L1 must be related to the way their respective PBL
schemes, i.e., the TKE-EDMF and K-EDMF PBL schemes
handle the vertical mixing of near-surface moisture. Thus,

FIG. 7. As in Fig. 5, but for the expanded set of 15 physics configurations (8 cases). The statistical significance markers are not shown.
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we conclude that enhanced latent heat fluxes over the
Great Lakes, primarily caused by the GFS surface layer
scheme, lead to an over prediction of precipitation over the
Great Lakes through vertical mixing by the TKE-EDMF

PBL and realization of precipitation by Thompson micro-
physics. This same basic process is also likely responsible
for the over prediction of precipitation offshore in south
Florida (not shown).

FIG. 8. Proportion of misses and false alarms in 24-h QPF over the Great Lakes, aggregated
over all cases at a 36-h lead time using a threshold of 1 mm for (a) M0B0L0, (b) M1B0L0,
(c) M3B3L0, (d) M0B0L2, (e) M0B2L1, and (f) GFS.
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5. Snowfall evaluation
The 24-h snowfall from the HMT forecasts (Fig. 13) shares

many of the behaviors of QPF. Many forecasts have a positive
bias, with M0B2L1 having the highest bias at all lead times.

ETS for snowfall generally decreases with increasing lead
time. In contrast to the QPF, M3B3L0 and GFS are nearly un-
biased for snowfall, and the GFS has an ETS that is not signif-
icantly different that of M0B0L0. However, M3B3L0 has a

FIG. 9. As in Fig. 8, but for the southeast United States.
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significantly lower ETS than all the other forecasts and the
GFS, despite being nearly unbiased.

As with QPF, the false alarms in 24-h snowfall at forecast hour
36 (i.e., day 1) slightly outnumber the misses, which is consistent

with most forecasts having an overall positive bias in snowfall.
M0B2L1 also shows larger numbers of false alarms than other
forecasts near the Great Lakes (not shown), consistent with the
behavior in QPF. However, there are some differences between

FIG. 10. Components of the contingency table for 24-h QPF for (a) M0B0L0, (b) M1B0L0, (c) M3B3L0, (d) M0B0L2, (e) M0B2L1, and
(f) GFS. Green areas indicate hits, blue indicates misses, orange indicates false alarms, and white indicates correct negatives. Shown is the
36-h forecast from the 30 January case. The black box indicates the area over which the profiles are taken in Fig. 11.

FIG. 11. Profiles to 500 hPa over all columns in the black box in Fig. 10. (a),(e) Skew T–logp diagram; (b),(f) vertical velocity; (c),(g) hy-
drometeor mixing ratios (MR); and (d),(h) hydrometeor mean mass diameter (MMD). (top) M0B0L0 and (bottom) M1B0L0. The thick
solid line is the median of all model profiles in the selected region, and the shaded region represents the 2nd–98th percentile range of all
columns. The coverage of nonzero hydrometeor MR is less than 50% at all levels, therefore the median hydrometeor MR is 0 at all levels.
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the precipitation and snowfall scores. M3B3L0 and the GFS
have more misses than false alarms near the Great Lakes, and in
the southern Rocky Mountains (Fig. 14), which are not present
in the precipitation scores.

Six cases in which theGFSmissed snow in the southwest United
States are prominent: 10 December, 25 January, 29 January,
16 February, 11 March, and 12 March. The 10 December and
12 March cases are selected as representative cases for further
analysis (Fig. 15). One confounding factor with the GFS is the ne-
cessity of using of snow depth change to compare to an analysis
of snowfall. This is because snow compacts over time, resulting in
a decrease in snow depth, and in marginal temperatures (between
08 and ∼38C), snow may melt on contact with the ground, which
results in less snow accumulating than the total amount of snow
that falls. And many of the areas where the GFS misses 24-h
snowfall accumulations of 2.5 cm for these cases fall into regions
of marginal temperatures (Figs. 15a,b). In addition, many of the
24-h snowfall misses are also associated with positive temperature
errors in the GFS. Some of this is likely due to the coarseness of
the GFS terrain; some terrain features are obvious in southern
Utah in Fig. 15b. Nevertheless, some error is probably due to the
K-EDMF PBL scheme used. The M3B3L0 physics configuration,
which also uses the K-EDMF PBL scheme, also has many of its

24-h snowfall misses in the southwest United States associated
with positive temperature errors (Figs. 15c,d), despite using a
finer terrain representation. Additionally, many of the misses in
M3B3L0 occur in similar areas as those in the GFS (see e.g., the
Four Corners region in Fig. 15a and Fig. 15c and southwest Utah
in Fig. 15b and Fig. 15d). This further suggests the K-EDMF PBL
scheme is responsible for some of the misses due to the forecast
near surface temperature being too high. In contrast, the bias in
2-m temperature in the mountain west region (not shown) is neg-
ative for M3B3L0 at the 24-h forecast. There are a few regions
where the GFS 24-h snowfall misses are associated with negative
temperature errors (see Fig. 15a in Colorado, for example); how-
ever, those locations are below 08C in the GFS forecast, making it
quite unlikely that marginal temperatures and associated melting
would be responsible for the miss. While Fig. 15 includes only
24-h forecast temperature errors, other forecast times during the
day-1 period are qualitatively the same (not shown) with respect
to temperature errors.

6. Summary and conclusions

This paper presents the results of evaluations of ∼3-km grid
spacing CAM forecasts based on the limited-area FV3 model

FIG. 12. As in Fig. 7, but for (a) 850-hPa temperature, (b) relative humidity, and (c) dewpoint from the northeast verification region for
the first 36 h of the forecast.
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during the 2020–21 winter season. The forecasts are grouped
into two sets: a set of 5 physics configurations run on 35 cases
during the 11th HMTWWE and an expanded set of 15 physics
configurations run on a subset of eight cases from the HMT
WWE. All forecasts were initialized at 0000 UTC on their
respective dates and use NCEP GFS initial and lateral
boundary conditions. Both sets of forecasts use varying com-
binations of microphysics (Thompson, NSSL, Morrison–
Gettelman, and Ferrier–Aligo), PBL (MYNN, TKE-EDMF,
K-EDMF, and Shin–Hong), surface layer schemes (MYNN
PBL is used along with its surface layer scheme, and the
other three PBL schemes are used with the GFS surface
layer scheme) and land surface models (Noah, NoahMP, and
RUC) to isolate the effect of individual schemes. All CAM
forecasts use the GFS NSST scheme, which handles flux
computations over water; flux computations over land are
computed in the LSM. The CAM forecasts are compared to
operational GFSv16 forecasts as a baseline. All forecasts are
evaluated against several analysis products. Surface fields
were evaluated against the URMA, upper-air fields were
compared to GFS final analyses, precipitation forecasts were
compared to the NCEP Stage-IV precipitation analysis, and
snowfall forecasts were compared to the NOHRSC snowfall
analysis version 2. For the surface and upper-air fields, bias
and RMSE are used as metrics, and for precipitation and
snowfall, frequency bias and ETS are used as metrics.

In the surface field evaluations, the K-EDMF PBL scheme
is found to have a warm bias overnight. Additionally, there is
little difference between the Thompson and NSSL microphys-
ics schemes in terms of surface fields. The NoahMP LSM pro-
duces a pronounced low dewpoint bias during the afternoon,
partially because of reduced latent heat flux compared to
other forecasts. Furthermore, the RUC LSM is found to have
a higher latent heat flux than the Noah LSM over land. The

latent heat flux over water from forecasts using the GFS sur-
face layer scheme is higher than that from forecasts using the
MYNN surface layer scheme, likely a result of larger surface
exchange coefficient for heat in the GFS surface layer scheme.

The precipitation evaluations show that all forecasts have
a high bias on precipitation coverage for the 1 mm day21

threshold. For the 50 mm day21 threshold, the operational
GFS has a low bias in coverage, while the CAM forecasts are
generally high-biased or nearly unbiased. At the 1 mm day21

threshold, the HMT forecasts using the NSSL microphysics
scheme have the lowest positive frequency bias within the en-
tire CONUS domain, but investigation shows that the NSSL
microphysics under predicts precipitation in the Gulf Coast states.
The NSSL microphysics scheme is found to produce smaller rain-
drops than the Thompson scheme; the smaller drops evaporate
more readily, leading to less precipitation reaching the surface.
TheMorrison–Gettelmanmicrophysics scheme is found to under-
forecast precipitation, and it also has reduced ETS compared to
the Thompson and NSSL schemes. Also, the TKE-EDMF PBL
scheme in combination with Thompson microphysics is associated
with a high bias in precipitation over the Great Lakes and over
the waters off the coast of Florida. Analyses attribute this to
larger latent heat flux over water in these regions, leading to
higher low-level relative humidity and more precipitation.

The snowfall evaluations show many of the same behaviors
as the precipitation forecasts. Many of the CAM forecasts
have a positive bias in coverage of 24-h snowfall $ 2.5 cm at
all lead times. Additionally, the high precipitation bias in ap-
parent in the TKE-EDMF PBL scheme when combined with
Thompson microphysics is apparent in the snowfall forecasts.
However, one difference is that the operational GFS and
M3B3L0 display a low bias in snowfall in the southern Rocky
Mountains, due to positive temperature errors produced by
the K-EDMF PBL scheme.

FIG. 13. As in Fig. 5, but for 24-h snowfall with a threshold of 2.5 cm.
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In comparing the GFS to the CAMs, the surface sensible
weather parameters are generally better (a lower bias and lower
RMSE) in the GFS, while the precipitation fields are generally
better (lower bias with comparable ETS) in the CAMs. This sug-
gests that the CAMs have an inherent advantage over lower-

resolution models with respect to predicting precipitation, even in
the cool season, despite the lower importance of convection com-
pared to the warm season. In addition, we speculate that for sur-
face fields, particularly outside of mountainous areas, the forecasts
are more sensitive to the physics choices than to the grid spacing.

FIG. 14. As in Fig. 8, but for 24-h snowfall with a threshold of 2.5 cm.
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As mentioned above, a goal of this work is to provide
recommendations for physics parameterizations the future
RRFS ensemble. Overall, the Thompson and NSSL micro-
physics perform well for precipitation and snowfall prediction
in the cool season. The lower bias in precipitation the NSSL
scheme is the result of two offsetting biases: the domain wide
over prediction of precipitation and under prediction in a spe-
cific region. Therefore, it is not clear that one scheme is uni-
versally better than the other, and both are recommended for
use. Furthermore, according to these results, the MYNN PBL
scheme performs the best overall out of all the PBL schemes
tested, and the Shin–Hong PBL scheme is generally compara-
ble to MYNN in terms of precipitation and surface fields;
both are recommended for use. The TKE-EDMF PBL scheme’s
overprediction of precipitation suggests the need for improve-
ment. This is important given that TKE-EDMF has replaced
K-EDMF as the PBL scheme used in the operational GFSv16.
Finally, the NoahMP LSM results in lower precipitation biases
in higher ETS in the forecasts, but the Noah LSM performs the
best for the surface fields. Therefore, both are recommended for
use in the future RRFS ensemble, depending on which field is
deemed more important to be unbiased.

Also, the evaluation herein focuses on the performance of
individual forecasts. Future work will emphasize performance
of the overall ensemble, when initial and boundary condition

perturbations are also included. Ensemble consensus prod-
ucts, such as the mean and localized probability matched
mean (Snook et al. 2019; Clark 2017), as well as ensemble
evaluation metrics, such as rank histograms (Hamill 2001; see
e.g., Duda et al. 2014), attributes diagrams, and area under
the relative operating characteristic (ROC) curve (see e.g.,
Loken et al. 2017) will be evaluated to assess the ensemble
forecasting performance, given the goal toward optimal de-
sign of the operational RRFS ensemble. The forecasts pro-
duced during the HMT FFaIR experiment by this group for
warm-season precipitation forecasting will be evaluated in
similar ways.
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