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Abstract 
 

        Traditionally, nowcasting of precipitation was conducted to a large extent by means 
of extrapolation of observations, especially of radar reflectivity. In recent years, the 
blending of traditional extrapolation-based techniques with high-resolution numerical 
weather prediction (NWP) is gaining popularity in the nowcasting community. The 
increased need of NWP products in nowcasting applications poses great challenges to the 
NWP community due to the fact that the nowcasting application of high-resolution NWP 
has higher requirements on the quality and content of the initial conditions compared to  
longer range NWP. Considerable progress has been made in the use of NWP for 
nowcasting thanks to the increase in computational resources, advancement of high-
resolution data assimilation techniques, and improvement of convective-permitting 
numerical modelling. This paper summarizes the recent progress and discusses some of 
the challenges for future advancement. 

 
Capsule Summary  

 
The demand in accurately nowcasting convective precipitation has motivated high-
resolution data assimilation and rapid cycling NWP and their continuous advances are 
crucial for improved severe weather nowcasting. 

 
         Since the early 1960s, techniques for nowcasting convective precipitation have been 
developed by extrapolating radar echoes. Wilson et al. (1998) provided a comprehensive 
review on the status of nowcasting that covered both fundamental and application aspects 
of the subject. Since that paper was published, a noticeable new development has been 
the increased application of NWP to the nowcasting problem. In this paper, we review the 
recent progress on the use of NWP for nowcasting convective precipitation and discuss 
some challenges, and hence opportunities, that are lying ahead. This review paper was 
inspired and benefited from the workshop on the use of NWP for nowcasting that was 
sponsored by the World Weather Research Program (WWRP) of the World 
Meteorological Organization (WMO) and held on 24-26 October 2011 at the National 
Center for Atmospheric Research in Boulder, Colorado. This workshop was a joint effort 
between the Working Group on Nowcasting Research (WGNR) and Working Group on 
Mesoscale Weather Forecasting Research (WGMWFR) under WWRP. The invited 
participants, keynote speakers, workshop agenda, and presentations can be found at 
http://wmo-workshop-on-the-use-of-nwp-for-nowcasting.wikispaces.com .  
          Nowcasting is taken here to be forecasting with local detail, by any method, over a 
period from the present to a few hours ahead including a detailed description of the 
present weather. It is widely accepted that the nowcasting range refers to the 0-6 hours of 
forecast, which is also referred to as “very-short-term”.  Traditionally, nowcasting was 
considered to provide a detailed initial state description with a forecast component 
derived through extrapolation of these conditions in time. Nowcasting is now expanded 
to include the blending of extrapolation techniques, statistical techniques, heuristic1 

																																																								
1	Heuristic is defined as forecast rules based on experiment, numerical simulation, theory, 
and forecast rules of thumb. 
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techniques, and numerical weather prediction. In recent years, the blending of traditional 
extrapolation-based techniques with high-resolution2 NWP is gaining popularity in the 
nowcasting community. The increased need of NWP products in nowcasting applications 
poses great challenges to the NWP community because the nowcasting application of 
high-resolution NWP has different requirements from the longer range NWP. To name a 
few: nowcasting requires accurate specification of the current weather condition with a 
resolution of a few kilometres; frequent accurate updates of the current weather and 
nowcasts are critical particularly in the case of severe storms; and there is a much smaller 
tolerance to the timing and location errors of forecasted precipitation systems.  
         It is not a trivial task for the NWP community to improve the NWP to the extent 
that it meets the nowcasting requirements. Since Lilly (1990)’s history-making 
publication in which he challenged the meteorological community to consider the explicit 
prediction of thunderstorms at the county or city scales, tremendous efforts have been 
devoted to the improvement of NWP to tackle the problem. There are several great 
challenges. Among them are, understanding how to assimilate observations at the 
convective scale, the need for running NWP with model resolutions less than a few km to 
adequately resolve the dynamical processes relevant for predicting convection, accurately 
representing physical processes in NWP, and dealing with the problems of model spin-up 
and rapid error growth at the convective scale, etc. Although considerable progress has 
been made in all these aspects in the past three decades, in this review paper we focus on 
the issues of rapid update cycle and high-resolution convective-scale data assimilation 
due to their high relevance to improved nowcasting of precipitation. Recently progress 
has been made to the nowcasting of other weather elements such as visibility, wind gust, 
etc, (Isaac et al. 2012), but not discussed here.  
 
HOW NWP IS USED IN NOWCASTING SYSTEMS. Broadly speaking, traditional 
nowcasting systems based on radar echoes can be classified into two types. The least 
complex form of nowcasting involves predicting storm evolution by extrapolating radar 
reflectivity echoes with or without the use of trends in echo size and intensity. Adding a 
bit more complexity are the so-called expert systems3 that attempt to nowcast storm 
initiation and dissipation in addition to echo extrapolation. An example of systems of the 
first type is TITAN (Thunderstorm Identification, Tracking, Analysis and Nowcasting, 
Dixon and Wiener 1993). TITAN is an object-based tracking software that identifies 
areas of precipitation that are defined by a threshold. Other extrapolation techniques, such 
as the CIWS (Corridor Integrated Weather System) (Evans and Ducot 2006), use spatial 
correlations between successive images to find storm motions. The skill of extrapolation-
based techniques decreases rapidly with increasing forecast length. Attempts to improve 
the skill by trending storm growth rates did not improve this decrease in skill (Tsonis and 
Austin 1981). Recently, Radhakrishna et al. (2012) analyzed the scale dependence of 

																																																								
2		Throughout	this	paper,	the	term	“high	resolution”	is	used	to	mean	horizontal	grid	
spacing	less	than	4	km.	
3	In	nowcasting	an	expert	system	is	a	computer	system	that	emulates	the	decision	
making	of	a	human	expert.	Predictors	are	knowledge	based	and	obtained	from	
conceptual	forecast	models,	forecaster	experience,	statistics	and	research	studies.	
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predictability of precipitation growth and decay and concluded that the growth and decay 
may be predictable up to about 2 h for scales larger than 250 km. 
     Since it has been shown repeatedly that NWP models generally produce superior QPF 
than nowcasting systems beyond a few forecast hours, it is logical to blend radar echo 
extrapolation with a numerical model to generate a seamless 0-6 hour forecast. NIMROD 
(Nowcasting and Initialization for Modelling Using Regional Observation Data System, 
Golding 1998) was likely the first system which blended radar echo extrapolation with a 
numerical model. For the first hour nowcast the extrapolation of the observed 
precipitation field was given full weight and it was gradually relaxed with increasing lead 
time to where the model eventually received full weight. Figure 1 shows an example of 
forecast skill4 versus forecast length for extrapolation (black line), NWP (blue line), 
corrected NWP (green line) and extrapolation blended with corrected NWP (red line). It 
should be noted that Figure 1 (and other skill score figures in this paper) does not include 
confidence intervals. Although not ideal, they suffice to serve the main purpose of this 
review article. Improvement on the use of appropriate metrics of forecast skill for 
convective precipitation prediction is one of the areas that deserve attention in the future 
and some discussions will be given in the last section. Figure 1 is based on skill scores for 
July 2012 for the eastern two thirds of the U.S. obtained from the aviation forecast 
system called CoSPA (Consolidated Storm Prediction for Aviation, Pinto et al. 2010). 
Extrapolation is based on the CIWS algorithm while the 3km High Resolution Rapid 
Refresh (HRRR) model supplies the model forecast data. The corrected NWP is the 
HRRR model after intensity and position errors have been corrected through comparison 
with extrapolation. Blended forecasts evaluated in Figure 1 were generated by blending 
the CIWS extrapolation forecasts with the corrected HRRR model forecast data. Figure 1 
shows that after five hours the model skill, while low, exceeds that of extrapolation. The 
corrected model forecast skill exceeds that of extrapolation at a forecast lead of 4 hours. 
Key to this level of model skill is the fact that latent heat estimated from radar reflectivity 
data are used to provide the model improved initial conditions wherever storms are 
present. The blending of the corrected model forecasts with extrapolation forecasts allows 
for a smooth transition from extrapolation to model forecasts.  Similar figures have been 
shown for numerous years starting with Browning (1980), Doswell (1986) and Austin et 
al. (1987). A recent paper by Sokol and Zacharov (2012) described a new blending 
method that assimilates the extrapolated radar reflectivity using a nudging technique. The 
primary two points from Fig. 1 are the rapid decrease in extrapolation skill with 
increasing forecast length, and the low skill afforded by all techniques for lead-times 
greater than 3 hours. The decrease in skill by extrapolation is related to the size and 
organization of the precipitation (Wilson 1966 and reproduced in Wilson et al.1998.  
    Improved nowcasts beyond a few 10’s of minutes require predicting storm initiation, 
growth and decay. Expert systems have only shown improved skill during the first hour 
over extrapolation by predicting storm initiation, growth and decay when the location of 
boundary layer convergence lines are included (Roberts et. al 2012). Current 

																																																								
4	Different skill scores are used in Figures 1, 2, 4, 5, and 6 and these skill scores are 
computed with different domain size and at different regions and times. They are not 
intended for comparison between each other; rather, each figure is only meaningful 
within its own context. 
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observational networks primarily designed for synoptic forecasting generally cannot 
provide the environmental conditions with the temporal and spatial resolution required by 
nowcasting. As an alternative, analyses from NWP models are often used to supply 
atmospheric stability conditions and the location of large scale convergence zones 
important for convective initiation. The detection of mesoscale boundary layer 
convergence lines is essential to determining the specific location of convective initiation. 
Although areas of boundary layer convergence are often evident in radar data as thin lines 
in clear-air radar reflectivity and convergence lines in Doppler velocity, it is not 
straightforward to automatically detect these areas and the clear-air coverage is often 
limited to within 50-70 km or so from the radar. Using a large set of predictor fields and 
manually inserting the location of boundary layer convergence lines in NCAR’s 
AutoNowcaster (ANC) (Mueller et al. 1993), Wilson et al. (2004) demonstrated an ability 
to predict storm initiation up to	one hour in advance. The ANC system uses fuzzy logic5 
to combine predictor fields that reflect the atmospheric environmental conditions and 
boundary layer forcing based on observations and numerical models. Active research is 
being conducted to show the inadequacy of the current operational models to provide 
accurate high-resolution information of the atmospheric stability, such as CAPE 
(Convective Available Potential Energy), CIN (Convective INhabition), and humidity, 
for the nowcasting application. Research is also being conducted to determine if ANC 
nowcasts of storm initiation, growth and decay can be improved utilizing analyses of high 
resolution boundary layer convergence and vertical motion obtained from a 4DVAR-
based technique that assimilates Doppler radar data on a 15 min update cycle (Sun et al. 
2010).  
       In the paper reporting on the Beijing 2008 Forecast Demonstration Project, Wilson et 
al. (2010) summarized that significant improvement in the nowcasting of convective 
storms depended on methodologies that combined extrapolation, expert systems and 
numerical model. It was speculated that assimilation of high resolution radar data into 
numerical models was required if NWP was to be useful in the blending process. One 
exception where NWP by itself may provide quality predictions for the nowcast period 
without the aid of convective-scale observations is for strongly forced synoptic situations 
where local influences are at a minimum (Stensrud et al. 2009).   
 
HIGH-RESOLUTION AND RAPID-CYCLE NWP. To meet the need of nowcasting, 
numerical models have to be run at resolutions of few kilometers. Wilson and Roberts 
(2006) found that the 10 km Rapid Update Cycle (RUC10) 3-h forecasts (issued every 3 
hours) of precipitation initiation during the International H2O Project (IHOP_2002, 
Weckwerth et al. 2004) were correct at predicting areas of convective initiation only 13% 
of the time. Although there are several possible factors that can limit the model’s ability 
to predict precipitation initiation, insufficient model resolution could well be one of them. 
In the last few decades, the steady increase of computing power has made it possible to 
run operational NWP models with horizontal resolutions in the range of 1-4 km. Models 
with such resolutions enable the explicit representation of the convective processes 
without the need of cumulus parameterization schemes, and hence are often referred to as 

																																																								
5	Fuzzy	logic	is	a	probabilistic	method	to	combine	storm	predictors	that	are	
specified	based	on	conceptual	models	of	storm	evolution		
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“convection-permitting” or “convection-allowing” NWP. It was shown by several studies 
that forecasts from the convection permitting models produced more skilful guidance 
than those from a coarser resolution model employing convective parameterization (e.g., 
Done et al. 2004; Kain et al. 2006; Weisman et al. 2008; Clark et al. 2009). Kain et al. 
(2006) reported that a 4-km WRF (Weather Research and Forecasting) model run during 
the Spring Program 2004 conducted by a joint effort of SPC (Storm Prediction Center) 
and NSSL (National Severe Storms Laboratory) received higher ratings than the 
operational Eta Model on subjective performance measures related to convective 
initiation, evolution, and mode. More detailed examinations by Weisman et al. (2008) 
showed that the convection permitting forecasts often realistically represent the initiation, 
structure, and evolution of mesoscale convective phenomena.  
     Although the improved ability of high-resolution NWP in predicting precipitation 
initiation and structure is notable (cited above), the improvement is inadequate for the 
nowcasting application due to two general issues. One of them is the inherent model spin-
up issue that appears when a NWP model is initialized by interpolating a coarser-
resolution analysis to a high-resolution grid (e.g., the so-called “cold start” initialization) 
due to the initial condition’s inability to represent the physical processes at the 
convective-scale. The typical spin-up period for a convection- permitting model is 3-6 
hours, making the forecast in this period useless for the nowcasting purpose. Beyond the 
spin-up period, NWP models often have some ability to forecast the initiation and mode 
of convection, but the accuracy (i.e., storm location and timing) often cannot satisfy the 
needs of nowcasting. Weisman et al. (2008) found, from a subjective comparison of the 
high-resolution model results to the guidance offered by the operational Eta Model, that 
the former did not suggest improvement in forecasting the location and timing of the 
convective systems.  
       To reduce the period required for model spin-up, rapid update cycles are employed in 
some NWP models to provide the forecast model with a “warm start”. Benjamin et al. 
(2004) described the NCEP (National Centers for Environmental Prediction) operational 
rapid update cycle (RUC) system that provides frequently updated forecasts by 
assimilating the latest available observations each hour using the 3D-Var technique. (See 
the next section for descriptions of data assimilation (DA) techniques). A rapidly cycled 
3D-Var system based on WRF (Weather Research and Forecasting) was also 
implemented by the Beijing Meteorological Bureau (BMB) during the 2008 Summer 
Olympics and has been running operationally since then. It was necessary to apply the 
Digital Filter Initialization (DFI, Lynch and Huang 1992) to suppress the noise caused by 
the dynamical imbalance associated with the frequent updates (Benjamin et al. 2004; 
Huang et al. 2007).    
        The rapid update cycling reduces the spin-up issue such that convective storm 
initiation can be predicted in the first few hours of the forecast, which results in improved 
precipitation forecast skill in the nowcasting range. Several studies have shown the 
benefit of the rapid update cycling in improving convective precipitation forecast skills 
(i.e., Benjamin et al. 2004; Sun et al. 2012). Fig. 2 compares the precipitation skills of 
three experiments from Sun et al. (2012) conducted over a one-week period during the 
IHOP_2002: a cold start initialization by interpolating 1o GFS (Global Forecast System) 
analysis to a WRF 3 km grid; a similar experiment but using 40 km ETA instead of GFS; 
and a WRF 3D-Var initialization updated every 3 hours on the 3km grid by assimilating 
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only conventional observations. The precipitation skill in Fig. 2 is measured by the 
Fractions Skill Score (FSS, Roberts and Lean 2008) with a radius of influence of 50 km. 
It clearly shows the improvement by the 3-hourly cycled 3D-Var initialization. Figure 3 
gives an example of the forecasted precipitation patterns from the three experiments at 
t=3h. The GFS initialized forecast (Fig. 3c) barely shows any precipitation in the 
precipitation area indicated by the Stage IV analysis (Fig. 3a). The ETA initialized 
forecast (Fig. 3b) spins up a precipitation band by this time, but the pattern deviates from 
the observed. The rapid cycling warm start experiment produces the precipitation with 
improved location as early as t =1h and shows a closer resemblance to the observed 
pattern at t=3h (Fig. 3d). As will be discussed in the next section, adding radar 
observations will further improve the skill of precipitation forecast.  
      Several operational and research centers are running convection-permitting NWP 
models that are equipped with DA schemes with rapid update cycles. Some of them are 
listed here: The rapid cycled WRF with 3D-Var that is operationally run at Beijing 
Meteorological Bureau (Wang et al. 2012a), the Met Office Unified Model with 3D-Var 
operating at the UK Met Office and at the Bureau of Meteorology, Australia (Ballard et 
al. 2012a), the NCEP (National Centers for Environmental Prediction) 3D-Var based GSI 
(Gridpoint Statistical Interpolation) coupled with WRF and operated by NOAA/ESRL 
(National Oceanic and Atmospheric Administration/Earth System Research Laboratory)  
(Alexander et al. 2011), CAPS (Center for Analysis and Prediction of Storms) 3D-Var 
system developed for the ARPS (Advanced Research and Prediction System) model (Gao 
et al. 2004), Meteo-France 3D-Var system coupled with the AROME model (Caumont et 
al. 2009), a Newtonian nudging based system for the COSMO model operating at DWD 
(Germany Meteorological Service) (Stephan et al. 2008), and the Local Analysis and 
Prediction System (LAPS) developed by NOAA/ESRL (Albers et al. 1996). These 
systems are run with 1.5 – 4 km horizontal resolutions and 1 – 3 h rapid update cycles, 
assimilating radar observations using different techniques. 
 
DATA ASSIMILATION AT THE CONVECTIVE SCALE. Traditional nowcasting 
techniques largely relied on radar observations because Doppler radar is the only 
operational instrument that can frequently sample the detailed structure of convective 
storms. It has been recognized that the effective use of radar observations to initialize 
NWP models is one of the keys to the success of explicit prediction of convective storms 
(Droegemeier 1990; Lilly 1990). Doppler radars provide 3-dimensional high-resolution 
observations of the atmosphere at the convective scale, but these measurements were 
limited to radial velocity and variables associated with hydrometeors. Hence, earlier 
works that began in the 1990’s focused on the proof-of-concept studies to investigate 
whether it was feasible to retrieve the full 3-dimensional wind and temperature field from 
radial velocity observations of single Doppler radar (e.g., Sun et al. 1991; Qiu and Xu 
1992; Shapiro et al. 1995; Gao et al. 1999) and the microphysics from reflectivity 
observations (e.g., Sun and Crook 1997, 1998). The promising results from these studies 
encouraged efforts on the assimilation of radar observations into operational NWP 
models using various DA techniques. While advanced DA techniques, such as 4D-Var 
and ensemble Kalman filter (EnKF), showed promise and are being actively studied for 
radar DA, other relatively simple yet computationally efficient techniques are also quite 
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popular. In the following, we provide a brief review of some DA techniques that are used 
at the convective scale. 
 
Diabatic initialization based on reflectivity. The simplest way to use radar observations 
for the initialization of a NWP model is to extract information from reflectivity data. The 
radar reflectivity can be linked to hydrometeor content or precipitation rate through 
theoretical or empirical relations. Latent heat released by condensation can be estimated 
from derived hydrometeor content or precipitation rate. Further, the humidity can be 
specified by assuming saturation wherever the reflectivity exceeds a pre-specified value 
(Wang et al. 2012a). Techniques to assimilate these estimated quantities from reflectivity 
are developed for operational models, including latent heating nudging (e.g., Jones and 
Macpherson 1997; Stephan et al. 2008), DDFI (Weygandt et al. 2008), and complex 
cloud analysis (e.g., Albers et al. 1996; Xue et al. 2003; Hu et al. 2006a). These 
techniques, in one way or another, apply the concept of diabatic initialization 
(Krishnamurti et al. 1991) in which the diabatic effect is accounted for through the 
assimilation of latent heat and/or humidity estimated from radar reflectivity observations 
(and often also from satellite and surface observations) by assuming saturation in cloud 
regions. It has been demonstrated that the diabatic initialization techniques based on 
reflectivity data are able to reduce the precipitation spin-up problem and hence improve 
the forecast skill at least in the first few hours (e.g., Hu et al. 2006a; Stephan et al. 2008; 
Weygandt et al. 2008; Dixon et al. 2009; Schenkman et al. 2011a, b; Wang et al. 2012a)  
Fig. 4 gives an example of the improved precipitation forecast skill when latent heat 
nudging based on reflectivity observations was used in NCAR’s RTFDDA (Real-Time 
Four-Dimensional Data Assimilation, Liu et al. 2008) system with a 3km grid spacing, 
for a one week period on a domain over the Front Range of the Rockies. The hourly-
accumulated precipitation forecast skill, as measured by FSS, from the experiment with 
radar reflectivity assimilation is initially significantly higher than that without 
reflectivity. The skill, however, decreases rather quickly in the first five hours likely due 
to the lack of convective-scale dynamical response in the initialization. The RTFDDA 
with latent heat nudging is running operationally at a proving ground of U.S. Army 
Testing and Evaluation Command and the real-time performance is being evaluated. 
      The assimilation techniques based on the diabatic initialization provide practical and 
computationally efficient ways to use information contained in reflectivity observations 
for the improvement of NWP precipitation forecast in the nowcasting range. Several 
operational centers, including the Met Office of the United Kingdom and DWD of 
Germany, operate rapid cycle systems that include reflectivity data assimilation through 
the diabatic initialization.  
 
Variational radar DA. The above techniques for reflectivity data assimilation are often 
combined with a 3D-Var technique that is capable of assimilating radial velocity 
observations. The 3D-Var is currently a commonly used data assimilation technique by 
operational NWP systems because of its computational efficiency and its ability to 
assimilate various indirect observations (such as satellite radiance and radar radial 
velocity). To assimilate radar radial velocity and reflectivity in a 3D-Var system, the 
original cost function is modified to include additional observation terms that measure the 
discrepancy between the model-derived radial velocity and reflectivity and the respective 
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observations. Direct assimilation of radar reflectivity through the 3D-Var cost function 
can only have minimal impact because the 3-dimensional balances used in 3D-Var 
techniques cannot fully represents those in the convective scale and hence storms may 
not be effectively sustained. Therefore a common practice is to include the diabatic 
initialization using one of the techniques mentioned in the previous section to enhance 
the impact of the reflectivity observations. Encouraging results from 3D-Var radar DA 
have been shown through case studies and real-time demonstrations as well as operations 
(Gao et al. 2004; Xiao et al. 2005, 2007; Hu et al. 2006b; Hu and Xue 2007; Xue et al. 
2008; Kain et al. 2010; Rennie et al. 2010; Sun et al. 2012).  
      The impact of radar DA on short-term precipitation forecasts using WRF initialized 
by the 3D-Var developed at CAPS of University of Oklahoma (Xue et al. 2003; Gao et al. 
2004) is shown by Fig. 5, which compares the GSS (Gilbert Skill Score) of three model 
runs for the threshold of 2.5mm over 36 forecasts starting at 12 UTC from April 15 to 
June 6 2008 (run only during weekdays). There was no continuous rapid cycling in this 
real-time exercise, which is believed to be the cause of the rapid drop of skill as can be 
observed in Fig. 5. However, the skill scores clearly show the benefit of assimilating 
radar observations. The 3D-Var system includes a diabatic initialization scheme via the 
cloud analysis method described by Hu et al. (2006a).  More detailed description of the 
real-time exercise for storm prediction during the NOAA Hazardous Weather Testbed 
2008 Spring Experiment can be found in Xue et al. (2008) and Kong et al. (2008). 
Similar operational systems that assimilate radial velocity and reflectivity using a 3D-Var 
with the aid of a diabatic initialization have also shown some success, including the UK 
Met Office 3D-Var (Ballard et al. 2012a; Ballard et al. 2012b) and WRF 3D-Var (Sun et 
al. 2012; Wang et al. 2012a). 
       While studies described above have shown that the assimilation of the radial velocity 
is technically feasible in 3D-Var, critical questions remain as to how the 3D-Var 
technique can retrieve the unobserved tangential wind component. Sugimoto et al. (2009) 
demonstrated, using Observation Simulation System Experiment (OSSE) and WRF 3D-
Var, that the 3D-Var technique has a limited ability in retrieving the tangential wind 
when a radar network only has single Doppler coverage. They found that the retrieved 
tangential component only had a correlation of ~0.4 with the simulated observations. In 
contrast, some previous studies (e.g., Sun et al. 1991; Sun and Crook 1994) have 
suggested that 4D-Var has a good ability in retrieving the unobserved tangential 
component of wind. 
     The basic concepts of the 3D-Var and 4D-Var are the same except that the 4D-Var 
technique employs an additional set of prognostic equations as a strong constraint. 
Moreover, the 4D-Var minimizes a cost function that is defined over a time window, and 
hence it uses data at more than one time steps to produce an analysis. Since the 4D-Var 
technique can use a full NWP model that includes the time tendency term as the 
constraint, it can potentially be a superior technique for the convective-scale DA due to 
the fact that convective weather has a large temporal change that can cause significant 
errors if neglected. The capability of the 4D-Var technique in radar DA was demonstrated 
in several studies by Sun et al. (1991; 1997, 1998) using a cloud-scale model with warm 
rain physics and its adjoint. Sun (2005) and Sun and Zhang (2008) showed that analyses 
by 4D-Var radar DA successfully initialized convective storms and hence improved their 
forecasts. A 4D-Var radar DA system has recently been developed for the WRF model 
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assimilating both radial velocity and reflectivity with an adjoint model that includes 
microphysics. Initial tests in a case study showed that the system had a good potential to 
improve 0-6 hour forecasts of convective storms (Sun and Wang 2012; Wang et al. 
2012b). Fig. 6 shows a comparison of precipitation forecast skills (FSS with a radius of 8 
km) between WRF 4D-Var, WRF 3D-Var, and an enhanced WRF 3D-Var by a diabatic 
initialization scheme. It clearly shows that the initial analysis skill by the 4D-Var is 
maintained during the 6 hour forecasts and, in contrast, the skills of the 3D-Var schemes 
decrease in the first forecast hour due to dynamical readjustments. Sun and Wang (2012) 
found that the WRF 4D-Var was able to analyze the low-level cold pool as well as the 
mid-level latent heating while the enhanced 3D-Var missed the low-level cold pool.  
       Some early implementations of the 4D-Var technique for high-resolution operational 
models have shown encouraging results. JMA (Japan Meteorological Agency) has been 
running a mesoscale 4D-Var system assimilating Hourly precipitation data analyzed by 
the JMA’s radar network and automated meteorological data acquisition system with a 5 
km resolution. It was reported that the threat score of the 4D-Var in the pre-operational 
experiments significantly surpassed those of the routine system (Koizumi et al. 2005) 
even beyond the nowcasting range. The upgrade to a convection-permitting 
nonhydrostatic system (JMA-NHM, Honda et al. 2005) that assimilates radial velocity 
and reflectivity is planned and is now in the research mode. Kawabata et al. (2007; 2011) 
reported promising results in two case studies using the new 4D-Var radar DA system. 
Since the end of March 2012 the Met Office has been running a real-time demonstration 
hourly cycling 4D-Var system over a domain covering Southern England and Wales. The 
forecasts were made available for assessment during some of the many flooding events in 
May to November 2012 and during the 2012 London Summer Olympics. This system 
currently assimilates radar radial velocity in the 4D-Var but the reflectivity is assimilated 
with a diabatic initialization (Jones and Macpherson 1997, Dixon et al 2009, Ballard et al 
2012a and 2012b). The 4D-Var analysis uses a 3km grid while the forecast is conducted 
with a 1.5km version of the unified model. There were some spectacular successes, e.g., 
the outbreak of a line of thunderstorms on 28th May 2012 that produced flooding and 
lightning (see Figure 7). In this case the 4D-Var system correctly initiated the storms 
when nothing was present at T+0. In the example shown the 5-hour forecast from the 
hourly cycling 4D-Var system has a very good forecast of the location of the line of 
convection (Fig. 7a), the 5-hour current operational blended nowcast has nothing (Fig. 
7c) because the latest UK 4km forecast from 03UTC that it was blended with had no 
convection at 15UTC, and the latest available forecast from the 3-hourly cycling 1.5km 
3D-Var has some convection but too far east and not extensive enough (Fig. 7d). The 
hourly cycling 4D-Var system is able to assimilate Doppler radial wind observations 
from 5 radars, 6 times per hour, as well as other observations from wind profilers and 
satellites every 15-60 min. For the case presented here, the improved forecast does not 
come from radar observations because there was not much radar data at the initialization 
time. In other cases, however, the benefit of the radar assimilation can be seen with the 
skill of the location of convection increasing at successively shorter lead times. From 
subjective and objective assessment of the forecasts it is clear that in some cases the 
impact of the hourly cycling 4D-Var is limited by the small domain size as the weather 
systems are advected in and out of the forecast domain so it is hoped to extend the system 
to cover the whole UK.  
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         There is no doubt that we are only in the early stage to demonstrate the capability of 
the 4D-Var technique in initializing high-resolution operational models. However, we 
anticipate that more operational testing will be conducted in the next decade for 
nowcasting applications to confirm the ability of the 4D-Var technique in improving 
convective forecasting. The 4D-Var technique has been successfully used for large-scale 
models and longer-term forecasts in several of the major operational centers throughout 
the world, including ECMWF (European Center for Medium Range Weather Forecast), 
UK Met Office, Japan Meteorological Agency, and Environment Canada. For the 
convective scale, however, the progress is slow, although its potential has been shown 
through case studies and real-time demonstrations described above. Besides the high 
computational cost to run a high-resolution 4D-Var system, the main obstacle is its large 
demand in resource to develop and maintain a 4D-Var system. This is due to the need for 
an adjoint model and potential difficulties dealing with highly nonlinear yet very 
important microphysical processes in the adjoint model at the convective scale (Zou 
1997). Although these issues are not insurmountable, some operational centers opt to 
develop the 4-dimensional analysis system based on the ensemble Kalman filter (EnKF) 
approach, which requires much fewer resources to develop and maintain compared to a 
4D-Var system.  
 
EnKF radar DA. The EnKF DA method was applied to the convective-scale radar DA 
initially by Snyder and Zhang (2003), for an ‘identical twin’ problem with a perfect 
prediction model and simulated radial velocity observations, after promising results were 
shown by Evensen (1994) and Houtekamer and Mitchell (1998) for large-scale problems. 
Unlike the traditional Kalman filter that explicitly evolves the background error 
covariance in time using a covariance prediction equation (e.g., Evensen 1992), the 
method uses a forecast ensemble to evolve and estimate flow-dependent background 
error statistics through the DA cycles. Zhang et al. (2004) further showed that the initial 
position error of a storm can be effectively corrected by the EnKF DA cycles, producing 
analyses with good quality. The ability of EnKF in accurately analyzing microphysical 
species associated with a multi-phase ice scheme, and in assimilating reflectivity 
observations was first demonstrated by Tong and Xue (2005), using a fully compressible 
cloud model and simulated radar observations. EnKF was shown to be able to reestablish 
the model storm after a number of assimilation cycles, and the best results were obtained 
when both radial velocity and reflectivity data, including reflectivity information outside 
of the precipitation regions, are used.  

The application of EnKF to real observations also showed progress in recent 
years. Dowell et al. (2004) first applied the EnKF technique to real radar observations 
and obtained EnKF analyses of vertical velocity and vorticity within a supercell storm 
that are similar to those of dual-Doppler analyses. Tong (2006) documented difficulties in 
maintaining accurate prediction of an EnKF-analyzed supercell storm beyond 30 minutes 
for a supercell storm. Lei et al. (2009) demonstrated the importance of including surface 
mesonet data to obtain an improved one-hour prediction of a tornadic supercell storm, 
indicating the importance of accurate analysis of both convective scale storms and their 
mesoscale environment.  
           One challenge for the application of EnKF to the convective-scale is to properly 
account for model errors because the nonlinear error grows rapidly in a convective 
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system and the EnKF technique relies on the model to produce flow-dependent error 
covariance. Several studies examined methods to properly account for model errors 
within the EnKF system for the convetive-scale DA. Increased covariance inflation using 
various methods can help make the ensemble spread more consistent with the ensemble 
mean error (e.g., Dowell and Wicker 2009), while the use of multiple microphysics 
schemes in the forecast ensemble has also proven to be beneficial (Snook et al. 2011). 
Figure 8b shows a two-hour precipitation forecast of the tornadic mesoscale convective 
system studied by Snook et al. (2011). Comparing with the observed storm (Fig. 8a), the 
ensemble mean forecast predicts the dominant convective mode reasonably well and the 
location of tornadic mesovortices with some success, which is a great improvement over 
a control that does not use radar observations (not shown). An alternative approach is to 
correct model error through parameter estimation. Tong and Xue (2008a, b) showed that 
it is possible to estimate parameter uncertainties associated with microphysical species 
within an ice microphysics scheme together with the state estimation using EnKF, 
although the estimation becomes more difficult when multiple parameters contain error. 
The addition of polarimetric radar measurements is shown to improve the parameter 
estimation as the measurements provide an additional observation constraint on the 
estimation problem (Jung et al. 2010). 

EnKF has been shown to have a particular strength in handling complex physical 
processes. Xue et al. (2010) showed that both mixing ratios and total number 
concentrations of multiple microphysical species of a two-moment microphysics scheme 
can be successfully ‘retrieved’ from radar radial velocity and reflectivity data using 
EnKF. For a real case, Jung et al. (2012) further demonstrate the ability of EnKF in 
properly estimating microphysical state variables when using a two-moment 
microphysics scheme; in such a case the EnKF system is even able to capture 
polarimetric radar signatures within a supercell storm. More accurate EnKF analysis of 
another real storm using a two-moment microphysics scheme is documented in Stensrud 
et al. (2012). 

Although encouraging results of EnKF have been shown for convective-scale DA, 
further development and evaluation are necessary to prove the ability of EnKF in 
improving 0-6 precipitation nowcasting before it can be used operationally. An advantage 
of EnKF over 3DVAR and 4DVAR is that it is able to produce an ensemble of analyses 
that can serve as initial conditions for ensemble forecasting. This has been successfully 
demonstrated by Aksoy et al. (2010), Snook et al. (2012), and Dawson et al. (2011) for 
convective storms, and by Zhang et al. (2011) and Dong and Xue (2012) for hurricanes. 
A relatively new, promising approach that attempts to combine the strengths of 
variational and ensemble methods is the hybrid DA method, that utilizes ensemble-
derived flow-dependent error variance within a 3DVAR or 4DVAR framework. 
Preliminary studies have been conducted recently using such an approach (Li et al. 2012) 
and demonstrated promise.  

 
FUTURE CHALLENGES. Although significant progress has been made in using NWP 
models towards the nowcasting application, there are still many challenges ahead of us. 
We discuss three of them in this section: the predictability of precipitation systems, needs 
for improved mesoscale observation networks, and improvement of rapid update NWP 
and DA systems. 
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Predictability of precipitation systems. Lorenz (1969)’s theoretical study on predictability 
of flows with many scales was widely accepted as a reference for understanding the range 
of predictability of atmospheric motion. Recently, Germann et al. (2006) examined the 
predictability of precipitation and its scale-dependence based on the lifetime of 
precipitation patterns derived from continental-scale radar images. The lifetime of rain 
patterns is defined here as the time at which a given scale in the precipitation field 
decorrelates to 1/e in coordinates moving with the precipitation. Thus, if the nowcast 
method is simply Lagrangian persistence (LP), such as MAPLE (Turner et al. 2004), the 
predictability for a given scale is its lifetime. Figure 9 shows the lifetime as a function of 
scale computed from 1424-h warm season rainfall datasets from US radar composites 
(Germann et al. 2006).  Here wavelet decomposition was used for scale decomposition of 
reflectivity (dBZ). As seen, the smallest scales resolvable by radar data (a few 
kilometers), have a lifetime of less than one hour with very little variability. As scales 
increases, their lifetime increases and becomes more and more case dependent. The 
simplest way of increasing nowcasting skill is by filtering out the smallest scales of 
precipitation.  This is sometimes done inadvertently when two methods of forecast are 
blended: the blending process may eliminate small scales. As shown in Germann et al. 
(2006), there is also a strong dependence on geographic location, with central U.S. 
having the highest lifetime and Florida the lowest. To a good extent this can be attributed 
to the diurnal cycle of precipitation and the advection of precipitation patterns across the 
continent as described in Carbone et al (2002) and Surcel et al (2010). Predictability also 
strongly increases with the strength of large scale forcing that organizes precipitation 
spatially. This is true for NWP as well as for LP. Thus, it should not be surprising that 
predictability by MAPLE and NWP is in fact correlated: more persistent systems are 
more organized, have greater areal coverage and are more predicable by the two methods 
of forecast.  
        The most likely origin of the scale-dependence of precipitation predictability 
discussed above is the small-scale variability of low-level humidity as well as wind and 
temperature (Weckwerth 2000; Ge et al. 2013). Current observation networks are clearly 
inadequate to address these small-scale variations. This implies that it would be difficult 
for either extrapolation-based nowcasting techniques or NWP models to forecast 
convective storms with scales less than ~30 km beyond 1-2 hours. The improvement of 
nowcasting through enhanced data assimilation and NWP models would be most possibly 
seen beyond the 1-2 hour forecast range. Sun et al. (2012) found that the impact of the 
assimilation of Doppler radars had a clear diurnal variation in a consecutive 6-day 
forecasting experiment during IHOP_2002 with a larger impact on the forecasts starting 
at evening and smaller impact on the forecasts initialized at early morning. A possible 
cause for such a variation is due to the fact that night-time convective systems are more 
organized and have larger-scale patterns than those in the early morning for the study 
period. The more organized systems are better initialized due to more Doppler radar data 
coverage and they are intrinsically more predictable.  
      The temporal variability of predictability means that the usefulness of convective-
scale forecasts will vary from day-to-day, dependent on the strength of the larger scale 
forcing. This temporal variability is apparently a result of the intrinsic uncertainty of the 
convective precipitation processes. This argues for an inherently probabilistic approach to 
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forecasting at this scale. Several operational centers are currently developing or testing 
ensemble prediction systems based on convection-permitting models. Given the inherent 
uncertainty of convective systems and the temporal variability of predictability, research 
is required to answer the question how to discriminate the scales that are predictable from 
those that are not as a function of lead time. Data assimilation techniques should be 
developed to optimize the predictable scales with available observations while 
quantifying the uncertainty of the unpredictable scales.  
Needs for improved mesoscale networks. One of the challenges of mesoscale (rapid 
update cycling) analysis and forecast systems is to provide them with a sufficient amount 
and spatial coverage of observations of high spatial and temporal resolution. Detailed 
observational information on moisture , wind, and temperature in the boundary layer and 
the mid-level is considered to be particularly relevant for constraining the initial state of 
mesoscale models. In past years, much progress has been made in the assimilation and 
impact assessment of radar precipitation, reflectivity and radial wind velocity data, using 
a variety of assimilation techniques. However, Doppler radars have a limited ability in 
detecting mesoscale environmental conditions (due to lack of reflectors) that are critical 
for a successful analysis that leads to improved precipitation forecasts beyond just a few 
hours. Dabberdt et al. (2005) summarized the observational needs for improved 
nowcasting, including enhanced surface network, polarimetric radar, enhanced Doppler 
radar coverage by integrating WSR-88D, TDWR6, and X-band radars, and profiling the 
boundary layer. Other operational observation types that have been shown to be 
beneficial in mesoscale rapid update cycling systems are the GNSS (Global Navigation 
Satellite System) meteorological network, ground based GPS receiver, satellite IR/VIS 
imagery, and aircraft data.  For each of these data sources, a strict quality control and bias 
treatment is of critical importance to achieving a positive impact in mesoscale analysis 
systems. Several new (not yet operational) data sources like Mode-S aircraft observations 
or boundary layer water vapour lidars, seem very promising for operational use in 
mesoscale rapid update cycling systems, and deserve to be studied further.  
Improvement of DA and rapid update NWP. While variational and ensemble-based DA 
methods have shown great promises, including measurable impacts in realtime storm-
scale forecasting, many challenges remain to obtain optimal, well balanced, dynamically 
consistent state estimations in the presence of complex model physics, and to produce 
accurate and well calibrated deterministic and ensemble forecasts. The dynamically 
consistent initial conditions, i.e., produced by 4D-Var (Sun and Wang 20120), are able to 
maintain the forecast skill of the initial convection, avoiding the rapid drop as shown by 
some of the simpler methods.  The challenges are both theoretical and practical. 
Theoretical challenges include the best approaches to dealing with model error, effective 
ways of ameliorating the impact of sampling error, proper fitting of the analysis to dense 
observations while correcting errors at multiple scales (Lorenc 2003). Data quality 
control, bias removal, non-linearity, and non-Gaussian error are other aspects that require 
careful research. Given the predictability issue of precipitation systems described above, 
it is important to design a data assimilation system that aims to resolve the predictable 
scales while accounting uncertainties of the unpredictable scales. 

																																																								
6 Terminal Doppler Weather Radars 
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      Practical issues include the design and implementation of computationally efficient 
algorithms that can execute fast enough on large parallel computers so as to produce 
rapidly updated forecasts that meet the needs of nowcasting and very-short-range 
forecasting of severe storms. We envision that the 4D-Var and hybrid of variational 
method and EnKF hold great promises for the future improvement of NWP for the 
convective-scale because of their abilities in obtaining initial conditions that contain 
convective-scale balances. However, both approaches require further development and 
research to make them computationally efficient for operational implementations. The 
sub-hourly rapid update cycling is another development that is required by the 
nowcasting application, which is currently still unachievable in most of the operational 
systems that are mainly 3D-Var-based.  
     Improvement of convective-scale modeling is no doubt another area that is required 
for the successful application of NWP for nowcasting. The performance of NWP can be 
quite sensitive to physical parameterizations of microphysics, planetary boundary layer, 
and land surface characteristics even in the very short range. Further research is needed to 
examine the sensitivity of these processes and their parameterization schemes in high-
resolution rapid cycled NWP.  
       Another area that is not addressed in this paper but deserves attention is the proper 
evaluation of the performance of NWP and nowcasting skills for QPF. The use of 
appropriate metrics of forecast skill and careful application of statistics are important to 
determine where and when improvement occurs and how much confidence can be 
assigned to the improvement. New methods and metrics have been developed in recent 
years (Gilleland et al. 2009) and they should be more widely implemented by the 
nowcasting community in the future. 
       The use of NWP for nowcasting precipitation will experience continued rapid 
development in the decades to come. While the traditional nowcasting techniques will 
continue to be developed, they will more and more depend on the short-term high-
resolution NWP that is initialized by radar observations. The combination of the two 
techniques as described in the first section will be the key to produce seamless 
nowcasting that takes advantage of both techniques. With the continued improvements of 
high-resolution data assimilation, numerical modeling with rapid cycles, and computation 
efficiency, it is anticipated that the precipitation nowcasting skill by NWP will continue 
to be improved, giving an increased weight in the blended nowcasting. The greatest 
challenges are to skillfully handle the predictability issue that is scale dependent, to 
improve mesoscale observations especially in the lower levels, and to produce initial 
conditions that are dynamically balanced at the meso- and convective-scale.   
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Figure 1. Forecast skill of vertical integrated liquid (VIL) with the threshold of  
1.5 km m-2 (corresponding to ~25 dBZ) as measured by SEDS (Symmetric Extreme 
Dependency Score, Hogan et al. 2009). The blue, green, black, and red curves show the 
skills of HRRR, corrected HRRR, CIWS, and blending of the latter two, respectively, 
over the month of July 2012 for a partial U.S. domain east of 105o  W longitude.  
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Figure 2. Fractions Skill Scores of hourly-accumulated precipitation from three forecast 
experiments using WRF. Experiment ETA was run with initial conditions from 40 km 
ETA analysis; experiment GFS from 1o GFS analysis; and experiment 3DV_CYC from 
WRF 3D-Var 3-hourly cycled analysis without radar DA. The skill score is computed for 
the threshold of 5mm with a radius of influence of 50 km over 11 retrospective forecasts 
between 11-15 June 2002 during IHOP_2002. 
 
 
 
 
 
 
 



	 26

 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Comparison of precipitation (mmh-1) patterns at t=3h from the three 
experiments of ETA (b), GFS (c), and 3DV_CYC (d) in Fig. 2. The Stage4 analysis is 
shown in (a) for verification. The plots are valid for 0300 UTC 12 June 2002. 
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Figure 4. Fractions Skill Scores of hourly-accumulated precipitation from two WRF runs 
over a Front Range domain initialized with RTFDDA without (blue) and with (red) radar 
reflectivity nudging. The FSS is computed for the threshold of 1 mm with a radius of 
influence of 10 km over 24 forecasts from 11 to 17 June 2009. 
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Figure 5.  Equitable Threat Scores (ETS) for hourly-accumulated precipitation (>2.5mm) 
from two forecast experiments at 4 km grid spacing, with (thick solid line) and without 
(thin solid line) radar radial velocity and reflectivity DA using the ARPS 3D-Var DA 
system and the WRF-ARW forecast model. The ETSs are computed over 36 forecasts 
between 15 April and 6 June 2008 (no forecast on weekends) over a domain covering 
80% of the continental U.S. The thick dashed line shows the ETS for the ensemble mean 
precipitation over 9 ensemble members with radar DA.  
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Figure 6. Fractions Skill Scores for hourly-accumulated precipitation (>5mm) from three 
forecasts using WRF initialized with radar observations via WRF 3D-Var (blue), WRF 
3D-Var with a diabatic initialization (3DVQV), and WRF 4D-Var for the squall line case 
of 12 June 2002 occurred during IHOP_2002.  
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Figure 7. Comparisons of a) top right: the observed UK radar derived surface 
precipitation rate at 15UTC  28th May 2012 with b) top left: the 5-hour forecast from the 
10UTC Met Office 4D-Var hourly cycling 1.5km NWP system, c) bottom left: the 
current operational nowcast from 10UTC using extrapolated radar derived rain rates 
blended with a 4km resolution UK forecast from 03UTC, and d)  bottom right: the latest 
available real-time forecast from the 3-hourly cycling with 3D-Var 1.5km UK-wide 
system which is a 12-hour forecast from 03UTC. The figure shows the comparison on the 
domain of the hourly cycling Met Office NWP system. The coast line is shown by the 
black contour. 
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Figure 8. (a) Reflectivity observations of a tornadic storm at 0400 UTC on 9 May 2007 in 
Oklahoma; (b) Two hour ensemble mean forecast from 40 members initialized by an 
EnKF. The black circles indicate the ranges of CASA (Engineering Research Center for 
Collaborative Adaptive Sensing of the Atmosphere) X-band radars that are also 
assimilated in the experiment. 
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Figure 9. Scale dependence of wavelet band-pass lifetime of fields of reflectivity (dBZ).  
The average over 1424-h of warm season radar rainfall data and the 10 and 90 percentiles 
are shown. 
 
 
 
 


