
The demand for accurate nowcasts of convective precipitation has driven the development 

of high-resolution data assimilation and rapid cycling numerical weather prediction. 
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S ince the early 1960s, techniques for nowcasting  
 convective precipitation have been developed by  
 extrapolating radar echoes. Wilson et al. (1998) 

provided a comprehensive review on the status of 
nowcasting that covered both fundamental and 
application aspects of the subject. Since that paper 
was published, a noticeable new development has been 
the increased application of NWP to the nowcasting 

problem. In this paper, we review the recent progress 
on the use of NWP for nowcasting convective pre-
cipitation and discuss some challenges, and hence 
opportunities, that are lying ahead. This review 
paper was inspired and benefited from the workshop 
on the use of numerical weather prediction (NWP) 
for nowcasting that was sponsored by the World 
Weather Research Programme (WWRP) of the World 
Meteorological Organization (WMO) and was held 
on 24–26 October 2011 at the National Center for 
Atmospheric Research (NCAR) in Boulder, Colorado. 
This workshop was a joint effort between the Working 
Group on Nowcasting Research (WGNR) and 
Working Group on Mesoscale Weather Forecasting 
Research (WGMWFR) under WWRP. (The invited 
participants, keynote speakers, workshop agenda, and 
presentations can be found at http://wmo-workshop 
-on-the-use-of-nwp-for-nowcasting.wikispaces.com.)

Nowcasting is taken here to be forecasting with 
local detail, by any method, over a period from the 
present to a few hours ahead, including a detailed 
description of the present weather. It is widely accepted 
that the nowcasting range refers to the 0–6 h of fore-
cast, which is also referred to as “very short term.” 
Traditionally, nowcasting was considered to provide 
a detailed initial state description with a forecast 
component derived through the extrapolation of these 
conditions in time. Nowcasting is now expanded to 
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include the blending of extrapolation techniques, 
statistical techniques, heuristic1 techniques, and 
numerical weather prediction. In recent years, the 
blending of traditional extrapolation-based tech-
niques with high-resolution2 NWP is gaining popular-
ity in the nowcasting community. The increased need 
for NWP products in nowcasting applications poses 
great challenges to the NWP community because the 
nowcasting application of high-resolution NWP has 
different requirements from the longer-range NWP. 
To name a few, nowcasting requires accurate specifica-
tion of the current weather condition with a resolution 
of a few kilometers; frequent accurate updates of the 
current weather and nowcasts are critical, particu-
larly in the case of severe storms; and there is a much 
smaller tolerance for the timing and location errors 
of forecasted precipitation systems.

It is not a trivial task for the NWP community 
to improve the NWP to the extent that it meets the 
nowcasting requirements. Since Lilly (1990)’s history-
making publication in which he challenged the meteo-
rological community to consider the explicit prediction 
of thunderstorms at the county or city scales, tremen-
dous efforts have been devoted to the improvement of 
NWP to tackle the problem. There are several great 
challenges. Among them are understanding how to 
assimilate observations at the convective scale, the need 
for running NWP with model resolutions less than a 
few kilometers to adequately resolve the dynamical 
processes relevant for predicting convection, accurately 
representing physical processes in NWP, dealing with 
the problems of model spinup and rapid error growth 
at the convective scale, and so on. Although consider-
able progress has been made in all these aspects in 
the past three decades, in this review we focus on the 
issues of the rapid update cycle and high-resolution 
convective-scale data assimilation because of their high 
relevance to the improved nowcasting of precipitation. 
Recently, progress has been made in the nowcasting of 
other weather elements such as visibility, wind gust, 
and so on (Isaac et al. 2014), but not discussed here.

HOW NWP IS USED IN NOWCASTING 
SYSTEMS. Broadly speaking, traditional nowcasting 
systems based on radar echoes can be classified into 

two types. The least complex form of nowcasting 
involves predicting storm evolution by extrapolating 
radar reflectivity echoes with or without the use of 
trends in echo size and intensity. Adding a bit more 
complexity is the so-called expert systems3 that at-
tempt to nowcast storm initiation and dissipation 
in addition to echo extrapolation. An example of 
systems of the first type is Thunderstorm Identifica-
tion, Tracking, Analysis and Nowcasting (TITAN; 
Dixon and Wiener 1993). TITAN is an object-based 
tracking software that identifies areas of precipitation 
that are defined by a threshold. Other extrapolation 
techniques, such as the Corridor Integrated Weather 
System (CIWS; Evans and Ducot 2006), use spatial 
correlations between successive images to find storm 
motions. The skill of extrapolation-based techniques 
decreases rapidly with increasing forecast length. 
Attempts to improve the skill by trending storm 
growth rates did not improve this decrease in skill 
(Tsonis and Austin 1981). Recently, Radhakrishna 
et al. (2012) analyzed the scale dependence of the 
predictability of precipitation growth and decay 
and concluded that the growth and decay may be 
predictable up to about two hours for scales larger 
than 250 km.

Since it has been shown repeatedly that NWP 
models generally produce superior quantitative pre-
cipitation forecasts (QPFs) than nowcasting systems 
beyond a few forecast hours, it is logical to blend 
radar echo extrapolation with a numerical model 
to generate a seamless 0–6-h forecast. Nowcasting 
and Initialization for Modeling Using Regional 
Observation Data System (NIMROD; Golding 1998) 
was likely the first system that blended radar echo 
extrapolation with a numerical model. For the first 
hour nowcast, the extrapolation of the observed 
precipitation field was given full weight, and it was 
gradually relaxed with increasing lead time to where 
the model eventually received full weight. Figure 1 
shows an example of forecast skill4 versus forecast 
length for extrapolation (black line), NWP (blue 
line), corrected NWP (green line), and extrapolation 
blended with corrected NWP (red line). It should 
be noted that Fig. 1 (and other skill score figures in 
this paper) does not include confidence intervals. 

1 Heuristic is defined as forecast rules based on experiment, numerical simulation, theory, and forecast rules of thumb.
2 Throughout this paper, the term “high resolution” is used to mean horizontal grid spacing less than 4 km.
3 In nowcasting, an expert system is a computer system that emulates the decision making of a human expert. Predictors are 

knowledge based and obtained from conceptual forecast models, forecaster experience, statistics, and research studies.
4 Different skill scores are used in Figs. 1, 2, 4, 5, and 6, and these skill scores are computed with different domain sizes and at 

different regions and times. They are not intended for comparison between each other; rather, each figure is only meaningful 
within its own context.
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Although not ideal, they suffice to serve the main 
purpose of this review article. Improvement in the 
use of appropriate metrics of forecast skill for convec-
tive precipitation prediction is one of the areas that 
deserve attention in the future, and some discussions 
will be given in the last section. Figure 1 is based on 
skill scores for July 2012 for the eastern two-thirds of 
the United States obtained from the aviation forecast 
system called Consolidated Storm Prediction for 
Aviation (CoSPA; Pinto et al. 2010). Extrapolation is 
based on the CIWS algorithm, while the 3-km High-
Resolution Rapid Refresh (HRRR) model supplies the 
model forecast data. The corrected NWP is the HRRR 
model after intensity and position errors have been 
corrected through comparison with extrapolation. 
Blended forecasts evaluated in Fig. 1 were generated 
by blending the CIWS extrapolation forecasts with 
the corrected HRRR model forecast data. Figure 1 
shows that after five hours the model skill, while 
low, exceeds that of extrapolation. The corrected 
model forecast skill exceeds that of extrapolation 
at a forecast lead of four hours. Key to this level of 
model skill is the fact that latent heat estimated from 
radar reflectivity data is used to provide the model 
improved initial conditions wherever storms are 
present. The blending of the corrected model fore-
casts with extrapolation forecasts allows for a smooth 
transition from the extrapolation to model forecasts. 
Similar figures have been shown for numerous years 
starting with Browning (1980), Doswell (1986), and 
Austin et al. (1987). A recent paper by Sokol and 
Zacharov (2012) described a new blending method 
that assimilates the extrapolated radar reflectivity 
using a nudging technique. The primary two points 
from Fig. 1 are the rapid decrease in extrapolation 
skill with increasing forecast length and the low skill 
afforded by all techniques for lead times greater than 
three hours. The decrease in skill by extrapolation is 
related to the size and organization of the precipita-
tion [Wilson (1966) and reproduced in Wilson et al. 
(1998)].

Improved nowcasts beyond a few tens of minutes 
require predicting storm initiation, growth, and 
decay. Expert systems have only shown improved skill 
during the first hour over extrapolation by predicting 
storm initiation, growth, and decay when the location 
of boundary layer convergence lines are included 
(Roberts et al. 2012). Current observational networks 
primarily designed for synoptic forecasting gener-
ally cannot provide the environmental conditions 

with the temporal and spatial resolution required by 
nowcasting. As an alternative, analyses from NWP 
models are often used to supply atmospheric stability 
conditions and the location of large-scale convergence 
zones important for convective initiation. The detec-
tion of mesoscale boundary layer convergence lines is 
essential to determining the specific location of con-
vective initiation. Although areas of boundary layer 
convergence are often evident in radar data as thin 
lines in clear-air radar reflectivity and convergence 
lines in Doppler velocity, it is not straightforward 
to automatically detect these areas and the clear-air 
coverage is often limited to within 50–70 km or so 
from the radar. Using a large set of predictor fields 
and manually inserting the location of boundary layer 
convergence lines in NCAR’s AutoNowcaster (ANC) 
(Mueller et al. 1993), Wilson et al. (2004) demon-
strated an ability to predict storm initiation up to one 
hour in advance. The ANC system uses fuzzy logic5 to 
combine predictor fields that reflect the atmospheric 
environmental conditions and boundary layer forcing 
based on observations and numerical models. Active 
research is being conducted to show the inadequacy 
of the current operational models to provide accu-
rate high-resolution information of the atmospheric 

Fig. 1. Forecast skill of vertical integrated liquid (VIL) 
with the threshold of 1.5 km m–2 (corresponding 
to ~25 dBZ ) as measured by symmetric extreme 
dependency score (SEDS; Hogan et al. 2009). The blue, 
green, black, and red curves show the skills of HRRR, 
corrected HRRR, CIWS, and the blending of the latter 
two, respectively, over the month of July 2012 for a 
partial U.S. domain east of 105°W longitude.

5 Fuzzy logic is a probabilistic method to combine storm predictors that are specified based on conceptual models of storm 
evolution.
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stability, such as convective available potential energy 
(CAPE), convective inhibition (CIN), and humid-
ity, for the nowcasting application. Research is also 
being conducted to determine if ANC nowcasts of 
storm initiation, growth, and decay can be improved 
utilizing analyses of high-resolution boundary layer 
convergence and vertical motion obtained from a 
four-dimensional variational data assimilation 
(4D-Var)-based technique that assimilates Doppler 
radar data on a 15-min update cycle (Sun et al. 2010).

In the paper reporting on the Beijing 2008 Forecast 
Demonstration Project, Wilson et al. (2010) summa-
rized that significant improvement in the nowcasting 
of convective storms depended on methodologies that 
combined extrapolation, expert systems, and numeri-
cal model. It was speculated that the assimilation of 
high-resolution radar data into numerical models 
was required if NWP was to be useful in the blending 
process. One exception where NWP by itself may 
provide quality predictions for the nowcast period 
without the aid of convective-scale observations is 
for strongly forced synoptic situations where local 
influences are at a minimum (Stensrud et al. 2009).

HIGH-RESOLUTION AND RAPID CYCLE 
NWP. To meet the need of nowcasting, numerical 
models have to be run at resolutions of a few kilo-
meters. Wilson and Roberts (2006) found that the 
10-km Rapid Update Cycle (RUC10) 3-h forecasts 
(issued every 3 h) of precipitation initiation during the 
International H2O Project (IHOP_2002; Weckwerth 
et al. 2004) were correct at predicting areas of convec-
tive initiation only 13% of the time. Although there 
are several possible factors that can limit the model’s 
ability to predict precipitation initiation, insufficient 
model resolution could well be one of them. In the last 
few decades, the steady increase of computing power 
has made it possible to run operational NWP models 
with horizontal resolutions in the range of 1–4 km. 
Models with such resolutions enable the explicit rep-
resentation of the convective processes without the 
need of cumulus parameterization schemes and hence 
are often referred to as “convection-permitting” or 
“convection-allowing” NWP. It was shown by several 
studies that forecasts from the convection-permitting 
models produced more skillful guidance than those 
from a coarser-resolution model employing convec-
tive parameterization (e.g., Done et al. 2004; Kain 
et al. 2006; Weisman et al. 2008; Clark et al. 2009). 
Kain et al. (2006) reported that a 4-km Weather 
Research and Forecasting Model (WRF) run during 
the spring program 2004 conducted by a joint effort 
of the Storm Prediction Center (SPC) and National 

Severe Storms Laboratory (NSSL) received higher 
ratings than the operational Eta Model on subjec-
tive performance measures related to convective 
initiation, evolution, and mode. More detailed 
examinations by Weisman et al. (2008) showed that 
the convection-permitting forecasts often realistically 
represent the initiation, structure, and evolution of 
mesoscale convective phenomena.

Although the improved ability of high-resolution 
NWP in predicting precipitation initiation and 
structure is notable (cited above), the improvement 
is inadequate for the nowcasting application due to 
two general issues. One of them is the inherent model 
spinup issue that appears when a NWP model is ini-
tialized by interpolating a coarser-resolution analysis 
to a high-resolution grid (e.g., the so-called cold start 
initialization) due to the initial condition’s inability 
to represent the physical processes at the convective 
scale. The typical spinup period for a convection-
permitting model is 3–6 h, making the forecast in this 
period useless for the nowcasting purpose. Beyond the 
spinup period, NWP models often have some ability 
to forecast the initiation and mode of convection, but 
the accuracy (i.e., storm location and timing) often 
cannot satisfy the needs of nowcasting. Weisman et al. 
(2008) found, from a subjective comparison of the 
high-resolution model results to the guidance offered 
by the operational Eta Model, that the former did not 
suggest improvement in forecasting the location and 
timing of the convective systems.

To reduce the period required for model spinup, 
rapid update cycles are employed in some NWP 
models to provide the forecast model with a “warm 
start.” Benjamin et al. (2004) described the National 
Centers for Environmental Prediction (NCEP) 
operational RUC system that provides frequently 
updated forecasts by assimilating the latest available 
observations each hour using the three-dimensional 
variational data assimilation (3D-Var) technique. [See 
the next section for descriptions of data assimilation 
(DA) techniques.] A rapidly cycled 3D-Var system 
based on WRF was also implemented by the Beijing 
Meteorological Bureau (BMB) during the 2008 
Summer Olympics and has been running operation-
ally since then. It was necessary to apply the digital 
filter initialization (DFI; Lynch and Huang 1992) to 
suppress the noise caused by the dynamical imbal-
ance associated with the frequent updates (Benjamin 
et al. 2004; Huang et al. 2007).

The rapid update cycling reduces the spinup 
issue such that convective storm initiation can be 
predicted in the first few hours of the forecast, which 
results in improved precipitation forecast skill in 
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the nowcasting range. Several studies have shown 
the benefit of the rapid update cycling in improving 
convective precipitation forecast skills (i.e., Benjamin 
et al. 2004; Sun et al. 2012). Figure 2 compares the 
precipitation skills of three experiments from Sun 
et al. (2012) conducted over a 1-week period during 
the IHOP_2002: a cold start initialization by inter-
polating 1° Global Forecast System (GFS) analysis 
to a WRF 3-km grid; a similar experiment but using 
40-km Eta Model instead of GFS; and a WRF 3D-Var 
initialization updated every 3 h on the 3-km grid by 
assimilating only conventional observations. The pre-
cipitation skill in Fig. 2 is measured by the fractions 
skill score (FSS; Roberts and Lean 2008) with a radius 
of influence of 50 km. It clearly shows the improve-
ment by the 3-hourly cycled 3D-Var initialization. 
Figure 3 gives an example of the forecasted precipita-
tion patterns from the three experiments at t = 3 h. 
The GFS initialized forecast (Fig. 3c) barely shows any 
precipitation in the precipitation area indicated by the 
stage IV analysis (Fig. 3a). The Eta Model initialized 
forecast (Fig. 3b) spins up a precipitation band by this 
time, but the pattern deviates from the observed. The 
rapid cycling warm start experiment 
produces the precipitation with im-
proved location as early as t = 1 h and 
shows a closer resemblance to the 
observed pattern at t = 3 h (Fig. 3d). 
As will be discussed in the next 
section, adding radar observations 
will further improve the skill of the 
precipitation forecast.

Several operational and research 
centers are running convection-
permitting NWP models that are 
equipped with DA schemes with 
rapid update cycles. Some of them 
are listed here: the rapid cycled WRF 
with 3D-Var that is operationally run 
at the Beijing Meteorological Bureau 
(Wang et al. 2013a); the Met Office 
Unified Model with 3D-Var operat-
ing at the Met Office and Bureau of 
Meteorology, Australia (Ballard et al. 
2012a); the NCEP 3D-Var–based 
gridpoint statistical interpolation 
(GSI) coupled with WRF and op-
erated by National Oceanic and 
Atmospheric Administrat ion/
Earth System Research Laboratory 
(NOAA/ERSL) (Alexander et al. 
2012); Center for Analysis and Pre-
diction of Storms (CAPS) 3D-Var 

Fig. 2. FSSs of hourly accumulated precipitation from 
three forecast experiments using WRF. Experiment 
ETA was run with initial conditions from 40-km Eta 
Model analysis, experiment GFS from 1° GFS analysis, 
and experiment 3DV_CYC from WRF 3D-Var 3-hourly 
cycled analysis without radar DA. The skill score is 
computed for the threshold of 5 mm with a radius 
of influence of 50 km over 11 retrospective forecasts 
between 11 and 15 Jun 2002 during IHOP_2002.

Fig. 3. Comparison of precipitation (mm h–1) patterns at t = 3 h from 
the three experiments of (b) ETA, (c) GFS, and (d) 3DV_CYC in Fig. 2. 
(a) The Stage4 analysis is shown for verification. The plots are valid 
for 0300 UTC 12 Jun 2002.
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system developed for the Advanced Research and 
Prediction System (ARPS) model (Gao et al. 2004); 
Météo-France 3D-Var system coupled with the 
Application of Research to Operations at Mesoscale 
(AROME) model (Caumont et al. 2009); a Newtonian 
nudging-based system for the Consortium for Small 
Scale Modelling (COSMO) model operating at the 
German Meteorological Service (DWD) (Stephan 
et al. 2008); and the Local Analysis and Prediction 
System (LAPS) developed by NOAA/ESRL (Albers 
et al. 1996). These systems are run with 1.5–4-km 
horizontal resolutions and 1–3-h rapid update cycles, 
assimilating radar observations using different 
techniques.

DATA ASSIMILATION AT THE CONVEC-
TIVE SCALE. Traditional nowcasting techniques 
largely relied on radar observations because Doppler 
radar is the only operational instrument that can fre-
quently sample the detailed structure of convective 
storms. It has been recognized that the effective use 
of radar observations to initialize NWP models is 
one of the keys to the success of the explicit predic-
tion of convective storms (Droegemeier 1990; Lilly 
1990). Doppler radars provide three-dimensional 
high-resolution observations of the atmosphere at 
the convective scale, but these measurements were 
limited to radial velocity and variables associated 
with hydrometeors. Hence, earlier works that began 
in the 1990s focused on the proof-of-concept studies 
to investigate whether it was feasible to retrieve the 
full three-dimensional wind and temperature field 
from radial velocity observations of single-Doppler 
radar (e.g., Sun et al. 1991; Qiu and Xu 1992; Shapiro 
et al. 1995; Gao et al. 1999) and the microphysics 
from reflectivity observations (e.g., Sun and Crook 
1997, 1998). The promising results from these 
studies encouraged efforts on the assimilation of 
radar observations into operational NWP models 
using various DA techniques. While advanced DA 
techniques, such as 4D-Var and ensemble Kalman 
filter (EnKF), showed promise and are being actively 
studied for radar DA, other relatively simple yet 
computationally efficient techniques are also quite 
popular. In the following, we provide a brief review 
of some DA techniques that are used at the convec-
tive scale.

Diabatic initialization based on ref lectivity. The sim-
plest way to use radar observations for the initial-
ization of an NWP model is to extract information 
from reflectivity data. The radar ref lectivity can be 
linked to hydrometeor content or precipitation rate 

through theoretical or empirical relations. Latent 
heat released by condensation can be estimated 
from derived hydrometeor content or precipita-
tion rate. Further, the humidity can be specified 
by assuming saturation wherever the ref lectivity 
exceeds a prespecified value (Wang et al. 2013a). 
Techniques to assimilate these estimated quanti-
ties from ref lectivity are developed for operational 
models, including latent heating nudging (e.g., Jones 
and Macpherson 1997; Stephan et al. 2008), diabatic 
digital filter initialization (DDFI; Weygandt et al. 
2008), and complex cloud analysis (e.g., Albers et al. 
1996; Xue et al. 2003; Hu et al. 2006a). These tech-
niques, in one way or another, apply the concept of 
diabatic initialization (Krishnamurti et al. 1991) in 
which the diabatic effect is accounted for through 
the assimilation of latent heat and/or humidity 
estimated from radar reflectivity observations (and 
often also from satellite and surface observations) 
by assuming saturation in cloud regions. It has 
been demonstrated that the diabatic initialization 
techniques based on ref lectivity data are able to 
reduce the precipitation spinup problem and hence 
improve the forecast skill at least in the first few 
hours (e.g., Hu et al. 2006a; Stephan et al. 2008; 
Weygandt et al. 2008; Dixon et al. 2009; Schenkman 
et al. 2011a,b; Wang et al. 2013a). Figure 4 gives 
an example of the improved precipitation forecast 
skill when latent heat nudging based on ref lectivity 
observations was used in NCAR’s Real-Time Four-
Dimensional Data Assimilation (RTFDDA; Liu 
et al. 2008) system with a 3-km grid spacing, for a 
1-week period on a domain over the Front Range of 
the Rockies. The hourly accumulated precipitation 
forecast skill, as measured by FSS, from the experi-
ment with radar reflectivity assimilation is initially 
significantly higher than that without ref lectivity. 
The skill, however, decreases rather quickly in the 
first five hours, likely due to the lack of convective-
scale dynamical response in the initialization. 
The RTFDDA with latent heat nudging is running 
operationally at a proving ground of the U.S. Army 
Testing and Evaluation Command, and the real-
time performance is being evaluated.

The assimilation techniques based on the diabatic 
initialization provide practical and computation-
ally efficient ways to use information contained in 
ref lectivity observations for the improvement of 
NWP precipitation forecast in the nowcasting range. 
Several operational centers, including the Met Office 
of the United Kingdom and DWD of Germany, 
operate rapid cycle systems that include reflectivity 
data assimilation through the diabatic initialization.
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Variational radar DA. The above techniques for 
ref lectivity data assimilation are often combined 
with a 3D-Var technique that is capable of assimi-
lating radial velocity observations. The 3D-Var is 
currently a commonly used data assimilation tech-
nique by operational NWP systems because of its 
computational efficiency and its ability to assimilate 
various indirect observations (such as satellite radi-
ance and radar radial velocity). To assimilate radar 
radial velocity and reflectivity in a 3D-Var system, 
the original cost function is modified to include 
additional observation terms that measure the dis-
crepancy between the model-derived radial velocity 
and ref lectivity and the respective observations. 
Direct assimilation of radar reflectivity through the 
3D-Var cost function can only have minimal impact 
because the three-dimensional balances used in 
3D-Var techniques cannot fully represents those in 
the convective scale and hence storms may not be 
effectively sustained. Therefore, a common practice 
is to include the diabatic initialization using one of 
the techniques mentioned in the previous section to 
enhance the impact of the reflectivity observations. 
Encouraging results from 3D-Var radar DA have 
been shown through case studies and real-time dem-
onstrations as well as operations (Gao et al. 2004; 
Xiao et al. 2005, 2007; Hu et al. 2006b; Hu and Xue 
2007; Xue et al. 2008; Kain et al. 2010; Rennie et al. 
2011; Sun et al. 2012).

The impact of radar DA on short-term precipita-
tion forecasts using WRF initialized by the 3D-Var 
developed at CAPS of the University of Oklahoma 
(Xue et al. 2003; Gao et al. 2004) is shown by Fig. 5, 
which compares the Gilbert skill score (GSS) of three 
model runs for the threshold of 2.5 mm over 36 fore-
casts starting at 1200 UTC from 15 April to 6 June 
2008 (run only during weekdays). There was no 
continuous rapid cycling in this real-time exercise, 
which is believed to be the cause of the rapid drop of 
skill as can be observed in Fig. 5. However, the skill 
scores clearly show the benefit of assimilating radar 
observations. The 3D-Var system includes a diabatic 
initialization scheme via the cloud analysis method 
described by Hu et al. (2006a). More detailed descrip-
tion of the real-time exercise for storm prediction 
during the NOAA Hazardous Weather Testbed 2008 
spring experiment can be found in Xue et al. (2008) 
and Kong et al. (2008). Similar operational systems 
that assimilate radial velocity and reflectivity using 
a 3D-Var with the aid of a diabatic initialization have 
also shown some success, including the Met Office 
3D-Var (Ballard et al. 2012a,b) and WRF 3D-Var (Sun 
et al. 2012; Wang et al. 2013a).

Fig. 5. Equitable threat scores (ETS) for hourly accu-
mulated precipitation (>2.5 mm) from two forecast ex-
periments at 4-km grid spacing, with (thick solid line) 
and without (thin solid line) radar radial velocity and 
reflectivity DA using the ARPS 3D-Var DA system and 
the Advanced Research core of WRF forecast model 
(ARW). The ETSs are computed over 36 forecasts 
between 15 Apr and 6 Jun 2008 (no forecast on week-
ends) over a domain covering 80% of the continental 
United States. The thick dashed line shows the ETS for 
the ensemble-mean precipitation over nine ensemble 
members with radar DA.

Fig. 4. FSSs of hourly accumulated precipitation from 
two WRF runs over a Front Range domain initialized 
with RTFDDA without (blue) and with (red) radar 
reflectivity nudging. The FSS is computed for the 
threshold of 1 mm with a radius of influence of 10 km 
over 24 forecasts from 11 to 17 Jun 2009.
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While the studies described above have shown 
that the assimilation of the radial velocity is techni-
cally feasible in 3D-Var, critical questions remain as 
to how the 3D-Var technique can retrieve the unob-
served tangential wind component. Sugimoto et al. 
(2009) demonstrated, using an observing system 
simulation experiment (OSSE) and WRF 3D-Var, 
that the 3D-Var technique has a limited ability in 
retrieving the tangential wind when a radar network 
only has single-Doppler coverage. They found that 
the retrieved tangential component only had a cor-
relation of ~0.4 with the simulated observations. In 
contrast, some previous studies (e.g., Sun et al. 1991; 
Sun and Crook 1994) have suggested that 4D-Var has 
a good ability in retrieving the unobserved tangential 
component of wind.

The basic concepts of the 3D-Var and 4D-Var are 
the same except that the 4D-Var technique employs 
an additional set of prognostic equations as a strong 
constraint. Moreover, the 4D-Var minimizes a cost 
function that is defined over a time window, and 
hence it uses data at more than one time step to pro-
duce an analysis. Since the 4D-Var technique can use 
a full NWP model that includes the time tendency 
term as the constraint, it can potentially be a superior 
technique for the convective-scale DA because con-
vective weather has a large temporal change that can 
cause significant errors if neglected. The capability of 
the 4D-Var technique in radar DA was demonstrated 
in several studies by Sun et al. (1991) and Sun and 

Crook (1997, 1998), using a cloud-scale model with 
warm rain physics and its adjoint. Sun (2005) and Sun 
and Zhang (2008) showed that analyses by 4D-Var 
radar DA successfully initialized convective storms 
and hence improved their forecasts. A 4D-Var radar 
DA system has recently been developed for WRF, 
assimilating both radial velocity and ref lectivity 
with an adjoint model that includes microphysics. 
Initial tests in a case study showed that the system 
had a good potential to improve 0–6-h forecasts of 
convective storms (Sun and Wang 2013; Wang et al. 
2013b). Figure 6 shows a comparison of precipitation 
forecast skills (FSS with a radius of 8 km) between 
WRF 4D-Var, WRF 3D-Var, and an enhanced WRF 
3D-Var by a diabatic initialization scheme. It clearly 
shows that the initial analysis skill by the 4D-Var is 
maintained during the 6-h forecasts and, in contrast, 
the skills of the 3D-Var schemes decrease in the first 
forecast hour due to dynamical readjustments. Sun 
and Wang (2013) found that the WRF 4D-Var was 
able to analyze the low-level cold pool as well as the 
midlevel latent heating, while the enhanced 3D-Var 
missed the low-level cold pool.

Some early implementations of the 4D-Var tech-
nique for high-resolution operational models have 
shown encouraging results. The Japan Meteoro-
logical Agency (JMA) has been running a mesoscale 
4D-Var system, assimilating hourly precipitation 
data analyzed by the JMA’s radar network and auto-
mated meteorological data acquisition system with a 
5-km resolution. It was reported that the threat score 
of the 4D-Var in the preoperational experiments 
significantly surpassed those of the routine system 
(Koizumi et al. 2005) even beyond the nowcasting 
range. The upgrade to a convection-permitting non-
hydrostatic model (JMA-NHM; Honda et al. 2005) 
that assimilates radial velocity and ref lectivity is 
planned and is now in the research mode. Kawabata 
et al. (2007, 2011) reported promising results in two 
case studies using the new 4D-Var radar DA system. 
Since the end of March 2012, the Met Office has been 
running a real-time demonstration hourly cycling 
4D-Var system over a domain covering southern 
England and Wales. The forecasts were made avail-
able for assessment during some of the many flooding 
events in May–November 2012 and during the 2012 
London Summer Olympics. This system currently 
assimilates radar radial velocity in the 4D-Var, but 
the reflectivity is assimilated with a diabatic initial-
ization (Jones and Macpherson 1997; Dixon et al. 
2009; Ballard et al. 2012a,b). The 4D-Var analysis 
uses a 3-km grid, whereas the forecast is conducted 
with a 1.5-km version of the unified model. There 

Fig. 6. FSSs for hourly accumulated precipitation 
(>5 mm) from three forecasts using WRF initialized 
with radar observations via WRF 3D-Var (blue), WRF 
3D-Var with a diabatic initialization (3DVQV), and 
WRF 4D-Var for the squall line case of 12 Jun 2002 
occurred during IHOP_2002.
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were some spectacular 
successes (e.g., the out-
break of a line of thunder-
storms on 28 May 2012 
that produced f looding 
and lightning; see Fig. 7). 
In this case, the 4D-Var 
system correctly initiated 
the storms when nothing 
was present at T + 0. In the 
example shown, the 5-h 
forecast from the hourly 
cycl ing 4D-Var system 
has a very good forecast 
of the location of the line 
of convection (Fig. 7a), 
the 5-h current operation-
al blended nowcast has 
nothing (Fig. 7c) because 
the latest U.K. 4-km fore-
cast from 0300 UTC that 
it was blended with had no 
convection at 1500 UTC, 
and the latest available 
forecast from the 3-hourly 
cycling 1.5-km 3D-Var has 
some convection but too 
far east and not extensive 
enough (Fig. 7d). The hour-
ly cycling 4D-Var system is 
able to assimilate Doppler 
radial wind observations 
from five radars, 6 times 
per hour, as well as other 
observations from wind profilers and satellites every 
15–60 min. For the case presented here, the improved 
forecast does not come from radar observations 
because there was not much radar data at the initial-
ization time. In other cases, however, the benefit of 
the radar assimilation can be seen with the skill of 
the location of convection increasing at successively 
shorter lead times. From subjective and objective as-
sessment of the forecasts, it is clear that in some cases 
the impact of the hourly cycling 4D-Var is limited 
by the small domain size as the weather systems are 
advected in and out of the forecast domain so it is 
hoped to extend the system to cover the whole United 
Kingdom.

There is no doubt that we are only in the early stage 
to demonstrate the capability of the 4D-Var technique 
in initializing high-resolution operational models. 
However, we anticipate that more operational testing 
will be conducted in the next decade for nowcasting 

applications to confirm the ability of the 4D-Var 
technique in improving convective forecasting. 
The 4D-Var technique has been successfully used 
for large-scale models and longer-term forecasts in 
several of the major operational centers throughout 
the world, including European Centre for Medium 
Range Weather Forecast (ECMWF), Met Office, 
Japan Meteorological Agency, and Environment 
Canada. For the convective scale, however, the prog-
ress is slow, although its potential has been shown 
through case studies and real-time demonstrations 
described above. Besides the high computational cost 
to run a high-resolution 4D-Var system, the main 
obstacle is its large demand in resource to develop 
and maintain a 4D-Var system. This is due to the 
need for an adjoint model and the potential difficul-
ties dealing with highly nonlinear yet very important 
microphysical processes in the adjoint model at the 
convective scale (Zou 1997). Although these issues 

Fig. 7. Comparisons of (b) the observed U.K. radar derived surface precipita-
tion rate at 1500 UTC 28 May 2012 with (a) the 5-h forecast from the 1000 UTC 
Met Office 4D-Var hourly cycling 1.5-km NWP system, and (c) the current 
operational nowcast from 1000 UTC using extrapolated radar derived rain 
rates blended with a 4-km resolution U.K. forecast from 0300 UTC, and (d) 
the latest available real-time forecast from the 3-hourly cycling with 3D-Var 
1.5-km U.K.-wide system that is a 12-h forecast from 0300 UTC. The figure 
shows the comparison on the domain of the hourly cycling Met Office NWP 
system.
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are not insurmountable, some operational centers 
opt to develop the four-dimensional analysis system 
based on the EnKF approach, which requires much 
fewer resources to develop and maintain compared 
to a 4D-Var system.

EnKF radar DA. The EnKF DA method was applied to 
the convective-scale radar DA initially by Snyder and 
Zhang (2003) for an “identical twin” problem with a 
perfect prediction model and simulated radial veloc-
ity observations, after promising results were shown 
by Evensen (1994) and Houtekamer and Mitchell 
(1998) for large-scale problems. Unlike the traditional 
Kalman filter that explicitly evolves the background 
error covariance in time using a covariance predic-
tion equation (e.g., Evensen 1992), the method uses 
a forecast ensemble to evolve and estimate f low-
dependent background error statistics through the 
DA cycles. Zhang et al. (2004) further showed that 
the initial position error of a storm can be effec-
tively corrected by the EnKF DA cycles, producing 
analyses with good quality. The ability of the EnKF 
in accurately analyzing microphysical species associ-
ated with a multiphase ice scheme, and in assimilating 
reflectivity observations, was first demonstrated by 
Tong and Xue (2005) using a fully compressible cloud 
model and simulated radar observations. EnKF was 
shown to be able to reestablish the model storm after 
a number of assimilation cycles, and the best results 

were obtained when both radial velocity and reflectiv-
ity data, including reflectivity information outside of 
the precipitation regions, are used.

The application of EnKF to real observations 
also showed progress in recent years. Dowell et al. 
(2004) first applied the EnKF technique to real radar 
observations and obtained EnKF analyses of vertical 
velocity and vorticity within a supercell storm that 
are similar to those of dual-Doppler analyses. Tong 
(2006) documented difficulties in maintaining accu-
rate prediction of an EnKF-analyzed supercell storm 
beyond 30 min for a supercell storm. Lei et al. (2009) 
demonstrated the importance of including surface 
mesonet data to obtain an improved 1-h prediction of 
a tornadic supercell storm, indicating the importance 
of accurate analysis of both convective-scale storms 
and their mesoscale environment.

One challenge for the application of EnKF to the 
convective scale is to properly account for model 
errors because the nonlinear error grows rapidly in a 
convective system and the EnKF technique relies on 
the model to produce flow-dependent error covari-
ance. Several studies examined methods to properly 
account for model errors within the EnKF system 
for the convective-scale DA. Increased covariance 
inflation using various methods can help make the 
ensemble spread more consistent with the ensemble-
mean error (e.g., Dowell and Wicker 2009), while the 
use of multiple microphysics schemes in the forecast 

ensemble has also proven to 
be beneficial (Snook et al. 
2011). Figure 8b shows a 
2-h precipitation forecast 
of the tornadic mesoscale 
convective system stud-
ied by Snook et al. (2011). 
Comparing with the ob-
served storm (Fig. 8a), the 
ensemble-mean forecast 
predicts the dominant con-
vective mode reasonably 
well and the location of 
tornadic mesovortices with 
some success, which is a 
great improvement over a 
control that does not use 
radar observations (not 
shown). An alternative ap-
proach is to correct model 
error through parameter 
estimation. Tong and Xue 
(2008a ,b) showed t hat 
it is possible to estimate 

Fig. 8. (a) Reflectivity observations of a tornadic storm at 0400 UTC on 9 May 
2007 in Oklahoma; (b) 2-h ensemble-mean forecast from 40 members initial-
ized by an EnKF. The black circles indicate the ranges of Engineering Research 
Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) X-band 
radars that are also assimilated in the experiment.

418 MARCH 2014|



parameter uncertainties associated with micro-
physical species within an ice microphysics scheme 
together with the state estimation using EnKF, 
although the estimation becomes more difficult 
when multiple parameters contain error. The addi-
tion of polarimetric radar measurements is shown to 
improve the parameter estimation as the measure-
ments provide an additional observation constraint 
on the estimation problem (Jung et al. 2010).

EnKF has been shown to have a particular 
strength in handling complex physical processes. 
Xue et al. (2010) showed that both mixing ratios 
and the total number concentrations of multiple 
microphysical species of a two-moment microphys-
ics scheme can be successfully “retrieved” from radar 
radial velocity and reflectivity data using EnKF. For 
a real case, Jung et al. (2012) further demonstrate the 
ability of EnKF in properly estimating microphysical 
state variables when using a two-moment micro-
physics scheme; in such a case, the EnKF system is 
even able to capture polarimetric radar signatures 
within a supercell storm. More accurate EnKF 
analysis of another real storm using a two-moment 
microphysics scheme is documented in Stensrud 
et al. (2012).

Although encouraging results of EnKF have been 
shown for convective-scale DA, further development 
and evaluation are necessary to prove the ability of 
EnKF in improving 0–6-h precipitation nowcasting 
before it can be used operationally. An advantage 
of EnKF over 3D-Var and 4D-Var is that it is able 
to produce an ensemble of analyses that can serve 
as initial conditions for ensemble forecasting. This 
has been successfully demonstrated by Aksoy et al. 
(2010), Snook et al. (2012), and Dawson et al. (2011) 
for convective storms and by Zhang et al. (2011) and 
Dong and Xue (2012) for hurricanes. A relatively 
new, promising approach that attempts to combine 
the strengths of variational and ensemble methods is 
the hybrid DA method that utilizes ensemble-derived 
flow-dependent error variance within a 3D-Var or 
4D-Var framework. Preliminary studies have been 
conducted recently using such an approach (Li et al. 
2012) and demonstrated promise.

FUTURE CHALLENGES. Although significant 
progress has been made in using NWP models toward 
the nowcasting application, there are still many 
challenges ahead of us. We discuss three of them in 
this section: the predictability of precipitation sys-
tems, the need for improved mesoscale observation 
networks, and the improvement of rapid update NWP 
and DA systems.

Predictability of precipitation systems. Lorenz (1969)’s 
theoretical study on the predictability of flows with 
many scales was widely accepted as a reference for 
understanding the range of predictability of atmo-
spheric motion. Recently, Germann et al. (2006) 
examined the predictability of precipitation and its 
scale dependence based on the lifetime of precipita-
tion patterns derived from continental-scale radar 
images. The lifetime of rain patterns is defined here 
as the time at which a given scale in the precipita-
tion field decorrelates to 1/e in coordinates moving 
with the precipitation. Thus, if the nowcast method 
is simply Lagrangian persistence (LP), such as the 
McGill Algorithm for Precipitation Nowcasting 
by Lagrangian Extrapolation (MAPLE; Turner 
et al. 2004), the predictability for a given scale is its 
lifetime. Figure 9 shows the lifetime as a function of 
scale computed from 1,424-h warm season rainfall 
datasets from U.S. radar composites (Germann et al. 
2006). Here, wavelet decomposition was used for 
scale decomposition of reflectivity (dBZ). As seen, 
the smallest scales resolvable by radar data (a few 
kilometers) have a lifetime of less than one hour 
with very little variability. As scales increase, their 
lifetime increases and becomes more and more case 
dependent. The simplest way of increasing now-
casting skill is by filtering out the smallest scales 
of precipitation. This is sometimes done inadver-
tently when two methods of forecast are blended: 
the blending process may eliminate small scales. As 
shown in Germann et al. (2006), there is also a strong 

Fig. 9. Scale dependence of wavelet bandpass lifetime 
of fields of reflectivity (dBZ). The average over 1,424 h 
of warm season radar rainfall data and the 10th and 
90th percentiles are shown.
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dependence on geographic location, with the central 
United States having the highest lifetime and Florida 
the lowest. To a good extent this can be attributed 
to the diurnal cycle of precipitation and the advec-
tion of precipitation patterns across the continent as 
described in Carbone et al. (2002) and Surcel et al. 
(2010). Predictability also strongly increases with the 
strength of large-scale forcing that organizes precipi-
tation spatially. This is true for NWP as well as for LP. 
Thus, it should not be surprising that predictability 
by MAPLE and NWP is in fact correlated: more 
persistent systems are more organized, have greater 
areal coverage, and are more predicable by the two 
methods of forecast.

The most likely origin of the scale dependence 
of precipitation predictability discussed above is 
the small-scale variability of low-level humidity as 
well as wind and temperature (Weckwerth 2000; Ge 
et al. 2013). Current observation networks are clearly 
inadequate to address these small-scale variations. 
This implies that it would be difficult for either 
extrapolation-based nowcasting techniques or NWP 
models to forecast convective storms with scales less 
than ~30 km beyond 1–2 h. The improvement of 
nowcasting through enhanced data assimilation and 
NWP models would be most possibly seen beyond 
the 1–2-h forecast range. Sun et al. (2012) found that 
the impact of the assimilation of Doppler radars 
had a clear diurnal variation in a consecutive 6-day 
forecasting experiment during IHOP_2002 with a 
larger impact on the forecasts starting at evening 
and smaller impact on the forecasts initialized at 
early morning. A possible cause for such a variation 
is because nighttime convective systems are more 
organized and have larger-scale patterns than those 
in the early morning for the study period. The more 
organized systems are better initialized as a result 
of more Doppler radar data coverage and they are 
intrinsically more predictable.

The temporal variability of predictability means 
that the usefulness of convective-scale forecasts will 
vary from day to day, dependent on the strength of 
the larger-scale forcing. This temporal variability is 
apparently a result of the intrinsic uncertainty of the 
convective precipitation processes. This argues for 
an inherently probabilistic approach to forecasting 
at this scale. Several operational centers are currently 
developing or testing ensemble prediction systems 
based on the convection-permitting models. Given 
the inherent uncertainty of convective systems and 
the temporal variability of predictability, research is 
required to answer the question how to discriminate 
the scales that are predictable from those that are not 

as a function of lead time. Data assimilation tech-
niques should be developed to optimize the predict-
able scales with available observations while quan-
tifying the uncertainty of the unpredictable scales.

Needs for improved mesoscale networks. One of the 
challenges of mesoscale (rapid update cycling) 
analysis and forecast systems is to provide them 
with a sufficient amount and spatial coverage of 
observations of high spatial and temporal resolution. 
Detailed observational information on moisture, 
wind, and temperature in the boundary layer and 
the midlevel is considered to be particularly relevant 
for constraining the initial state of mesoscale models. 
In past years, much progress has been made in the 
assimilation and impact assessment of radar pre-
cipitation, reflectivity, and radial wind velocity data, 
using a variety of assimilation techniques. However, 
Doppler radars have a limited ability in detecting 
mesoscale environmental conditions (because of the 
lack of ref lectors) that are critical for a successful 
analysis that leads to improved precipitation fore-
casts beyond just a few hours. Dabberdt et al. (2005) 
summarized the observational needs for improved 
nowcasting, including enhanced surface network, 
polarimetric radar, enhanced Doppler radar cover-
age by integrating Weather Surveillance Radar-1988 
Doppler (WSR-88D), Terminal Doppler Weather 
Radars (TDWR), and X-band radars, and profiling 
the boundary layer. Other operational observa-
tion types that have been shown to be beneficial in 
mesoscale rapid update cycling systems are the Global 
Navigation Satellite System (GNSS) meteorological 
network, ground-based GPS receiver, satellite IR/
visible imagery, and aircraft data. For each of these 
data sources, a strict quality control and bias treat-
ment is of critical importance to achieving a positive 
impact in mesoscale analysis systems. Several new 
(not yet operational) data sources, like Mode-S air-
craft observations or boundary layer water vapor 
lidars, seem very promising for operational use in 
mesoscale rapid update cycling systems and deserve 
to be studied further.

Improvement of DA and rapid update NWP. While 
variational and ensemble-based DA methods have 
shown great promise, including measurable impacts 
in real-time storm-scale forecasting, many challenges 
remain to obtain optimal, well-balanced, dynami-
cally consistent state estimations in the presence of 
complex model physics and to produce accurate and 
well-calibrated deterministic and ensemble forecasts. 
The dynamically consistent initial conditions (i.e., 
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produced by 4D-Var; Sun and Wang 2013) are able to 
maintain the forecast skill of the initial convection, 
avoiding the rapid drop as shown by some of the 
simpler methods. The challenges are both theoretical 
and practical. Theoretical challenges include the best 
approaches to dealing with model error, and effective 
ways of ameliorating the impact of sampling error, 
proper fitting of the analysis to dense observations, 
while correcting errors at multiple scales (Lorenc 
2003). Data quality control, bias removal, nonlinear-
ity, and non-Gaussian error are other aspects that 
require careful research. Given the predictability 
issue of the precipitation systems described above, it 
is important to design a data assimilation system that 
aims to resolve the predictable scales while account-
ing uncertainties of the unpredictable scales.

Practical issues include the design and implemen-
tation of computationally efficient algorithms that 
can execute fast enough on large parallel computers so 
as to produce rapidly updated forecasts that meet the 
needs of nowcasting and very-short-range forecasting 
of severe storms. We envision that the 4D-Var and 
hybrid of variational method and EnKF hold great 
promise for the future improvement of NWP for the 
convective scale because of their abilities in obtaining 
initial conditions that contain convective-scale 
balances. However, both approaches require further 
development and research to make them computa-
tionally efficient for operational implementations. 
The sub-hourly rapid update cycling is another de-
velopment that is required by the nowcasting applica-
tion, which is currently still unachievable in most of 
the operational systems that are mainly 3D-Var based.

Improvement of convective-scale modeling is no 
doubt another area that is required for the successful 
application of NWP for nowcasting. The performance 
of NWP can be quite sensitive to physical parameter-
izations of microphysics, planetary boundary layer, 
and land surface characteristics even in the very short 
range. Further research is needed to examine the sen-
sitivity of these processes and their parameterization 
schemes in high-resolution rapid cycled NWP.

Another area that is not addressed in this paper 
but deserves attention is the proper evaluation of the 
performance of NWP and nowcasting skills for QPF. 
The use of the appropriate metrics of forecast skill 
and careful application of statistics are important to 
determine where and when improvement occurs and 
how much confidence can be assigned to the improve-
ment. New methods and metrics have been developed 
in recent years (Gilleland et al. 2009) and they should 
be more widely implemented by the nowcasting com-
munity in the future.

The use of NWP for nowcasting precipitation 
will experience continued rapid development in the 
decades to come. While the traditional nowcasting 
techniques will continue to be developed, they 
will more and more depend on the short-term 
high-resolution NWP that is initialized by radar 
observations. The combination of the two tech-
niques as described in the first section will be the 
key to producing seamless nowcasting that takes 
advantage of both techniques. With the continued 
improvements of high-resolution data assimilation, 
numerical modeling with rapid cycles, and compu-
tation efficiency, it is anticipated that the precipita-
tion nowcasting skill by NWP will continue to be 
improved, giving an increased weight in the blended 
nowcasting. The greatest challenges are to skillfully 
handle the predictability issue that is scale depen-
dent, to improve mesoscale observations especially 
in the lower levels, and to produce initial conditions 
that are dynamically balanced at the mesoscale and 
convective scale.
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