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ABSTRACT

This study uses both traditional and newer verification methods to evaluate two 4-km grid-spacingWeather

Research and Forecasting Model (WRF) forecasts: a ‘‘cold start’’ forecast that uses the 12-km North

American Mesoscale Model (NAM) analysis and forecast cycle to derive the initial and boundary conditions

(C0) and a ‘‘hot start’’ forecast that adds radar data into the initial conditions using a three-dimensional

variational data assimilation (3DVAR)/cloud analysis technique (CN). These forecasts were evaluated as

part of 2009 and 2010 NOAA Hazardous Weather Test Bed (HWT) Spring Forecasting Experiments. The

Spring Forecasting Experiment participants noted that the skill of CN’s explicit forecasts of convection es-

timated by some traditional objective metrics often seemed large compared to the subjectively determined

skill. The Gilbert skill score (GSS) reveals CN scores higher than C0 at lower thresholds likely due to CN

having higher-frequency biases than C0, but the difference is negligible at higher thresholds, where CN’s and

C0’s frequency biases are similar. This suggests that if traditional skill scores are used to quantify convective

forecasts, then higher (.35 dBZ) reflectivity thresholds should be used to be consistent with expert’s sub-

jective assessments of the lack of forecast skill for individual convective cells. The spatial verification methods

show that bothCN andC0 generally have little to no skill at scales,8–12Dx starting at forecast hour 1, but CN
has more skill at larger spatial scales (40–320 km) than C0 for the majority of the forecasting period. This

indicates that the hot start provides little to no benefit for forecasts of convective cells, but that it has some

benefit for larger mesoscale precipitation systems.

1. Introduction

Every spring, operational forecasters and research

scientists participate in the National Oceanic and Atmo-

spheric Administration’s (NOAA) Hazardous Weather

Test Bed (HWT) Spring Forecasting Experiment, which

is designed to improve communication and facilitate

collaboration among forecasters and researchers through

the generation of daily experimental convective fore-

casts and the evaluation of experimental forecastmodels

(Kain et al. 2010; Clark et al. 2012). For the 2009 and

2010 Spring Forecasting Experiments (SFE2009 and

SFE2010, respectively), the Center for Analysis and Pre-

diction of Storms (CAPS) at the University of Oklahoma

produced ensemble forecasts at 4-km grid spacing, in

nearly (in 2009) and fully (in 2010) conterminous U.S.

(CONUS) domains, using the Weather Research and

Forecasting Model (WRF; Xue et al. 2009, 2010). The

ensemble forecasts were run once a day, starting from

0000 UTC on week days, and the length of forecasts

was 30 h. Among the ensemble members for both

years, two members of interest used the Advanced

Research core of the WRF (WRF-ARW): one member

directly used the 0000 UTC 12-km North American

Mesoscale Model (NAM) analyses at the initial
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conditions and the other member used the three-di-

mensional variational data assimilation (3DVAR) cloud

analysis (Xue et al. 2003; Hu et al. 2006a,b) ini-

tial conditions that assimilated radar and other high-

resolution observations (from surface stations and wind

profilers). The NAM analyses were used as the back-

ground. The two runs did not include additional initial

condition perturbations and are referred to as two con-

trol runs—one with radar data (called CN) and one

without radar data (called C0). The comparison between

CN and C0 allows the evaluation of the impact of radar

and other high-resolution data on the initial conditions,

with radar data having a dominant effect given their

relative data volume. All forecasts used NAM forecasts

starting at the same initial times to provide the lateral

boundary conditions. In addition to the 0000 UTC en-

semble forecasts, CAPS was also producing forecasts

over a smaller central U.S. domain, at 1200 UTC and

several other times, using model configurations corre-

sponding to those of 0000UTCCNandC0 (except for the

domain size). These runs were made to support the Sec-

ond Verification of the Origins of Rotation in Tornadoes

Experiment (VORTEX2; Xue et al. 2009, 2010). In this

study, we will evaluate and initially compare the 0000

and 1200 UTC CN and C0 forecasts.

During 2009 and 2010, participants in the Spring Fore-

casting Experiment compared hourly loops of CN- and

C0-simulated reflectivity (SR) forecasts to the observed

radar reflectivity (OR) for the same timeperiods on a large

monitor. They were asked to define when the cold-start

forecasts (C0) appeared to ‘‘catch up’’ with the hot-start

forecasts (CN) ‘‘in terms of its degree of correspondence

with reality.’’ For SFE2009, nearly 60% of the partici-

pants perceived 0000UTCCN forecasts to be effectively

similar to theC0 forecasts in their depiction of convection

after 3–6 h. For example, one participant commented,

‘‘by [forecast hours] 3–4 the two model runs tend to look

more like each other than like the obs[ervations].’’ This

sentiment is illustrated for an individual case in Fig. 1. At

the initial time, CN’s SR looked very similar to the OR,

which is the result of the reflectivity assimilation in the

cloud analysis step. However, by forecast hour 3 and es-

pecially by forecast hour 6, the subjective impression of the

participants is that both forecasts were equally skillful–

unskillful in their forecasts of that convective event.

This study aims to complement the subjective assess-

ment of CN’s and C0’s skill in forecasting convection

discussed above by providing a comprehensive objective

assessment of its skill. The skill is characterized through

traditional metrics, as well as through newer techniques

that define model errors by spatial scales and variable

thresholds. The latter approach delineates the spatial

scales at which CN improves over C0 and provides

a more comprehensive assessment of model skill over

what can be provided by a subjective evaluation, or by

traditional gridpoint-by-gridpoint techniques.

The HWT forecasting experiments have shown that

subjective evaluations can provide valuable information

on the tools that forecasters find useful, but they are

limited in defining the specific error characteristics of

numerical model forecasts that researchers strive to ad-

dress. Simple quantitative verification techniques (that

compare a forecast of some quantity to an analysis or

observation of that quantity at specific points in space

and time) have long been used to objectively evaluate

model forecasts. As higher-resolution numerical models

are now used to predict highly discontinuous fields, like

convection, there is an increasing need in the research

community to use newer verification techniques (Casati

et al. 2008; Gilleland et al. 2009; Gilleland et al. 2010).

Because traditional gridpoint-by-gridpoint verification

metrics effectively give much weight to the smallest

scales allowed by the gridded model forecasts and ob-

servations, small deviations (i.e., errors) in the model

forecasts from the observations can often cause mis-

representation of the useful model forecast skill (i.e.,

skill a forecaster would deem useful and appropriate).

Newer verification techniques that attempt to better char-

acterize model skill for discontinuous fields can be classi-

fied into one of four categories: neighborhood (or fuzzy),

scale-separation (or decomposition), feature based (or

object based), and field deformation techniques (Gilleland

et al. 2009). This study uses the first two types, which are

different ways of evaluating model skill through a fil-

tering of the gridded fields.

Several traditional verificationmetrics and two filtering

techniques (described in section 3) are used in this study

to analyze the performance of CN and C0 in an indi-

vidual and a comparative sense. A goal of using these

spatial-scale filtering methods is to determine if the

spatial verification metrics are more consistent with the

SFE2009 and SFE2010 participants’ subjective evalua-

tions since the traditional verification scores are often

not appropriate measures of skill for high-resolution

model forecasts of discontinuous fields (Gilleland et al.

2009), like strong convection. Another goal of this study

is to assess the benefit of the CAPS 3DVAR cloud

analysis radar data assimilation technique (described in

section 2), as applied to the CN forecasts.

2. Datasets

a. CAPS CN and C0 forecasts

As mentioned earlier, the two Advanced Research

WRF (WRF-ARW) model runs examined in this study

120 WEATHER AND FORECAST ING VOLUME 28



were part of the CAPS 4-km grid-spacing Storm Scale

Ensemble Forecast (SSEF) system run in the springs of

2009 and 2010 (see Xue et al. 2009, 2010 for specific

details). The 2009 version of the SSEF system was com-

posed of 10 WRF-ARW members, 8 Nonhydrostatic

Mesoscale Model (WRF-NMM) members, and 2 Ad-

vanced Regional Prediction System (ARPS) members,

while the 2010 SSEF system contained 19 WRF-ARW

members, 5 WRF-NMM members, and 2 ARPS mem-

bers. For SFE2009, the 0000 UTC WRF-ARW control

FIG. 1. (left) Observed composite (column maximum) reflectivity and 0000 UTC initialized simulated composite reflectivity from CAPS

(middle) CN and (right) C0 at 0000, 0100, 0300, and 0600 UTC 5 Jun 2008 (from Kain et al. 2010).
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members (i.e., CN and C0) were integrated to 30 h on

an eastern near-CONUS-size domain (Fig. 2a). For

SFE2010, CN and C0 were once again integrated to

30 h starting at 0000 UTC, but the domain increased to

a full CONUS-size domain (Fig. 2b). For both SFE2009

and SFE2010, the 1200 UTC CN and C0 members were

integrated to 18 h on the central Great Plains domain

(Figs. 2a,b).

CN assimilates radar radial velocity with a mass di-

vergence constraint in the 3DVAR procedure to derive

the wind components for the initial conditions in com-

bination with the NAM background and additional

surface and wind profiler data (Hu et al. 2006b). In ad-

dition, CN uses a cloud analysis scheme, which adds

hydrometeors and adjusts the in-cloud temperature and

moisture fields through a moist-adiabatic scheme using

three-dimensional radar reflectivity data as well as sur-

face cloud-base and satellite cloud-top observations

(Xue et al. 2003; Hu et al. 2006a). Except for the initial

conditions, all other model configurations [i.e., bound-

ary conditions from the NAM fields, Thompson cloud

microphysics scheme, Goddard shortwave radiation

physics, Rapid Radiative Transfer Model (RRTM) long-

wave radiation physics, Noah land surface model, and

Mellor–Yamada–Janji�c planetary boundary layer physics]

are identical between CN and C0 (Xue et al. 2009; 2010).

The 0000 and 1200 UTC model runs are examined

separately. Combining both years yielded a maximum 56

days of data for the 0000 UTCmodel runs and 77 days of

data for the 1200 UTC model runs (the 1200 UTC fore-

casts were run onweekends also). These datasets are used

to evaluate and compare the models’ hourly SR and 1-h

accumulated precipitation (APCP) fields.

b. Verification data and domain

Composite reflectivity and quantitative precipitation

estimates calculated on a 1-km grid as part of the Na-

tional Severe Storms Laboratory (NSSL) National 3D

Reflectivity Mosaic system are used for the verifying

observations (see Vasiloff et al. 2007 for more details).

Even though the 0000UTC forecasts were performed on

large CONUS-sized domains, this study focuses on the

central Great Plains region that was the focus of the

VORTEX2 field experiment during the two spring sea-

sons. Given that the wavelet scale-separation method

used in this study requires domains to be 2n 3 2n grid

points in size (see section 3c) and given the 4-km grid

spacing of the model forecasts, a reasonably sized verifi-

cation domainwas chosen to bemade up of 2563 256 grid

points in the horizontal (n 5 8) given the smaller size of

the 1200 UTC domain. Because the model forecasts and

verification fields were on different native grids, prior to

verification, the fields were interpolated onto a 2563 256

portion of the AWIPS 240 grid (following Schwartz et al.

2009), which has a horizontal grid spacing of 4.7625 km.

Due to its small size relative to themodel domains, the

verification domain was moveable1 (Fig. 2) to follow

areas where observed convection occurred. If no con-

vection occurred on a particular day, the domain was

centered on Norman, Oklahoma. In addition, the west-

ern edge of the domain always had a longitude of 1058W,

so the domain moved north and south to follow active

areas of convection over the central United States.

3. Verification metrics

a. Traditional scores

Using thresholds of 10, 20, 30, and 40 dBZ for SR and

0.1, 1.0, 5.0, and 10.0 mm h21 for APCP, standard 23 2

FIG. 2. The inner bold box is the domain for 0000UTCWRF-ARW

with (a) 9003 672 grid points in 2009 and (b) 9993 790 grid points in

2010, and the outer bold box is the somewhat larger ARPS 3DVAR

analysis domain. The inner dashed box is the 1200 UTC model do-

main for both years (4443 480 grid points). The gray-shaded polygon

is an example ‘‘VORTEX2’’ moveable domain with 256 3 256 hor-

izontal grid points used for verification (see Xue et al. 2009, 2010).

1 It is worth noting as a caveat that the climatology varies as the

verification domain is moved from location to location (Hamill and

Juras 2006).
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contingency table components (i.e., hits, false alarms,

misses, and correct negatives) were generated hourly for

forecast hours 0–12 for each model run using version 3.0

of the Model Evaluation Tools (MET), which was de-

veloped and is currentlymaintained byNOAA/National

Center for Atmospheric Research (NCAR) through the

Development Test Bed Center (DTC 2011). All of the

individual components of the contingency tables for

each model–threshold combination were summed using

MET to form contingency tables for each forecast hour.

From these summed contingency tables, four traditional

metrics were computed: frequency bias (FBIAS), prob-

ability of detection (POD), probability of false detection

(POFD), and Gilbert skill score (GSS) (otherwise

known as the equitable threat score or ETS). Confidence

intervals (CI) of 95% were included for each metric for

each forecast hour to assess the uncertainty in the esti-

mates following the resampling procedure of Hamill

(1999). The CIs are assigned in a comparative sense; the

uncertainty in the difference in the metrics between the

two model forecasts in question is assessed by comput-

ing CIs on themetric differences at each forecast hour. If

the CIs on the difference estimates include the zero line

for a particular forecast hour, the differences of the ver-

ification metrics are said to be not significantly different,

and vice versa.

b. Neighborhood method

Using the neighborhood method based on Roberts

and Lean (2008), the fractions skill score (FSS) is com-

puted to assess the skill for different neighborhood sizes

and variable thresholds. The neighborhood method al-

lows for a ‘‘hit’’ to be within a certain neighborhood

(radius) of the observation, which allows for forecasts

that are ‘‘close enough’’ to be considered skillful in the

objective metrics (Ebert 2008, 2009). FSS ranges from

0 for no skill to 1 for perfect skill, as given by

FSS5 12

1

N
�
N

(Pfcst2Pobs)
2

1

N

�
�
N

P2
fcst1 �

N

P2
obs

� , (1)

where Pfcst and Pobs are the fractional forecast and ob-

served SR (or APCP) areas in each neighborhood that

exceed the specified variable threshold and N is the

number of neighborhoods for each neighborhood size.

(Note: larger neighborhood sizes lead to a smaller

number of neighborhoods, whereas smaller sizes will

result in a larger N.) In an evaluation of precipitation

forecasts from convection-allowingmodels, Roberts and

Lean (2008) estimated that forecasts have useful skill

(FSSuseful) when FSSuseful 5 0.5 1 fo/2, where fo is the

base rate, or fraction of observed events to all grid points.

They consider this value to be a reasonable ‘‘target skill’’

since it is halfway between the random forecast skill and

perfect skill. This same value for FSSuseful is used in this

study, and forecasts for which FSS . FSSuseful are con-

sidered to have useful skill.

An aggregated FSS2 was computed for each forecast

hour for neighborhood widths, n, of 1, 3, 5, 9, 17, 33, and

65 grid points centered at the grid box in question. For

each neighborhood width, FSS was calculated for dif-

ferent SR and APCP thresholds (i.e., 10, 15, 20, 25, 30,

35, 40, 45, and 50 dBZ and 0.1, 0.5, 1.0, 2.5, 5.0, 7.5, 10.0,

20.0, and 40.0 mm h21, respectively). The aggregated

FSS–FSSuseful is displayed in a matrix of neighborhood

size versus a variable threshold for a particular forecast

hour for the individual neighborhood size and threshold

combinations. Whenever FSS–FSSuseful is positive, the

forecast is considered to have useful skill. In addition,

similar plots are shown for the differences in FSS be-

tween the models along with 95% confidence intervals,

which were computed again following the procedure of

Hamill (1999).

c. Scale-separation method

Like the neighborhood method, scale-separation

methods allow for nonoverlapping forecasts and obser-

vations to be considered skillful in the objective metrics,

but have the additional benefit of assessing the skill at

individual, independent spatial scales of the errors

(Casati et al. 2004). The particular intensity-scale veri-

fication (ISV) technique employed in this study is based

on Casati et al. (2004), which isolates the skill at scales

given by 2l3 2l for l5 0, 1, 2, . . . 8, where l5 0 represents

the horizontal spacing of one grid cell (4.7625 km) and

l5 8 represents the entire verification domain (1219 km3
1219 km). This study retains the biases in the forecasts, as

in Casati (2010), to also assess the bias associated with

the various spatial scales and thresholds.

The first step is to transform forecast and observation

fields into binary fields based on variable thresholds.

The same variable thresholds used for the neighborhood

method were also used for this method. A 2D Haar

wavelet decomposition is then performed on the binary

difference images between the forecasts and observations

(i.e., the binary difference images are decomposed into

scale components in this step; see Fig. 3 for an example

2 For each forecast hour, the datasets were aggregated (Mittermaier

and Roberts 2010) together for each combination of neighborhood

width and threshold. Knowing the FBS, FSS, and N values, the

summations in the numerator and denominator of Eq. (1) were

calculated and aggregated separately for the individual datasets.

The aggregated summations were then used to calculate FSS.
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of a binary difference field and its first five scale com-

ponents). Next, a mean squared error (MSE) of the scale

components of the binary field difference is calculated

for each threshold and scale component. Because the

sum of MSE from the individual scale components is

equal to the MSE of the binary difference field image,

the errors of individual scales can be examined sepa-

rately (Casati et al. 2004).

To generate a baseline skill, a random MSE term is

defined using the equation

MSErandom5FBIAS3BR3 (12BR)1BR

3 (12FBIAS3BR), (2)

where FBIAS is the frequency bias and BR is the base

rate (Casati 2010). A skill score is defined for each bi-

nary forecast and observation scale component, called

the intensity scale skill (ISS) score, and is given by

ISS5 12
MSE

MSErandom/(L1 1)
, (3)

where L 5 8 for this study. Positive ISS values are asso-

ciated with skillful forecasts and negative ISS values are

associated with forecasts with no skill (Casati 2010). Typ-

ically, large weather features, such as frontal convection,

are fairly well forecasted by convection-allowing models,

so the larger spatial scales tend to exhibit positive skill.

Conversely, small-scale weather features, such as in-

dividual convective cells, are not usually forecast well

by the same convection-allowing models due to their

general inability to resolve features less than ;4–8Dx
and the generally faster error growth at shorter wave-

lengths, so the smaller spatial scales tend to exhibit

little to no forecasting skill. Plots of the ISS scores were

created similar to the plots of the FSS values with

thresholded values on the abscissa and the spatial scale

on the ordinate, corresponding to l5 0, 1, 2, 3, 4, 5, and

6 in the wavelet transform application. In addition,

plots of the difference (and their statistical significance)

in ISS betweenmodels were created to assess the models’

differences.

Finally, the energy was assessed for both the forecast

and observation for each scale component and threshold

through the evaluation of the energy squared (En2)

quantities (Casati 2010). For variableX, En2 is given by

En2(X)5
1

N
�
N

i51

X2
i , (4)

where N is the total number of wavelet cells in the do-

main and Xi is the average of the gridpoint-squared

FIG. 3. (a) Example of a binary difference field, where the blue shading represents misses, the red shading represents false alarms, and

thewhite areas represent hits and correct negatives, of simulated reflectivity$20 dBZ, for (b) scale 1, (c) scale 2, (d) scale 3, (e) scale 4, and

(f) scale 5 components for 1500 UTC 10 May 2010 CAPS CN at FH 8. A major tornado outbreak occurred from the afternoon into the

evening in central-eastern OK and KS.
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values in the ith grid cell. For high-resolution NWP

models, in general, high energy is associated with small

thresholds because of the relatively large number of

events exceeding the threshold value, and conversely,

low energy is associated with large thresholds because

of the relatively small number of events exceeding the

threshold value (Casati 2010). The bias is then as-

sessed by comparing the En2(F ) and En2(O) values

with each other for every threshold and spatial scale

by computing the energy (squared) relative difference

(ERD):

ERD5
[En2(F)2En2(O)]

[En2(F)1En2(O)]
. (5)

The ERD values range from 21 to 1. Positive ERD

values indicate overforecasting (a high bias), and nega-

tive ERD values indicate underforecasting (a low bias)

(Casati 2010).

4. Results

a. Traditional metrics

According to the GSS, the 0000 UTC CN scored

better than C0 for all forecast hours at the 20-dBZ

threshold at the 5% significance level (Fig. 4a). How-

ever, while significance exists at the 5% level for all

forecast hours, the lower bound of the 95% confidence

interval is close to zero beyond forecast hour (FH

hereafter) 5, so no strong conclusions can be drawn at

those hours. Similar conclusions can be reached from

looking at the GSS derived from the APCP field for

the 1.0-mm threshold (Fig. 4c). This similarity be-

tween the SR and APCP verification scores of com-

parable thresholds was a common theme for all of the

results found in this study, so only the verification

scores for the SR fields are shown hereafter to elimi-

nate redundancy.

At the 40-dBZ threshold (Fig. 4b), CN’s GSS values

remain above those of C0, but the difference quickly

decreases in the first 2 h; the differences are barely sig-

nificant at the 5% level from FH 2 to 4 and lack signif-

icance beyond FH 4. This indicates a much more rapid

drop in relative skill between the two models for the

higher threshold. In addition, the scores themselves are

not much better than what could be achieved at random

with scores that drop and remain below a GSS of 0.1 at

the first forecast hour for CN. These results indicate that

the model is having a hard time accurately evolving,

usually small-scale, high-reflectivity cores that are ini-

tialized from the radar reflectivity observations. Both

inadequate resolution and less than optimal analysis of

the intense convection in the initial conditions coupled

with intrinsic faster error growth at small scales can cause

such a fast drop in skill score.

At the 20-dBZ threshold for the 1200UTCmodel runs

(Fig. 5a), the differences in GSS between CN and C0 are

somewhat smaller than they are for the 0000 UTC runs;

they become statistically insignificant at the 95% confi-

dence level around FH 4–5. The smaller differences in

scores between CN and C0 for the 1200 UTC runs may

be related to the diurnal cycle of convection. Convection

is typicallymore abundant at 0000UTC than at 1200UTC,

so CN has an initial benefit of assimilating more ra-

dar data into the initial conditions than is assimilated at

1200UTC. Furthermore, the areal coverage of convection

in the spring and summer tends to peak after 0000 UTC

in the plains and tends to be much less during the 1200–

1800UTCperiod (Wallace 1975;Easterling andRobinson

1985). GSS (and other traditional scores) is dependent on

the base rate (i.e., higher base rate leads to larger GSS

and lower base rate leads to smaller GSS) (Stephenson

et al. 2008), so GSS will be larger for the forecasts with

more observed convection. For the remainder of the

analysis, the results for the 1200 UTC runs are qualita-

tively similar to those detailed for the 0000 UTC runs, so

only the results for the 0000 UTC runs are shown for

brevity.

The forecast hour at which the GSSs for CN and C0

converge drops from about FH 6–12 for the 20-dBZ

threshold to about FH 2–3 for the 40-dBZ threshold

for both the 0000 and 1200 UTC runs (Figs. 4b and 5b).

This convergence of GSS for the higher thresholds

generally agrees with the perceptions of the Spring

Forecasting Experiment participants, who thought

CN and C0 were usually equally skillful between

about FH 3 and FH 6 upon an hourly visual inspection

of the SR fields. A possible reason for this sentiment

might have to do with color psychology. For example,

humans perceive some objects that are yellow and red

($35-dBZ objects) to be dangerous (i.e., stop signs

and red lights), while objects that are green and blue

(,35-dBZ objects) are perceived as not dangerous

(Elliot and Maier 2007; Lichtenfeld et al. 2009).

Hence, the Spring Forecasting Experiment partici-

pants’ eyes may have focused on reflectivities greater

than 35 dBZ in the Spring Forecasting Experiment

displays (see Fig. 1 for an example of the standard re-

flectivity color bar), and therefore gave themore intense

convection greater weight than the larger areas of ligh-

ter precipitation in their subjective assessment of skill.

The comparison of the objective scores with the sub-

jective evaluations suggests that the use of GSS at higher

thresholds is preferred over the use of GSS at lower SR

thresholds in an evaluation of model forecasts of
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convection because the conclusions based on the GSS

values at higher thresholds are more consistent with the

subjective conclusions than the conclusions based on the

GSS values at lower thresholds. The GSS values for CN

and C0 at these higher reflectivity thresholds are rela-

tively low compared to typical GSS values of other

model fields on coarser grids (likely due to the depen-

dency of theGSS on the base rate), suggesting themodel

forecasts have relatively little forecasting skill for

stronger convection. However, a more general point to

be made is that the relative importance of CN and C0,

as measured by the GSS, is highly dependent on the

chosen reflectivity (or precipitation) threshold. There-

fore, the use of a single metric like the GSS at any

threshold can easily lead to a misrepresentation of model

performance for convection-allowing models (Doswell

et al. 1990).

Another problem with the GSS arises due to high-

frequency biases.3 In Fig. 6a, the frequency bias of

the 0000 UTC initialized CN approaches a value of

2 by FH 2 and remains above 1.5 for the rest of the

forecast period. For rare events, many traditional

gridpoint-by-gridpoint scores, such as the GSS, are

maximized for frequency biases.1 since these scores

FIG. 4. GSS for 2009 and 2010 0000 UTC CAPS CN

(long-dashed line) and CAPS C0 (short-dashed line) at

the (a) 20-dBZ, (b) 40-dBZ, and (c) 1.0 mm h21

thresholds. Solid black line is the difference between CN

and C0, and vertical black lines on the difference line

represent the 95% confidence intervals.

3 Frequency biases are highly dependent on what microphysical

scheme is used in a model, so it should be noted that these bias

results and their effects on verification metrics are specific only to

these models (i.e., different findings might result if different cloud

microphysics schemes are used).
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are more sensitive to missed events than false alarms

(Baldwin and Kain 2006). In other words, CN’s high

bias likely resulted in the noticeable improvement in

the GSS for CN versus C0 for the 20-dBZ threshold.

The differences in FBIAS between CN and C0 lead to

higher POFD for CN for several hours, particularly

for the 20-dBZ threshold (Figs. 6 and 7). The fact that

CN has a higher FBIAS (and higher POFD) than C0

for the first few hours is not surprising since C0 is

spinning up convection. However, the higher 20-dBZ

FBIAS for CN persists through about FH 8 for the

0000 UTC runs (Fig. 6a), so the differences in FBIAS,

and the effects4 on the GSS, appear to linger after C0

spins up convection. This relationship in FBIAS and

POFD between CN and C0 also is seen at the 40-dBZ

threshold (Figs. 6b and 7b), although the FBIAS values

and their differences are not as large.

b. Neighborhood method results

The previous section shows that a wide range of

conclusions can be drawn about a model’s performance

FIG. 5. As in Figs. 4a and 4b, but for 1200 UTC CAPS CN and

CAPS C0. FIG. 6. As in Figs. 4a and 4b, but for frequency bias (FBIAS).

4 The bias-adjusted GSS from Mesinger (2008) was computed

(not shown) and depicted smaller differences between CN and C0

through FH 6–8.
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when using traditional gridpoint-by-gridpoint metrics

computed from 2 3 2 contingency tables on explicit

model forecasts of convection, depending on which

threshold and metric are used for evaluation. Although

some scores may underpenalize model forecasts if model

biases are not accounted for, the lack of an overlay of

forecasts and observations at the grid scale for highly

discontinuous fields can overpenalize the forecasts and

misrepresent the skill and usefulness of the forecasts,

which may be the case for the 40-dBZ threshold GSS

scores shown earlier. For the neighborhood metrics

that attempt to account for forecasts that are ‘‘close

enough,’’ not surprisingly, CN exhibits positive skill for

all neighborhood sizes and reflectivity thresholds at the

initial analysis time for the 0000 UTC initialization time

(Fig. 8a). Again, this is because the hydrometeor fields

are effectively inserted directly onto the native 4-km

grid of the CNmodel through the cloud analysis scheme.

Not surprisingly, the base rates5 decrease with increasing

thresholds (Fig. 8b).

By FH 1 however, the 0000 UTC CN quickly loses

useful skill at higher thresholds. Forecasts at the 30-dBZ

FIG. 7. As in Figs. 4a and 4b, but for POFD.

FIG. 8. (a) FSS–FSSuseful for 2009 and 2010 for 0000 UTC CAPS

CN at FH 0 for reflectivity thresholds every 5 dBZ from 20 and

40 dBZ and for neighborhood sizes from 5 to 320 km.Gray shading

with solid contours represents useful skill, and gray shading with

dashed contours (not depicted here) represents nonuseful skill.

Values along the right ordinate represent multiples of the grid

spacing. (b) Base rates of observed reflectivity for each threshold.

5 The base-rate bar graphs will be excluded from the results and

discussion from this point forward, but they will be included in the

figures for the reader’s interest.
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threshold lose skill up to the 20-km neighborhood

(;4Dx) and the forecasts at the 40-dBZ threshold lose

skill up to the 60-kmneighborhood (;12Dx) (Fig. 9a). In
effect, the 0000 UTC CN model runs lose forecasting

skill for small mesoscale and convective-scale neigh-

borhoods, meaning they have little to no skill in the

placement of individual convective cells and small con-

vective clusters, after 1 h of integration. For comparison,

C0 exhibits no useful skill for all depicted scales and

thresholds for both model initialization times (Fig. 9b),

but this is not surprising since C0 is still spinning up

convection for the first few forecast hours. Although the

dropoff in skill for CN is rapid, CN still outperforms C0

for all neighborhood and threshold combinations at

FH 1 (Fig. 9c). The neighborhoods and reflectivity thresh-

olds at which the alleviation of the spinup problem is

skillful are limited to neighborhoods greater than 5–

10 km for the lower reflectivity thresholds (i.e., 20–30 dBZ)

and neighborhoods greater than 20–40 km for the

higher thresholds (i.e., 35–40 dBZ). Similarly, CN con-

tinues to outperform C0 at FH 2 and is, thus, not shown.

By FH 3, the 0000 UTC CN model runs continue to

lose useful skill. The 0000 UTC CN model runs have

useful skill for neighborhoods greater than ;30 km at

the 20-dBZ threshold and for neighborhoods greater

than ;140 km at the 40-dBZ threshold (Fig. 10a). Con-

versely, C0 gains useful skill for neighborhoods greater

than ;150 km at the 20-dBZ threshold and for neigh-

borhoods greater than;310 km at the 40-dBZ threshold

(Fig. 10b). CN continues to have greater skill than C0 at

FH 3 (Fig. 10c), but the magnitude of the differences is

decreasing.

FIG. 9. FSS–FSSuseful for 2009 and 2010 for 0000 UTC (a) CAPS CN and (b) CAPS C0 at FH 1 for reflectivity

thresholds every 5 dBZ from 20 and 40 dBZ and for spatial scales from 5 to 320 km.Gray shading with solid contours

represents useful skill, and gray shading with dashed contours represents nonuseful skill. (c) Differences betweenCN

and C0, where gray shading with solid contours represents FSSCN. FSSC0, gray shading with dashed contours (not

depicted in these plots) represents FSSCN , FSSC0, and stippling depicts the 95% confidence interval (note that

significance exists for all sizes and thresholds). Values along the right ordinate represent multiples of the grid spacing.

(d) Base rates of observed reflectivity for each threshold.
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At FH 6, the 0000 UTC CN model runs maintain

useful skill for neighborhoods greater than ;90 km at

the 20-dBZ threshold and for neighborhoods greater

than;140 km at the 40-dBZ threshold (Fig. 11a), which

is similar to the results at FH 3. Useful skill exists for

neighborhoods greater than ;150 km at the 20-dBZ

threshold and for neighborhoods greater than;320 km

at the 40-dBZ threshold for the 0000 UTC C0 model

runs (Fig. 11b). The magnitude of the difference in skill

between CN and C0 continues to decrease by FH 6, but

are deemed to be significant at most neighborhoods and

thresholds (Fig. 11c). At forecast hours 9 and 12, the

results are similar to FH 6 and, thus, are not shown.

c. Scale-separation method results

Although the neighborhoodmethod effectivelyweights

small distance errors less and less as the size of the

neighborhood increases, it does not define the contribution

of specific spatial scales to the error (nor to their biases).

The scale-separation method is able to isolate these scales.

Furthermore, the scale-separation results give another

perspective on where in the reflectivity–spatial-scale

parameter space the ‘‘useful skill’’ exists through the

ISS. This additional information of useful skill is re-

vealing because the FSSuseful used earlier may not be the

optimal measure of useful skill.

For the initial analysis time, CN exhibits positive skill

(positive ISS values are considered to define ‘‘useful

skill’’ for the purpose of this study) for all spatial scales

at thresholds less than 25 dBZ and for spatial scales

greater than;10 km at the 40-dBZ threshold (Fig. 12a6),

so even for the initial hour, CN struggles with analyzing

the amplitude of the higher-reflectivity cores. This is

likely due to a somewhat smoothed representation of

convection produced by the cloud analysis schemes.

Even though CN is largely unbiased at the initial time, it

is initialized with too much coverage of higher re-

flectivities for large spatial scales based on ERD values

greater than 0.2 (Fig. 12b).

FIG. 10. As in Fig. 9, but for FH 3.

6 The left ordinate in the ISS plots represents the spatial scale of

the binary forecast errors and not just the neighborhood size as for

the neighborhood method.
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At FH 1, CN has no skill for both spatial scales less

than about 40 km and thresholds greater than 25 dBZ

(Fig. 13a). Thus, individual thunderstorms are not

forecasted skillfully even after just 1 h of integration. A

source of error at these scales could be related to the

initialization procedure. Because the 3DVARand cloud

analyses are only performed at one time, there likely is

not a dynamical balance between the 3DVARwind field

analysis that uses the radial winds in the Doppler radar

data and the hydrometeor and in-cloud temperature and

moisture adjustments from the cloud analysis that uses

the reflectivity data (Hu et al. 2006b). As a result, the

storms that are inserted into the initial conditions often

undergo rapid adjustment, and new storms form along

the outflow from the initial storms, or along boundaries

and features that are either found in the initial condi-

tions, or are inserted into the initial conditions by the

3DVAR analysis. C0 has positive skill for spatial scales

greater than ;160 km for the lower reflectivity thresh-

olds and for spatial scales greater than ;60 km for the

higher reflectivity thresholds (Fig. 13b). The CN and C0

difference field reveals that CN performs better than C0

for all spatial scales and reflectivity thresholds at FH 1

(Fig. 13c), because C0 is still spinning up convection. Of

significance is that CN overforecasts (high bias) for all

spatial scales and reflectivity thresholds except for the

highest thresholds (Fig. 13d), indicating that CN is

generating too much convection in the first forecast

hour. The spinup of convection in C0 is indicated by the

negative ERD values for all spatial scales and re-

flectivity thresholds (Fig. 13e).

At FH 3, CN has no skill for both reflectivity thresholds

greater than 30 dBZ and spatial scales less than ;80 km

(Fig. 14a). Interestingly, a ‘‘tongue’’ of negative skill exists

between the 40- and 80-km spatial scales for lower re-

flectivity thresholds. Positive skill exists on either side of

this tongue. For C0, the tongue of negative skill exists be-

tween the spatial scales of 25 and 160 km (Fig. 14b). This

region of positive skill on the small spatial scales in the

plots is likely due to there being very few small-scale events

with weak intensity, which causes only small errors com-

pared to the random forecast at these scales (Casati 2010).

At FH 3, in the range of spatial scales from 40 to

320 km, CN is noticeably better than C0 at the lower

FIG. 11. As in Fig. 9, but for FH 6.
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reflectivity thresholds but not at 40 dBZ (Fig. 14c). The

skill for CN appears to be better than for C0 at scales less

than 40 km as well, but the significance is doubtful to

nonexistent. This implies that CN has noticeably better

skill in the near-term forecasting of precipitation than

C0 down to 40-km spatial scales (;8Δx). However, there

is negative skill between the 40- and 80-km spatial scales

for CN, so CN’s improvement over C0 is only useful for

spatial scales greater than ;80 km (;16Δx). Once

again, CN overforecasts for all spatial scales and for

reflectivity thresholds less than 35 dBZ (Fig. 14d). C0

continues to underforecast for reflectivity thresholds

greater than 30 dBZ, but for reflectivity thresholds less

than 30 dBZ, C0 has a small positive bias (Fig. 14e) as

convection has spun up by this time.

At FH 6, the positive skill at the higher reflectivity

thresholds seen at FH 3 remains the same for CN, but

the positive skill for the lower thresholds between 80 and

160 km is lost (i.e., the region of negative skill shifts

toward smaller reflectivities and larger scales) (Fig. 15a).

The scales and thresholds of positive skill for C0

changed little from FH 3 to FH 6, except for the slight

increase in positive skill for both small spatial scales and

low reflectivity thresholds (Fig. 15b). The difference plot

reveals that C0 has nearly ‘‘caught up’’ with CN for

spatial scales less than ;40 km by FH 6 (Fig. 15c). This

is consistent with the subjective impressions of the

SFE2009 and SFE2010 participants, who tended to say

CN and C0 were of nearly equal skill by FH 3–6. This

suggests that the human participants were focusing not

only on the higher reflectivity thresholds (see section

4a), but also on relatively small scales. In other words,

they may have been rating CN and C0 more so based on

smaller-scale convection (e.g., supercells), as opposed to

larger-scale convective systems, which can have broad

areas of high reflectivity (.35 dBZ).

However, an interesting result is that CN continues to

show better skill than C0 for the spatial scales between

;40 and ;320 km. A possible reason why the spatial

scales and reflectivity thresholds at which CN has posi-

tive skill and C0 has significantly lesser or negative skill

is that the mesoscale convective systems and squall lines

simulated by C0 tend to lag behind the observed systems

more so than for CN. A comparison of the SR and OR

beginning at 0000 UTC on 14 May 2009 illustrates this

problem (Fig. 16). CN’s simulated squall line largely

overlaps the observed squall line after 6 h of integration,

but C0’s simulated squall line lags behind. This is a

characteristic that was noticed on several days by the

SFE2009 participants and was most clearly seen for

squall lines and larger convective systems at greater than

30-dBZ thresholds. This shows that CN has difficulty

retaining convective-scale skill (scales , 40–80 km)

through 3–6 h, but the information on the larger scales

appears to be retained at and beyond 6 h and is manifest

as convective systems with a smaller lag with observa-

tions compared to C0. With the initial data assimilation,

CN has a better handle of the current state of the atmo-

sphere on the larger scales with respect to latent heating

and divergence. With that information, CN is able to

maintain larger convective systems from the start, while

C0 has to take time to develop that same convective

system. Also at FH 6, CN continues to overforecast for

FIG. 12. (a) ISS and (b) ERD values for 2009 and 2010 for

0000 UTC CAPS CN at FH 0 for reflectivity thresholds every

5 dBZ from 20 to 40 dBZ and spatial scales from 5 to 320 km.

Gray shading with solid contours in (a) represents positive skill,

and gray shading with dashed contours in (a) represents negative

skill. Gray shading with solid contours in (b) represents over-

forecasting, and gray shading with negative contours in (b) repre-

sents underforecasting. Values along the right ordinate represent

multiples of the grid spacing.
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FIG. 13. ISS for 2009 and 2010 for 0000 UTC (a) CAPS CN and (b) CAPS C0 at FH 1 for reflectivity thresholds

every 5 dBZ from 20 to 40 dBZ and spatial scales from 5 to 320 km. Gray shading with solid contours in (a) and (b)

represents positive skill, and gray shading with negative contours in (a) and (b) represents negative skill. (c) ISS

differences between CN and C0, where gray shading with solid contours represents ISSCN . ISSC0, gray shading

with dashed contours (not depicted in these plots) represents ISSCN , ISSC0, and stippling represents 95% sta-

tistical significance. ERD values for (d) CN and (e) C0, where gray shading with solid contours represents over-

forecasting, and gray shading with dashed contours represents underforecasting. Values along the right ordinate

represent multiples of the grid spacing. (f) Base rates of observed reflectivity for each threshold.
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thresholds less than 35 dBZ, but now underforecasts for

thresholds greater than 35 dBZ (Fig. 15d). C0 slightly

overforecasts for small spatial scales and low reflectivity

thresholds while underforecasting for thresholds greater

than 35 dBZ, similar to CN (Fig. 15f), indicating that the

spinup process in C0 is nearly complete. Forecast hours 9

and12depict similar results toFH6andare thus not shown.

5. Summary and conclusions

During a period of several weeks in the springs of the

past several years, researchers and forecasters from

across the country met in Norman, Oklahoma, for the

annual Hazardous Weather Test Bed (HWT) Spring

ForecastingExperiment to evaluatemodel forecasts from

FIG. 14. As in Fig. 13, but for FH 3.
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experimental storm-scale models. In 2009 and 2010, one

of their tasks was to rate CN and C0 based on a visual

inspection of the simulated and observed reflectivity.

Most of the time, the participants noted that the skills of

CN and C0 became roughly equivalent sometime be-

tween forecast hours 3 and 6. However, some traditional

verification metrics, like GSS at lower thresholds, do not

necessarily convey this message and can suggest that

beneficial information from radar is retained out to at

least 12 h. As such, a main goal of this study was to de-

termine if newer spatial verification techniques provide

objective results that are qualitatively more similar to

SFE2009 and SFE2010 participants’ subjective assess-

ment of the model forecasts than the traditional verifica-

tion scores. Additionally, another important goal of this

study was to evaluate the benefit of the 3DVAR–cloud

FIG. 15. As in Fig. 13, but for FH 6.
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analysis radar data assimilation technique, which was

used in CN’s forecasts.

To examine the reasons for the apparent discrepancy

in subjective and objective metrics, and as part of an

objective assessment of the performance of CN and C0,

several traditional verification metrics were computed

for the CN and C0 forecasts of convection. It was found

that the assessment of the relative performance of CN

FIG. 16. First row is the observed composite reflectivity for (a) 0000, (f) 0200, (k) 0400, and (p) 0600UTC 14May 2009. Second and third

rows are simulated reflectivity forecasts from 0000 UTC (b),(g),(l),(q) CAPS CN and (c),(h),(m),(r) CAPS C0 for the same times. In the

bottom two rows, 30-dBZ thresholded observed reflectivity is marked by the thin blue line. Red shading represents 30-dBZ thresholded

simulated reflectivity for (d),(i),(n),(s) CN and (e),(j),(o),(t) C0. From Kain et al. (2010).
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versus C0 depends significantly on the metric of choice

and on the chosen threshold of reflectivity (or, similarly,

1-h accumulated precipitation). According to the GSS

(ETS), CN significantly outperformed C0 out to FH 6

(with doubtful significance out to FH 12, which does not

agree well with the assessment from the Spring Fore-

casting Experiment participants) at the 20-dBZ thresh-

old. However, at the 40-dBZ threshold, CNandC0’sGSS

scores converged after just a few hours of integration,

which agrees much better with the sentiment of the SFE

participants. This is likely due to the fact that the partici-

pants tended to focus on the higher reflectivities in the

displays (the reflectivities with yellows and reds) rather

than the weaker reflectivities (blues and greens). Also,

CN’sGSS scores at the 20-dBZ thresholdwere likely larger

than C0’s GSS due to CN’s high-frequency bias, both in

an absolute sense and relative to C0, formost thresholds.

In addition to the computation of traditional metrics,

somenew spatial verification techniqueswere used: theFSS

computed using the neighborhood method was employed

to assess the neighborhood and variable threshold combi-

nations that yield useful forecasting skill for each forecast

hour (Roberts and Lean 2008; Ebert 2008). Furthermore,

the ISS computed from the scale-separation method

was used to examine the error (MSE and bias) and skill

on specific spatial scales (Casati 2010). These filtering

methods serve to give credit to forecasts that are ‘‘close

enough’’; gridpoint-by-gridpoint metrics do not do so.

In general, both the FSS and the ISS show that CN lost

most of its useful skill at neighborhood widths and spa-

tial scales smaller than about 40 km (8Δx), and performs

worse the higher is the threshold, after just a few hours

of integration. As discussed in section 4c, a source of

additional error at thesewidths and scales could be related

to how there is likely not a dynamical balance between the

3DVARwind field analysis and the hydrometeor and in-

cloud temperature and moisture adjustments from the

cloud analysis in the initialization procedure potentially

resulting in rapid adjustments of storm coverage pat-

terns. Even with this potential source of error, CN still

performed better than C0, which has negative FSS for

most neighborhood and threshold combinations through

FH 6. Although, it is acknowledged that the Roberts and

Lean ‘‘target skill’’ may not be optimal for the more

convective precipitation events examined in this study

possibly due to being too stringent.

The scale-separation method applied to the forecasts

revealed many similar results compared to the neigh-

borhood method, but there were some differences. For

all forecast hours, a benefit of the 3DVAR analysis

revealed clearly by the scale-separation method is seen

in the larger spatial scales. The significant difference in

ISS between CN and C0 for the 40–320-km spatial scales

and the lack of any significant differences at smaller

spatial scales beyond a few hours shows that convective

meso-g and meso-b scales are contributing little to

nothing to the improvement in skill seen for CN versus

C0. A possible reason as to why this is the case was

discussed in section 4c: mesoscale convective systems in

C0 tend to lag behind the observed systemsmore so than

for CN. This suggests that the information assimilated

through the 3DVAR–cloud analysis system adds little to

no skill at convective and smaller mesoscales (,40–

80 km) starting at FH 1, but adds skill compared to

a cold start at larger scales, even out to FH 12.

A goal of this work was to find objective measures of

model skill that match the subjective impressions of ex-

perts that evaluated the models subjectively. It is found

that the GSS for high reflectivity thresholds (.35 dBZ)

matches subjective impressions that CN performed sim-

ilarly to C0 by 3–6 h into the forecast, more so than lower

thresholds (;20 dBZ). Furthermore, objective spatial

verification metrics that examine model skill at scales

less than 40–80 km match the subjective impressions as

well. Therefore, these metrics (for these scales and thresh-

olds)may be appropriate for use in providing an assessment

consistent with experts’ impressions of convection-allowing

model forecast skill.

Furthermore, the two spatial filtering methods gave a

more comprehensive characterization of the perfor-

mance of the convection-allowing models than the tra-

ditional verification methods. The neighborhood and

scale-separation methods revealed where ‘‘useful skill’’

might exist for several forecast hours in the reflectivity–

spatial-scale parameter space that was not regularly ap-

parent in the subjective evaluations or in the objective

verification using the traditional scores. It is hoped that

these results encourage future use of these new spatial

verification metrics rather than the continued use of

traditional verification metrics at single thresholds to char-

acterize the performance of high-resolution, convection-

allowing models. This is the first known study to appear in

the refereed literature to use radar reflectivity instead of

accumulated precipitation as the verification field for ag-

gregate statistics computed over multiple seasons. It was

found that both fields lead to similar results for all three

verification methods discussed, giving confidence in the use

of hourly simulated and observed reflectivity as a robust

way to measure the performance of convection-allowing

models. Finally, it would be beneficial to use these spatial

verification metrics on case studies of convection or, per-

haps, subsets of modes of convection (e.g., supercells versus

disorganized multicells versus squall lines) aggregated to-

gether in order to not only verify model forecasts of con-

vection, but also to study the different skill score structures

associated with the various modes of convection.

FEBRUARY 2013 S TRATMAN ET AL . 137



Acknowledgments. This work was supported through

NSSL and NOAAEarth System Research Laboratory’s

Global Systems Division (GSD) director’s discretionary

funds and through NOAA/Office of Oceanic and

Atmospheric Research under NOAA–University of

Oklahoma Cooperative Agreement NA08OAR4320904,

U.S. Department of Commerce. Dr. Kim Elmore is

thanked for his very helpful discussion of confidence

intervals. Tara Jensen and everyone else associated with

the use of MET at the DTC are thanked for their help in

using MET. Drs. Jack Kain and Fred Carr are thanked

for their insight into model verification. Model Evalua-

tion Tools (MET) was developed at the National Center

for Atmospheric Research (NCAR) through a grant

from the U.S. Air Force Weather Agency (AFWA).

NCAR is sponsored by the U.S. National Science

Foundation. The CAPS forecasts were supported by the

NOAA CSTAR grant to CAPS, and were produced at

the National Institute of Computational Science (NICS)

at the University of Tennessee, and at the Oklahoma

Supercomputing Center for Research and Education

(OSCER). Kevin Thomas and Fanyou Kong were in-

strumental in producing the forecasts.

REFERENCES

Baldwin, M. E., and J. S. Kain, 2006: Sensitivity of several perfor-

mance measures to displacement error, bias, and event fre-

quency. Wea. Forecasting, 21, 636–648.

Casati, B., 2010: New developments of the intensity-scale technique

within the Spatial Verification Methods Intercomparison Pro-

ject. Wea. Forecasting, 25, 113–143.

——, G. Ross, and D. B. Stephenson, 2004: A new intensity-scale

approach for the verification of spatial precipitation forecasts.

Meteor. Appl., 11, 141–154.

——, and Coauthors, 2008: Forecast verification: Current status

and future directions. Meteor. Appl., 15, 3–18.

Clark, A. J., and Coauthors, 2012: An overview of the 2010

Hazardous Weather Testbed Experimental Forecast Program

Spring Experiment. Bull. Amer. Meteor. Soc., 93, 55–74.

Doswell, C. A., III, R. Davies-Jones, and D. L. Keller, 1990: On

summary measures of skill in rare event forecasting based on

contingency tables. Wea. Forecasting, 5, 576–585.

DTC, 2011:MET:Version 3.0Model Evaluation Tools users guide.

Developmental Testbed Center, Boulder, CO, 209 pp. [Avail-

able at http://www.dtcenter.org/met/users/docs/overview.php.]

Easterling, D. R., and P. J. Robinson, 1985: The diurnal variation of

thunderstorm activity in the United States. J. Climate Appl.

Meteor., 24, 1048–1058.
Ebert, E. E., 2008: Fuzzy verification of high-resolution gridded

forecasts: A review and proposed framework. Meteor. Appl.,

15, 51–64.

——, 2009: Neighborhood verification: A strategy for rewarding

close forecasts. Wea. Forecasting, 24, 1498–1510.

Elliot, A. J., and M. A. Maier, 2007: Color and psychological

functioning. Curr. Dir. Psychol. Sci., 16, 250–254.
Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E.

Ebert, 2009: Intercomparison of spatial forecast verification

methods. Wea. Forecasting, 24, 1416–1430.

——, ——, ——, and E. E. Ebert, 2010: Verifying forecasts spa-

tially. Bull. Amer. Meteor. Soc., 91, 1365–1373.

Hamill, T. M., 1999: Hypothesis tests for evaluating numerical

precipitation forecasts. Wea. Forecasting, 14, 155–167.
——, and J. Juras, 2006: Measuring forecast skill: Is it real skill or is

it the varying climatology? Quart. J. Roy. Meteor. Soc., 132,

2905–2923.

Hu, M., M. Xue, and K. Brewster, 2006a: 3DVAR and cloud

analysis with WSR-88D level-II data for the prediction of

the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud

analysis and its impact. Mon. Wea. Rev., 134, 675–698.

——, ——, J. Gao, and K. Brewster, 2006b: 3DVAR and cloud

analysis with WSR-88D level-II data for the prediction of the

Fort Worth, Texas, tornadic thunderstorms. Part II: Impact of

radial velocity analysis via 3DVAR.Mon.Wea.Rev.,134,699–721.

Kain, J. S., and Coauthors, 2010: Assessing advances in the as-

similation of radar data and other mesoscale observations

within a collaborative forecasting–research environment.

Wea. Forecasting, 25, 1510–1521.

Lichtenfeld, S., M. A. Maier, A. J. Elliot, and R. Pekrun, 2009: The

semantic red effect: Processing the word red undermines in-

tellectual performance. J. Exp. Soc. Psychol., 45, 1273–1276.

Mesinger, F., 2008: Bias adjusted precipitation threat scores. Adv.

Geosci., 16, 137–142.
Mittermaier, M., and N. Roberts, 2010: Intercomparison of spatial

forecast verification methods: Identifying skillful spatial scales

using the fractions skill score. Wea. Forecasting, 25, 343–354.
Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification

of rainfall accumulations from high-resolution forecasts of

convective events. Mon. Wea. Rev., 136, 78–97.
Schwartz, C. S., and Coauthors, 2009: Next-day convection-

allowingWRFmodel guidance: A second look at 2-km versus

4-km grid spacing. Mon. Wea. Rev., 137, 3351–3372.

Stephenson, D. B., B. Casati, C. A. T. Ferro, and C. A. Wilson,

2008: The extreme dependency score: A non-vanishing mea-

sure for forecasts of rare events. Meteor. Appl., 15, 41–50.

Vasiloff, S. V., and Coauthors, 2007: Improving QPE and very

short term QPF: An initiative for a community-wide in-

tegrated approach. Bull. Amer. Meteor. Soc., 88, 1899–1911.

Wallace, J. M., 1975: Diurnal variations in precipitation and

thunderstorm frequency over the conterminousUnited States.

Mon. Wea. Rev., 103, 406–419.

Wurman, J. D., C. A. Dowell III, Y. Richardson, P. Markowski, D.

Burgess, L. Wicker, and H. Bluestein, 2012: The Second Ver-

ification of theOrigin of Rotation in Tornadoes Experiment:

VORTEX 2. Bull. Amer. Meteor. Soc., 93, 1147–1170.

Xue,M.,D.-H.Wang, J.-D.Gao,K.Brewster, andK.K.Droegemeier,

2003: The Advanced Regional Prediction System (ARPS)

storm-scale numerical weather prediction and data assimila-

tion. Meteor. Atmos. Phys., 82, 139–170.
——, and Coauthors, 2009: CAPS realtime multi-model convection-

allowing ensemble and 1-km convection-resolving forecasts for

the NOAA Hazardous Weather Testbed 2009 Spring Experi-

ment. Preprints, 23rdConf. onWeatherAnalysis andForecasting/

19thConf. onNumericalWeatherPrediction,Omaha,NE,Amer.

Meteor. Soc., 16A.2. [Available online at http://ams.confex.com/

ams/pdfpapers/154323.pdf.]

——, and Coauthors, 2010: CAPS realtime storm scale ensemble

and high resolution forecasts for the NOAA Hazardous

Weather Testbed 2010 Spring Experiment. Preprints, 25th

Conf. on Severe Local Storms, Denver, CO, Amer. Meteor.

Soc., 7B.3. [Available online at https://ams.confex.com/ams/

25SLS/webprogram/Paper176056.html.]

138 WEATHER AND FORECAST ING VOLUME 28


