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Abstract 47 

This study uses both traditional and newer verification methods to evaluate two 4-km 48 

grid-spacing WRF model forecasts; a “cold start” forecast that uses the 12-km North American 49 

Mesoscale (NAM) model analysis and forecast cycle to derive the initial and boundary 50 

conditions (C0), and a “hot start” forecast that adds radar data into the initial conditions using a 51 

3DVAR/cloud analysis technique (CN). These forecasts were evaluated as part of 2009 and 52 

2010 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiments. The Spring 53 

Forecasting Experiment participants noted that the skill of CN’s explicit forecasts of 54 

convection estimated by some traditional objective metrics often seemed large compared to the 55 

subjectively-determined skill.  The Gilbert Skill Score (GSS) reveals CN scores higher than C0 56 

at lower thresholds likely due to CN having higher frequency biases than C0, but the difference 57 

is negligible at higher thresholds, where CN and C0’s frequency biases are similar. This 58 

suggests that if traditional skill scores are used to quantify convective forecasts, then higher (> 59 

35 dBZ) reflectivity thresholds should be used to be consistent with expert’s subjective 60 

assessments of the lack of forecast skill for individual convective cells. The spatial verification 61 

methods show both CN and C0 generally have little to no skill at scales < 8–12x starting at 62 

forecast hour 1, but CN has more skill at larger spatial scales (40–320 km) than C0 for the 63 

majority of the forecasting period. This indicates that the hot start provides little to no benefit 64 

for forecasts of convective cells, but has some benefit for larger mesoscale precipitation 65 

systems. 66 

 67 
 68 
 69 
 70 
 71 
 72 
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1. Introduction 73 

 Every Spring, operational forecasters and research scientists participate in the National 74 

Oceanic and Atmospheric Administration’s (NOAA) Hazardous Weather Testbed (HWT) 75 

Spring Forecasting Experiment, which is designed to improve communication and facilitate 76 

collaboration among forecasters and researchers through the generation of daily experimental 77 

convective forecasts and evaluation of experimental forecast models (Kain et al. 2010; Clark et 78 

al. 2012). For the 2009 and 2010 Spring Forecasting Experiments (SFE2009 and SFE2010, 79 

respectively), the Center for Analysis and Prediction of Storms (CAPS) at the University of 80 

Oklahoma produced ensemble forecasts at 4-km grid-spacing, in near-CONUS (2009) and full-81 

CONUS (2010) domains, using the Weather Research and Forecasting (WRF) model (Xue et 82 

al. 2009; 2010). The ensemble forecasts were run once a day, starting from 0000 UTC on week 83 

days, and the length of forecasts was 30 hours. Among the ensemble members for both years, 84 

two members of interest used the WRF-ARW model; one member directly used the 0000-UTC 85 

12-km NAM (North American Mesoscale model) analyses at the initial condition and the other 86 

member used the three-dimensional variational (3DVAR)-cloud analysis (Xue et al. 2003; Hu 87 

et al. 2006a, 2006b) initial condition that assimilated radar and other high-resolution 88 

observations (from surface stations and wind profilers). The NAM analyses were used as the 89 

background. The two runs did not include additional initial condition perturbations and are 90 

referred to as two control runs, one with radar data (called CN) and one without radar data 91 

(called C0). The comparison between CN and C0 allows the evaluation of the impact of radar 92 

and other high-resolution data in the initial condition, with radar data having a dominant effect 93 

given its relative data volume. All forecasts used NAM forecasts starting at the same initial 94 

times to provide the lateral boundary conditions. In addition to the 0000-UTC ensemble 95 
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forecasts, CAPS was also producing forecasts over a smaller central U.S. domain, at 1200 UTC 96 

and several other times, using model configurations corresponding to those of 0000-UTC CN 97 

and C0 (except for the domain size). These runs were made to support the VORTEX2 field 98 

experiment (Xue et al. 2009; 2010). In this study, we will evaluate and initially compare the 99 

0000- and 1200-UTC CN and C0 forecasts.  100 

 During 2009 and 2010, participants in the Spring Forecasting Experiment compared 101 

hourly loops of CN and C0 simulated reflectivity (SR) forecasts to the observed radar 102 

reflectivity (OR) for the same time periods on a large monitor. They were asked to define when 103 

the cold start forecasts (C0) appeared to “catch up” with the hot start forecasts (CN) “in terms 104 

of its degree of correspondence with reality.” For SFE2009, nearly 60% of the participants 105 

perceived 0000-UTC CN forecasts to be effectively similar to the C0 forecasts in their 106 

depiction of convection after 3 to 6 hours. For example, one participant commented, “by 107 

[forecast hours] 3–4 the two model runs tend to look more like each other than like the 108 

obs[ervations].” This sentiment is illustrated for an individual case in Fig. 1. At the initial time, 109 

CN’s SR looked very similar to the OR, which is the result of the reflectivity assimilation in 110 

the cloud analysis step. However, by forecast hour 3 and especially by forecast hour 6, the 111 

subjective impression of the participants is that both forecasts were equally skillful/unskillful 112 

in their forecasts of that convective event. 113 

 This study aims to complement the subjective assessment of CN’s and C0’s skill in 114 

forecasting convection discussed above by providing a comprehensive objective assessment of 115 

its skill. The skill is characterized through traditional metrics, as well as through newer 116 

techniques that define model errors by spatial scales and variable thresholds. The latter 117 

approach delineates the spatial scales at which CN improves over C0 and provides a more 118 
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comprehensive assessment of model skill over what can be provided by a subjective evaluation, 119 

or by traditional grid-point-by-grid-point techniques.   120 

 The HWT forecasting experiments have shown that subjective evaluations can provide 121 

valuable information on the tools that forecasters find useful, but they are limited in defining 122 

the specific error characteristics of numerical model forecasts that researchers strive to address. 123 

Simple quantitative verification techniques (that compare a forecast of some quantity to an 124 

analysis or observation of that quantity at specific points in space and time) have long been 125 

used to objectively evaluate model forecasts. As higher resolution numerical models are now 126 

used to predict highly discontinuous fields, like convection, there is an increasing need in the 127 

research community to use newer verification techniques (Casati et al. 2008; Gilleland et al. 128 

2009; Gilleland et al. 2010). Because traditional grid-point-by-grid-point verification metrics 129 

effectively give much weight to the smallest scales allowed by the gridded model forecasts and 130 

observations, small deviations (i.e., errors) in the model forecasts from the observations can 131 

often cause misrepresentation of the useful model forecast skill (i.e., skill a forecaster would 132 

deem useful and appropriate). Newer verification techniques that attempt to better characterize 133 

model skill for discontinuous fields can be classified into one of four categories: neighborhood 134 

(or fuzzy), scale separation (or decomposition), feature-based (or object-based), and field 135 

deformation techniques (Gilleland et al. 2009). This study uses the first two types, which are 136 

different ways of evaluating model skill through a filtering of the gridded fields.  137 

 Several traditional verification metrics and two filtering techniques (described in 138 

Section 3) are used in this study to analyze the performance of CN and C0 in an individual and 139 

a comparative sense. A goal of using these spatial-scale filtering methods is to determine if the 140 

spatial verification metrics are more consistent with the SFE2009 and SFE2010 participants’ 141 
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subjective evaluations since the traditional verification scores are often not appropriate 142 

measures of skill for high-resolution model forecasts of discontinuous fields (Gillelend et al. 143 

2009), like strong convection. Another goal of this study is to assess the benefit of the CAPS 144 

3DVAR-cloud analysis radar data assimilation technique (described in Section 2), as applied to 145 

the CN forecasts. 146 

 147 

2. Data Sets 148 

a) CAPS CN and C0 forecasts 149 

As mentioned earlier, the two WRF-ARW (Advanced Research WRF) model runs 150 

examined in this study were part of the CAPS 4-km grid spacing Storm Scale Ensemble 151 

Forecast (SSEF) system run in the springs of 2009 and 2010 (see Xue et al. 2009, 2010 for 152 

specific details). The 2009 version of the SSEF system was comprised of 10 WRF-ARW 153 

members, 8 WRF-NMM (Nonhydrostatic Mesoscale Model) members, and 2 ARPS 154 

(Advanced Regional Prediction System) members, while the 2010 SSEF system contained 19 155 

WRF-ARW members, 5 WRF-NMM members, and 2 ARPS members. For SFE2009, the 156 

0000-UTC WRF-ARW control members (i.e., CN and C0) were integrated to 30 hours on an 157 

eastern near-CONUS size domain (Fig. 2a). For SFE2010, CN and C0 were once again 158 

integrated to 30 hours starting at 0000 UTC, but the domain increased to a full CONUS size 159 

domain (Fig. 2b). For both SFE2009 and SFE2010, the 1200-UTC CN and C0 members were 160 

integrated to 18 hours on the Central Plains domain (Fig. 2a,b).   161 

CN assimilates radar radial velocity with a mass divergence constraint in the 3DVAR 162 

procedure to derive the wind components for the initial conditions in combination with the 163 

NAM background and additional surface and wind profiler data (Hu et al. 2006b). In addition, 164 



 7 

CN uses a cloud analysis scheme, which adds hydrometeors and adjusts the in-cloud 165 

temperature and moisture fields through a moist-adiabatic scheme using three dimensional 166 

radar reflectivity data as well as surface cloud base and satellite cloud top observations (Xue et 167 

al. 2003; Hu et al. 2006a). Except for the initial condition, all other model configurations (i.e., 168 

boundary conditions from the NAM fields, Thompson cloud microphysics scheme, Goddard 169 

short-wave radiation physics, RRTM long-wave radiation physics, Noah land-surface model, 170 

and Mellor-Yamada-Janjic planetary boundary layer physics) are identical between CN and C0 171 

(Xue et al. 2009; 2010). 172 

The 0000- and 1200-UTC model runs are examined separately. Combining both years 173 

of data yielded a maximum 56 days of data for the 0000-UTC model runs and 77 days of data 174 

for the 1200-UTC model runs (the 1200-UTC forecasts were run on weekends also). These 175 

data sets are used to evaluate and compare the models’ hourly SR and 1-h accumulated 176 

precipitation (APCP) fields.  177 

 178 

b) Verification data and domain           179 

  Composite reflectivity and quantitative precipitation estimates calculated on a 1-km 180 

grid as part of the National Severe Storms Laboratory (NSSL) National 3-D Reflectivity 181 

Mosaic system are used for the verifying observations (see Vasiloff et al. 2007 for more 182 

details). Even though the 0000-UTC forecasts were performed on large CONUS-sized domains, 183 

this study focuses on the Central Great Plains region that was the focus of the VORTEX2 field 184 

experiment during the two spring seasons. Given that the wavelet scale-separation method used 185 

in this study requires domains to be 2
n
  2

n
 grid points in size (see Section 3c) and given the 4-186 

km grid spacing of the model forecasts, a reasonably sized verification domain was chosen to 187 
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be made up of 256  256 grid points in the horizontal (n = 8) given the smaller size of the 188 

1200-UTC domain. Because the model forecasts and verification fields were on different 189 

native grids, prior to verification, the fields were interpolated to a 256  256 portion of the 190 

AWIPS #240 grid (following Schwartz et al. 2009), which has a horizontal grid-spacing of 191 

4.7625 km. 192 

 Due to its small size relative to the model domains, the verification domain was 193 

moveable
1
 (Fig. 2) to follow areas where observed convection occurred. If no convection 194 

occurred on a particular day, the domain was centered on Norman, OK. In addition, the 195 

western edge of the domain always had a longitude of 105W, so the domain moved north and 196 

south to follow active areas of convection over the Central U.S. 197 

 198 

3. Verification Metrics 199 

a) Traditional scores 200 

Using thresholds of 10, 20, 30, and 40 dBZ for SR and 0.1, 1.0, 5.0, and 10.0 mm/hr for 201 

APCP, standard 2  2 contingency table components (i.e., hits, false alarms, misses, and 202 

correct negatives) were generated hourly for forecast hours 0 through 12 for each model run 203 

using the Model Evaluation Tools (MET) Version 3.0, which was developed and is currently 204 

maintained by NOAA/NCAR (National Center for Atmospheric Research) through the 205 

Development Testbed Center (DTC) (DTC 2011). All of the individual components of the 206 

contingency tables for each model/threshold combination were summed using MET to form 207 

contingency tables for each forecast hour. From these summed contingency tables, four 208 

traditional metrics were computed: frequency bias (FBIAS), probability of detection (POD), 209 

                                                        
1
 It’s worth noting as a caveat that the climatology varies as the verification domain is moved from location to 

location (Hamill and Juras 2006).  
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probability of false detection (POFD), and Gilbert skill score (GSS) (otherwise known as the 210 

Equitable Threat Score, or ETS). 95% confidence intervals (CI) were included for each metric 211 

for each forecast hour to assess the uncertainty in the estimates following the resampling 212 

procedure of Hamill (1999). The CIs are assigned in a comparative sense – the uncertainty in 213 

the difference in the metrics between the two model forecasts in question is assessed by 214 

computing CIs on the metric differences at each forecast hour. If the CIs on the difference 215 

estimates include the zero line for a particular forecast hour, the differences of the verification 216 

metrics are said to be not significantly different, and vice versa.  217 

 218 

b) Neighborhood method 219 

 Using the neighborhood method based on Roberts and Lean (2008), the fractions skill 220 

score (FSS) is computed to assess the skill for different neighborhood sizes and variable 221 

thresholds. The neighborhood method allows for a “hit” to be within a certain neighborhood 222 

(radius) of the observation, which allows for forecasts that are “close enough” to be considered 223 

skillful in the objective metrics (Ebert 2008). FSS ranges from 0 for a no skill to 1 for perfect 224 

skill as given by: 225 

      
 

 
∑ (          )

 
 

 

 
(∑      

 
  ∑     

 
 )

 ,            (1) 226 

where Pfcst and Pobs are the fractional forecast and observed SR (or APCP) areas in each 227 

neighborhood that exceed the specified variable threshold and N is the number of 228 

neighborhoods for each neighborhood size. (Note: larger neighborhood sizes lead to a smaller 229 

number of neighborhoods, whereas smaller sizes will result in a larger N.) In an evaluation of 230 

precipitation forecasts from convection-allowing models, Roberts and Lean (2008) estimated 231 

that forecasts have useful skill (FSSuseful) when FSSuseful = 0.5 + fo/2, where fo is the base rate, 232 
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or fraction of observed events to all grid points. They consider this value to be a reasonable 233 

“target skill” since it is halfway between random forecast skill and perfect skill. This same 234 

value for FSSuseful is used in this study, and forecasts for which FSS > FSSuseful are considered 235 

to have useful skill. 236 

 An aggregated FSS
2
 was computed for each forecast hour for neighborhood widths, n, 237 

of 1, 3, 5, 9, 17, 33, and 65 grid points centered at the grid box in question. For each 238 

neighborhood width, FSS was calculated for different SR and APCP thresholds (i.e., 10, 15, 20, 239 

25, 30, 35, 40, 45, and 50 dBZ and 0.1, 0.5, 1.0, 2.5, 5.0, 7.5, 10.0, 20.0, and 40.0 mm/hr, 240 

respectively). The aggregated FSS–FSSuseful is displayed in a matrix of neighborhood size 241 

versus variable threshold for a particular forecast hour for the individual neighborhood size and 242 

threshold combinations. Whenever FSS–FSSuseful is positive, the forecast is considered to have 243 

useful skill. In addition, similar plots are shown for the differences in FSS between the models 244 

along with 95% confidence intervals, which were computed again following the procedure of 245 

Hamill (1999).  246 

 247 

c) Scale separation method 248 

 Like the neighborhood method, scale separation methods allow for non-overlapping 249 

forecasts and observations to be considered skillful in the objective metrics, but have the 250 

additional benefit of assessing the skill at individual, independent spatial scales of the errors 251 

(Casati et al. 2004). The particular intensity-scale verification (ISV) technique employed in this 252 

study is based on Casati et al. (2004), which isolates the skill at scales given by 2
l
  2

l
 for l = 0, 253 

                                                        
2
 For each forecast hour, the data sets were aggregated together for each combination of neighborhood width and 

threshold. Knowing the FBS, FSS, and N values, the summations in the numerator and denominator of Eqn. 1 

were calculated and aggregated separately for the individual data sets. The aggregated summations were then used 

to calculate FSS. 
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1, 2,...8, where l = 0 represents the horizontal spacing of one grid cell (4.7625 km) and l = 8 254 

represents the entire verification domain (1219  1219 km). This study retains the biases in the 255 

forecasts, as in Casati (2010), to also assess the bias associated with the various spatial scales 256 

and thresholds.  257 

 The first step is to transform forecast and observation fields into binary fields based on 258 

variable thresholds. The same variable thresholds used for the neighborhood method were also 259 

used for this method. A 2-D Haar wavelet decomposition is then performed on the binary 260 

difference images between the forecasts and observations (i.e., the binary difference images are 261 

decomposed into scale components in this step; see Figure 3 for an example of a binary 262 

difference field and its first five scale components). Next, a mean squared error (MSE) of the 263 

scale components of the binary field difference is calculated for each threshold and scale 264 

component. Because the sum of MSE from the individual scale components is equal to the 265 

MSE of the binary difference field image, the errors of individual scales can be examined 266 

separately (Casati et al. 2004).   267 

To generate a baseline skill, a random MSE term is defined using the equation  268 

                   (    )     (          ),             (2) 269 

where FBIAS is the frequency bias and BR is the base rate (Casati 2010). A skill score is 270 

defined for each binary forecast and observation scale component, called the intensity scale 271 

skill (ISS) score, and is given by: 272 

       
   

          (   )
,             (3) 273 

where L = 8 for this study. Positive ISS values are associated with skillful forecasts and 274 

negative ISS values are associated with forecasts with no skill (Casati 2010). Typically, large 275 

weather features, such as frontal convection, are fairly well forecasted by convection-allowing 276 
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models, so the larger spatial scales tend to exhibit positive skill. Conversely, small-scale 277 

weather features, such as individual convective cells, are not usually forecast well by the same 278 

convection-allowing models due to their general inability to resolve features less than ~4–8x 279 

and the generally faster error growth at shorter wavelengths, so the smaller spatial scales tend 280 

to exhibit little to no forecasting skill. Plots of the ISS scores were created similar to the plots 281 

of the FSS values with thresholded values on the abscissa and the spatial scale on the ordinate, 282 

corresponding to l = 0, 1, 2, 3, 4, 5, and 6 in the wavelet transform application. In addition, 283 

plots of the difference (and their statistical significance) in ISS between models were created to 284 

assess the models’ differences. 285 

Finally, the energy was assessed for both the forecast and observation for each scale 286 

component and threshold through the evaluation of the energy squared (En2) quantities (Casati 287 

2010). For variable X, En2 is given by 288 

    ( )  
 

 
∑   

  
   ,             (4) 289 

where N is the total number of wavelet cells in the domain and Xi is the average of the grid 290 

point squared values in the i
th

 grid cell. For high-resolution NWP models, in general, high 291 

energy is associated with small thresholds because of the relatively large number of events 292 

exceeding the threshold value, and conversely, low energy is associated with large thresholds 293 

because of the relatively small number of events exceeding the threshold value (Casati 2010). 294 

The bias is then assessed by comparing the En2(F) and En2(O) values with each other for 295 

every threshold and spatial scale by computing the energy (squared) relative difference (ERD): 296 

     
[   ( )    ( )]

[   ( )    ( )]
.             (5) 297 



 13 

The ERD values range from -1 to 1. Positive ERD values indicate overforecasting (a high bias), 298 

and negative ERD values indicate underforecasting (a low bias) (Casati 2010).  299 

 300 

4. Results 301 

a) Traditional metrics 302 

 According to the GSS, the 0000-UTC CN scored better than C0 for all forecast hours at 303 

the 20-dBZ threshold at the 5% significance level (Fig. 4a). However, while significance exists 304 

at the 5% level for all forecast hours, the lower bound of the 95% confidence interval is close 305 

to zero beyond forecast hour (FH hereafter) 5, so no strong conclusions can be made at those 306 

hours. Similar conclusions can be drawn from looking at the GSS derived from the APCP field 307 

for the 1.0-mm threshold (Fig. 4c). This similarity between the SR and APCP verification 308 

scores of comparable thresholds was a common theme for all of the results found in this study, 309 

so only the verification scores for the SR fields are shown hereafter to eliminate redundancy.  310 

At the 40-dBZ threshold (Fig. 4b), CN’s GSS values remain above those of C0, but the 311 

difference quickly decreases in the first 2 hours; the differences are barely significant at the 5% 312 

level from FH 2–4 and lack significance beyond FH 4. This indicates a much more rapid drop 313 

in relative skill between the two models for the higher threshold. In addition, the scores 314 

themselves are not much better than what could be achieved at random with scores that drop 315 

and remain below a GSS of 0.1 at the first forecast hour for CN. These results indicate that the 316 

model is having a hard time accurately evolving, usually small-scale, high reflectivity cores 317 

that are initialized from the radar reflectivity observations. Both inadequate resolution and less 318 

than optimal analysis of the intense convection in the initial condition coupled with intrinsic 319 

faster error growth at small scales can cause such a fast drop in skill score.  320 
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 At the 20-dBZ threshold for the 1200-UTC model runs (Fig. 5a), the differences in GSS 321 

between CN and C0 are somewhat smaller than they are for the 0000-UTC runs – they become 322 

statistically insignificant at the 95% confidence level around FH 4–5. The smaller differences 323 

in scores between CN and C0 for the 1200-UTC runs may be related to the diurnal cycle of 324 

convection. Convection is typically more abundant at 0000 UTC than at 1200 UTC, so CN has 325 

an initial benefit of assimilating more radar data into the initial condition than is assimilated at 326 

1200 UTC. Furthermore, the areal coverage of convection in the spring and summer tends to 327 

peak after 0000 UTC in the Plains and tends to be much less in the 1200–1800 UTC period 328 

(Wallace 1975; Easterling and Robinson 1985). GSS (and other traditional scores) is dependent 329 

on the base rate (i.e., higher base rate leads to larger GSS and lower base rate leads to smaller 330 

GSS) (Stephenson et al. 2008), so GSS will be larger for the forecasts with more observed 331 

convection. For the remainder of the analysis, the results for the 1200-UTC runs are 332 

qualitatively similar to those detailed for the 0000-UTC runs, so only the results for the 0000-333 

UTC runs are shown for brevity. 334 

 The forecast hour at which the GSSs for CN and C0 converge drops from about FH 6–335 

12 for the 20-dBZ threshold to about FH 2–3 for the 40-dBZ threshold for both the 0000- and 336 

1200-UTC runs (Figs. 4b and 5b). This convergence of GSS for the higher thresholds generally 337 

agrees with the perceptions of the Spring Forecasting Experiment participants, who thought 338 

CN and C0 were usually equally skillful between about FH 3 and FH 6 upon an hourly visual 339 

inspection of the SR fields. A possible reason for this sentiment might have to do with color 340 

psychology. For example, humans perceive some objects that are yellow and red (≥ 35-dBZ 341 

objects) to be dangerous (i.e., stop signs and red lights), while objects that are green and blue 342 

(< 35-dBZ objects) are perceived as not dangerous (Elliot and Maier 2007; Litchtenfield et al. 343 
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2009). Hence, the Spring Forecasting Experiment participants’ eyes may have focused on 344 

reflectivities greater than 35 dBZ in the Spring Forecasting Experiment displays (see later Fig. 345 

17 for an example of the standard reflectivity color bar), and therefore gave the more intense 346 

convection greater weight than the larger areas of lighter precipitation in their subjective 347 

assessment of skill.  348 

 The comparison of the objective scores with the subjective evaluations suggests that the 349 

use of GSS at higher thresholds are preferred over the use of GSS at lower SR thresholds in an 350 

evaluation of model forecasts of convection because the conclusions based on the GSS values 351 

at higher thresholds are more consistent with the subjective conclusions than the conclusions 352 

based on the GSS values at lower thresholds. The GSS values for CN and C0 at these higher 353 

reflectivity thresholds are relatively low compared to typical GSS values of other model fields 354 

on coarser grids (likely due to the dependency of the GSS on the base-rate), suggesting the 355 

model forecasts have relatively little forecasting skill for stronger convection. However, a more 356 

general point to be made is that the relative importance of CN and C0, as measured by the GSS, 357 

is highly dependent on the chosen reflectivity (or precipitation) threshold. Therefore, the use of 358 

a single metric like the GSS at any threshold can easily lead to a misrepresentation of model 359 

performance for convection-allowing models (Doswell et al. 1990).  360 

 Another problem with the GSS arises due to high frequency biases
3
. In Fig. 6a, the 361 

frequency bias of the 0000-UTC initialized CN approaches a value of 2 by FH 2 and remains 362 

above 1.5 for the rest of the forecast period. For rare events, many traditional grid-point-by-363 

grid-point scores, such as the GSS, are maximized for frequency biases > 1 since these scores 364 

are more sensitive to missed events than false alarms (Baldwin and Kain 2006). In other words, 365 

                                                        
3
 Frequency biases are highly dependent on what microphysical scheme is used in a model, so it should be noted 

that these bias results and their effect on verification metrics are specific only to these models (i.e., different 

findings might result if different cloud microphysics schemes are used).  
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CN’s high bias likely resulted in the noticeable improvement in the GSS for CN versus C0 for 366 

the 20-dBZ threshold. The differences in FBIAS between CN and C0 lead to higher POFD for 367 

CN for several hours, particularly for the 20-dBZ threshold (Figs. 6 and 7). The fact that CN 368 

has a higher FBIAS (and higher POFD) than C0 for the first few hours is not surprising since 369 

C0 is spinning up convection. However, the higher 20-dBZ FBIAS for CN persists through 370 

about FH 8 for the 0000-UTC runs (Fig. 6a), so the differences in FBIAS, and the effects
4
 on 371 

the GSS, appear to linger after C0 spins up convection. This relationship in FBIAS and POFD 372 

between CN and C0 also is seen at the 40-dBZ threshold (Figs. 6b-7b), although the FBIAS 373 

values and their differences are not as large.  374 

 375 

b) Neighborhood method results 376 

 The previous section shows that a wide range of conclusions can be drawn about a 377 

model’s performance when using traditional grid-point-by-grid-point metrics computed from 2 378 

 2 contingency tables on explicit model forecasts of convection, depending on which 379 

threshold and metric are used for evaluation. Although some scores may under penalize model 380 

forecasts if model biases are not accounted for, the lack of overlay of forecasts and 381 

observations at the grid scale for highly discontinuous fields can over penalize the forecasts 382 

and misrepresent the skill and usefulness of the forecasts, which may be the case for the 40-383 

dBZ threshold GSS scores shown earlier. For the neighborhood metrics that attempt to account 384 

for forecasts that are “close enough”, not surprisingly, CN exhibits positive skill for all 385 

neighborhood sizes and reflectivity thresholds at the initial analysis time for the 0000-UTC 386 

initialization time (Fig. 8a). Again, this is because the hydrometeor fields are effectively 387 

                                                        
4
 The bias-adjusted GSS from Mesinger (2008) was computed (not shown) and depicted smaller differences 

between CN and C0 through FH 6–8.  
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inserted directly onto the native 4-km grid of the CN model through the cloud analysis scheme. 388 

Not surprisingly, the base rates
5
 decrease with increasing thresholds (Fig. 8b).  389 

 By FH 1 however, the 0000-UTC CN quickly loses useful skill at higher thresholds. 390 

Forecasts at the 30-dBZ threshold lose skill up to the 20-km neighborhood (~4x) and the 391 

forecasts at the 40-dBZ threshold lose skill up to the 60-km neighborhood (~12x) (Fig. 9a). In 392 

effect, the 0000-UTC CN model runs lose forecasting skill for small mesoscale and 393 

convective-scale neighborhoods, meaning they have little to no skill in the placement of 394 

individual convective cells and small convective clusters, after one hour of integration. For 395 

comparison, C0 exhibits no useful skill for all depicted scales and thresholds for both model 396 

initialization times (Figs. 9b), but this is not surprising since C0 is still spinning up convection 397 

for the first few forecast hours. Although the drop-off in skill for CN is rapid, CN still 398 

outperforms C0 for all neighborhood and threshold combinations at FH 1 (Figs. 9c). The 399 

neighborhoods and reflectivity thresholds at which the alleviation of the spin-up problem is 400 

skillful are limited to neighborhoods greater than 5–10 km for the lower reflectivity thresholds 401 

(i.e., 20–30 dBZ) and neighborhoods greater than 20–40 km for the higher thresholds (i.e., 35–402 

40 dBZ). Similarly, CN continues to outperform C0 at FH 2 and is, thus, not shown.  403 

 By FH 3, the 0000-UTC CN model runs continue to lose useful skill. The 0000-UTC 404 

CN model runs have useful skill for neighborhoods greater than ~30 km at the 20-dBZ 405 

threshold and for neighborhoods greater than ~140 km at the 40-dBZ threshold (Fig. 10a). 406 

Conversely, C0 gains useful skill for neighborhoods greater than ~150 km at the 20-dBZ 407 

threshold and for neighborhoods greater than ~310-km at the 40-dBZ threshold (Fig. 10b). CN 408 

                                                        
5
 The base rate bar graphs will be excluded from the results and discussion from this point forward, but they will 

be included in the figures for the reader’s interest. 
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continues to have greater skill than C0 at FH 3 (Fig. 10c), but the magnitude of the differences 409 

are decreasing. 410 

 At FH 6, the 0000-UTC CN model runs maintain useful skill for neighborhoods greater 411 

than ~90 km at the 20-dBZ threshold and for neighborhoods greater than ~140 km at the 40-412 

dBZ threshold (Fig. 11a), which is similar to the results at FH 3. Useful skill exists for 413 

neighborhoods greater than ~150 km at the 20-dBZ threshold and for neighborhoods greater 414 

than ~320 km at the 40-dBZ threshold for the 0000-UTC C0 model runs (Fig. 11b). The 415 

magnitude of the difference in skill between CN and C0 continues to decrease by FH 6, but are 416 

deemed to be significant at most neighborhoods and thresholds (Fig. 11c). At forecast hours 9 417 

and 12, the results are similar to FH 6 and, thus, are not shown. 418 

 419 

c) Scale separation method results 420 

 Although the neighborhood method effectively weights small distance errors less and 421 

less as the size of the neighborhood increases, it does not define the contribution of specific 422 

spatial scales to the error (nor to their biases). The scale separation method is able to isolate 423 

these scales. Furthermore, the scale separation results give another perspective of where in the 424 

reflectivity–spatial-scale parameter space the “useful skill” exists through the ISS. This 425 

additional information of useful skill is revealing because the FSSuseful used earlier may not be 426 

the optimal measure of useful skill. 427 

For the initial analysis time, CN exhibits positive skill (positive ISS values are 428 

considered to define “useful skill” for the purpose of this study) for all spatial scales at 429 

thresholds less than 25 dBZ and for spatial scales greater than ~10 km at the 40-dBZ threshold 430 
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(Fig. 12a
6
), so even for the initial hour, CN struggles with analyzing the amplitude of the 431 

higher reflectivity cores. This is likely due to a somewhat smoothed representation of 432 

convection produced by the cloud analysis schemes. Even though CN is largely unbiased at the 433 

initial time, it is initialized with too much coverage of higher reflectivities for large spatial 434 

scales based on ERD values greater than 0.2 (Fig. 12b). 435 

 At FH 1, CN has no skill for both spatial scales less than about 40 km and thresholds 436 

greater than 25 dBZ (Fig. 13a). Thus, individual thunderstorms are not forecasted skillfully 437 

even after just 1 hour of integration. A source of error at these scales could be related to the 438 

initialization procedure. Because the 3DVAR and cloud analysis are only performed at one 439 

time, there likely is not a dynamical balance between the 3DVAR wind field analysis that uses 440 

the radial winds in the Doppler radar data and the hydrometeor and in-cloud temperature and 441 

moisture adjustments from the cloud analysis that uses the reflectivity data (Hu et al. 2006b). 442 

As a result, the storms that are inserted into the initial condition often undergo rapid adjustment, 443 

and new storms form along the outflow from the initial storms, or along boundaries and 444 

features that are either found in the initial condition, or are inserted into the initial condition by 445 

the 3DVAR analysis. C0 has positive skill for spatial scales greater than ~160 km for the lower 446 

reflectivity thresholds and for spatial scales greater than ~60 km for the higher reflectivity 447 

thresholds (Fig. 13b). The CN and C0 difference field reveals that CN performs better than C0 448 

for all spatial scales and reflectivity thresholds at FH 1 (Fig. 13c), because C0 is still spinning 449 

up convection. Of significance is that CN overforecasts (high bias) for all spatial scales and 450 

reflectivity thresholds except for the highest thresholds (Fig. 13d) indicating that CN is 451 

                                                        
6
 The left ordinate in the ISS plots represents the spatial scale of the binary forecast errors and not just the 

neighborhood size as for the neighborhood method. 
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generating too much convection in the first forecast hour. The spin-up of convection in C0 is 452 

indicated by the negative ERD values for all spatial scales and reflectivity thresholds (Fig. 13e).    453 

 At FH 3, CN has no skill for both reflectivity thresholds greater than 30 dBZ and spatial 454 

scales less than ~80 km (Fig. 14a). Interestingly, a “tongue” of negative skill exists between 455 

the 40-km and 80-km spatial scales for lower reflectivity thresholds. Positive skill exists on 456 

either side of this tongue. For C0, the tongue of negative skill exists between the spatial scales 457 

of 25 km and 160 km (Fig. 14b). This region of positive skill on the small spatial scales in the 458 

plots is likely due to there being very few small-scale events with weak intensity, which causes 459 

only small errors compared to the random forecast at these scales (Casati 2010).  460 

At FH 3, in the range of spatial scales from 40 km to 320 km, CN is noticeably better 461 

than C0 at the lower reflectivity thresholds but not at 40 dBZ (Fig. 14c). The skill for CN 462 

appears to be better than for C0 at scales less than 40 km as well, but the significance is 463 

doubtful to nonexistent. This implies that CN has noticeably better skill in the near-term 464 

forecasting of precipitation than C0 down to 40-km spatial scales (~8∆x). However, there is 465 

negative skill between the 40-km and 80-km spatial scales for CN, so CN’s improvement over 466 

C0 is only useful for spatial scales greater than ~80 km (~16∆x). Once again, CN overforecasts 467 

for all spatial scales and for reflectivity thresholds less than 35 dBZ (Fig. 14d). C0 continues to 468 

underforecast for reflectivity thresholds greater than 30 dBZ, but for reflectivity thresholds less 469 

than 30 dBZ, C0 has a small positive bias (Fig. 14e) as convection has spun up by this time. 470 

 At FH 6, the positive skill at the higher reflectivity thresholds seen at FH 3 remains the 471 

same for CN, but the positive skill for the lower thresholds between 80 and 160 km is lost (i.e., 472 

the region of negative skill shift toward smaller reflectivities and larger scales) (Fig. 15a). The 473 

scales and thresholds of positive skill for C0 changed little from FH 3 to FH 6, except for the 474 
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slight increase in positive skill for both small spatial scales and low reflectivity thresholds (Fig. 475 

15b).  The difference plot reveals that C0 has nearly “caught up” with CN for spatial scales less 476 

than ~40 km by FH 6 (Fig. 15c). This is consistent with the subjective impressions of the 477 

SFE2009 and SFE2010 participants, who tended to say CN and C0 were of nearly equal skill 478 

by FH 3 to FH 6. This suggests that the human participants were focusing not only on the 479 

higher reflectivity thresholds (see section 4a), but also on relatively small scales.  In other 480 

words, they may have been rating CN and C0 more so based on smaller-scale convection (e.g., 481 

supercells), as opposed to larger-scale convective systems, which can have broad areas of high 482 

reflectivity (> 35 dBZ).  483 

However, an interesting result is that CN continues to show better skill than C0 for the 484 

spatial scales between ~40 km and ~320 km. A possible reason why the spatial scales and 485 

reflectivity thresholds at which CN has positive skill and C0 has significantly lesser or negative 486 

skill is that the mesoscale convective systems and squall lines simulated by C0 tend to lag 487 

behind the observed systems more so than for CN. A comparison of the SR and OR beginning 488 

at 0000 UTC on 14 May 2009 illustrates this problem (Fig. 16). CN’s simulated squall line 489 

largely overlaps the observed squall line after 6 hours of integration, but C0’s simulated squall 490 

line lags behind. This is a characteristic that was noticed on several days by the SFE2009 491 

participants and was most clearly seen for squall lines and larger convective systems at greater 492 

than 30-dBZ thresholds. This shows that CN has difficulty retaining convective-scale skill 493 

(scales < 40–80 km) through 3 to 6 hours, but the information on the larger scales appears to be 494 

retained at and beyond 6 hours and is manifest as convective systems with a smaller lag with 495 

observations compared to C0. With the initial data assimilation, CN has a better handle of the 496 

current state of the atmosphere on the larger scales with respect to latent heating and 497 
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divergence. With that information, CN is able to maintain larger convective systems from the 498 

start, while C0 has to take time to develop that same convective system. Also at FH 6, CN 499 

continues to overforecast for thresholds less than 35 dBZ, but now underforecasts for 500 

thresholds greater than 35 dBZ (Fig. 15d). C0 slightly overforecasts for small spatial scales and 501 

low reflectivity thresholds while underforecasting for thresholds greater than 35 dBZ, similar 502 

to CN (Fig. 15f), indicating that the spin-up process in C0 is nearly complete.  Forecast hours 9 503 

and 12 depict similar results to FH 6 and are thus not shown. 504 

 505 

5. Summary and conclusions 506 

 During a period of several weeks in the springs of the past several years, researchers 507 

and forecasters from across the country met in Norman, OK for the annual Hazardous Weather 508 

Testbed (HWT) Spring Forecasting Experiment to evaluate model forecasts from experimental 509 

storm-scale models. In 2009 and 2010, one of their tasks was to rate CN and C0 based on a 510 

visual inspection of the simulated and observed reflectivity. Most of the time, the participants 511 

noted that the skills of CN and C0 became roughly equivalent sometime between forecast 512 

hours 3 and 6. However, some traditional verification metrics, like GSS at lower thresholds, do 513 

not necessarily convey this message and can suggest that beneficial information from radar is 514 

retained out to at least 12 hours. As such, a main goal of this study was to determine if newer 515 

spatial verification techniques provide objective results that are qualitatively more similar to 516 

SFE2009 and SFE2010 participants’ subjective assessment of the model forecasts than the 517 

traditional verification scores. Additionally, another important goal of this study was to 518 

evaluate the benefit of the 3DVAR-cloud analysis radar data assimilation technique, which was 519 

used in CN’s forecasts.   520 
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 To examine the reasons for the apparent discrepancy in subjective and objective metrics, 521 

and as part of an objective assessment of the performance of CN and C0, several traditional 522 

verification metrics were computed for the CN and C0 forecasts of convection. It was found 523 

that the assessment of the relative performance of CN versus C0 depends significantly on the 524 

metric of choice and on the chosen threshold of reflectivity (or similarly, 1-h accumulated 525 

precipitation). According to the GSS (ETS), CN significantly outperformed C0 out to forecast 526 

hour 6 (with doubtful significance out to FH 12, which does not agree well with the assessment 527 

from the Spring Forecasting Experiment participants) at the 20-dBZ threshold. However, at the 528 

40-dBZ threshold, CN and C0’s GSS scores converged after just a few hours of integration, 529 

which agrees much better with the sentiment of the SFE participants. This is likely due to the 530 

fact that the participants tended to focus on the higher reflectivities in the displays (the 531 

reflectivities with yellows and reds) rather than the weaker reflectivities (blues and greens). 532 

Also, CN’s GSS scores at the 20-dBZ threshold were likely larger than C0’s GSS due to CN’s 533 

high frequency bias, both in an absolute sense and relative to C0, for most thresholds.  534 

 In addition to the computation of traditional metrics, some new spatial verification 535 

techniques were used: the FSS computed using the neighborhood method was used to assess 536 

the neighborhood and variable threshold combinations that yield useful forecasting skill for 537 

each forecast hour (Roberts and Lean 2008; Ebert 2008). Furthermore, the ISS computed from 538 

the scale separation method was used to examine the error (MSE and bias) and skill on specific 539 

spatial scales (Casati 2010). These filtering methods serve to give credit to forecasts that are 540 

“close enough” – grid-point-by-grid-point metrics do not do so. 541 

 In general, both the FSS and the ISS show that CN lost most of its useful skill at 542 

neighborhood widths and spatial scales smaller than about 40 km (8∆x), and performs worse 543 
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the higher is the threshold, after just a few hours of integration. As discussed in Section 4c, a 544 

source of additional error at these widths and scales could be related to how there is likely not a 545 

dynamical balance between the 3DVAR wind field analysis and the hydrometeor and in-cloud 546 

temperature and moisture adjustments from the cloud analysis in the initialization procedure 547 

potentially resulting in rapid adjustments of storm coverage patterns. Even with this potential 548 

source of error, CN still performed better than C0, which has negative FSS for most 549 

neighborhood and threshold combinations through FH 6. Although, it is acknowledged that the 550 

Roberts and Lean “target skill” may not be optimal for the more convective precipitation 551 

events examined in this study possibly due to being too stringent. 552 

 The scale separation method applied to the forecasts revealed many similar results 553 

compared to the neighborhood method, but there were some differences. For all forecast hours, 554 

a benefit of the 3DVAR analysis revealed clearly by the scale-separation method is seen in the 555 

larger spatial scales. The significant difference in ISS between CN and C0 for the 40–320 km 556 

spatial scales and the lack of any significant differences at smaller spatial scales beyond a few 557 

hours shows that convective meso- and meso-β scales are contributing little to nothing to the 558 

improvement in skill seen for CN versus C0. A possible reason as to why this is the case was 559 

discussed in Section 4c: mesoscale convective systems in C0 tend to lag behind the observed 560 

systems more so than for CN. This suggests that the information assimilated through the 561 

3DVAR-cloud analysis system adds little to no skill at convective and smaller meso scales (< 562 

40–80 km) starting at FH 1, but adds skill compared to a cold start at larger scales, even out to 563 

FH 12.  564 

 A goal of this work was to find objective measures of model skill that match the 565 

subjective impressions of experts that evaluated the models subjectively. It is found that the 566 
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GSS for high reflectivity thresholds (> 35 dBZ) matches subjective impressions that CN 567 

performed similarly to C0 by 3–6 hours into the forecast, more so than lower thresholds (~20 568 

dBZ). Furthermore, objective spatial verification metrics that examine model skill at scales less 569 

than 40–80 km match the subjective impressions as well. Therefore, these metrics (for these 570 

scales and thresholds) may be appropriate for use to provide an assessment consistent with 571 

experts’ impressions of convection-allowing model forecast skill. 572 

 Furthermore, the two spatial filtering methods gave a more comprehensive 573 

characterization of the performance of the convection-allowing models than the traditional 574 

verification methods. The neighborhood and scale separation methods revealed where “useful 575 

skill” might exist for several forecast hours in the reflectivity–spatial-scale parameter space 576 

that was not regularly apparent in the subjective evaluations or in the objective verification 577 

using the traditional scores. It is hoped that these results encourage future use of these new 578 

spatial verification metrics rather than the continued use of traditional verification metrics at 579 

single thresholds to characterize the performance of high-resolution, convection-allowing 580 

models. This is the first known study to appear in the refereed literature to use radar reflectivity 581 

instead of accumulated precipitation as the verification field for aggregate statistics computed 582 

over multiple seasons. It was found that both fields lead to similar results for all three 583 

verification methods discussed, giving confidence in the use of hourly simulated and observed 584 

reflectivity as a robust way to measure the performance of convection-allowing models. Finally, 585 

it would be beneficial to use these spatial verification metrics on case studies of convection or, 586 

perhaps, subsets of modes of convection (e.g. supercells versus disorganized multicells versus 587 

squall lines) aggregated together in order to not only verify model forecasts of convection, but 588 



 26 

also to study the different skill score structures associated with the various modes of 589 

convection. 590 
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List of Figures 703 

Fig. 1. Observed composite (column maximum) reflectivity (left column) and 0000-UTC 704 

initialized simulated composite reflectivity from CAPS CN (middle column) and CAPS 705 

C0 (right column) from 5 June 2008 for hours 0000, 0100, 0300, and 0600 UTC (from 706 

Kain et al. 2010).  707 

Fig. 2.  The inner thick box is the domain for 0000-UTC WRF-ARW with 900x672 grid points 708 

in 2009 in (a) and 999x790 grid points in 2010 in (b), and the outer thick box is the 709 

somewhat larger ARPS 3DVAR analysis domain. The inner dashed box is the 1200-710 

UTC model domain for both years (444x480 grid points). The grey shaded polygon is 711 

an example “VORTEX2” moveable domain with 256x256 horizontal grid points used 712 

for verification (see Xue et al. 2009; Xue et al. 2010). 713 

Fig. 3. (a) Example of a binary difference field, where the blue shading represents misses, the 714 

red shading represents false alarms, and the white areas represent hits and correct 715 

negatives, of simulated reflectivity  20 dBZ, (b) scale 1 component, (c) scale 2 716 

component, (d) scale 3 component, (e) scale 4 component, and (f) scale 5 component 717 

for 10 May 2010 1500 UTC CAPS CN at forecast hour 8. Major tornado outbreak 718 

occurred from the afternoon into evening in central-eastern Oklahoma and Kansas.    719 

Fig. 4. GSS for 2009/2010 0000-UTC CAPS CN (long-dash line) and CAPS C0 (short-dash 720 

line) at the (a) 20-dBZ threshold, (b) 40-dBZ threshold, and (c)1.0-mm/hr threshold. 721 

Solid black line is the difference between CN and C0, and vertical black lines on the 722 

difference line represent the 95% confidence intervals.  723 

Fig. 5. Same as Figs. 4a and 4b, except for 1200-UTC CAPS CN and CAPS C0. 724 

Fig. 6. Same as Figs. 4a and 4b, except for frequency bias (FBIAS). 725 
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Fig. 7. Same as Figs. 4a and 4b, except for POFD. 726 

Fig. 8. (a) FSS–FSSuseful for 2009/2010 0000-UTC CAPS CN at FH 0 for reflectivity thresholds 727 

every 5 dBZ from 20 dBZ and 40 dBZ and for neighborhood sizes from 5 km to 320 728 

km. Grey shading with solid contours represent useful skill, and grey shading with 729 

dashed contours (not depicted here) represent non-useful skill. Values along the right-730 

ordinate represent multiples of grid-spacing. (b) Base rates of observed reflectivity for 731 

each threshold. 732 

Fig. 9. FSS–FSSuseful for 2009/2010 0000-UTC (a) CAPS CN and (b) CAPS C0 at FH 1 for 733 

reflectivity thresholds every 5 dBZ from 20 dBZ and 40 dBZ and for spatial scales from 734 

5 km to 320 km. Grey shading with solid contours represent useful skill, and grey 735 

shading with dashed contours represent non-useful skill. Also, the differences between 736 

CN and C0 are shown in (c), where grey shading with solid contours represent FSSCN > 737 

FSSC0, grey shading with dashed contours (not depicted in these plots) represent FSSCN 738 

< FSSC0, and stippling depicts the 95% confidence interval (note, significance exists for 739 

all sizes and thresholds). Values along the right-ordinate represent multiples of grid-740 

spacing. (d) Base rates of observed reflectivity for each threshold. 741 

Fig. 10. Same as Fig. 9, except for FH 3. 742 

Fig. 11. Same as Fig. 9, except for FH 6. 743 

Fig. 12. (a) ISS and (b) ERD values for 2009/2010 0000-UTC CAPS CN at FH 0 for 744 

reflectivity thresholds every 5 dBZ from 20 dBZ to 40 dBZ and spatial scales from 5 745 

km to 320 km. Grey shading with solid contours in (a) represent positive skill, and grey 746 

shading with dashed contours in (a) represent negative skill. Grey shading with solid 747 

contours in (b) represent overforecasting, and grey shading with negative contours in 748 
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(b) represent underforecasting. Values along the right-ordinate represent multiples of 749 

grid-spacing. 750 

Fig. 13. ISS for 2009/2010 0000-UTC (a) CAPS CN and (b) CAPS C0 at FH 1 for reflectivity 751 

thresholds every 5 dBZ from 20 dBZ to 40 dBZ and spatial scales from 5 km to 320 km. 752 

Grey shading with solid contours in (a) and (b) represent positive skill, and grey 753 

shading with negative contours in (a) and (b) represent negative skill. ISS differences 754 

between CN and C0 are shown in (c), where grey shading with solid contours represent 755 

ISSCN > ISSC0, grey shading with dashed contours (not depicted in these plots) 756 

represent ISSCN < ISSC0, and stippling represents 95% statistical significance. ERD 757 

values for (d) CN and (e) C0, where grey shading with solid contours in (d) and (e) 758 

represent overforecasting, and grey shading with dashed contours in (d) and (e) 759 

represent underforecasting. Values along the right-ordinate represent multiples of grid-760 

spacing. (f) Base rates of observed reflectivity for each threshold. 761 

Fig. 15. Same as Fig. 13, except for FH 6. 762 

Fig. 16. First row is observed composite reflectivity from 14 May 2009 for (a) 0000 UTC, (f) 763 

0200 UTC, (k) 0400 UTC, and (p) 0600 UTC. Second and third rows are simulated 764 

reflectivity forecasts from 0000-UTC CAPS CN (b, g, l, and q) and CAPS C0 (c, h, m, 765 

and r) for the same times. In the bottom two rows, 30-dBZ thresholded observed 766 

reflectivity is marked by the thin blue line (d/e, i/j, n/o, and s/t). Red shading represents 767 

30-dBZ thresholded simulated reflectivity for CN (d, i, n, and s) and C0 (e, j, o, and t). 768 

From Kain et al (2010).  769 

 770 

  771 
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 772 
Fig. 1. Observed composite (column maximum) reflectivity (left column) and 0000-UTC 773 
initialized simulated composite reflectivity from CAPS CN (middle column) and CAPS C0 774 
(right column) from 5 June 2008 for hours 0000, 0100, 0300, and 0600 UTC (from Kain et al. 775 
2010).  776 
 777 
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 778 
 779 
 780 
 Fig. 2.  The inner thick box is the domain for 0000-UTC WRF-ARW with 900x672 grid points 781 
in 2009 in (a) and 999x790 grid points in 2010 in (b), and the outer thick box is the somewhat 782 
larger ARPS 3DVAR analysis domain. The inner dashed box is the 1200-UTC model domain 783 
for both years (444x480 grid points). The grey shaded polygon is an example “VORTEX2” 784 
moveable domain with 256x256 horizontal grid points used for verification (see Xue et al. 785 
2009; Xue et al. 2010). 786 
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 787 
 788 
 789 
Fig. 3. (a) Example of a binary difference field, where the blue shading represents misses, the 790 
red shading represents false alarms, and the white areas represent hits and correct negatives, 791 
of simulated reflectivity  20 dBZ, (b) scale 1 component, (c) scale 2 component, (d) scale 3 792 
component, (e) scale 4 component, and (f) scale 5 component for 10 May 2010 1500 UTC 793 
CAPS CN at forecast hour 8. Major tornado outbreak occurred from the afternoon into 794 
evening in central-eastern Oklahoma and Kansas.    795 
 796 
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 797 
 798 

 799 
 800 
Fig. 4. GSS for 2009/2010 0000-UTC CAPS CN (long-dash line) and CAPS C0 (short-dash 801 
line) at the (a) 20-dBZ threshold, (b) 40-dBZ threshold, and (c)1.0-mm/hr threshold. Solid 802 
black line is the difference between CN and C0, and vertical black lines on the difference line 803 
represent the 95% confidence intervals.  804 
 805 
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 806 
 807 

Fig. 5. Same as Figs. 4a and 4b, except for 1200-UTC CAPS CN and CAPS C0. 808 
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 809 
 810 

Fig. 6. Same as Figs. 4a and 4b, except for frequency bias (FBIAS). 811 
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 812 
Fig. 7. Same as Figs. 4a and 4b, except for POFD. 813 

 814 
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 815 
 816 

Fig. 8. (a) FSS–FSSuseful for 2009/2010 0000-UTC CAPS CN at FH 0 for reflectivity thresholds 817 
every 5 dBZ from 20 dBZ and 40 dBZ and for neighborhood sizes from 5 km to 320 km. Grey 818 
shading with solid contours represent useful skill, and grey shading with dashed contours (not 819 
depicted here) represent non-useful skill. Values along the right-ordinate represent multiples 820 
of grid-spacing. (b) Base rates of observed reflectivity for each threshold. 821 
 822 
 823 
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 824 
 825 
Fig. 9. FSS–FSSuseful for 2009/2010 0000-UTC (a) CAPS CN and (b) CAPS C0 at FH 1 for 826 
reflectivity thresholds every 5 dBZ from 20 dBZ and 40 dBZ and for spatial scales from 5 km to 827 
320 km. Grey shading with solid contours represent useful skill, and grey shading with dashed 828 
contours represent non-useful skill. Also, the differences between CN and C0 are shown in (c), 829 
where grey shading with solid contours represent FSSCN > FSSC0, grey shading with dashed 830 
contours (not depicted in these plots) represent FSSCN < FSSC0, and stippling depicts the 95% 831 
confidence interval (note, significance exists for all sizes and thresholds). Values along the 832 
right-ordinate represent multiples of grid-spacing. (d) Base rates of observed reflectivity for 833 
each threshold. 834 



 43 

 835 
 836 
 837 

Fig. 10. Same as Fig. 9, except for FH 3. 838 
 839 
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 840 
 841 

Fig. 11. Same as Fig. 9, except for FH 6. 842 
 843 

 844 
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 845 
 846 

Fig. 12. (a) ISS and (b) ERD values for 2009/2010 0000-UTC CAPS CN at FH 0 for 847 
reflectivity thresholds every 5 dBZ from 20 dBZ to 40 dBZ and spatial scales from 5 km to 320 848 
km. Grey shading with solid contours in (a) represent positive skill, and grey shading with 849 
dashed contours in (a) represent negative skill. Grey shading with solid contours in (b) 850 
represent overforecasting, and grey shading with negative contours in (b) represent 851 
underforecasting. Values along the right-ordinate represent multiples of grid-spacing. 852 
 853 
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 854 
 855 
Fig. 13. ISS for 2009/2010 0000-UTC (a) CAPS CN and (b) CAPS C0 at FH 1 for reflectivity 856 
thresholds every 5 dBZ from 20 dBZ to 40 dBZ and spatial scales from 5 km to 320 km. Grey 857 
shading with solid contours in (a) and (b) represent positive skill, and grey shading with 858 
negative contours in (a) and (b) represent negative skill. ISS differences between CN and C0 859 
are shown in (c), where grey shading with solid contours represent ISSCN > ISSC0, grey 860 
shading with dashed contours (not depicted in these plots) represent ISSCN < ISSC0, and 861 
stippling represents 95% statistical significance. ERD values for (d) CN and (e) C0, where 862 
grey shading with solid contours in (d) and (e) represent overforecasting, and grey shading 863 
with dashed contours in (d) and (e) represent underforecasting. Values along the right-864 
ordinate represent multiples of grid-spacing. (f) Base rates of observed reflectivity for each 865 
threshold. 866 
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 867 
 868 
 869 

Fig. 14. Same as Fig. 13, except for FH 3. 870 
 871 

 872 
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 873 
 874 
 875 

Fig. 15. Same as Fig. 13, except for FH 6. 876 
 877 
 878 
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 879 
 880 
Fig. 16. First row is observed composite reflectivity from 14 May 2009 for (a) 0000 UTC, (f) 881 
0200 UTC, (k) 0400 UTC, and (p) 0600 UTC. Second and third rows are simulated reflectivity 882 
forecasts from 0000-UTC CAPS CN (b, g, l, and q) and CAPS C0 (c, h, m, and r) for the same 883 
times. In the bottom two rows, 30-dBZ thresholded observed reflectivity is marked by the thin 884 
blue line (d/e, i/j, n/o, and s/t). Red shading represents 30-dBZ thresholded simulated 885 
reflectivity for CN (d, i, n, and s) and C0 (e, j, o, and t). From Kain et al (2010).  886 
 887 
 888 
 889 
 890 


