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ABSTRACT

Despite recent advances in storm-scale ensemble NWP, short-term (0–90 min) explicit forecasts of severe hail

remain a major challenge as a result of the fast evolution and short time scales of hail-producing convective

storms and the substantial uncertainty associated with the microphysical representation of hail. In this study,

0–90-min ensemble hail forecasts for the supercell storms of 20 May 2013 over central Oklahoma are examined

and verified, with the goals of 1) evaluating ensemble forecast performance, 2) comparing the advantages and

limitations of different forecast fields potentially suitable for the prediction of hail and severe hail in aWarn-on-

Forecast setting, and 3) evaluating the use of dual-polarization radar observations for hail forecast validation. To

address the challenges of hail prediction and to produce skillful forecasts, the ensemble uses a two-moment

microphysics scheme that explicitly predicts a hail-like rimed-ice category and is runwith a grid spacing of 500m.

Radar reflectivity factor and radial velocity, alongwith surfaceobservations, are assimilated every 5min for 1 h as

the storms were developing to maturity, followed by a 90-min ensemble forecast. Several methods of hail pre-

diction and hail forecast verification are then examined, including the prediction of the maximum hail size

compared to Storm Prediction Center (SPC) and Meteorological Phenomena Identification Near the Ground

(mPING) hail observations, and verification of model data against single- and dual-polarization radar-derived

fields including hydrometeor classification algorithm (HCA) output and the maximum estimated size of hail

(MESH). The0–90-minensemblehail predictions are found tobemarginally tomoderately skillful depending on

the verification method used.

1. Introduction

Severe hail is a major weather hazard that can cause

injury and property damage. When severe hail strikes an

urban area, the potential for injury is increased, and dam-

age from a single event can exceed $1 billion. For example,

the ‘‘Mayfest’’ hailstorm that struck Fort Worth, Texas, on

5 May 1995 resulted in 109 hail-related injuries and caused

over $2 billion in damage (Edwards and Thompson

1998). It is estimated that hail causes over $1 billion in

crop damage and $1 billion in property damage annu-

ally (Jewell and Brimelow 2009). Despite these im-

pacts, direct prediction of hail using NWP ensembles

has received relatively little attention compared to the

prediction of other thunderstorm hazards (e.g., torna-

does, severe winds, and heavy rainfall).

Forecasting severe hail is a challenging problem for

numerical weather prediction (NWP). Explicit prediction

of hail requires the NWP model to predict the develop-

ment, motion, and intensity of convective storms accu-

rately; furthermore, hail in the model is closely tied to

microphysical parameterization, which is a major source

of model uncertainty and error at the convective scale.

The predictability of hail is also limited by the rapid de-

velopment and evolution of the convective storms that
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produce it; forecast errors grow quickly at the convective

scale, necessitating an accurate estimation of the atmo-

spheric state and information on the level of uncertainty

in this estimate. Ensemble forecasting is needed to pro-

vide forecast uncertainty information.

Ensemble Kalman filter (EnKF; Evensen 1994, 2003)

data assimilation (DA) techniques have been widely

applied in recent years to produce skillful NWP analyses

and forecasts ranging from global to convective scales

(Houtekamer and Mitchell 1998; Hamill and Snyder

2000; Anderson 2001; Whitaker and Hamill 2002;

Snyder and Zhang 2003; Dowell et al. 2004; Zhang et al.

2004; Tong and Xue 2005; Dirren et al. 2007; Tong and

Xue 2008a; Snook et al. 2011; Dawson et al. 2012). EnKF

methods employ an ensemble of forecasts to sample the

error covariances of the background state; the resulting

flow-dependent covariances and cross covariances allow

state variables not directly observed to be retrieved

during DA (e.g., Tong and Xue 2008a)—a feature that is

particularly important at the storm scale, where radar

data are vital, but observe only a very limited number of

variables. Retrieval of wind, temperature, and micro-

physical fields can be achieved through EnKF DA of

radar data (e.g., Dowell et al. 2004; Tong and Xue 2005;

Tong 2006; Snook et al. 2011), and the quality of the

resulting analyses can be further improved when con-

ventional observations are also assimilated (Snook et al.

2015). Maximizing the accuracy of the initial state in

this way is vital for subkilometer-scale NWP applications,

such as hail prediction. EnKF-based ensembles have been

shown to produce more skillful probabilistic forecasts at

the global scale in operational and quasi-operational set-

tings (e.g., Houtekamer et al. 2005; Hamill and Whitaker

2011).Quasi-operational forecast ensembles incorporating

cycled EnKFDA are also being applied experimentally

for real-time storm-scale NWP as part of the annual

Center for Analysis and Prediction of Storms (CAPS)

spring experiment (e.g., Xue et al. 2008; CAPS 2015)

toward the goals of the ‘‘Warn on Forecast’’ vision

(Stensrud et al. 2009).

Forecast verification is another challenging aspect of

hail prediction, in large part because of the lack of high

quality, high-resolution hail observation datasets. Most

currently available in situ hail observation datasets, in-

cluding storm reports collected and archived by the

Storm Prediction Center (SPC) and crowdsourced re-

ports submitted and archived via the National Severe

Storms Laboratory (NSSL) Meteorological Phenomena

Identification Near the Ground (mPING) smartphone

application (Elmore et al. 2014), rely on reports from

members of the public and, thus, may suffer from sub-

stantial biases. These biases include substantial under-

reporting of hail in sparsely populated regions (Cintineo

et al. 2012), as well as a bias in reported hail size toward

the sizes of common circular or spherical objects (e.g.,

dime-, quarter-, and baseball-sized hail), because such

objects are often used as references in hail reports sub-

mitted by the public (Schaefer et al. 2004).

A cost-efficient method of addressing the limitations of

observational hail data is the use of radar observations,

particularly from dual-polarization radars, as a supple-

mentary source of hail information.Radar data are already

used operationally to estimate hail size and coverage via

the maximum estimated size of hail (MESH) algorithm

(Witt et al. 1998). The MESH algorithm uses a weighted

integration of the reflectivity factor exceeding 40 dBZ

above the melting layer to estimate the maximum size

of hail occurring at the surface. While the application of

MESH can provide high-resolution gridded estimates

of hail coverage, biases and errors are possible as a re-

sult of the fact that MESH relies entirely upon obser-

vations in the upper levels of the atmosphere to estimate

hail size at the surface. Less indirect observations of near-

surface hail can be obtained using dual-polarization radar

observations.

Between 2011 and 2013, the WSR-88D S-band radar

network (Crum et al. 1993) used operationally by the

NWS was upgraded with the capability to collect dual-

polarization radar observations. Dual-polarization ra-

dars observe the atmosphere using both horizontally

and vertically polarized radar beams. Observed fields

obtained from these data, such as differential reflectivity

Zdr, specific differential phase Kdp, and copolar corre-

lation coefficient rhv, allow us to infer storm properties

such as the types of hydrometeors present, their relative

sizes, and the presence of nonmeteorological scatterers

such as insects or debris through the identification of

polarimetric signatures (Kumjian and Ryzhkov 2008).

Using dual-polarization observations, regions of hail

can be identified either by manually examining these

polarimetric signatures, or by applying an automated

hydrometeor classification algorithm (HCA). In this

way, dual-polarization radar observations can be used

as a high quality supplementary data source to provide

estimates of the geographic distribution of hail. HCAs

(e.g., Vivekanandan et al. 1999; Heinselman and

Ryzhkov 2006; Park et al. 2009; Lim et al. 2013; Bechini

and Chandrasekar 2015) have been successfully ap-

plied in research and operational settings for the de-

tection of hail, and have provided a basis for hail size

discrimination using polarimetric radar observations

(e.g., Ryzhkov et al. 2013).

In this study, we explore the ability of a storm-scale

ensemble using subkilometer horizontal grid spacing to

produce explicit 0–90-min ensemble hail forecasts di-

rected towardmodel-basedWarn-on-Forecast prediction
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of hail and severe hail. The goals of this study include

1) evaluating the performance of the ensemble in terms

of hail forecast probability; 2) comparing the relative ad-

vantages, limitations, and biases of different hail-related

model forecast fields suitable for the prediction of hail

and severe hail in a Warn-on-Forecast setting; and

3) evaluating the use of dual-polarization radar obser-

vations for hail forecast validation. To accomplish these

goals, theAdvancedRegional Prediction System (ARPS;

Xue et al. 2000, 2001) atmospheric model is used together

with its ensemble Kalman filter DA system (Tong and

Xue 2005; Xue et al. 2006; Tong and Xue 2008b) to as-

similate WSR-88D radar reflectivity factor and radial

velocity data and surface observations for the supercell

storms that occurred over central Oklahoma during the

afternoon of 20 May 2013. The ensemble analyses pro-

duced are used to initialize ensemble forecasts of the

supercell storms. These forecasts are verified against

WSR-88D observations, and their skill in predicting hail

is assessed using several different methods.

Probabilistic forecasts of maximum hail size are pro-

duced explicitly from the number concentration and

mass mixing ratio predicted by the model microphysics,

as well as by applying the MESH algorithm used oper-

ationally by the National Weather Service (Witt et al.

1998) to simulated radar observations from the ensem-

ble forecasts; these forecasts are verified against surface

hail observations andMESH calculated fromWSR-88D

observations. The hail mass field within the ensemble is

also verified against observed dual-polarization data via

the application of a fuzzy-logic-based HCA (Park et al.

2009) to identify hail swaths in the observed data. Where

possible, forecast skill is objectively assessed using met-

rics such as equitable threat score (ETS) (Schaefer 1990),

the area under the relative operating characteristic curve

(AUC), and reliability diagrams.

The remainder of this paper is organized as follows. In

section 2, we provide a summary of the 20 May 2013 su-

percell case, introduce the ensemble DA and forecast

systems used, and describe the experiments performed

and the verification techniques used. Section 3 discusses

the results of the ensemble forecasts, as well as the results

and limitations of the hail forecast verification techniques

examined. In section 4, overall hail prediction results are

summarized, and the relative merit of the hail prediction

methods and implications for future hail prediction and

Warn-on-Forecast efforts are discussed.

2. Data and methods

On the afternoon of 20 May 2013, multiple supercell

storms formed and rapidly intensified along a dryline

over central and southwestern Oklahoma between 1830

and 1930 UTC. These storms moved to the northeast,

passing through central Oklahoma during the subsequent

hours, producing numerous reports of severe hail and

several tornadoes, including the [enhanced Fujita (EF)

scale] EF5 Newcastle–Moore tornado (Burgess et al.

2014). For more a detailed discussion of the storms of

20 May 2013, we refer the reader to Zhang et al. (2015).

Ensemble analyses and forecasts are produced using the

ARPS and its EnKF DA system (Xue et al. 2006; Tong

and Xue 2008a).

The ensemble forecasts are performed using a hori-

zontal grid spacing of 500m on a grid consisting of

6033 6533 63 grid points that coversmuch ofOklahoma

and portions of far northern Texas (Fig. 1). Themodel grid

is stretched in the vertical, with a minimum vertical

spacing of 50m at the surface and an average vertical

spacing of 425m. Our EnKF DA and ensemble fore-

casting uses 40members and is initialized at 1800UTCon

20May 2013 from the 40-member CAPS real-time storm-

scale ensemble forecasts (SSEFs; Kong et al. 2014) based

on version 3.4.1 of the ARW (Skamarock et al. 2008)

model at a horizontal grid spacing of 4km. The SSEFs

also provide lateral boundary conditions for the ensemble

on our 500-m grid. The ARPS model settings largely

follow Snook et al. (2015): radiation is parameterized via

FIG. 1. Geographic extent of the 500-m experiment domain.

Assimilated radar sites are marked, along with 230-km range rings

shaded in gray (KVNX,KDYX, andKFWS are located outside the

domain boundary, but still observe portions of the model domain).

Darker shades of gray indicate regions of overlapping radar cov-

erage. Urban boundaries are shown in purple.
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the NASA Goddard Space Flight Center long- and

shortwave radiation parameterization, a two-layer soil

model with surface fluxes parameterized using predicted

surface temperature andwater content is applied, subgrid

turbulence is parameterized using a 1.5-order turbulent

kinetic energy (TKE) based scheme, and terrain data are

interpolated from a USGS dataset with a resolution of

30 s of arc. References on these schemes can be found in

Xue et al. (2001) and Snook et al. (2015). Microphysical

processes are parameterized using the two-moment mi-

crophysics scheme of Milbrandt and Yau (2005), which

we will henceforth refer to as MY2.

From the interpolated 1800 UTC SSEF forecasts,

30-min spinup ensemble forecasts are first performed.

Storm-scale perturbations are added to the ensemble at

1800 UTC in order to enhance small-scale perturbations

absent in the parent (4-km grid spacing) ensemble and

improve the ensemble spread in the 500-m forecast ex-

periment; they are smoothed Gaussian perturbations

generated using a recursive filter with horizontal and

vertical decorrelation scales of 6 km. The smoothed

perturbations are applied to the horizontal wind (u, y)

and potential temperature u fields with mean standard

deviations of 0.5m s21 and 0.5K, respectively. From

1830 to 1930 UTC, available radar and surface obser-

vations are assimilated at 5-min intervals using the

ARPS EnKF system (Xue et al. 2006; Tong and Xue

2008b), which is based on the ensemble square root filter

(EnSRF) algorithm of Whitaker and Hamill (2002). At

the end of the assimilation period, 90-min ensemble

forecasts are performed from 1930 to 2100 UTC.

During EnKF DA, observation errors for radar data

are assumed to be 4.0m s21 for the radial velocity and

6.0 dBZ for the radar reflectivity factor (Snook et al.

2013); observation errors for surface observations are

assumed to be 1.5m s21 for u and y, 1.5K for air tem-

perature, 2.0K for dewpoint, and 2.0 hPa for air pres-

sure. The radar observation operators used follow Jung

et al. (2008), and a Gaussian power-gain function

(Wood and Brown 1997) is used in the vertical to pro-

vide beam pattern weighting in the operators (Xue

et al. 2006). Covariance localization with a radius of 3km

in the vertical and horizontal is applied for radar data; for

surface observations, localization radii of 6km in the ver-

tical and 300km in the horizontal are used. To maintain

ensemble spread during DA, relaxation-to-prior-spread

covariance inflation (Whitaker and Hamill 2012) is ap-

plied, with an inflation coefficient of 0.95. These localiza-

tion and covariance inflation settings were set based

on a set of earlier sensitivity experiments and drew

upon experience from our earlier studies. Radar data

from five WSR-88D radar sites are assimilated: Okla-

homa City, Oklahoma (KTLX); Vance Air Force Base,

Oklahoma (KVNX); Frederick, Oklahoma (KFDR);

Fort Worth, Texas (KFWS); and Dyess Air Force

Base, Texas (KDYX). Together, theseWSR-88D sites

give radar coverage over the full domain, with the full

line of storms observed by at least two radars during

the assimilation period (Fig. 1). Surface observations

from Oklahoma Mesonet sites within the domain are

assimilated.

Hail within the model is closely linked to the micro-

physics parameterization; for this reason, the ability of

themicrophysics scheme to accurately capture processes

related to hail formation and growth strongly impacts

the quality of the resulting hail forecast. All experiments

use theMY2microphysical parameterization scheme, in

which the hydrometeor particle size distribution (PSD)

is represented by a gamma distribution function:

N(D)5N
0
Dae2lD , (1)

where N(D) is the number of drops/particles of a given

diameter, N0 is the intercept parameter, a is the shape

parameter, and l is the slope parameter. In MY2, hy-

drometeor mixing ratios and number concentrations are

predicted, allowing two unknowns, N0 and l, to be re-

trieved, while a is held constant at 0. The variation of

hydrometeor PSDs permitted by this two-moment mi-

crophysical scheme allows a better representation of

microphysical processes, including size sorting and

melting, than is possible using a single-moment scheme.

This improved representation is important because size

sorting and melting are the primary contributors to

predicted dual-polarization radar signatures within the

model (Dawson et al. 2014). In contrast, single-moment

microphysics schemes are generally inadequate for re-

alistically representing dual-polarization signatures

(Dawson et al. 2010; Jung et al. 2010; Jung et al. 2012;

Putnam et al. 2014). The results, analyses, and forecasts

are presented in the next section.

3. Results

In this section, the ensemble analyses and 0–90-min

ensemble forecasts produced by the model are evalu-

ated using several qualitative and quantitative verifi-

cation methods, with a focus on model representation

and prediction of hail. The ensemble analyses are

qualitatively evaluated in terms of the predicted storm

structure and radar reflectivity factor. Quantitative

verification of predicted hail is performed using the

methods summarized in the previous section. Maxi-

mum hail size predicted explicitly from the hail PSD

within the model (using methods described below in

section 3a), and via application of theMESH algorithm
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to radar reflectivity factor and temperature fields pre-

dicted by the model, are verified against MESH obser-

vations calculated from WSR-88D radar observations.

Dual-polarization radar observations are also used for ver-

ification: hail swaths predicted by the ensemble, in terms of

the hail mass field, are verified qualitatively against dual-

polarization radar observations via application of a fuzzy-

logic-based HCA (Park et al. 2009).

The final EnKF analysis at the end of the DA period

(1930 UTC) is compared to radar observations in terms

of the radar reflectivity factor in Figs. 2a and 2b. By this

time, the line of supercell thunderstorms was relatively

mature, with several cells possessing robust meso-

cyclones and radar presentation typical of supercell

storms. The EnKF analysis accurately captures the

developing line of supercell storms; the probability-

matched (PM; Ebert 2001) ensemble mean analysis

(Fig. 2b) closely matches the observed reflectivity

(Fig. 2a). The skillful nature of the EnKF analysis

makes it a suitable initial condition for the subsequent

ensemble hail prediction forecasts. Some spurious light

precipitation is present in the northeastern portion of the

forecast domain at 1930 UTC (Fig. 2b), but this spurious

precipitation quickly dissipates, and is almost entirely ab-

sent from the 15-min ensemble PMmean forecast at 1945

UTC (Fig. 2d), which still shows good agreement with

observations (Fig. 2c) at that time.

a. Verification of forecasts of PSD-estimated
maximum hail size

The forecast ensemble contains direct information

about hail within the model from the output of the

microphysical scheme. Using the gamma distribution

assumed by the model [defined by (1)], we can directly

FIG. 2. Observed KTLX 0.58 reflectivity factor and ensemble PM mean reflectivity factor interpolated to the KTLX

0.58 tilt at (a),(b) 1930 and (c),(d) 1945 UTC.

JUNE 2016 SNOOK ET AL . 815



obtain the hail PSD at each model grid point given the

hail mixing ratio qh and the hail total number concen-

tration nh. To translate the model PSD into a mean-

ingful estimate of maximum hail size, we must consider

the nature of the hail reports—typically, the size of the

largest hailstones is reported. The PSD defined by (1)

does not have a corresponding maximum diameter

value; instead, it extends to arbitrarily large values of

hail diameter (with extremely low probabilities). We

address this by defining the maximum observable hail

diameter Dmax, estimated from the hail PSD, as the

diameter value for which nh(Dmax)5 1024 m23. This

definition, which is similar to the definition proposed by

Milbrandt and Yau (2006a), is chosen subjectively for

delineating between PSD-defined hail concentrations

that would be physically observable and those that

would not.

A swath of maximum Dmax between 1930 and

2100 UTC, calculated using the PM ensemble mean at

5-min intervals, is presented in Fig. 3. SPC storm data and

mPING hail reports received during the forecast period

are indicated in Fig. 3 by orange dots. Though radar

observations indicated several substantial hail swaths

(whichwill be discussed in greater detail below), SPC and

mPINGhail reports were rather sparse.Only four reports

of hail were received between 1930 and 2100 UTC, all of

which were associated with the northernmost supercell,

and all within the Oklahoma City metropolitan area

(OKC metro). The forecast ensemble predicted two hail

swaths in the vicinity of these reports (Fig. 3); the two

most northwesterly reports fall directly along and within

the track of a small but intense hail swath extending

through the northwestern portion of the OKC metro

area, while the other two reports fall along the southern

edge of a larger swath of small to marginally severe hail

crossing the southeastern portion of the OKCmetro area

and extending several tens of kilometers to the northeast.

The forecast PMensemblemeanpredicted another swath

of hail to the south of the OKC metro area, though no

SPC or mPING hail reports were received in the vicinity

of this predicted hail swath.

From the ensemble, we can also derive the probability

of Dmax exceeding a specified threshold. During severe

weather operations, NWS forecasters issue severe thun-

derstorm warnings for storms likely to be producing hail

1 in. (25.4mm) or greater in diameter at the surface.While

there is no commonly accepted definition on the mini-

mum diameter of hail, the smallest hail size commonly

accepted by mPING or the NWS is 0.25 in. (6.35mm),

corresponding to pea-sized hail. With these guidelines in

mind, we consider two thresholds: one to identify severe

hail within the ensemble (25mm) and one to identify

areas where any hail is present (5mm). The probability of

Dmax exceeding (Fig. 4a) 5.0mm and (Fig. 4b) 25.0mm

using a neighborhood ensemble probability (NEP;

Schwartz et al. 2010) method are presented in Fig. 4. For

NEP calculations, a neighborhood radius of 2.5 km is

used. Severe reports exceeding the specified diameter are

indicated by orange dots in Fig. 4.

The region of P(Dmax. 5mm). 0.4 (Fig. 4a) roughly

corresponds to the region of Dmax . 5mm in the PM

ensemble mean (Fig. 3). Areas of lower probability ex-

tend primarily to the north and east, reflecting variation

within the ensemble in the speed and direction of mo-

tion of the storms and in the length of time that hail was

produced. Similar as for the PM mean (Fig. 3), the ob-

served SPC and mPING hail reports fall near or within

areas of high predicted probability of hail (Fig. 4a),

though reports are absent in the region of high proba-

bility in the rural areas northeast of the OKC metro

area. Two of the received hail reports were severe (re-

ported hail diameter . 1 in.); these reports, which oc-

curred in the southeastern part of the OKC metro area,

are on the southern edge of a relatively low-probability

region for severe hail probability [P(Dmax . 25mm);

Fig. 4b] within the ensemble. Overall, the probability of

severe hail for this case was relatively modest, with the

highest probabilities of around 0.3–0.6 occurring in two

swaths over the OKC metro area. The proximity of the

reported severe hail to these swaths, however, is an en-

couraging indication of model skill for explicit short-

term severe hail prediction.

FIG. 3. Swath of maximum predicted hail diameter at the surface

within the forecast ensemble between 1930 and 2100 UTC

(0–90min of forecast time), shown in terms of the PM mean of the

forecast ensemble. Hail reports fromSPC andmPINGdata received

between 1930 and 2100 UTC are indicated by orange dots.
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b. Radar-based ensemble hail forecast verification
using MESH

As noted in our discussion of methods, a major limi-

tation of hail reports is a substantial population bias

(e.g., Wyatt and Witt 1997; Davis and LaDue 2004).

Most hail reports are received in high-population re-

gions, with substantial underreporting in rural areas. For

this reason, it is unclear whether the large areas of hail

predicted within the model to the north and east of the

OKCmetro area (Figs. 3 and 4a) are false detections, or

whether hail occurred in those areas but was not re-

ported. WSR-88D radar observations, which offer full

volumetric coverage of the storms that occurred on

20 May 2013, can be used as an indirect source of ob-

servations to address this ambiguity. In this section, we

consider two methods of radar-based hail verification:

prediction and verification of MESH and verification of

ensemble-predicted regions of hail against areas of hail

identified by dual-polarization WSR-88D observations

using an implementation of the fuzzy-logic-based HCA

of Park et al. (2009).

MESH (Witt et al. 1998) is calculated using a weighted

integration of the radar reflectivity factor exceeding

40dBZ above the melting level to estimate the maxi-

mum size of hail occurring at the surface. Temperature

and simulated reflectivity factor, calculated using the

radar observation operator of Jung et al. (2008), are

readily available from our forecast ensemble, making it

straightforward to directly apply theMESHalgorithm to

produce gridded forecast MESH fields. For verification,

we interpolate hourly MESH observations from the

WSR-88D network to our model grid. A comparison

between the WSR-88D observed hourly MESH swath

from 1900 to 2100 UTC (Fig. 5a), the available verifica-

tion period most closely corresponding to the 1930–

2100 UTC forecast period, and the ensemble PM mean

mesh swath during the forecast period (Fig. 5b) shows a

relatively favorable comparison between the forecast en-

semble and the observations. In the observed MESH field

(Fig. 5a), three primary MESH swaths are present, cor-

responding to the Newcastle–Moore supercell over the

OKC metro area and two other supercells to the south.

These three primary swaths are also present in the PM

mean forecast (Fig. 5b), in locations that match well with

the observed swaths. The MESH forecasts show skill

(ETS . 0) at the 5- and 25-mm thresholds, with ETS

values of 0.28 and 0.12 at these thresholds, respectively.

Compared to the observations, the forecast PM mean

MESH swaths have narrower cores of highMESH values

and higher maximum values for the northern two storms

(Fig. 5). Because storms in many ensemble members

moved to the northeast faster than the observed storms,

the forecast swaths extend farther northeast than the

observed swaths; this behavior is most prominent in the

northernmost storm. In contrast, the ensemble under-

predicted the extent ofMESH in the southernmost storm,

located near the Oklahoma–Texas border (Fig. 5). While

hail was present at upper levels in the southern storm in

the ensemble, as we will discuss below, this storm, in

many ensemblemembers, exhibited a relatively low radar

reflectivity factor (,45dBZ) within the updraft core in

FIG. 4. Swaths of the neighborhood ensemble probability ofDmax exceeding (a) 5.0 and (b) 25.0mm between 1930

and 2100 UTC (0–90min of forecast time). Hail reports from SPC and mPING data received between 1930 and

2100 UTC that meet or exceed the corresponding size are indicated by dots.
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the upper portion of the storm (not shown). Because

MESH is calculated using a weighted integration of the

radar reflectivity factor exceeding 40dBZ above the 08C
level, this led to low MESH values in the southern storm

within the ensemble.

MESH, which uses the reflectivity factor aloft as a

proxy for estimating hail size at the surface, is employed

operationally to produce estimates of maximum hail

size that may or may not agree with the microphysically

predictedDmax at the surface. When ensemble-predicted

MESH (Fig. 5b) is compared to predicted Dmax at the

surface (Fig. 3), however, the MESH estimate of maxi-

mum hail diameter at the surface exceeds the actualDmax

at the surface inmost areas, and the hail swaths predicted

by MESH cover a larger region for each of the hail-

producing storms in this case. At least for this case,

MESH, when applied to the ensemble, appears to have a

high bias in predicted hail size, including prediction of

nonsevere hail in areas near hail-producing storms where

no actual hail was present in the microphysical fields at

the surface (Figs. 3 and 5b). Unfortunately, because high-

resolution observed hail size data are not available at the

surface, it is not feasible to determine whether similar

biases in MESH are also present in the observations,

though prior studies have noted high biases in MESH

calculated from WSR-88D observations (e.g., Ortega

et al. 2009; Cintineo et al. 2012).

c. Verification of the ensemble hail forecast using
dual-polarization radar observations

Dual-polarization radar observations provide a method

for obtaining dense, high quality estimates of the spatial

distribution of hail in the area observed by the radar; such

observations are well suited for hail forecast verification.

To estimate the hydrometeor type from observed dual-

polarization radar data, we apply a variant of the HCA

of Park et al. (2009), which uses fuzzy-logic-based

classification to determine the dominant hydrometeor

type from observed radar data (horizontally polarized

radar reflectivity factor Z, differential reflectivity Zdr,

and copolar correlation coefficient rhv) and the model

vertical temperature profile. The variant of the Park

et al. (2009) HCA used in this study applies the mem-

bership functions and weights for Z, Zdr, and rhv, as

well as for standard deviations of Z and differential

phase along radials. Confidence vectors are not used;

despite their omission, however, HCAoutput using this

configuration did not appear to suffer from any data

quality issues. The radar data used in the HCA un-

derwent preliminary quality control, including the re-

jection of radar observations, where rhv was less than

0.85. As the model directly predicts hail, we compare

observed HCA-generated swaths directly to ensemble-

predicted swaths of hail defined using the hail mass

field mh,

m
h
5 q

h
3 r

air
, (2)

where qh is the hail mixing ratio and rair is the air

density.

HCA-indicated hail swaths from the lowest-elevation

scans of KTLX and KFDR (the two nearest WSR-88D

radars to the storms in this case study) between 1930

and 2100 UTC are shown in Fig. 6, with the elevation of

FIG. 5. Swaths of MESH shown as (a) hourly WSR-88D gridded MESH data between 1900 and 2100 UTC in-

terpolated to the model grid, and (b) PMmean griddedMESH predicted by the forecast ensemble between 1930 and

2100 UTC (0–90min of forecast time).
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the beam above mean sea level indicated. These swaths

are used to verify ensemble forecasts of P(mh .
0.03 kgm23) in Fig. 7, with HCA-indicated hail swaths

marked by the contour and the probabilistic ensemble

forecast shaded. In Fig. 7, the model mh field, calcu-

lated using (2), is interpolated to the same vertical level

as the HCA-indicated hail swaths plotted in Fig. 6, re-

sulting in mh on the model grid in the horizontal, but

located at the elevation of the radar beam in the ver-

tical. The HCA-indicated hail swaths, smoothed for vi-

sual clarity, are also plotted in Fig. 7 for comparison and

verification. The threshold of 0.03kgm23 for mh used in

Fig. 7 was chosen based on preliminary experiments

using a wide range ofmh thresholds; lowermh thresholds

produced forecasts with a higher probability of detection,

but resulted in substantial overprediction of the geo-

graphic extent of hail swaths, while higher thresholds

improved forecast reliability but reduced the probability

of detection (not shown). The threshold of 0.03 kgm23

was found subjectively to produce the best balance be-

tween forecast reliability and the high probability of de-

tection, at least for this case.

The ensemble forecast NEP swath for P(mh .
0.03 kgm23) generally captures the three main hail-

producing cells, producing relatively skillful forecasts

over the portion of the domain observed by the radars,

generating forecasts with AUC values of 0.904 for

KTLX (Fig. 7a) and 0.899 for KFDR (Fig. 7b). For

reference, a perfect forecast produces an AUC of 1.0,

while a forecast with no skill produces an AUC of 0.5.

The ensemble-predicted hail swaths also show fair to

good forecast reliability (Fig. 8), although hail swath

coverage is substantially overforecast when verified

against the KFDR observations (Fig. 8b). In both the

model and the observations, the geographic extent of

the hail swaths is greater at higher altitudes (i.e., farther

from the radar site). This pattern is more prominent in

the model swaths than in the observed data; the model

shows large hail swaths in the northern two storms

several kilometers above the surface for the KFDR

radar surface (Fig. 7b), but relatively limited hail from

these storms reaching the near-surface region observed

by KTLX (Fig. 7a). Likewise, the model predicts a hail

swath close to the HCA-indicated hail swath for the

southern storm along the Texas–Oklahoma border for

KTLX (Fig. 7a), but almost no hail for this storm over

the near-surface region indicated by the HCA in the

KFDR observations (Fig. 7b).

When the ensemble-predictedMESH field (Fig. 5b) is

compared to the predictedDmax at the surface (Fig. 3), it

is apparent that the MESH field consistently has greater

geographic coverage than the Dmax field. MESH, which

relies on the model state above the 08C level, indicates

the presence of abundant hail and graupel in the three

hail-producing storms, with geographic coverage com-

parable to MESH calculated from WSR-88D observa-

tions (Fig. 5). However, the predicted PM mean Dmax

field shows less extensive hail swaths in each of the three

storms, with almost no hail predicted for the southern-

most storm. While the intensity of the southernmost

storm is underpredicted in all forecast fields we have

considered thus far, the systematic difference between

FIG. 6. HCA-indicated hail swaths (blue-shaded regions) from (a) KTLX and (b) KFDR observations at the

0.58-elevation angle. Height of the radar beam above mean sea level (m) is indicated by the gray contours.
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MESH and Dmax at the surface is also apparent in the

northern storms where forecast MESH agreed well with

MESH calculated from WSR-88D observations.

To help illuminate the reasons for the noted dif-

ferences in the MESH and Dmax fields, we examine

vertical cross sections of the hail and graupel mass

fields taken through the core of the northern storm in

an individual ensemble member (Fig. 9). While the

cross sections in Fig. 9 are taken from a single mem-

ber, they are typical of such cross sections within the

ensemble. Both hail and graupel are present in the

storm: hail is tightly concentrated, while graupel is more

widespread within the upper levels of the storm. These

results suggest that contributions to reflectivity factor

from graupel are in part responsible for the larger geo-

graphic extent of MESH swaths compared to swaths of

Dmax at the surface. We also note that while substantial

hail mass is present in the mid- and upper levels of the

storm, exceeding 4.0kgm23, the mass of hail reaching the

surface is much lower (approximately 0.4–0.6kgm23),

consistent with the pattern of low mh at lower altitudes

noted above in our discussion of Fig. 7. These results are

consistent with the findings of Johnson et al. (2016), who

compared several two-moment microphysics schemes for

simulations of an idealized supercell storm produced us-

ing the WRF Model and found that the size of the hail

simulated with MY2 was relatively small, making hail in

the MY2 scheme prone to melting quickly.

While gridded hail observations are not available at the

surface, we can see a similar systematic difference be-

tween the geographic coverage of MESH (Fig. 5a) and

hail swaths identified in the KTLX and KFDR radar data

via the HCA (Fig. 6). The extent of the observed MESH

swaths is greater than the extent of the HCA-indicated

hail swaths near the surface (e.g., in areas less than 2km

above the surface in Fig. 6), but of similar geographic

extent for HCA-based observed hail swaths farther aloft

(e.g., in areas 3km or more above the surface in Fig. 6).

This suggests that the discrepancy between MESH and

hail swath extent is present to some extent in the obser-

vations for this case and is not entirely due tomodel error

(though model error, particularly resulting from the mi-

crophysical scheme and faster storm motion, is likely

still a sizeable contributor). There are several possible

sources of bias in theHCA classifications. For example, it

is possible for the HCA tomisclassify areas of very heavy

rain as containing hail. It is also possible that the HCA-

indicated swaths might miss some regions of small hail

when they are mixed with intense rainfall, because the

HCA identifies only the dominant hydrometeor category;

in such a case (low concentrations of small hail mixed

with heavy rainfall), the HCA might indicate only rain

instead of rain mixed with hail.

4. Summary and discussion

In this study, we evaluated the ability of an EnKF-

based storm-scale ensemble forecast (at 500-m horizontal

grid spacing) to explicitly predict hail on a 0–90-min time

scale for the supercell thunderstorms that occurred over

Oklahoma on 20 May 2013. Radar radial velocity and

reflectivity data, along with surface observations, were

FIG. 7. Neighborhood ensemble probability for P(mh . 0.03 kgm23) on the 0.58-elevation level of (a) KTLX and

(b) KFDR during the 90-min forecast period (1930–2100 UTC). Observed HCA-indicated hail swaths during this

period, smoothed for clarity, are indicated by the dark blue contours.
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assimilated into a 40-member ensemble using the ARPS

EnKF system; at the end of the data assimilation period,

an ensemble of 90-min forecasts was launched. The en-

semble analyses and forecasts generally captured the

three major observed hail-producing supercells in terms

of location, size, and evolution. Somemodest errors were

noted in the forecast; the predicted storms in the en-

semble moved to the northeast somewhat more quickly

than the observed storms, and the southernmost of the

threemain hail-producing storms weakened somewhat in

the forecast ensemble, contrary to observations, late in

the forecast period.

Ensemble-based hail forecasts were produced and

verified using several methods, including the prediction

of maximum hail diameter at the surface from the num-

ber concentration and mass mixing ratio predicted by the

model microphysical scheme, prediction of maximum

estimated size of hail (MESH) obtained by applying the

operational MESH algorithm to the ensemble output,

and direct prediction of hail mass within the ensemble.

These predictions were verified against several different

data sources, including observed hail reports at the sur-

face in data collected by the SPC and mPING, MESH

calculated from WSR-88D radar observations, and hail

swaths obtained from WSR-88D dual-polarization ob-

servations using a fuzzy-logic-based hydrometeor classi-

fication algorithm.

The ensemble produced forecasts ranging from mar-

ginally skillful to highly skillful depending on the fore-

cast and verificationmethod chosen. Surface hail reports

were relatively sparse from this case (only four reports

were recorded in SPC and mPING data), but all oc-

curred very near or within hail swaths predicted by the

ensemble. Population bias in the human reports was

likely a major factor in this case; the only surface hail

reports received were located within the Oklahoma City

metropolitan area, while radar-based hail observations

showed large hail swaths in rural areas as well as hail

over the metropolitan area. Of the verification methods

examined, ensemble prediction of MESH showed the

closest agreement with the observations (in this case,

MESH calculated from WSR-88D observations in-

terpolated to the model grid). The predicted MESH

field correctly identified hail swaths in the three main

hail-producing storms, and showed relatively good

agreement with observations in terms of maximum hail

size and swath extent, except for some underprediction

of MESH in the southernmost storm; objective verifi-

cation of the MESH forecast using the equitable threat

score (ETS) indicated positive skill (ETS . 0) both for

the prediction of all hail (.5mm) and for the prediction

of severe hail (.25mm). Forecasts of hail mass, when

verified against hail swaths identified in dual-polarization

WSR-88Dobservations by the hydrometeor classification

algorithm, similarly showed good skill, but revealed a

systematic pattern of abundant hail present aloft, but not

much hail actually reaching the surface. While the geo-

graphic extent of hail swaths observed at upper levels was

generally larger than that near the surface, this pattern

appeared overly strong in the model, with hail in some

swaths (such as for the southernmost storm) melting al-

most entirely before reaching the surface. Microphys-

ical representation of hail, particularly in multimoment

microphysical schemes, is an ongoing area of research;

it is hoped that model performance can be improved by

future work focusing on the characterization and mit-

igation of model errors related to the microphysical

treatment of hail.

Using dual-polarization WSR-88D observations as a

supplemental source of information about the location

and extent of hail within the storms using a hydrometeor

FIG. 8. Reliability diagrams for the probabilistic hail forecasts

shown in Fig. 7 over the portion of the forecast domain observed by

(a) KTLX and (b) KFDR. Statistics were calculated on the 0.58
radar tilt where it fell within the model domain. The shaded area

indicates the region of the reliability diagram corresponding to

positive forecast skill.
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classification algorithm (HCA) provided a valuable

means of validating forecasts of the hail field within the

ensemble. In particular, the full 3D coverage of the

hail region estimates obtained from the HCA allowed

for validation of the ensemble hail forecast even in

regions of sparse surface hail observations, as well as

aloft. We note, however, that such validation is subject

to possible error in the HCA; this is a possible topic for

future study. Further, since the HCA does not tell us

the exact size or the amount of hail present, it should

be used in combination with other sources of obser-

vations whenever possible.

One way that hail prediction may be improved is

through better explicit prediction of the properties of

rimed ice. For example, prediction of the maximum hail

size at the surface may be improved by using a three-

moment scheme (Milbrandt and Yau 2006b). Mansell

et al. (2010) and Milbrandt and Morrison (2013) predict

bulk graupel density to account for the wide variation in

the density of rimed particles. More recently, the pre-

dicted particle properties (P3) scheme, which predicts the

total ice mass, ice number, ice mass from rime growth,

and bulk rime volume,was shown to simulatewide ranges

of rimed-ice particle size distributions reasonably well for

squall-line and orographic precipitation cases (Morrison

andMilbrandt 2015; Morrison et al. 2015). Future studies

using these more advanced microphysics schemes could

offer new insights and advances in hail prediction.

Prediction of maximum hail diameter at the surface

from the number concentration and mass mixing ratio

predicted by the model microphysics produced hail

swaths in close proximity to observed surface hail re-

ports, though surface reports were relatively sparse and

limited to the Oklahoma City metropolitan area. Be-

cause hail surface observations are often relatively

sparse, as was true in this case, we note that it is difficult

to quantify the advantage of ensemble hail predictions

over ‘‘nowcasting’’ methods (e.g., extrapolating based

upon the presence of a supercell and estimated storm

motion), although we note that nowcasting does not

provide quantitative prediction of the size and geo-

graphic distribution of hail. To better quantify the

benefit of ensemble hail predictions, additional study

will be needed, ideally including a variety of storms

ranging from those not producing hail at the surface to

those producing very large hail at the surface. It may

also be beneficial in future studies to apply a hail size

discrimination algorithm, such as that of Ryzhkov et al.

(2013), to polarimetric radar observations as a sup-

plemental source of information on hail size.

Overall, the results of this study demonstrate the

promise of high-resolution, storm-resolving ensembles

using state-of-the-art data assimilation schemes to

skillfully predict hail on time scales of up to 90min,

as well as the utility of radar observations (especially

dual-polarization radar observations) as a supplemen-

tal source of information for hail verification. We note,

though, that additional studies (including storms of

varying convective modes, in varying locations, and at

varying times of the day and the year) will be necessary

to evaluate the robustness of the results obtained for

this case. Furthermore, while it is our hope that storm-

scale ensembles of this type will someday become

feasible using operational computing resources, the

computational resources needed to perform the ana-

lyses and forecasts in this study were quite substantial,

FIG. 9. Vertical west–east cross sections of particle mass fields (kgm23) for (a) hail and (b) graupel through the

region of densest hail in the northernmost storm of ensemblemember 23 at 2000UTC. The height of the 08C isotherm

is indicated by the red line in each panel.
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necessitating the use of significant supercomputing re-

sources and precluding, at least for now, the use of such a

method in real time. As such, we encourage future work

aimed at improving the computational efficiency of

storm-scale ensembles similar to that used in this study.
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