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ABSTRACT

In recent studies, the authors have successfully demonstrated the ability of an ensemble Kalman filter

(EnKF), assimilating real radar observations, to produce skillful analyses and subsequent ensemble-based

probabilistic forecasts for a tornadic mesoscale convective system (MCS) that occurred over Oklahoma and

Texas on 9 May 2007. The current study expands upon this prior work, performing experiments for this case

on a larger domain using a nested-grid EnKF, which accounts for mesoscale uncertainties through the initial

ensemble and lateral boundary condition perturbations. In these new experiments, conventional observations

(including surface, wind profiler, and upper-air observations) are assimilated in addition to theWSR-88D and

the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) radar data used in the previous

studies, better representing meso- and convective-scale features. The relative impacts of conventional and

radar data on analyses and forecasts are examined, and biases within the ensemble are investigated.

The new experiments produce a substantially improved forecast, including better representation of the

convective lines of the MCS. Assimilation of radar data substantially improves the ensemble precipitation

forecast. Assimilation of conventional data together with radar observations substantially improves the

forecast of near-surface mesovortices within the MCS, improves forecasts of surface temperature and

dewpoint, and imparts a slight but noticeable improvement to short-term precipitation forecasts. Furthermore,

ensemble analyses and forecasts are found to be sensitive to the localization radius applied to conventional

data within the EnKF.

1. Introduction

The ensemble Kalman filter (EnKF), first developed

by Evensen (1994, 2003), has been successfully applied

to atmospheric data assimilation (DA) using both sim-

ulated and real data from a variety of observation plat-

forms, for models ranging from global to convective

storm scales (Houtekamer and Mitchell 1998; Hamill

and Snyder 2000; Anderson 2001; Whitaker and Hamill

2002; Snyder and Zhang 2003; Dowell et al. 2004; Zhang

et al. 2004; Dirren et al. 2007; Tong and Xue 2008a; Xue

et al. 2010; Dawson et al. 2012; Snook et al. 2011, here-

after SXJ11; Jung et al. 2012; Yussouf and Stensrud

2012; Yussouf et al. 2013). Though EnKF is rather ex-

pensive in terms of computation, requiring an en-

semble of forecasts (typically using several dozen

members), it provides flow-dependent multivariate

background error covariances that less computationally

intensive three-dimensional variational data assimila-

tion (3DVAR) methods cannot. Cross covariances

produced by the EnKF system are very valuable, espe-

cially for convective-scaleDA, because state variables that

are not directly observed can be retrieved (Tong and Xue

2005, 2008a). Further discussion of DA techniques com-

monly used for assimilation of weather observations,
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including 3DVAR, four-dimensional variational data as-

similation (4DVAR) methods, and EnKF can be found

in Tong and Xue (2005).

Analysis ensembles generated using EnKF are gen-

erally well suited as initial conditions for convective-

scale ensemble forecasts. EnKF assimilation of Doppler

radar data has proven to be effective in retrieving wind,

temperature, and microphysical fields at the convective

scale (e.g., Dowell et al. 2004; Tong 2006; SXJ11; Jung

et al. 2012; Putnam et al. 2014). Furthermore, EnKF

analyses, in principle, also characterize the analysis un-

certainty; this is a particularly desirable quality in the

ensemble forecast initial conditions. Forecast ensembles

initialized from EnKF analyses have been shown to

produce superior probabilistic predictions compared to

ensembles initialized using traditional perturbation

methods (Houtekamer et al. 2005; Hamill andWhitaker

2011). EnKF analyses have been successfully applied to

ensemble forecasts of convective systems, including

supercell thunderstorms (e.g., Aksoy et al. 2009, 2010;

Dawson et al. 2012) and mesoscale convective systems

(e.g., Snook et al. 2012, hereafter SXJ12; Putnam et al.

2014), as well as tropical cyclones (e.g., Wu et al. 2010;

Aksoy et al. 2012, 2013). As available computational

power increases, it will become increasingly feasible to

run a real-time convective-scale ensemble analysis sys-

tem (e.g., Xue et al. 2008) incorporating EnKFDA (e.g.,

SXJ12), as envisioned in the ‘‘warn-on-forecast’’ para-

digm being developed by the National Weather Service

(Stensrud et al. 2009). For example, the Center for

Analysis and Prediction of Storms (CAPS) is actively

developing a quasi-operational cycled EnKF DA and

ensemble forecast system.

In SXJ11, an ensemble square root Kalman filter

(EnSRF; Whitaker and Hamill 2002) is used together

with the Advanced Regional Prediction System (ARPS;

Xue et al. 2000, 2001) atmospheric model (Tong and

Xue 2005; Xue et al. 2006; Tong and Xue 2008b) to as-

similate radar reflectivity and radial velocity observa-

tions frommultipleWSR-88D (Crum et al. 1993) S-band

radars, and from the X-band radars deployed by the

Center for Collaborative Adaptive Sensing of the At-

mosphere (CASA; McLaughlin et al. 2009), for a torna-

dic mesoscale convective system (MCS) that occurred

over Texas and Oklahoma on 9 May 2007. The 40-

member ensemble mean analysis of SXJ11 produces

model storms whose geographic extent, convective

mode, and intensity agree well with the radar observa-

tions. Furthermore, SXJ11 finds that assimilation of

CASA radar data improves the representation of near-

surface circulations and cold pool structure. Ensemble

forecasts initialized from the ensemble analyses of

SXJ11 are subsequently examined in SXJ12. The

forecast ensembles of SXJ12 produce skillful 0–3-h

probabilistic forecasts for radar reflectivity and 2-h

probabilistic forecasts of the presence and location of

the tornadic mesovortex embedded within the MCS

with probability maxima localized within several tens of

kilometers of the observed tornadic mesovortex. The

EnKF experiments of SXJ11 and SXJ12 did not assim-

ilate any conventional observations, nor did they include

any mesoscale perturbations in the initial ensemble or

any perturbations to the lateral boundary conditions.

The ensemble forecasts of SXJ12 exhibited substantial

high biases in heavy precipitation, as well as the de-

velopment of spurious convection near the CASA radar

network later in the forecast period. SXJ12 also noted

that the trailing convective line of the MCS dissipated

too quickly near the southern model domain boundary

in their forecast ensembles.

This study builds upon and extends the work of SXJ11

and SXJ12, addressing the shortcomings of those studies

through an improved ensemble DA and forecast

framework. The new experiments investigate the as-

similation of both radar and conventional observations,

including surface observations at 5-min intervals from

the Oklahoma Mesonet. In their analysis and forecast

study of the same case, Schenkman et al. (2011b) found

that assimilating Oklahoma Mesonet observations via

3DVAR significantly improved the near-surface wind

field within the model. Furthermore, the current study

uses lateral boundary conditions that include mesoscale

perturbations on the outer grid; the boundary conditions

for the inner nest are interpolated from the outer-nest

ensemble members. Recent studies (e.g., Jung et al.

2012; Yussouf et al. 2013) have shown promising results

for storm-scale data assimilation using similar ensemble

designs. The geographic extent of inner-nest domain is

also doubled in both horizontal directions compared to

SXJ12, reducing the potential negative impacts of bound-

ary conditions.

This study will examine the relative and combined

impacts of radar and conventional observations, assim-

ilated using an EnKF, on the ensemble analyses and

subsequent ensemble forecasts of the 9 May 2007 MCS.

The remainder of this paper is organized as follows:

section 2 discusses the data assimilated, the ensemble

DA, and the forecast experiments andmethods. Section 3

discusses the results of the experiments, focusing on the

impacts of assimilating radar and/or conventional data, as

well as ensemble forecast verification. Analyses and

forecasts of radar reflectivity (as a proxy for pre-

cipitation), mesovortices (an indicator of tornado po-

tential), surface temperature, and surface dewpoint are

verified against radar and Oklahoma Mesonet observa-

tions, and forecast sensitivity to the assimilation
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configuration of conventional observations is considered.

Finally, section 4 contains a summary with conclusions.

2. Experiment setup and verification methodology

Similar to SXJ11 and SXJ12, EnKF analyses and 3-h

storm-scale ensemble forecasts are generated for the tor-

nadicMCS that occurred overOklahoma andTexas on 8–9

May 2007. During this event, a line-end vortex (LEV)

developed near the northern end of the MCS. This LEV

moved through southwestern and central Oklahoma,

producing two confirmed (enhanced Fujita scale) EF-1

tornadoes and one confirmed EF-0 tornado in central

Oklahoma between 0354 and 0443 UTC. For additional

details regarding the structure, evolution, and timing of

the 8–9 May 2007 MCS we refer the reader to SXJ11.

SXJ11 and SXJ12 sought to assess the impact of two

factors on their ensemble analyses and forecasts: 1) the

assimilation of CASA X-band radar observations, and

2) the use of a mixed microphysics ensemble as a means

to mitigate ensemble underdispersion. While the assimi-

lation of WSR-88D data alone produced a reasonable

analysis of the convective system, SXJ11 found that as-

similating CASA X-band data in addition to WSR-88D

data improved the resulting analysis, particularly with

regard to the representation of near-surface circulations.

Use of a mixed-microphysics ensemble was found to al-

leviate underdispersion by increasing the ensemble

spread. SXJ12, who carried out ensemble forecasts ini-

tialized from the EnKF analyses of SXJ11, found that

both assimilation of CASA data and the use of a mixed-

microphysics ensemble improved 2-h forecasts of the

tornadic mesovortex embedded within the MCS.

SXJ11 and SXJ12 used a single DA and forecast do-

main with a 2-km horizontal grid spacing; only radar

data were assimilated. Lateral boundary conditions

were provided by the NCEP NAM 6-hourly analyses

and intervening 3-h forecasts. The initial ensemble was

created by adding random perturbations with 6-km

spatial decorrelation scales to a 1-h spinup forecast on

the 2-km grid initialized from the 0000 UTC 9May 2007

NCEP North American Mesoscale Model (NAM)

analysis.While SXJ11 and SXJ12 produced encouraging

analyses and forecasts, several deficiencies exist with

their setup. Only storm-scale perturbations were used;

no mesoscale perturbations were applied. Previous

storm-scale data assimilation studies (e.g., Aksoy et al.

2009) suggest that proper structure in mesoscale un-

certainty is highly important in obtaining good analyses

and forecasts. Furthermore, the single DA domain used

the same lateral boundary condition for all members,

reducing ensemble spread near the upwind lateral do-

main boundaries and contributing to underdispersion in

the ensemble analyses and forecasts. The geographic ex-

tent of the SXJ11 and SXJ12 domain was also rather

limited, which caused detrimental interaction between the

simulated MCS and the southern domain boundary.

SXJ11 and SXJ12 also did not assimilate surface obser-

vations; SXJ12 found that convergence in the near-surface

flow in the model contributed to the development of

spurious convection in the forecast ensemble.

To improve upon the results of SXJ11 and SXJ12,

several changes are implemented in this study. Most

prominently, two grids are used: an outer 3003 3003 40

grid with 6-km horizontal spacing, and an inner 512 3
512 3 40 grid with 2-km horizontal spacing—the extent

of the 2-km domain is substantially expanded from that

of SXJ11 and SXJ12 (Fig. 1). Data assimilated on the

inner grid include both radar and conventional observa-

tions, including surface observations at 5-min intervals

from the Oklahoma Mesonet.

Uncertainties in the storm environment are taken into

account by the ensemble nesting strategy used. Pertur-

bations were applied to the initial outer-domain ensem-

ble; the method is described in detail in the next

paragraph. Member-by-member one-way nesting is ap-

plied from the outer to the inner domain—both ensem-

bles contain 40 members. On both the outer and inner

domains, a single-moment icemicrophysics scheme based

upon Lin et al. (1983) is used, with a rain intercept pa-

rameter of 8.0 3 105m24; this value is reduced from the

FIG. 1. Geographic extent of the outer model domain (6-km

horizontal grid spacing) and the nested inner domain (2-km hori-

zontal grid spacing). Surface elevation (in meters above mean sea

level) is plotted for reference. Also shown for reference is the

smaller 2-km domain used in SXJ11 and SXJ12. The three black

dots in western and central Oklahoma indicate the locations of

OklahomaMesonet stationsMARE (Marena), NRMN (Norman),

and GRA2 (Grandfield) used for time series verification in Figs. 15

and 16.
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default value following the results of Snook and Xue

(2008). Other model settings follow SXJ12: radiation is

parameterized using the NASA Goddard Space Flight

Center long- and shortwave radiation parameterization,

a two-layer soil model is used, surface fluxes are pa-

rameterized using predicted surface temperature and

water content, a 1.5-order turbulent kinetic energy

(TKE)-based subgrid-scale turbulence parameteriza-

tion is applied, and model terrain is interpolated from

global data with a resolution of 30 arc s.

As in SXJ11, we use the ARPS EnSRF DA system

(Xue et al. 2006; Tong and Xue 2008b). The outer-grid

(Fig. 1) forecast is first initialized at 1800 UTC 8 May

2007 from the 1800 UTC 8 May 2007 NCEP NAM

analysis, and a single, 3-h preforecast is performed from

this initial condition (Fig. 2). Lateral boundary condi-

tions for the outer grid are provided fromNAManalyses

and intervening 3-h NAM forecasts from 1800 UTC 8

May to 0600 UTC 9 May. At 2100 UTC, an ensemble of

40 members is created by adding smoothed, random,

Gaussian, mesoscale perturbations generated using

a recursive filter to the deterministic forecast with de-

correlation scales of 36 and 7.2 km in the horizontal and

vertical, respectively, using themethod of Tong andXue

(2008a). Perturbations are added to the horizontal wind

(u, y) with a mean standard deviation of 2m s21, to the

potential temperature (u) with a mean standard de-

viation of 1K, and to themixing ratio of water vapor (qy)

with a mean standard deviation of 10% of the qy value at

the given grid point.

On the outer domain, conventional observations are

assimilated, including Automatic Surface Observing

System (ASOS) and Automatic Weather Observing Sys-

tem (AWOS) observations, Oklahoma Mesonet observa-

tions, wind profiler data, and soundings at 0000 UTC

9 May 2007; these data are assimilated hourly from

2200 UTC 8 May to 0100 UTC 9 May 2007. Assumed

observation errors used vary by observation type as in-

dicated in Table 1. To help maintain ensemble spread

during the DA on the 6-km grid, we apply multiplicative

covariance inflation to the prior ensemble over the en-

tire domain with an inflation factor of 1.03 (Anderson

and Anderson 1999; Tong and Xue 2005). In addition,

we also apply the relaxation technique of Zhang et al.

(2004) with a coefficient of 0.5. Finally, 4-h ensemble

forecasts are performed from the 0100 UTC ensemble

analyses on the outer grid, producing forecasts until

0500 UTC; these forecasts are used to provide ensemble

lateral boundary conditions for the inner-nest forecast

ensembles.

The 2-km inner-grid EnKF DA experiments are initial-

ized from the outer-grid ensemble analyses at 0100 UTC

FIG. 2. Flow diagram for forecast experiments. The outer-nest forecast is initialized at 1800UTC

8 May 2007 via interpolation from the 1800 UTC NAM analysis; 6-hourly NAM analyses and

the intervening 3-h forecasts are used as boundary conditions for the outer nest. The inner nest

is initialized at 0100 UTC 9 May 2007 using the outer-nest ensemble for initial and boundary

conditions.

TABLE 1. Assumed observation error magnitude for conventional observations.

Data type u (m s21) y (m s21) Temperature (K) Dewpoint (K) Pressure (hPa)

Surface 1.5 1.5 1.5 2.0 2.0

Upper air 2.5 2.5 1.2 2.0 0.6

Profiler 2.5 2.5
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via spatial interpolation. Lateral boundary conditions

for inner-grid ensemble members are from the forecasts

of corresponding outer-grid members at 15min in-

tervals. The inner-nest experiments assimilate data ev-

ery 5min from 0105 to 0200 UTC; the data assimilated

include conventional data as described above, as well as

radar reflectivity and radial velocity fromWSR-88D and

CASA radars. For radar data, observation error stan-

dard deviations are assumed to be 2m s21 for radial

velocity and 3dBZ for radar reflectivity; these values are

increased from the 1m s21 and 2dBZ used in SXJ11

following Jung et al. (2012). The observation operators

used to map the model state to reflectivity and radial

velocity observations follow Jung et al. (2008). As in

Xue et al. (2006), a Gaussian power-gain function fol-

lowing Wood and Brown (1997) is used in the forward

operator to sample radar data on the radar elevation

angles. The horizontal and vertical covariance localiza-

tion radii for radar data are set to 6 km. For conventional

data, the vertical localization radius is set to 6 km, and

horizontal localization radii of 300 km for surface ob-

servations and 800km for wind profiler and upper-air

observations are used in the primary set of experiments;

smaller localization radii are tested in sensitivity ex-

periments on the inner nest. The locations of assimilated

conventional observations and radar sites on the inner

nest are shown in Fig. 3.

Four primary experiments are run on the inner grid to

investigate the impacts of radar and conventional

weather observations, assimilated individually or in

combination, on the ensemble analyses and forecasts.

These four experiments are summarized in Table 2. In

experiment RADCONV, data from the WSR-88D and

CASA network radars are assimilated, along with con-

ventional observations. In experiment RAD, only radar

data are assimilated; similarly, in experiment CONV

radar data are omitted and only conventional data are

assimilated. Finally, a control experiment (CNTL) is

FIG. 3. Observations assimilated using EnKF on the inner-nested grid (2-km grid spacing).

The dashed circles and large solid circles indicate 50- and 150-km radius range rings, re-

spectively, for WSR-88D sites used. Small, thin circles indicate 30-km range rings for CASA

X-band radar sites used, black triangles indicate ASOS and AWOS surface station sites,

squares indicate Oklahoma Mesonet station sites, and diamonds indicate wind profiler sites.

The red box indicates the Oklahoma verification subdomain.

APRIL 2015 SNOOK ET AL . 1039



performed in which no data of any kind are assimilated

on the inner domain—the CNTL forecast ensemble is

allowed to run freely from the initial ensemble states at

0100 UTC.

3. Results

In evaluating the results of the forecast experiments,

we will focus primarily on the nature and extent of the

individual and combined impacts of assimilated con-

ventional and radar observations on the ensemble

forecasts. Forecast verification is performed hourly be-

tween 0300 and 0500 UTC for radar reflectivity, surface

dewpoint, and surface temperature. In addition, fore-

casts of low-level mesovortices are produced and veri-

fied at 0400 UTC, at which time a pronounced tornadic

mesovortex was present in the observations (SXJ12).

Radar reflectivity is chosen for verification because it

serves as a proxy for precipitation and can be readily

verified against WSR-88D observations spanning the

full extent of the MCS. A neighborhood ensemble

probability (NEP; Schwartz et al. 2010) method with

a 5-km neighborhood radius is used for verification of

radar reflectivity forecasts, and object-based probabilistic

verification following the methodology of SXJ12 is used

for the verification of mesovortex forecasts. The radar

observations used for forecast verification are obtained

by interpolating full radar reflectivity volumes to the

model grid to produce a gridded radar reflectivitymosaic.

Verification of surface temperature and dewpoint is

performed by direct comparison of the forecast ensemble

mean against Oklahoma Mesonet observations.

a. Impact of data sources during the analysis period

Experiments RAD, CONV, and RADCONV focus

on the relative impact of conventional and radar data

sources assimilated by the EnKF. CNTL, which is ini-

tialized from the same initial conditions as the other

three experiments, but in which no additional observa-

tions are assimilated, provides a basis for comparison. We

note, however, that all experiments (including CNTL) ben-

efit from hourly EnKFDA of conventional observations on

the outer grid prior to 0100 UTC. All radar-assimilating

experiments discussed in this study use both WSR-88D

and CASA observations. The specific impact of CASA

X-band radar data will not be considered in this paper—

such experiments were performed, and they yielded

results largely consistent with the findings of SXJ11 and

SXJ12.

The assimilation of radar data and the assimilation of

conventional observations each have positive impacts

on the ensemble forecasts and analyses during the DA

period. Compared to the CNTL ensemble, the radar-

assimilating ensembles (RADCONV and RAD) exhibit

substantially lower root-mean-square (RMS) innovation,

as expected, in both radial velocity (Fig. 4) and radar

reflectivity (Fig. 5) within the observational area of four

WSR-88Ds close enough to observe the MCS. Further-

more, the probability-matched (Ebert 2001) ensemble

TABLE 2. Summary of experiments.

Expt name

Radar data used?

Conventional data

used?

Outer

domain

Inner

domain

Outer

domain

Inner

domain

RADCONV No Yes Yes Yes

RAD No Yes Yes No

CONV No No Yes Yes

CNTL No No Yes No

FIG. 4. Average root-mean-square (RMS) innovation (solid

lines) of ensemble mean and the ensemble spread (dotted lines) of

radial velocity (m s21) over the observation region of four WSR-

88Ds within the model domain from 0100 to 0200 UTC for all ex-

periments. Calculations are limited to locations where observed

and/or model (ensemble mean) reflectivity exceeds 15 dBZ.
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mean radar reflectivity field of RADCONV and RAD

(Figs. 6a,b) is structurally much closer to the observed

radar reflectivity field (Fig. 6e) than that of CNTL

(Fig. 6d). The ensemble spread in the radar-assimilating

experiments is quickly reduced, both in terms of radial

velocity (Fig. 4) and radar reflectivity (Fig. 5). Despite

the use of multiplicative covariance inflation tomaintain

spread, the low spread inRADCONVandRAD indicates

that the ensembles quickly become underdispersive; such

underdispersion has often been noted in convective-scale

ensembles that assimilate radar observations (e.g., Aksoy

et al. 2009; Dowell and Wicker 2009; Jung et al. 2012;

Yussouf et al. 2013).

Assimilation of conventional data alone in CONV

results in a modest reduction in RMS innovation of

Z late in the analysis period, compared to CNTL, against

the observations of the KDYX and KFWS radars

(Figs. 5a,b). CONV performs similarly to CNTL in terms

of RMS innovation of Z when compared against KTLX

and KVNX observations (Figs. 5c,d). KDYX and KFWS

primarily observe the trailing stratiform precipitation and

trailing convective line between 0100 and 0200 UTC,

while KTLX and KVNX mainly observe the leading

portion of the MCS. Both the CNTL and CONV en-

sembles contain a large area of spurious precipitation in

northern Oklahoma and southern Kansas, located

within the observation areas of KTLX and KVNX

(Figs. 6c–e). Assimilation of conventional observations

alone could not suppress this region of spurious con-

vection. RMS innovations of Vr in CONV are similar to

or very slightly lower than those of CNTL (Fig. 4). The

0200 UTC probability-matched ensemble mean of radar

reflectivity in CONV (Fig. 6c) shows greater coverage of

precipitation in central and south-central Oklahoma

compared to CNTL (Fig. 6d), but also contains more

spurious precipitation, particularly to the east of the

observed MCS (Figs. 6c,e). By contrast, in RAD and

RADCONV, where radar data are assimilated alone or

alongside conventional data, the probability-matched

ensemblemean reflectivity at 0200UTC (Fig. 6a) closely

matches the structure of the observations (though the

predicted intensity slightly lower than observed over

portions of the MCS), and the spurious precipitation

regions seen in CONV (Fig. 6c) are absent. Previous

studies (e.g., Tong and Xue 2005) have shown the im-

portance of assimilating radar data in clear-air regions in

suppressing spurious precipitation during EnKF DA,

consistent with the current results.

b. Impact of data sources on ensemble precipitation
forecasts

NEP forecasts of P[Z . 25dBZ] at 0300, 0400, and

0500 UTC (Fig. 7), are generally skillful, particularly

for the radar-assimilating experiments RADCONV

(Figs. 7a,e,i) and RAD (Figs. 7b,f,j). RADCONV and

RADboth predict regions of highP[Z. 25dBZ], which

closely match the region of precipitation exceeding

25 dBZ observed by the WSR-88D network, both in

shape and in extent, particularly at 0300 and 0400 UTC.

Decay of the southernmost portion of the trailing line is

observed in many ensemble members at 0400 and

0500 UTC in RADCONV and RAD, though not to as

great an extent as in SXJ12. The motion of the pre-

cipitation regions exceeding 25dBZ in RADCONV and

RADmatches well with the observed system (Figs. 7a–f).

In CONV and CNTL, where no radar data are as-

similated, NEP forecasts of P[Z . 25dBZ] are less ac-

curate than those in RADCONV and RAD. The region

of highest probability in CONV and CNTL is located in

a west-southwest to east-northeast-oriented streak in

southern Kansas, near and just beyond the northern end

of the observed region of precipitation exceeding

25 dBZ (Figs. 7g–l). Assimilation of conventional ob-

servations in CONV (Figs. 7c,g,k) results in an improved

FIG. 5. As in Fig. 4, but for radar reflectivity (dBZ) instead of radial

velocity.
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representation of the leading portion of the MCS over

central and northern Oklahoma in the NEP forecast of

P[Z. 25dBZ] compared to CNTL (Figs. 7d,h,l), as well

as increased values of P[Z . 25dBZ] in central Okla-

homa near the LEV, particularly at 0400 and 0500

UTC (Figs. 7g,k). Like CNTL, CONV contains some

moderate to high values of P[Z . 25dBZ] away from

any observed precipitation exceeding 25dBZ—since no

radar data were assimilated, this spurious convection

could not be effectively suppressed. Overall, assimila-

tion of conventional data alone improved the ensemble

precipitation forecast modestly, but not nearly as much

as assimilating radar observations.

The threshold of 25 dBZ is chosen to focus on all

precipitation exceeding a light-to-moderate intensity.

Depending upon the desired forecast focus, however,

a lower threshold may be used to include light pre-

cipitation in the NEP forecast, or a higher threshold may

be chosen in order to focus exclusively on convective

cores. To examine the impact of data sources on prob-

abilistic forecasts of reflectivity with varying thresholds,

the area under the relative operating characteristic curve

(AUC) for NEP reflectivity forecasts with thresholds

varying from 10 to 50dBZ, calculated hourly over

a subdomain encompassing the general region observed

by the Oklahoma Mesonet (the red box in Fig. 3), is

presented in Fig. 8 for all experiments. For each exper-

iment the 5th–95th percentile range is also shown, ob-

tained using a bootstrap method to produce 1000

randomly resampled 40member ensembles, allowing for

evaluation of the statistical significance of the differ-

ences between experiments.

FIG. 6. Probability-matched ensemble mean reflectivity at model grid level 10 (approximately 2 km above the surface) for the

0200 UTC ensemble analyses of (a) RADCONV, (b) RAD, (c) CONV, and (d) CNTL. Also shown is (e) observed reflectivity at

0200 UTC from the WSR-88D network, interpolated to the model grid. Urban boundaries are shown in purple.
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For the radar-assimilating experiments (RAD and

RADCONV), AUC in the 0200 UTC analysis (Fig. 8a)

is very high (close to 1) for thresholds between 10 and

30dBZ, declining to around 0.9 for higher thresholds,

indicating a highly skillful ensemble analysis over the

Oklahoma subdomain. Progressing through the fore-

cast period, AUC generally decreases in RAD and

RADCONV; the highest values (and thus most skillful

forecasts) are for thresholds between 15 and 35dBZ.

AUCs for thresholds above 40dBZ decline quickly; this

is to be expected, since at these thresholds only very intense

reflectivity cores are being considered, and forecast skill is

highly sensitive to displacement errors of these small, in-

tense cores. Also, though RAD has a slightly higher AUC

than RADCONV at 0200 UTC (Fig. 8a), particularly for

higher thresholds, RADCONV outperforms RAD for all

FIG. 7. Neighborhood ensemble probabilities (shaded) of radar reflectivity exceeding 25 dBZ, P[Z . 25 dBZ], at model grid level 10

(approximately 2 km above the surface) at (a)–(d) 0300, (e)–(h) 0400, and (i)–(l) 0500 UTC for RADCONV, RAD, CONV, and CNTL.

The region of radar reflectivity exceeding 25 dBZ observed by theWSR-88Dnetwork at the corresponding time is outlined by a bold black

contour. Urban boundaries are shown in purple.
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thresholds at 0300 and 0400 UTC (Figs. 8b,c), and shows

similar performance at most thresholds at 0500 UTC

(Figs. 8c,d). Though RAD produces a better initial fit to

the radar observations (note that a tighter fit of analysis

to observations assimilated does not necessarily mean

better analysis), the addition of conventional data in

RADCONVresults inmore skillful 1- and 2-h forecasts. In

both RAD and RADCONV, the 5th–95th percentile

range is quite small atmost thresholds, indicating relatively

low spread within the ensemble. As noted earlier, under-

dispersion within the ensemble is a common issue when

assimilating radar observations (Aksoy et al. 2009; Dowell

and Wicker 2009; Jung et al. 2012; Yussouf et al. 2013).

When conventional data are assimilated alone in

CONV, the 0200 UTC ensemble analysis of radar

reflectivity has a slightly higher AUC than control ex-

periment CNTL, but a substantially lower AUC than

the radar-assimilating experiments (Fig. 8a). AUC in

CONV actually increases at high thresholds between

0200 and 0300 UTC (Figs. 8a,b), even outperforming

RAD and RADCONV due to good placement of heavy

convective cores in south-central Oklahoma and less

overprediction of very intense rainfall cores (not shown),

before declining at all thresholds between by 0500 UTC

(Fig. 8d). Positive impact of conventional data in CONV

on AUC (cf. CNTL) remains evident at 0300 UTC

(Fig. 8b), but cannot be discerned at later times. AUC is

strongly sensitive to the probability of false detection.

Although the overall structure of MCS predicted by

CNTL is poor (Fig. 7), relatively low probability of false

FIG. 8. Area under the relative operating characteristic (ROC) curve (AUC) (solid, bold lines) for all experiments for the analyses at

(a) 0200 UTC, and forecasts at (b) 0300, (c) 0400, and (d) 0500 UTC for forecasts of radar reflectivity at vertical grid level k5 10 (slightly

more than 2 km above mean sea level) exceeding threshold values ranging from 10 to 50 dBZ at intervals of 2 dBZ. Also shown are the

5th–95th percentile ranges calculated using a 1000-member bootstrap to resample the ensemble (shaded regions). Calculations are

performed over the Oklahoma verification subdomain (the red box in Fig. 2). In each panel, the green region indicates AUC values

associated with an operationally useful forecast (AUC . 0.7). The red region indicates forecasts with no skill (AUC , 0.5).
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detection coupled with decent precipitation placement

(Figs. 7h,l) leads to a deceptively high AUC score for

high thresholds at later forecast hours.

Another method of assessing the skill of a probabilistic

forecast is the reliability diagram, which compares the

observed relative frequency of an event to the forecast

probability. Because the reliability diagram is conditioned

on the ensemble forecast, while AUC is conditioned on

the observations, these two metrics complement one an-

other and give a more complete assessment of forecast

skill. Reliability diagrams, calculated over the Oklahoma

verification subdomain (see Fig. 3) using forecast proba-

bility bins with a width of 0.05, are plotted for NEP

forecasts of P[Z. 25dBZ] for all experiments in Fig. 9 to

complement the analysis of AUC using the same sub-

domain presented in Fig. 8. In an ideal forecast, the ob-

served frequency would be equal to the forecast

probability, resulting in a straight reliability curve ori-

ented along the 458 diagonal (indicated by the dotted lines
in Fig. 9). The region below the diagonal indicates over-

forecasting of the event, while the area above the diagonal

indicates underforecasting. Sharpness diagrams are also

presented in Fig. 9, indicating the number of model grid

points falling into each probability bin, and thus the

overall distribution of probabilities in the forecast. Since

the verification subdomain extends well outside of the

MCS, these histograms contain many zero values.

In the ensemble analyses at 0200 UTC (Fig. 9a), the

radar-assimilating experiments show good reliability in

their forecasts of Z . 25dBZ, while CNTL and CONV

exhibit substantial overprediction. In the radar-assimilating

experiments (RADCONV and RAD), there is an overall

monotonic increase in observed frequency as forecast

probability increases, which is a desirable trait. This pattern

is absent in the 0200 UTC analyses of CNTL and CONV

for forecast probabilities of above approximately 0.4.

During the forecast period (Figs. 9b–d), there is

a general trend toward overprediction of Z. 25dBZ in

the data-assimilating experiments, particularly at 0400

and 0500 UTC. RADCONV shows good reliability

throughout much of the forecast period, remaining near

the diagonal except at the highest forecast probabilities,

outperforming all other experiments. RAD and CONV

substantially overpredict Z . 25dBZ for forecast prob-

abilities above 0.4, but exhibit reliability curves that

indicate a general increase of observed frequency as

forecast probability increases, particularly at 0400 and

0500 UTC (Figs. 9c,d). Though CNTL shows good re-

liability for low-to-moderate forecast probabilities, its

reliability is quite poor for forecast probabilities above

about 0.6. The tendency toward greater overprediction

of Z . 25 dBZ during the forecast period in RAD and

RADCONV is similar to that seen in Clark et al. (2009)

in their convection-allowing ensemble using 4-km hori-

zontal grid spacing.

The radar-assimilating experiments (RAD and

RADCONV) produce significantly more extreme prob-

ability values (near 0 or 1) than either CONV or CNTL

(Fig. 9, right-hand side). The assimilation of radar data in

these experiments results in strong agreement among

the ensemble members in the structure of the MCS in

the 0200 UTC analysis, while greater spread remains evi-

dent in the CONV and CNTL ensembles (see Fig. 5). The

MCS evolves similarly in many RAD and RADCONV

members during the forecast period (see Figs. 7a–f), caus-

ing this sharpness to persist to some extent throughout the

forecast period.

c. Impact of data sources on precipitation forecast
bias

As in SXJ12, domain-wide histograms of radar re-

flectivity (Fig. 10) reveal persistent biases in the en-

semble forecasts. The forecast histograms are obtained

by counting occurrences of radar reflectivity values in

each member separately. The resulting total in each bin

is then divided by the number of members in the en-

semble, so that the number of occurrences can be com-

pared directly to reflectivity counts from radar observations

interpolated to the model grid. In three of the experi-

ments (RADCONV, RAD, and CNTL), there is a low

bias for light precipitation (15–25 dBZ) which is most

prevalent later in the forecast period at 0400 and

0500 UTC. In RAD and RADCONV there is an abun-

dance of moderately intense precipitation (25–45dBZ),

resulting in a high bias. These biases are similar to those

found in SXJ12, where assimilation of radar data re-

sulted in overprediction of convective regions and under-

prediction of light precipitation in stratiform precipitation

regions; this behavior is also present in radar-assimilating

experiments RAD and RADCONV. The high bias

in moderate precipitation is largely absent in CNTL,

and manifests in RAD and RADCONV between the

0200 UTC analysis and the 1-h forecast at 0300 UTC,

suggesting that the radar-assimilating forecasts may re-

sult from interaction of assimilated radar data with error

in the single-moment microphysics scheme used in the

ensembles. In a related study (Putnam et al. 2014) the

high biases in moderately intense precipitation fields are

reduced when amore sophisticated, two-moment scheme

is used for this case.

At 0200 UTC, CONV exhibits a substantial high bias

for both light and moderate precipitation (15–45 dBZ)

mostly due to spurious precipitation causing over-

estimation of the extent of the precipitation area. By

0300 UTC, the high bias in light precipitation (Z ,
20 dBZ) has disappeared, but the high bias in moderate
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FIG. 9. Reliability and sharpness diagrams for NEP forecasts of P[Z . 25 dBZ] for all ex-

periments at (a) 0200, (b) 0300, (c) 0400, and (d) 0500 UTC calculated over the Oklahoma

verification subdomain (the red box in Fig. 2). Forecast probability bins are spaced at intervals

of 0.05.
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to moderately intense precipitation (20–45dBZ) remains

through the rest of the forecast period. CONV shows very

different bias behavior compared to RADCONV and

RAD; the two radar-assimilating experiments have very

similar bias behavior throughout the forecast period.

From these results we can conclude that, at least for this

case, conventional data have a different impact upon the

forecast bias ofZwhen they are assimilated alone; radar

data, when they are assimilated, appear to be the dom-

inant factor with regard to the bias of Z within the

forecast ensemble.

d. Impact of data sources on mesovortex prediction

Object-based ensemble forecasts of the probability

of low-level mesovortices within 25km of a point are

calculated using the 2-h ensemble forecasts valid at

0400 UTC. The methodology and criteria used to per-

form these forecasts follow that of SXJ12, and we refer

the reader to SXJ12 for further details regarding the

probability calculation. At 0400 UTC, a tornadic

mesovortex was present west-southwest of the Oklahoma

City metropolitan area, indicated by the green triangle

in each panel of Fig. 11. All four ensemble forecast ex-

periments (RADCONV, RAD, CONV, and CNTL)

indicate a probability of at least 0.2 of a mesovortex

being present in close proximity to the observed tor-

nadic mesovortex; probability near the observed

vortex location is highest in RADCONV and lowest

in CNTL.

RADCONV produces the best probabilistic meso-

vortex forecast, with a region of moderate probability

(maximum .0.6) concentrated near the observed mes-

ovortex location (Fig. 11a). RAD predicts a similarly

shaped region of relatively low probability (maximum

’0.3), centered 20–30 km northwest of the observed

mesovortex location, as well as a region of probability

between 0.05 and 0.20 in north-central Oklahoma

(Fig. 11b). CNTL, which did not benefit from any as-

similated observations on the inner grid, predicts a small

region of low probability (maximum ’0.2), also cen-

tered 30–40km northwest of the observed mesovortex

location (Fig. 11d), suggesting that at least some of the

information needed to correctly predict the mesovortex

in this MCS is captured in the outer-nest ensemble

providing the initial and lateral boundary conditions for

CNTL.

The better mesovortex prediction of RADCONV

compared to RAD supports the findings of Schenkman

et al. (2011a), who showed that the assimilation of

Oklahoma Mesonet, CASA, and WSR-88D observa-

tions for this case using a 3DVAR and cloud analysis

system yielded a better prediction of the low-level wind

field and the tornadic mesovortex than when assimilat-

ing radar data alone. We note, however, that assimila-

tion of conventional data alone does not substantially

improve the probabilistic mesovortex forecast over

CNTL. In short, for this case, assimilation of conven-

tional data only results in an improved mesovortex

forecast when radar data are also assimilated. Assimi-

lation of radar data, which have relatively complete

FIG. 10. Hourly, domain-wide histograms of forecast radar re-

flectivity for all ensemble forecast experiments, compared toWSR-

88D observed reflectivity interpolated to the ensemble forecast

grid. Bins are placed every 1 dBZ. The vertical axis indicates the

number of model grid volumes within each bin; for the ensemble

forecasts these values are normalized by the size of the ensemble.
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volumetric coverage throughout the MCS, is necessary

to produce a good initial representation of the storm

within the model. Assimilating conventional observa-

tions alone (which are far coarser than the radar ob-

servations and most abundant at the surface) cannot

substantially improve the storm-scale ensemble forecast

or impart an accurate three-dimensional storm structure

in this case.

e. Verification of surface temperature and dewpoint

The ability of radars to provide complete volumetric

coverage is generally limited very close to the surface,

since the curvature of the earth prevents radars from

observing the near-surface region beyond a few tens of

kilometers from the radar site. This limitation motivates

the assimilation of conventional observations alongside

FIG. 11. Ensemble-based probability of a significant near-surface mesovortex occurring within 25 km of a point

(shaded) at 0400 UTC for (a) RADCONV, (b) RAD, (c) CONV, and (d) CNTL. The location of the observed

tornadic mesovortex (located within the line-end vortex of theMCS) at 0400UTC is indicated by the green triangle

in each panel. Urban boundaries are shown in purple.
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radar, particularly when relatively dense surface obser-

vations such as those from the Oklahoma Mesonet are

available. To assess the skill of the ensemble forecasts

near the surface, surface temperature and dewpoint are

compared against Oklahoma Mesonet observations at

0400 UTC (2h of forecast time) in Fig. 12 and Fig. 13,

respectively.

In all forecast experiments, the ensemble mean sur-

face temperature is colder than observed near the LEV

(located near the Oklahoma City metropolitan area at

0400 UTC; cf. Fig. 11), and warmer than observed to the

east of the MCS and in the vicinity of the trailing con-

vective line in southern Oklahoma (Fig. 12). The cold

bias near the LEV is greatest in RAD (Fig. 12b), ex-

ceeding 38C in places, and least in RADCONV and

CONV (Figs. 12a,c). RADCONV (Fig. 12a) and CONV

(Fig. 12c) overall show similar patterns of temperature

forecast error.

When 2-h surface dewpoint forecasts are compared

(Fig. 13), a prominent dry bias is present in the forecast

ensembles over much of central and northwest Okla-

homa. The dry bias is most intense in RAD (Fig. 13b),

extending over nearly all of Oklahoma, and exceeding 68C
in northwestOklahoma. InCONVandCNTL (Figs. 13c,d),

which did not assimilate radar data, the dry bias is less in-

tense, and more limited in extent. The overall bias is

smallest in CONV. RADCONV (Fig. 13a) has a greatly

reduced dry bias compared to RAD (Fig. 13b). The

reduced error in the surface temperature and surface

dewpoint forecasts of RADCONV in comparison toRAD

suggest that the conventional observations assimilated in

RADCONV impart a substantial improvement to the

surface thermodynamic and moisture fields of the en-

semble that is maintained through the subsequent forecast

period.

To more closely examine the ensemble behavior of

surface fields, ensemble temperature and dewpoint fields

are interpolated to the locationof threeOklahomaMesonet

sites at 5-min intervals and compared against 5-min

observations from the corresponding sites in Fig. 14 and

Fig. 15. The Oklahoma Mesonet sites chosen are

marked in Fig. 1 and include Marena (MARE), located

in the northern stratiform region of the MCS; Norman

(NRMN), which observes the passage of the convective

line during the forecast period; andGrandfield (GRA2),

which observed the poststorm environment duringmuch

of the forecast period. In addition to the ensemblemean,

Fig. 14 and Fig. 15 also show the 5th–95th percentile

range within the 40-member ensemble.

All experiments produce cold biases at NRMN

(Figs. 14e–h) and warm biases at GRA2 (Figs. 14i–l)

throughout the analysis and forecast period, while pro-

ducing values near those observed atMARE(Figs. 14a–d).

The ensembles of RADCONV and CONV (which

FIG. 12. Contours of the difference between ensemble mean surface (2m) temperature forecast and Oklahoma

Mesonet observations at 0400 UTC for (a) RADCONV, (b) RAD, (c) CONV, and (d) CNTL. Red areas indicate

an ensemblemean temperature warmer than observed by themesonet, while blue areas indicate an ensemblemean

colder than observations.
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assimilate conventional data) show more similar trends

in temperature to the observed values than those of

RAD and CNTL, particularly at GRA2 (Figs. 14i–l),

where they show a drop in temperature between

0100 and 0200 UTC, consistent with observations. For

dewpoint, the ensembles show dry biases at MARE and

NRMN (Figs. 15a–h) throughout most of the assimila-

tion and forecast period; this bias is greatest in RADand

least in CONV. RAD also shows a dry bias at GRA2

(Figs. 15i–l) during much of the forecast period; as noted

earlier, RAD exhibits a pronounced dry bias over much

of western Oklahoma (Fig. 13). For both temperature

(Fig. 14) and dewpoint (Fig. 15), RAD has much greater

spread within the ensemble, as evidenced by the very

large 5th–95th percentile range in RAD compared to

RADCONV and CNTL. The ensemble of RAD had

a few ensemblemembers that produced very dry air near

the surface over central and southwestern Oklahoma

(not shown), contributing to the very large spread in the

ensemble.

Because RAD does not assimilate surface observa-

tions, it relies on radar observations alone to adjust the

surface thermodynamic fields. Though there is near-

surface radar coverage over many portions of the do-

main, the fields produced inRADbased on the influence

of radar covariance structure near the surface do not

result in good forecasts in all ensemble members. This

result is consistent with Dowell et al. (2011), who also

found that assimilation of radar reflectivity information

using an EnKF did not result in positive impact upon

verification against surface observations. When con-

ventional data are assimilated alongside radar data in

RADCONV, the bias of the ensemble is reduced and

the ensemble spread in the surface fields is reduced to

levels similar to CONV. We note, however that because

the ensemble has a horizontal resolution of only 2km

and a minimum vertical spacing of 25m, accurate pre-

diction of surface fields may be beyond the capability of

the ensemble, regardless of the data used. Yussouf et al.

(2013) also noted relatively poor agreement between

their storm-scale ensemble using 2-km horizontal grid

spacing and individual surface observation time series.

f. Impact of localization radius for conventional
observations

When using an EnKF that assimilates observations

from multiple networks, the spatial covariance locali-

zation radii usually need to be tuned. The use of dif-

ferent, optimized radii for different observation types

has been found to improve analyses and forecasts (Dong

et al. 2011; Zhu et al. 2013). In addition to the four pri-

mary experiments presented above, several sensitivity

experiments were performed using different covariance

localization radii for conventional data assimilated in

FIG. 13. Contours of the difference between ensemble mean surface (2m) dewpoint forecast and Oklahoma

Mesonet observations at 0400UTC for (a) RADCONV, (b) RAD, (c) CONV, and (d) CNTL.Green areas indicate

an ensemble mean dewpoint higher than observed by the mesonet, while brown areas indicate an ensemble mean

dewpoint lower than observations.
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RADCONV and CONV. Horizontal localization radii

from 100 to 800 km were tested for surface data, and

radii from 150 to 1500km were tested for upper-air

observations; these ranges are based upon prior exper-

imentation by the authors and typical values used in

similar studies. Though all radii tested resulted in qual-

itatively similar 0200UTCanalyses (not shown), substantial

differences were noted during subsequent ensemble

forecasts. Because the forecast trend is monotonic as

radii increase (for small to moderate radii), we only

show results using the smallest radii tested and for the

combination of radii that produced the most skillful

forecasts (300 km for surface data and 800km for upper-

air data). Increasing influence radii beyond 300 km for

surface data and 800km for upper-air data resulted in

forecasts whose skill decreased more quickly during the

forecast period (not shown).

When only conventional data are assimilated, the

quality of NEP forecasts of P[Z . 25dBZ] is better for

larger localization radii. When a localization radius of

300km is used for surface data and 800km for upper-air

data, as in CONV, regions of high probability are con-

fined to a relatively tight north–south line near and

slightly to the east of the observed MCS location

(Figs. 16d–f), and NEP near the LEV is high (in many

places,.0.95). By comparison, when reduced localization

radii of 100km for surface data and 150km for upper-air

data are used (Figs. 16a–c), the linear structure of theMCS

is not as evident, particularly at 0500 UTC (Fig. 16c). The

two distinct precipitation regions in the simulation using

reduced localization radii are more similar to those of

CNTL. When radar data are assimilated alongside con-

ventional data, the positive impact of the assimilated ob-

servations is less when a smaller localization radius is used

for conventional observations (not shown).

The tornadic mesovortex that was ongoing at 0400UTC

is also better predicted when larger localization radii are

used to assimilate conventional data. Mesovortex

probability predictions for RADCONV (Fig. 17a) and

CONV (Fig. 17c), which use 300- and 800-km localiza-

tion radii for surface and upper-air data, respectively,

compare favorably to their counterparts using reduced

localization radii for conventional DA (Figs. 17b,d). In

particular, when radar data are assimilated alongside

conventional data (Figs. 17a,b), the probability near the

observed mesovortex location is increased. Spurious

FIG. 14. Observed surface (2m) temperature (8F) (solid black lines) at 5-min intervals between 0100 and 0500 UTC from Oklahoma

Mesonet sites at (a)–(d) Marena (MARE), (e)–(h) Norman (NRMN), and (i)–(l) Grandfield (GRA2). Also shown are ensemble mean

(thick colored lines) and the 5th–95th percentile range (shaded colored regions) for experiments RADCONV [purple; (a),(e), and (i)];

RAD [blue; (b),(f), and (j)]; CONV [red; (c),(g), and (k)]; and CNTL [gray; (d),(h), and (l)] interpolated to the location of the corre-

sponding Oklahoma Mesonet sites. The vertical dotted line in each panel denotes the end of the DA period at 0200 UTC.
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detections are reduced when using the larger localiza-

tion radii (Fig. 17a). Similar improvements are also

present when conventional data are assimilated alone

(Figs. 17c,d). The seemingly optimal 300-km localization

radius used for the surface data appears rather large

compared to the mean station spacing of the Oklahoma

Mesonet, which is about 30 km. Dong et al. (2011) sug-

gested optimal localization radii that are slightly larger

than the mean station spacing of individual observation

networks. We theorize that, since conventional obser-

vations were rather sparse above the surface and outside

of the region covered by the much denser Oklahoma

Mesonet, expanding the influence of conventional ob-

servations helps spread their positive impact upstream

into regions with sparse data coverage during DA, thus

increasing their ability to positively influence the en-

semble forecast.

4. Discussion and summary

The relative impacts of various data sources, and their

effective assimilation, are important issues in convective-

scale weather forecasting. At convective scales, Doppler

radars provide temporally and spatially dense observations

of radar reflectivity (Z) and radial velocity (Vr).

Conventional observations, including ASOS, AWOS,

mesonet, wind profiler, and upper-air observations, of-

fer sparser coverage than radar, but provide valuable

information close to the surface and in clear-air regions

that radar typically cannot.

In this study, we examined the individual and com-

bined impacts of assimilating radar and/or conventional

observations, using an ensemble square root Kalman

filter (EnSRF), upon ensemble analyses and forecasts of

a tornadicmesoscale convective system (MCS), focusing

on prediction of radar reflectivity (a proxy for pre-

cipitation) and low-level mesovortices (a proxy for tor-

nado potential). Conventional observations, radar

observations, both, or neither were assimilated using

a storm-scale EnKF nested within a mesoscale ensem-

ble; 3-h ensemble forecasts were performed from the

final ensemble analyses. Conventional and radar ob-

servations were both found to improve the analyses and

forecasts, but in different ways.

All ensemble forecasts that assimilated conventional

and/or radar data outperformed the control experiment

(which assimilated neither) in terms of radar reflectivity

probabilistic forecasts. The most skillful forecast, in

terms of the area under the relative operating charac-

teristic (ROC) curve (AUC), was produced by the

FIG. 15. As in Fig. 14, but for observed surface (2m) dewpoint (solid black lines) and ensemble mean (thick colored lines) and the 5th–95th

percentile range within the ensemble (shaded colored regions) of dewpoint interpolated to the corresponding Oklahoma Mesonet site.
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FIG. 16. Neighborhood ensemble probability (shaded) of radar reflectivity ex-

ceeding 25 dBZ, P[Z. 25 dBZ], at model grid level 10 (approximately 2 km above

the surface) at (a),(b) 0300; (c),(d) 0400; and (e),(f) 0500 UTC for (right) CONV

and (left) a variant of CONVusing reduced localization radii for conventional data

assimilation, at 0300, 0400, and 0500 UTC. The region of radar reflectivity ex-

ceeding 25 dBZ observed by the WSR-88D network at the corresponding time is

outlined by a bold black contour. Urban boundaries are shown in purple. The lo-

calization radius used to assimilate surface and upper-air data is noted in each panel.
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ensemble assimilating both radar and conventional

observations, though the result of assimilating radar

data alone was almost as good. Assimilation of con-

ventional observations alone resulted in modest im-

provement over the control experiment during the

analysis period and first hour of the ensemble forecast.

In comparison, the positive impact of assimilating radar

observations is retained throughout the 3-h forecast

period. Assimilating radar data imparted the most skill

to probabilistic reflectivity forecasts for thresholds

that include light and/or moderate precipitation (i.e.,

10–40 dBZ).

FIG. 17. Ensemble-based probability of a significant near-surface mesovortex occurring within 25 km of a point

(shaded) at 0400 UTC for (a) RADCONV, (b) a variant of RADCONV using reduced localization radii for

conventional data assimilation, (c) CONV, and (d) a variant of CONV using reduced localization radii for con-

ventional data assimilation. The location of the observed tornadic mesovortex at 0400 UTC is indicated by the

green triangle in each panel. Urban boundaries are shown in purple. The localization radius used to assimilate

surface, upper-air, and (if used) radar observations, is noted in each panel.
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When radar and conventional data were assimilated

together, the resulting probabilistic forecasts of Z closely

resemble those obtained by assimilating radar data alone,

in terms of structure, bias, and skill, although the positive

impact of conventional data is evident in AUC skill as-

sessments in the 1- and 2-h ensemble forecasts. Though

conventional observations are relatively sparse, particu-

larly above the surface, and primarily measure quantities

only indirectly related to precipitation (such as temper-

ature, humidity, and wind velocity), they provide valu-

able information on the near-surface temperature,

moisture, and wind fields, all of which can help improve

the accuracy of forecasts of convective storms.

Probabilistic forecasts in all experiments overpredicted

the spatial extent of precipitation. A high-bias in heavy

precipitation and a low-bias in light precipitation (.20dBZ)

were noted in the radar-assimilating ensembles. The

high bias in heavy precipitation was absent in the en-

semble assimilating conventional data only, but a strong

high bias in light-to-moderate precipitation was noted.

When radar and conventional data were assimilated

together, the bias behavior was similar to that of the

ensemble assimilating radar data alone.

All four forecast ensembles predicted a discernible

(.0.2) probability of a near-surface mesovortex being

present near the observed mesovortex location in a 2-h

forecast. The experiment assimilating both radar and

conventional observations produced the most accurate

prediction, with a region of moderately high (maximum

.0.6) probability concentrated near and just to the

northwest of the observed mesovortex. The forecast in the

ensemble assimilating radar data alone yielded a more

dispersed region of low-to-moderate (maximum ,0.4)

probability near the observedmesovortex and to the north

and west. Both radar-assimilating forecasts outperformed

the other two ensembles (which assimilated conventional

data only or no data at all). While conventional observa-

tions can help to improve the near-surface wind field, as

found by Schenkman et al. (2011b), it appears that they are

only beneficial if the ensemble already has a reasonably

accurate representation of the MCS, which for this case

requires the assimilation of radar observations. In short,

for prediction of the mesovortex in this case, conventional

data provided a strong benefit, but only when assimilated

alongside radar observations. This is consistent with the

findings of the observing system simulation experiments in

Dong et al. (2011).

Adding conventional observations resulted in sub-

stantial improvements to 2-h ensemble-mean forecasts

of surface dewpoint and temperature. Forecast error,

compared against Oklahoma Mesonet observations,

were reduced somewhat over the region near the MCS

for 2-m temperature when both radar and conventional

data were assimilated compared to when just radar data

were used. In the ensemble assimilating radar data alone,

a substantial dry bias was present in the 2-h surface

dewpoint forecast—this bias was greatly reduced in the

ensemble assimilating both radar and conventional data.

The lowest biases in those variables are found when

conventional data were assimilated alone. These re-

ductions in bias show the value of surface observations—

particularly surface observations with high temporal and

spatial resolution—for convective-scale forecasts.

The choice of horizontal localization radius is found to

be important for assimilation of conventional observa-

tions. Localization radii of 100–300 km were tested for

surface observations, and 150–800km for upper-air ob-

servations. Larger radii were found to produce better

ensemble forecasts for precipitation and mesovortices.

We theorize that, for this case, since the bulk of con-

ventional data was confined to the area covered by

the Oklahoma Mesonet, using larger localization radii

helped spread the information in the mesonet surface

observations upstream, allowing its benefit to persist

longer in the ensemble forecasts. Sobash and Stensrud

(2013) found that convective-scale EnKF DA and

forecasts of an MCS, obtained using an OSSE frame-

work, were sensitive to the covariance localization used

for radar observations.While we did not vary covariance

localization radii for radar observations in this study,

this topic has been actively investigated through nu-

merical experiments at CAPS. At 1–2-km grid spacing,

a localization radius of 6 km has been found to work well

for radar observations (Xue et al. 2006).

Though the experiments presented in this paper yield

skillful ensemble analyses and forecasts, we note that

some shortcomings remain. The experiments presented

in this study use a single-moment microphysical scheme;

for this case, Putnam et al. (2014) found that using

a dual-moment microphysical scheme resulted in im-

proved representation of the trailing convective line,

and better representation of dual-polarimetric radar

signatures in emulated radar data obtained from model

forecasts. Though the use of a dual-moment micro-

physical scheme increases the computational cost and

complexity of DA andNWP, it offers a promisingmeans

of improving analysis and forecast quality.

Looking forward toward the implementation of real-

time ensemble-forecast-based severe weather warnings,

as envisioned in the warn-on-forecast paradigm (Stensrud

et al. 2009), the relative benefit of various data sources

should be considered together with their associated as-

similation costs. As efficient parallel EnKF algorithms

suitable for dense observations are developed (e.g., Wang

et al. 2013), real-time implementation of such systems is

increasingly within reach. Data assimilation experiments

APRIL 2015 SNOOK ET AL . 1055



run in a quasi-operational real-time environment could

provide opportunities to examine the impact of multi-

scale data sources on the forecasting of a large number

of cases, leading to more robust conclusions. Such

studies should be pursued in the future.
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