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Abstract 

In recent studies, the authors have successfully demonstrated the ability of an ensemble 

Kalman filter (EnKF), assimilating real radar observations, to produce skillful analyses and 

subsequent ensemble-based probabilistic forecasts for a tornadic mesoscale convective system 

(MCS) that occurred over Oklahoma and Texas on 9 May 2007.  The current study expands upon 

this prior work, performing experiments for this case on a larger domain using a nested-grid 

EnKF which accounts for mesoscale uncertainties through the initial ensemble and lateral 

boundary condition perturbations.  In these new experiments, conventional observations 

(including surface, wind profiler, and upper-air observations) are assimilated in addition to the 

WSR-88D and CASA radar data used in the previous studies, better representing meso- and 

convective-scale features.  The relative impacts of conventional and radar data on analyses and 

forecasts are examined, and biases within the ensemble are investigated. 

Compared to prior results, the radar-assimilating experiments accounting for mesoscale 

uncertainties produce superior forecasts based on both subjective and objective verification 

metrics. The new experiments produce a substantially-improved forecast, including better 

representation of the convective lines of the MCS. Assimilation of radar data substantially 

improves the ensemble precipitation forecast. Assimilation of conventional data together with 

radar observations substantially improves the forecast of near-surface mesovortices within the 

MCS, improves forecasts of surface temperature and dewpoint, and imparts a slight but 

noticeable improvement to short-term precipitation forecasts.  Furthermore, ensemble analyses 

and forecasts are found to be sensitive to the localization radius applied to conventional data 

within the EnKF. 



1 

 

1. Introduction 1 

 The ensemble Kalman filter (EnKF), first developed by Evensen (1994, 2003), has been 2 

successfully applied to atmospheric data assimilation (DA) using both simulated and real data from 3 

a variety of observation platforms, for models ranging from global to convective storm scales 4 

(Houtekamer and Mitchell 1998; Hamill and Snyder 2000; Anderson 2001; Whitaker and Hamill 5 

2002; Snyder and Zhang 2003; Dowell et al. 2004; Zhang et al. 2004; Dirren et al. 2007; Tong and 6 

Xue 2008a; Xue et al. 2010; Dawson et al. 2011; Snook et al. 2011; Jung et al. 2012; Yussouf and 7 

Stensrud 2012; Yussouf et al. 2013).  Though EnKF is rather expensive in terms of computation, 8 

requiring an ensemble of forecasts (typically using several dozen members), it provides flow-9 

dependent multivariate background error covariances that less computationally-intensive 3-10 

dimensional variational (3DVAR) methods cannot. Cross-covariances produced by the EnKF 11 

system are very valuable, especially for convective-scale DA, because state variables that are not 12 

directly observed can be retrieved (Tong and Xue 2005, 2008a).  Further discussion of DA 13 

techniques commonly used for assimilation of weather observations, including 3DVAR, 4-14 

dimensional variational methods (4DVAR), and EnKF can be found in Tong and Xue (2005).   15 

Analysis ensembles generated using EnKF are generally well-suited as initial conditions for 16 

convective-scale ensemble forecasts.  EnKF assimilation of Doppler radar data has proven to be 17 

effective in retrieving wind, temperature, and microphysical fields at the convective scale (e.g., 18 

Dowell et al. 2004; Tong 2006; Snook et al. 2011; Jung et al. 2012; Putnam et al. 2013).  19 

Furthermore, EnKF analyses, in principle, also characterize the analysis uncertainty; this is a 20 

particularly desirable quality in the ensemble forecast initial conditions.  Forecast ensembles 21 

initialized from EnKF analyses have been shown to produce superior probabilistic predictions 22 
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compared to ensembles initialized using traditional perturbation methods (Houtekamer et al. 2005; 23 

Hamill and Whitaker 2010).  EnKF analyses have been successfully applied to ensemble forecasts 24 

of convective systems, including supercell thunderstorms (e.g. Aksoy et al. 2009; Aksoy et al. 2010; 25 

Dawson et al. 2011) and mesoscale convective systems (e.g. Snook et al. 2012; Putnam et al. 2013), 26 

as well as tropical cyclones (e.g. Wu et al. 2010; Aksoy et al. 2012; Aksoy et al. 2013). As available 27 

computational power increases, it will become increasingly feasible to run a real-time convective-28 

scale ensemble forecast system (e.g., Xue et al. 2008) incorporating EnKF DA (e.g. Snook et al. 29 

2012), as envisioned in the “warn-on-forecast” paradigm being developed by the National Weather 30 

Service (Stensrud et al. 2009).  In Snook et al. (2011, hereafter SXJ11), an ensemble square-31 

root Kalman filter (EnSRF) (Whitaker and Hamill 2002) is used together with the Advanced 32 

Regional Prediction System (ARPS; Xue et al. 2000, 2001) atmospheric model (Tong and Xue 33 

2005; Xue et al. 2006; Tong and Xue 2008b) to assimilate radar reflectivity and radial velocity 34 

observations from multiple WSR-88D (Crum et al. 1993) S-band radars, and from the X-band 35 

radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) 36 

(McLaughlin et al. 2009), for a tornadic mesoscale convective system (MCS) that occurred over 37 

Texas and Oklahoma on 9 May 2007.  The 40-member ensemble mean analysis of SXJ11 produces 38 

model storms whose geographic extent, convective mode, and intensity agree well with the radar 39 

observations.  Furthermore, SXJ11 finds that assimilation of CASA radar data improves the 40 

representation of near-surface circulations and cold pool structure.  Ensemble forecasts initialized 41 

from the ensemble analyses of SXJ11 are subsequently examined in Snook et al. (2012, hereafter 42 

SXJ12).  The forecast ensembles of SXJ12 produce skillful 0-3 hour probabilistic forecasts for radar 43 

reflectivity and 2-hour probabilistic forecasts of the presence and location of the tornadic 44 

mesovortex embedded within the MCS with probability maxima localized within several tens of 45 
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kilometers of the observed tornadic mesovortex. The EnKF experiments of SXJ11 and SXJ12 did 46 

not assimilate any conventional observations, nor did they include any mesoscale perturbations in 47 

the initial ensemble or any perturbations to the lateral boundary conditions. The ensemble forecasts 48 

of SXJ12 exhibited substantial high-biases in heavy precipitation, as well as the development of 49 

spurious convection near the CASA radar network later in the forecast period.  SXJ12 also noted 50 

that the trailing convective line of the MCS dissipated too quickly near the southern model domain 51 

boundary in their forecast ensembles.  52 

This study builds upon and extends the work of SXJ11 and SXJ12, addressing the 53 

shortcomings of those studies through an improved ensemble DA and forecast framework.  The new 54 

experiments investigate the assimilation of both radar and conventional observations, including 55 

surface observations at five-minute intervals from the Oklahoma Mesonet.  In their analysis and 56 

forecast study of the same case, Schenkman et al. (2011) found that assimilating Oklahoma Mesonet 57 

observations via 3DVAR significantly improved the near-surface wind field within the model.  58 

Furthermore, the current study uses lateral boundary conditions that include mesoscale 59 

perturbations on the outer grid; the boundary conditions for the inner nest are interpolated from the 60 

outer-nest ensemble members. Recent studies (e.g. Jung et al. 2012; Yussouf et al. 2013) have 61 

shown promising results for storm-scale data assimilation using similar ensemble designs.  The 62 

geographic extent of inner-nest domain is also doubled in both horizontal directions compared to 63 

SXJ12, reducing the potential negative impacts of boundary conditions.     64 

This study will examine the relative and combined impacts of radar and conventional 65 

observations, assimilated using an EnKF, on the ensemble analyses and subsequent ensemble 66 

forecasts of the 9 May 2007 MCS. The remainder of this paper is organized as follows:  Section 2 67 

discusses the data assimilated, the ensemble DA, and the forecast experiments and methods.  68 
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Section 3 discusses the results of the experiments, focusing on improvements from prior work, 69 

impacts of assimilating radar and/or conventional data, and ensemble forecast verification. Analyses 70 

and forecasts of radar reflectivity (as a proxy for precipitation), mesovortices (an indicator of 71 

tornado potential), surface temperature, and surface dewpoint are verified against radar and 72 

Oklahoma Mesonet observations, and forecast sensitivity to the assimilation configuration of 73 

conventional observations is considered.  Finally, section 4 contains a summary with concluding 74 

remarks. 75 

2. Experiment setup and verification methodology 76 

 Similar to SXJ11 and SXJ12, EnKF analyses and 3-hour storm-scale ensemble forecasts are 77 

generated for the tornadic MCS that occurred over Oklahoma and Texas on 8-9 May 2007.  During 78 

this event, a line-end vortex (LEV) developed near the northern end of the MCS.  This LEV moved 79 

through southwestern and central Oklahoma, producing two confirmed EF-1 tornadoes and one 80 

confirmed EF-0 tornado in central Oklahoma between 0354 UTC and 0443 UTC.  For additional 81 

details regarding the structure, evolution, and timing of the 8-9 May 2007 MCS we refer the reader 82 

to SXJ11. 83 

SXJ11 and SXJ12 sought to assess the impact of two factors on their ensemble analyses and 84 

forecasts: (1) the assimilation of CASA X-band radar observations, and (2) the use of a mixed-85 

microphysics ensemble as a means to mitigate ensemble under-dispersion.  While the assimilation 86 

of WSR-88D data alone produced a reasonable analysis of the convective system, SXJ11 found that 87 

assimilating CASA X-band data in addition to WSR-88D data improved the resulting analysis, 88 

particularly with regard to the representation of near-surface circulations. Use of a mixed-89 

microphysics ensemble was found to alleviate under-dispersion by increasing the ensemble spread. 90 
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SXJ12, which carried out ensemble forecasts initialized from the EnKF analyses of SXJ11, found 91 

that both assimilation of CASA data and the use of a mixed-microphysics ensemble improved 2-92 

hour forecasts of the tornadic mesovortex embedded within the MCS.   93 

SXJ11 and SXJ12 used a single DA and forecast domain with a 2 km horizontal grid 94 

spacing; only radar data were assimilated. Lateral boundary conditions were provided by the NCEP 95 

NAM 6-hourly analyses and intervening 3-h forecasts. The initial ensemble was created by adding 96 

random perturbations with 6-km spatial de-correlation scales to a 1-hour spinup forecast on the 2-97 

km grid initialized from the 0000 UTC, 9 May 2007 NCEP NAM analysis. While SXJ11 and SXJ12 98 

produced encouraging analyses and forecasts, several deficiencies exist with their setup. Only 99 

storm-scale perturbations were used; no mesoscale perturbations were applied.  Previous storm-100 

scale data assimilation studies (e.g. Aksoy et al. 2009) suggest that proper structure in mesoscale 101 

uncertainty is highly important in obtaining good analyses and forecasts.  Furthermore, the single 102 

DA domain used the same lateral boundary condition for all members, reducing ensemble spread 103 

near the upwind lateral domain boundaries and contributing to under-dispersion in the ensemble 104 

analyses and forecasts.  The geographic extent of the SXJ11/12 domain was also rather limited, 105 

which caused detrimental interaction between the simulated MCS and the southern domain 106 

boundary.  SXJ11/12 also did not assimilate surface observations; SXJ12 found that convergence in 107 

the near-surface flow in the model contributed to the development of spurious convection in the 108 

forecast ensemble. 109 

To improve upon the results of SXJ11 and SXJ12, several enhancements are considered in 110 

this study.  Most prominently, two grids are used:  an outer 300 × 300 × 40 grid with 6 km 111 

horizontal spacing, and an inner 512 × 512 × 40 grid with 2 km horizontal spacing–the extent of the 112 

2 km domain is substantially expanded from that of SXJ11/12 (Fig. 1).  Data assimilated on the 113 
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inner grid include both radar and conventional observations, including surface observations at five 114 

minute intervals from the Oklahoma Mesonet.  Schenkman et al. (2011) found that frequent 115 

assimilation of Oklahoma Mesonet observations using 3DVAR substantially improved the near-116 

surface flow for a short-term deterministic forecast of this MCS. 117 

Uncertainties in the storm environment are taken into account by adding mesoscale 118 

perturbations to the initial ensemble, and by introducing perturbations to the lateral boundary 119 

conditions.  Member-by-member one-way nesting is applied from the outer- to the inner-domain—120 

both ensembles contain 40 members. On both the outer and inner domains, a single-moment ice 121 

microphysics scheme based upon Lin et al (1983) is used, with a rain intercept parameter of 8.0×105 122 

m-4; this value is reduced from the default value following the results of Snook and Xue (2008).  All 123 

other model settings, including terrain, radiation, surface physics, and turbulence closure, follow 124 

those of SXJ12. 125 

As in SXJ11, we use the ARPS EnSRF DA system (Xue et al. 2006; Tong and Xue 2008b). 126 

The outer grid (Fig. 1) forecast is first initialized at 1800 UTC on 8 May 2007 from the 8 May 2007 127 

NCEP 1800 UTC North American Mesoscale Model (NAM) analysis, and a single, 3-hour pre-128 

forecast is performed from this initial condition (Fig. 2). At 2100 UTC, an ensemble of 40 members 129 

is created by adding smoothed, random, Gaussian, mesoscale perturbations to the deterministic 130 

forecast with de-correlation scales of 36 and 7.2 km in the horizontal and vertical, respectively, 131 

using the method of Tong and Xue (2008a).  Perturbations are added to the horizontal wind (u, v) 132 

with a mean standard deviation of 2 m s-1, to the potential temperature (θ) using positive 133 

perturbations only with a mean standard deviation of 1 K, and to the mixing ratio of water vapor 134 

(qv) with a mean standard deviation of 10% of the qv value at the given grid point.   135 

On the outer domain, conventional observations are assimilated, including Automatic 136 
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Surface Observation System (ASOS) and Automatic Weather Observing System (AWOS) 137 

observations, Oklahoma Mesonet observations, wind profiler data, and upper air observations 138 

(including soundings at 0000 UTC, 9 May 2007); these data are assimilated hourly from 2200 UTC, 139 

8 May 2007 to 0100 UTC, 9 May 2007.  Assumed observation errors used vary by observation type 140 

as indicated in Table 1.  To help maintain ensemble spread during the DA on the 6 km grid, we 141 

apply multiplicative covariance inflation to the prior ensemble over the entire domain with an 142 

inflation factor of 1.03 (Anderson and Anderson 1999; Tong and Xue 2005). In addition, we also 143 

apply the relaxation technique of Zhang et al. (2004) with a coefficient of 0.5.  Finally, 4-hour 144 

ensemble forecasts are performed from the 0100 UTC ensemble analyses on the outer grid, 145 

producing forecasts until 0500 UTC; these forecasts are used to provide ensemble lateral boundary 146 

conditions for the inner nest forecast ensembles. 147 

The 2 km inner-grid EnKF DA experiments are initialized from the outer grid ensemble 148 

analyses at 0100 UTC via spatial interpolation. Lateral boundary conditions for inner-grid ensemble 149 

members are from the forecasts of corresponding outer grid members at 15 minute intervals. The 150 

inner-nest experiments assimilate data every 5 minutes from 0105 through 0200 UTC; the data 151 

assimilated include conventional data as described above, as well as radar reflectivity and radial 152 

velocity from WSR-88D and CASA radars.  For radar data, observation error standard deviations 153 

are assumed to be 2 m s-1 for radial velocity and 3 dBZ for radar reflectivity; these values are 154 

increased from the 1 m s-1 and 2 dBZ used in SXJ11 following Jung et al. (2012).  The observation 155 

operators used to map the model state to reflectivity and radial velocity observations follow Jung et 156 

al. (2008). As in Xue et al. (2006), a Gaussian power-gain function following Wood and Brown 157 

(1997) is used in the forward operator to sample radar data on the radar elevation angles.  The 158 

horizontal and vertical covariance localization radii for radar data is set to 6 km. For conventional 159 
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data, the vertical localization radius is set to 6 km, and horizontal localization radii of 300 km for 160 

surface observations and 800 km for wind profiler and upper-air observations are used in the 161 

primary set of experiments; smaller localization radii are tested in sensitivity experiments on the 162 

inner nest.  The locations of assimilated conventional observations and radar sites on the inner nest 163 

are shown in Fig. 3. 164 

Four primary experiments are run on the inner grid to investigate the impacts of radar and 165 

conventional weather observations, assimilated individually or in combination, on the ensemble 166 

analyses and forecasts.  These four experiments are summarized in Table 2.  In experiment 167 

RADCONV, data from the WSR-88D and CASA network radars are assimilated, along with 168 

conventional observations.  In experiment RAD, only radar data are assimilated; similarly, in 169 

experiment CONV radar data are omitted and only conventional data are assimilated.  Finally, a 170 

control experiment (CNTL) is performed in which no data of any kind are assimilated on the inner 171 

domain—the CNTL forecast ensemble is allowed to run freely from the initial ensemble states at 172 

0100 UTC.  173 

3. Results 174 

In evaluating the results of the forecast experiments, we will first briefly consider the 175 

performance of the experiments in this study relative to SXJ12, before moving on to the primary 176 

focus: the nature and extent of the individual and combined impacts of assimilated conventional and 177 

radar observations on the ensemble forecasts.  Forecast verification is performed hourly between 178 

0300 and 0500 UTC for radar reflectivity, surface dewpoint, and surface temperature. In addition, 179 

forecasts of low-level mesovortices are produced and verified at 0400 UTC, at which time a 180 

pronounced tornadic mesovortex was present in the observations (SXJ12).  Radar reflectivity is 181 
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chosen for verification because it serves as a proxy for precipitation and can be readily verified 182 

against WSR-88D observations spanning the full extent of the MCS.  A neighborhood ensemble 183 

probability (NEP) (Schwartz et al. 2010) method with a 5 km neighborhood radius is used for 184 

verification of radar reflectivity forecasts, and object-based probabilistic verification following the 185 

methodology of SXJ12 is used for the verification of mesovortex forecasts.  The radar observations 186 

used for forecast verification are obtained by interpolating full radar reflectivity volumes to the 187 

model grid to produce a gridded radar reflectivity mosaic.  Verification of surface temperature and 188 

dewpoint is performed by direct comparison of the forecast ensemble mean against Oklahoma 189 

Mesonet observations. 190 

 191 

a) Comparison to prior results of SXJ11 and SXJ12 192 

Compared to SXJ12, there are two primary differences in the ensemble design in this study: 193 

the use of (1) a nested-grid EnKF with mesoscale initial perturbations evolved on the outer nest, 194 

allowing the ensemble to take into account uncertainties on multiple scales, and (2) a much larger 195 

inner-domain to allow for the assimilation of more observations on the high-resolution inner nest, 196 

and reduce the influence of the relatively coarse lateral boundary conditions, which are now 197 

perturbed.  Experiment RAD can be considered analogous to the NoMMP experiment of SXJ11 and 198 

SXJ12 in terms of the data assimilated and the model configuration—both use the Lin 199 

microphysical scheme (Lin et al. 1983) for all ensemble members and assimilate only radar 200 

observations.  It should be noted, however, that data from WSR-88D radar at Fort Worth, Texas 201 

(KFWS) are assimilated in RAD but not in the experiments of SXJ12. When ensemble forecasts 202 

were produced omitting KFWS radar data, the ensemble forecasts obtained were very similar to 203 

those presented in this study, with the exception of a transient area of spurious convection in 204 
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northeastern Texas, outside the domain of SXJ12 (not shown).  Also, while no conventional data are 205 

assimilated in RAD, the experiment still benefits indirectly from conventional observations 206 

assimilated on the outer nest that provides the initial ensemble and the lateral boundary conditions 207 

for RAD. 208 

Qualitatively, RAD produces an ensemble forecast similar to that of NoMMP from SXJ12.  209 

Both ensembles predict the northeastward motion of the MCS and its embedded line-end vortex 210 

with reasonable accuracy.  In NEP forecasts of radar reflectivity exceeding 25 dBZ (P[Z > 25 211 

dBZ]), a threshold corresponding to light-to-moderate rainfall, greater variation within the RAD 212 

ensemble is evident, as indicated by larger areas of low to moderate probability in RAD (Fig. 4d-f). 213 

Experiment NoMMP of SXJ12 has relatively little variation among members, indicated by a 214 

forecast dominated by regions of either very high or near-zero probability (Fig. 4a-c).  The 215 

increased variability in RAD is likely a result of increased ensemble spread imparted by the initial 216 

and lateral boundary condition ensembles from the outer grid.  Though the sharpness seen in 217 

NoMMP of SXJ12 can be a useful trait in a probabilistic forecast, this is only the case when high 218 

confidence in the forecast outcome is justified. The sharpness and the corresponding high 219 

confidence do not reflect the relatively large position error at 0500 UTC (Fig. 4c).   220 

Looking at the forecast structure in detail, RAD (Fig. 4d-f) outperforms SXJ12’s NoMMP 221 

(Fig. 4a-c) late in the forecast period in two regions: in the convective lines south of the line-end 222 

vortex, and near the CASA radar network in southwest and south-central Oklahoma.  In NoMMP, 223 

convection in the southern portion of the trailing convective line (as outlined by the black contours 224 

in the southern ¼ of domain in Fig. 4c) dissipates relatively quickly in most ensemble members; by 225 

0500 UTC (Fig. 4c), the southward extent of the trailing convective line is greatly underestimated in 226 

the NEP forecast (NEP is mostly zero there).  In contrast, RAD maintains low to moderate 227 
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probability in the southern portion of the trailing convective line throughout the forecast period 228 

(Fig. 4d-f).  Since the bulk of the trailing convective line was located far from the additional data 229 

from KFWS during the DA period (between 0100 and 0200 UTC), the greatest contribution to the 230 

improved representation of the trailing convective line in RAD is likely from the expanded inner 231 

domain (see Fig. 1).  SXJ12 speculated that interaction with the southern domain boundary was the 232 

cause of the deterioration of the trailing convective line within their forecast ensemble; the 233 

improved representation of the line in RAD supports this theory.   234 

In addition to improvement in the trailing line, the NEP forecast of radar reflectivity 235 

exceeding 25 dBZ (P[Z > 25 dBZ]) in RAD also indicates the presence of the leading convective 236 

line at 0400 and 0500 UTC (Fig. 4e, f); this line is absent in NoMMP (Fig. 4b, c).  Also, overall 237 

storm motion, as inferred from the evolution of the NEP forecasts of radar reflectivity (Fig. 4), is 238 

forecasted well in RAD, whereas the system moves too slowly in NoMMP. Finally, SXJ12 noted 239 

spurious convection occurring near the CASA radar network (see Fig. 3) after 0300 UTC in all of 240 

their experiments as a result of near-surface convergence in this region in the model.  Spurious 241 

convection is absent in this region in RAD (Fig. 4e-f).   242 

One commonly-used measure of the skill of probabilistic forecasts is the area under the 243 

relative operating characteristic curve (AUC) (Mason 1982); this skill score measures the ability of 244 

a probabilistic forecast to correctly differentiate between events and non-events, with higher values 245 

indicating greater skill.  In Fig. 5, AUC is shown for NEP forecasts of P[Z > 25 dBZ] over a 246 

subdomain in the region of the LEV, identical to that used in SXJ12 (see Fig. 3) for RAD and for 247 

two experiments from SXJ12 (SXJ12-NoMMP, and their best-performing experiment, SXJ12-248 

CNTL).  AUC for RADCONV, which will be discussed in section 3b, is also included for 249 

comparison. Though the SXJ12 experiments slightly outperform RAD at 0300 UTC, RAD 250 
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outperforms the SXJ12 experiments at 0400 and 0500 UTC.  Furthermore, the decrease in forecast 251 

skill with time is slower in RAD than in the SXJ12 experiments.  This slower decline in forecast 252 

skill, along with the overall better performance of RAD late in the forecast period, suggests the 253 

positive impact of accounting for mesoscale uncertainties and assimilating conventional data on the 254 

outer grid on the reflectivity forecast.   255 

As in NoMMP, a substantial high bias in heavy precipitation (indicated by areas of radar 256 

reflectivity exceeding 40 dBZ) is present throughout the forecast period in RAD.  This bias is 257 

evident in NEP forecasts of P[Z > 40 dBZ] (Fig. 6), where the extent of moderate-to-high 258 

probability in the forecast ensemble is far greater than the observed coverage of radar reflectivity 259 

exceeding 40 dBZ, particularly in the region of the trailing convective line.  This type of bias is 260 

noted in all experiments assimilating radar data, and will be discussed in greater detail in section 3d. 261 

b) Impact of data sources during the analysis period 262 

Experiments RAD, CONV, and RADCONV focus on the relative impact of conventional 263 

and radar data sources assimilated by the EnKF.  RAD (CONV) evaluates the impact of radar 264 

(conventional) data while RADCONV assesses the combined impact of radar and conventional 265 

observations. CNTL provides a basis for comparison.  We note, however, that all experiments 266 

(including CNTL) benefit from hourly EnKF DA of conventional observations on the outer grid 267 

prior to 0100 UTC. All radar-assimilating experiments discussed in this study use both WSR-88D 268 

and CASA observations. The specific impact of CASA X-band radar data will not be considered in 269 

this paper—such experiments were performed, and they yielded results largely consistent with the 270 

findings of SXJ11 and SXJ12. 271 

The assimilation of radar data and the assimilation of conventional observations each have 272 

positive impacts on the ensemble forecasts and analyses during the DA period.  Compared to the 273 
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CNTL ensemble, the radar-assimilating ensembles (RADCONV and RAD) exhibit substantially 274 

lower root-mean-square (RMS) innovation, as expected, in both radial velocity (Fig. 7) and radar 275 

reflectivity (Fig. 8) within the observational area of four WSR-88D radars close enough to observe 276 

the MCS.  Furthermore, the probability-matched (Ebert 2001) ensemble mean radar reflectivity 277 

field of RADCONV and RAD (Fig. 9a, b) is structurally much closer to the observed radar 278 

reflectivity field (Fig. 9e) than that of CNTL (Fig. 9d).  The ensemble spread in the radar-279 

assimilating experiments is quickly reduced, both in terms of radial velocity (Fig. 7) and radar 280 

reflectivity (Fig. 8).  Despite the use of multiplicative covariance inflation to maintain spread, the 281 

low spread in RADCONV and RAD indicates that the ensembles quickly become under-dispersive; 282 

such under-dispersion has often been noted in convective-scale ensembles that assimilate radar 283 

observations (e.g. Aksoy et al. 2009; Dowell and Wicker 2009; Jung et al. 2012; Yussouf et al. 284 

2013). 285 

Assimilation of conventional data alone in CONV results in substantially reduced RMS 286 

innovation of Z, compared to CNTL, against the observations of the KDYX and KFWS radars (Fig. 287 

8a, b).  CONV performs similarly to CNTL against KTLX and KVNX observations (Fig. 8c, d).  288 

KDYX and KFWS primarily observe the trailing stratiform precipitation and trailing convective 289 

line between 0100 and 0200 UTC, while KTLX and KVNX mainly observe the leading portion of 290 

the MCS.  Both the CNTL and CONV ensembles contain a large area of spurious precipitation in 291 

northern Oklahoma and southern Kansas, located within the observation areas of KTLX and KVNX 292 

(Fig. 9c-e).   Assimilation of conventional observations alone could not suppress this region of 293 

spurious convection.  RMS innovations of Vr in CONV are generally lower than or similar to those 294 

of CNTL (Fig. 7). The 0200 UTC probability-matched ensemble mean of radar reflectivity in 295 

CONV (Fig. 9c) shows improved representation of heavy precipitation in central and south-central 296 
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Oklahoma compared to CNTL (Fig. 9d), as well as hinting at the trailing stratiform region, but also 297 

contains quite a bit of spurious precipitation, particularly to the east of the observed MCS (Fig. 9c, 298 

e).  By contrast, in RAD and RADCONV, where radar data are assimilated alone or alongside 299 

conventional data, the probability-matched ensemble mean reflectivity at 0200 UTC (Fig. 9a) 300 

closely matches the structure of the observations (though the predicted intensity is 5-10 dBZ lower 301 

than observed over much of the MCS), and the spurious precipitation regions seen in CONV (Fig. 302 

9c) are absent.  Previous studies (e.g., Tong and Xue 2005) have shown the importance of 303 

assimilating radar data in clear-air regions in suppressing spurious precipitation during EnKF DA, 304 

consistent with the current results. 305 

c) Impact of data sources on ensemble precipitation forecasts 306 

NEP forecasts of P[Z > 25 dBZ] at 0300, 0400, and 0500 UTC (Fig. 10), are generally 307 

skillful, particularly for the radar-assimilating experiments RADCONV (Fig. 10a-c) and RAD (Fig. 308 

10d-f).  RADCONV and RAD both predict regions of high P[Z > 25 dBZ] which closely match the 309 

region of precipitation exceeding 25 dBZ observed by the WSR-88D radar network, both in shape 310 

and in extent, particularly at 0300 and 0400 UTC.  Decay of the southern portion of the trailing line 311 

is observed in many ensemble members at 0400 and 0500 UTC in RADCONV and RAD, though 312 

not to as great an extent as in SXJ12.  The motion of the precipitation regions exceeding 25 dBZ in 313 

RADCONV and RAD matches well with the observed system (Fig. 10a-f). 314 

In CONV and CNTL, where no radar data are assimilated, NEP forecasts of P[Z > 25 dBZ] 315 

are less accurate than those in RADCONV and RAD.  The region of highest probability in CONV 316 

and CNTL is located in a west-southwest to east-northeast oriented streak in southern Kansas, near 317 

and just beyond the northern end of the observed region of precipitation exceeding 25 dBZ (Fig. 318 

10g-l).  Assimilation of conventional observations in CONV (Fig. 10g-i) results in an improved 319 
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representation of the leading portion of the MCS in the NEP forecast of P[Z > 25 dBZ] compared to 320 

CNTL (Fig. 10j-l), as well as increased values of P[Z > 25 dBZ] in central Oklahoma near the LEV, 321 

particularly at 0400 and 0500 UTC (Fig. 10h, i).  CONV also, however, contains some low-322 

moderate values of P[Z > 25 dBZ] in the southwestern and southeastern portions of the forecast 323 

domain, away from any observed precipitation exceeding 25 dBZ—since no radar data were 324 

assimilated, this spurious convection could not be effectively suppressed. Overall, assimilation of 325 

conventional data alone improved the ensemble precipitation forecast modestly, but not nearly as 326 

much as assimilating radar observations.   327 

The threshold of 25 dBZ is chosen to focus on all precipitation exceeding a light to moderate 328 

intensity.  Depending upon the desired forecast focus, however, a lower threshold may be used to 329 

include light precipitation in the NEP forecast, or a higher threshold may be chosen in order to focus 330 

exclusively on convective cores.  To examine the impact of data sources on probabilistic forecasts 331 

of reflectivity with varying thresholds, AUC calculated over a subdomain encompassing the general 332 

region observed by the Oklahoma Mesonet (the red box in Fig. 3) is presented hourly between 0200 333 

and 0500 UTC in Fig. 11 for all experiments for NEP reflectivity forecasts with thresholds varying 334 

from 10 to 50 dBZ.  For each experiment, the 5th to 95th percentile range (a 90 % confidence 335 

interval) is also shown; to generate confidence intervals, a bootstrap method is used to produce 336 

1000 randomly re-sampled 40 member ensembles to evaluate the statistical significance of the 337 

differences between experiments. 338 

For the radar-assimilating experiments (RAD and RADCONV), AUC in the 0200 UTC 339 

analysis (Fig. 11a) is very high (close to 1) for thresholds between 10 and 30 dBZ, declining to 340 

between 0.8 and 0.9 for higher thresholds, indicating a highly-skillful ensemble analysis over the 341 

Oklahoma subdomain.  Progressing through the forecast period, AUC generally decreases in RAD 342 
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and RADCONV; the highest values (and thus most skillful forecasts) are for thresholds between 15 343 

and 35 dBZ.  AUCs for threholds above 40 dBZ decline quickly; this is to be expected, since at 344 

these thresholds only very intense reflectivity cores are being considered, and forecast skill is highly 345 

sensitive to displacement errors of these small, intense cores.  Furthermore, the sample size at 346 

thresholds above 40 dBZ is quite small, reducing the confidence of AUC values at these thresholds.  347 

Also, though RAD has a slightly higher AUC than RADCONV at 0200 UTC (Fig. 11a), particularly 348 

for higher thresholds, RADCONV actually outperforms RAD for all thresholds at 0300 UTC (Fig. 349 

11b), and shows similar or better performance at 0400 and 0500 UTC (Fig. 11c, d).  Though RAD 350 

produces a better initial fit to the radar observations (note that a tighter fit of analysis to 351 

observations assimilated does not necessarily mean better analysis), the addition of conventional 352 

data in RADCONV results in more skillful 1- and 2-hour forecasts.  In both RAD and RADCONV, 353 

the 5th to 95th percentile range is quite small at most thresholds, indicating relatively low spread 354 

within the ensemble.  As noted earlier, under-dispersion within the ensemble is a common issue 355 

when assimilating radar observations (Aksoy et al. 2009; Dowell and Wicker 2009; Jung et al. 2012; 356 

Yussouf et al. 2013). 357 

When conventional data are assimilated alone in CONV, the 0200 UTC ensemble analysis of 358 

radar reflectivity has a substantially higher AUC than control experiment CNTL, but a substantially 359 

lower AUC than the radar-assimilating experiments.  AUC in CONV actually increases at high 360 

thresholds between 0200 and 0300 UTC (Fig. 11a, b), even outperforming RAD and RADCONV 361 

due to good placement of heavy convective cores in south-central Oklahoma and less over-362 

prediction of very intense rainfall cores (not shown), before declining at all thresholds between 363 

0300 and 0500 UTC (Fig. 11b-d).  Positive impact of conventional data in CONV (compared to 364 

CNTL) remains evident at 0300 UTC (Fig. 11b), but cannot be discerned at later times because of 365 
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the relatively high AUC of CNTL. Although the overall structure of MCS predicted by CNTL is 366 

poor (Fig. 10), the relatively low false-alarm rate coupled with decent precipitation placement (Fig. 367 

10k, l) leads to a deceptively high AUC score for high thresholds at later forecast hours. 368 

Another method of assessing the skill of a probabilistic forecast is the reliability diagram, 369 

which compares the observed relative frequency of an event to the forecast probability.  Because the 370 

reliability diagram is conditioned on the ensemble forecast, while AUC is conditioned on the 371 

observations, these two metrics complement one another and give a more complete assessment of 372 

forecast skill.  Reliability diagrams, calculated over the Oklahoma verification subdomain (see Fig. 373 

3) using forecast probability bins with a width of 0.05, are plotted for NEP forecasts of P[Z > 25 374 

dBZ] for all experiments in Fig. 12 to complement the analysis of AUC using the same subdomain 375 

presented in Fig. 11.  In an ideal forecast, the observed frequency would be equal to the forecast 376 

probability, resulting in a straight reliability curve oriented along the 45-degree diagonal.  The 377 

region below the diagonal indicates over-forecasting of the event, while the area above the diagonal 378 

indicates under-forecasting. Sharpness diagrams are also presented in Fig. 12, indicating the number 379 

of model grid points falling into each probability bin, and thus the overall distribution of 380 

probabilities in the forecast.  Since the verification subdomain extends well outside of the MCS, 381 

these curves contain many zero values. 382 

In the ensemble analyses at 0200 UTC (Fig. 12a), the radar-assimilating experiments under-383 

estimate the coverage of Z > 25 dBZ, while CNTL and CONV substantially over-estimate it.  In all 384 

of the data-assimilating experiments (RADCONV, RAD, and CONV), however, there is an overall 385 

monotonic increase in observed frequency as forecast probability increases, which is a desirable 386 

trait.  Reliability for the 0200 UTC analysis of CNTL, by contrast, shows no distinct pattern. 387 

During the forecast period (Fig. 12b-d), there is a general trend toward over-prediction of Z 388 
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> 25 dBZ in the data-assimilating experiments.  RADCONV shows good reliability at 0300 UTC 389 

(Fig. 12b), remaining near the diagonal except at the highest forecast probabilities, while RAD and 390 

CONV substantially over-predict Z > 25 dBZ for forecast probabilities above 0.4.  At 0400 and 391 

0500 UTC, RADCONV, RAD, and CONV show similar behaviors in terms of forecast reliability, 392 

with relatively good reliability at low forecast probabilities and no significant reduction in reliability 393 

with time.  The greater over-prediction of Z > 25 dBZ in CONV early in the forecast period (Fig. 394 

12a, b) can largely be attributed to the increased incidence of spurious precipitation regions (Fig. 395 

10g, h).  The tendency toward greater over-prediction of Z > 25 dBZ with time noted in RAD and 396 

RADCONV is similar to that seen in Clark et al. (2009) in their convection-allowing ensemble with 397 

4 km horizontal grid spacing. 398 

At all hourly forecast times, the radar-assimilating experiments (RAD and RADCONV) 399 

produce significantly more extreme probability values (near 0 or 1) than either CONV or CNTL 400 

(Fig. 12, right-hand side).  The assimilation of radar data in these experiments results in strong 401 

agreement among the ensemble members in the structure of the MCS in the 0200 UTC analysis, 402 

while greater spread remains in the CONV and CNTL ensembles (see Fig. 8).  The MCS evolves 403 

similarly in many RAD and RADCONV members during the forecast period (see Fig. 10a-f), 404 

causing this sharpness to persist throughout the forecast period. 405 

d) Impact of data sources on precipitation forecast bias 406 

As in SXJ12, domain-wide histograms of radar reflectivity (Fig. 13) reveal persistent biases 407 

in the ensemble forecasts.  The forecast histograms are obtained by counting occurrences of radar 408 

reflectivity values in each member separately.  The resulting total in each bin is then divided by the 409 

number of members in the ensemble, so that the number of occurrences can be compared directly to 410 

the same quantity for the gridded radar observations. In three of the experiments (RADCONV, 411 
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RAD, and CNTL), there is a low bias for light precipitation (15-25 dBZ) which is most prevalent 412 

later in the forecast period at 0400 and 0500 UTC.  In RAD and RADCONV there is an abundance 413 

of moderately-intense precipitation (25-40 dBZ), resulting in a slight high bias for 30 dBZ and 414 

above.  These biases are similar to those found in SXJ12, where assimilation of radar data resulted 415 

in over-prediction of convective regions and under-prediction of light precipitation in stratiform 416 

precipitation regions; this behavior is also present in radar-assimilating experiments RAD and 417 

RADCONV.  The high bias in moderate precipitation is absent in CNTL, suggesting that this bias is 418 

induced by the assimilation of radar data. It is possible that some of the bias in the radar-419 

assimilating forecasts may be due to the interaction of assimilated radar data with the single-420 

moment microphysics scheme used in the ensembles. In a related study (Putnam et al. 2013) the 421 

high biases in moderately-intense precipitation fields are reduced when a more sophisticated, two-422 

moment scheme is used for this case. 423 

At 0200 UTC, CONV exhibits a substantial high bias for both light and moderate 424 

precipitation (15-40 dBZ) mostly due to overestimation of the extent of the precipitation area.  By 425 

0300 UTC, the high bias in Z < 20 dBZ has disappeared, but the high bias in moderately-intense 426 

precipitation (20-35 dBZ) remains through the rest of the forecast period.  While CONV shows very 427 

different bias behavior compared to CNTL, RADCONV and RAD have very similar bias behavior 428 

throughout the forecast period.  From these results we can conclude that, at least for this case, 429 

conventional data have a different impact upon the forecast bias of Z when they are assimilated 430 

alone; radar data, when they are assimilated, appear to be the dominant factor with regard to the bias 431 

of Z within the forecast ensemble. 432 

e) Impact of data sources on mesovortex prediction 433 

Object-based ensemble forecasts of the probability of low-level mesovortices within 25 km 434 
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of a point are calculated using the two-hour ensemble forecasts valid at 0400 UTC.  The 435 

methodology and criteria used to perform these forecasts follow that of SXJ12, and we refer the 436 

reader to SXJ12 for further details regarding the probability calculation.  At 0400 UTC, a tornadic 437 

mesovortex was present west-southwest of the Oklahoma City metropolitan area, indicated by the 438 

black triangle in each panel of Fig. 14.  All four ensemble forecast experiments (RADCONV, RAD, 439 

CONV, and CNTL) indicate a probability of at least 0.1 of a mesovortex being present in close 440 

proximity to the observed tornadic mesovortex; probability near the observed vortex location is 441 

highest in RADCONV, and lowest in CONV and CNTL. 442 

RADCONV produces the best probabilistic mesovortex forecast, with a region of moderate 443 

probability (maximum > 0.5) concentrated near the observed mesovortex location (Fig. 14a).  RAD 444 

predicts a wider region of relatively low probability (maximum ≈ 0.3), centered 20-30 km northwest 445 

of the observed mesovortex location, as well as a lobe of probability between 0.05 and 0.20 446 

extending into northwestern Oklahoma (Fig. 14b).  CNTL, which did not benefit from any 447 

assimilated observations on the inner grid, predicts a small region of low probability (maximum < 448 

0.3), also centered 30-40 km northwest of the observed mesovortex location (Fig. 14d), suggesting 449 

that at least some of the information needed to correctly predict the mesovortex in this MCS is 450 

captured in the outer-nest ensemble providing the initial and lateral boundary conditions for CNTL.   451 

The better mesovortex prediction of RADCONV compared to RAD supports the findings of 452 

Schenkman et al. (2010), who showed that the assimilation of Oklahoma Mesonet, CASA, and 453 

WSR-88D observations for this case using a 3DVAR and cloud analysis system yielded a better 454 

prediction of the low-level wind field and the tornadic mesovortex than when assimilating radar 455 

data alone.  We note, however, that assimilation of conventional data alone does not improve the 456 

probabilistic mesovortex forecast over CNTL.  In short, for this case, assimilation of conventional 457 
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data only results in an improved mesovortex forecast when radar data are also assimilated.  458 

Assimilation of radar data, which have relatively complete volumetric coverage throughout the 459 

MCS, is necessary to produce a good initial representation of the storm within the model.  460 

Assimilating conventional observations alone (which are far coarser than the radar observations and 461 

most abundant at the surface) cannot substantially improve the storm-scale ensemble forecast or 462 

impart accurate 3-dimensional storm structure in this case. 463 

f) Verification of surface temperature and dew point 464 

The ability of radars to provide complete volumetric coverage is generally limited near the 465 

surface, since the curvature of the earth prevents radars from observing the near-surface region 466 

beyond a few tens of kilometers from the radar site.  This limitation motivates the assimilation of 467 

conventional observations alongside radar, particularly when relatively dense surface observations 468 

such as those from the Oklahoma Mesonet are available.  To assess the skill of the ensemble 469 

forecasts near the surface, surface temperature and dewpoint are verified against Oklahoma 470 

Mesonet observations at 0400 UTC (2 hours of forecast time) in Fig. 15 and Fig. 16, respectively. 471 

In all forecast experiments, the ensemble mean surface temperature is colder than observed 472 

near the LEV (located near the Oklahoma City metropolitan area at 0400 UTC; c.f. Fig. 14), and 473 

warmer than observed to the east of the MCS and in the vicinity of the trailing convective line in 474 

southern Oklahoma (Fig. 15).  The cold bias near the LEV is greatest in RAD (Fig. 15b), exceeding 475 

3 C in places, and least in CONV (Fig. 15c).  RADCONV (Fig. 15a) and RAD (Fig. 15b) show 476 

similar patterns of temperature forecast error, but the magnitude of the cold bias is reduced in 477 

RADCONV compared to RAD. 478 

When 2-hour surface dewpoint forecasts are verified (Fig. 16), a prominent dry bias is 479 

present in the forecast ensembles over much of central and northwest Oklahoma.  The dry bias is 480 
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most intense in RAD (Fig. 16b), extending over nearly all of Oklahoma, and exceeding 5 C in 481 

northwest Oklahoma.  In CONV and CNTL (Fig. 16c, d), which did not assimilate radar data, the 482 

dry bias is less intense, and more limited in extent.  The overall bias is smallest in CONV. 483 

RADCONV (Fig. 16a) has a greatly reduced dry bias compared to RAD (Fig. 16b).  The reduced 484 

error in the surface temperature and surface dewpoint forecasts of RADCONV in comparison to 485 

RAD suggest that the conventional observations assimilated in RADCONV impart a substantial 486 

improvement to the surface thermodynamic and moisture fields of the ensemble that is maintained 487 

through the subsequent forecast period. 488 

To more closely examine the ensemble behavior of surface fields, ensemble temperature and 489 

dewpoint fields are interpolated to the location of three Oklahoma mesonet sites at five minute 490 

intervals and compared against five-minute observations from the corresponding sites in Fig. 17 and 491 

Fig. 18.  The Oklahoma Mesonet sites chosen are marked in Fig. 1 and include Marena (MARE), 492 

located in the northern stratiform region of the MCS; Norman (NRMN), which observes the passage 493 

of the leading convective line during the forecast period; and Grandfield (GRA2), which observed 494 

the post-storm environment during much of the forecast period.  In addition to the ensemble mean, 495 

Fig. 17 and Fig. 18 also show the 5th to 95th percentile range within the ensemble. 496 

All experiments produce cold biases at NRMN (Fig. 17e-h) and warm biases at GRA2  (Fig. 497 

17i-l) throughout the analysis and forecast period, while producing values near those observed at 498 

MARE (Fig. 17a-d).  The ensembles of RADCONV and CONV (which assimilate conventional 499 

data) show more similar trends in temperature to the observed values than those of RAD and CNTL, 500 

particularly at GRA2 (Fig. 17i-l).  For dewpoint, the ensembles show dry biases at MARE and 501 

NRMN (Fig. 18a-h) throughout most of the assimilation and forecast period; this bias is greatest in 502 

RAD.  RAD and RADCONV also show a dry bias at GRA2 (Fig. 18i-l) during much of the forecast 503 
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period; again, this bias is larger in RAD.  For both temperature (Fig. 17) and dewpoint (Fig. 18), 504 

RAD has much greater spread within the ensemble, as evidenced by the very large 5th-95th 505 

percentile range in RAD compared to RADCONV and CNTL.  The ensemble of RAD had a few 506 

ensemble members that produced very dry air near the surface over central and southwestern 507 

Oklahoma (not shown), contributing to the very large spread in the ensemble. 508 

Because RAD does not assimilate surface observations, it relies on radar observations alone 509 

to adjust the surface thermodynamic fields.  Though there is sufficient near surface radar coverage 510 

over much of the domain, the fields produced in RAD based on the influence of radar covariance 511 

structure near the surface do not result in good forecasts in all ensemble members.  When 512 

conventional data are assimilated alongside radar data in RADCONV, the bias of the ensemble is 513 

reduced and the ensemble spread in the surface fields is reduced to levels similar to CONV.  We 514 

note, however that because the ensemble has a horizontal resolution of only 2 km and a minimum 515 

vertical spacing of 25 m, accurate prediction of surface fields may be beyond the capability of the 516 

ensemble, regardless of the data used.  Yussouf et al. (2013) also noted relatively poor agreement 517 

between their storm-scale ensemble using 2-km horizontal grid-spacing and individual surface 518 

observation timeseries.   519 

g) Impact of localization radius for conventional observations 520 

When using an EnKF that assimilates observations from multiple networks, the spatial 521 

covariance localization radii usually need to be tuned. The use of different, optimized radii for 522 

different observation types has been found to improve analyses and forecasts (Dong et al. 2011; Zhu 523 

et al. 2013). In addition to the four primary experiments presented above, several sensitivity 524 

experiments were performed using different covariance localization radii for conventional data 525 

assimilated in RADCONV and CONV.  Horizontal localization radii from 100 to 300 km were 526 
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tested for surface data, and radii from 150 to 800 km were tested for upper-air observations; these 527 

ranges are based upon prior experimentation by the authors.  Though all radii tested resulted in 528 

qualitatively similar 0200 UTC analyses (not shown), substantial differences were noted during 529 

subsequent ensemble forecasts.  Because the forecast trend is monotonic as radii increase, we only 530 

show results using the smallest and largest radii tested. 531 

When only conventional data are assimilated, the quality of NEP forecasts of P[Z > 25 dBZ] 532 

is better for larger localization radii.  When a localization radius of 300 km is used for surface data 533 

and 800 km for upper-air data, as in CONV, regions of high probability are confined to a relatively 534 

tight north-south line slightly to the east of the observed MCS location (Fig. 19a-c), and NEP near 535 

the LEV is high (in many places, > 0.95).  By comparison, when reduced localization radii of 100 536 

km for surface data and 150 km for upper air data are used (Fig. 19d-f), the linear structure of the 537 

MCS is not as evident, particularly at 0500 UTC (Fig. 19f), and NEP is lower in the vicinity of the 538 

LEV.  The two distinct precipitation regions in the simulation using reduced localization radii are 539 

more similar to those of CNTL.  When radar data are assimilated alongside conventional data, the 540 

positive impact of the assimilated observations is less when a smaller localization radius is used for 541 

conventional observations (not shown). 542 

The tornadic mesovortex that was ongoing at 0400 UTC is also better predicted when larger 543 

localization radii are used to assimilate conventional data.  Mesovortex probability predictions for 544 

RADCONV (Fig. 20a) and CONV (Fig. 20c), which use 300 km and 800 km localization radii for 545 

surface and upper-air data, respectively, compare favorably to their counterparts using reduced 546 

localization radii for conventional DA (Fig. 20b, d).  In particular, when radar data are assimilated 547 

alongside conventional data (Fig. 20a-b), the probability at the observed mesovortex location is 548 

increased, the probability field is more concentrated, and spurious detections are reduced using the 549 
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larger localization radii (Fig. 20a). The seemingly optimal 300 km localization radius used for the 550 

surface data appears rather large compared to the mean station spacing of the Oklahoma Mesonet, 551 

which is about 30 km. Dong et al. (2011) suggested optimal localization radii that are slightly larger 552 

than the mean station spacing of individual observation networks. We theorize that, since 553 

conventional observations were rather sparse above the surface and outside of the region covered by 554 

the much denser Oklahoma Mesonet, expanding the influence of conventional observations helps 555 

spread their positive impact upstream into regions with sparse data coverage during DA, thus 556 

increasing their ability to positively influence the ensemble forecast. 557 

4. Discussion and summary 558 

 The relative impacts of various data sources, and their effective assimilation, are important 559 

issues in convective-scale weather forecasting.  At convective scales, Doppler radars provide 560 

temporally and spatially dense observations of radar reflectivity (Z) and radial velocity (Vr).  561 

Conventional observations, including ASOS, AWOS, mesonet, wind profiler, and upper-air 562 

observations, offer sparser coverage than radar, but provide valuable information close to the 563 

surface and in clear-air regions that radar typically cannot.   564 

In this study, we examined the individual and combined impacts of assimilating radar and/or 565 

conventional observations, using an ensemble square-root Kalman filter (EnSRF), upon ensemble 566 

analyses and forecasts of a tornadic mesoscale convective system (MCS), focusing on prediction of 567 

radar reflectivity (a proxy for precipitation) and low-level mesovortices (a proxy for tornado 568 

potential).  Either conventional observations, radar observations, both, or neither are assimilated 569 

using a storm-scale EnKF nested within a mesoscale ensemble; 3-hour ensemble forecasts are 570 

performed from the final ensemble analyses.  Conventional and radar observations were both found 571 
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to improve the analyses and forecasts, but in different ways.  We also compared the results of this 572 

study to those of our previous study on the same case using a simpler EnKF DA setup and without 573 

conventional observations (SXJ11, and SXJ12).   574 

 Compared to SXJ12, the ensemble forecast of the current study that also assimilates radar 575 

data only produced a more skillful 2-3 hour probabilistic forecast of P[Z > 25 dBZ], and comparable 576 

2-hour forecasts of near-surface mesovortices.  The skill of reflectivity forecasts declined more 577 

slowly in the current study than in SXJ12, an improvement largely attributable to the nested-578 

ensemble procedure used in this study.  Furthermore, the representation of the trailing convective 579 

line of the MCS was improved compared to SXJ12, particularly later in the forecast period.  This 580 

line is located in the southern portion of the model domain, in a region close to the southern 581 

boundary of the 2 km grid; thus predictions of the trailing line also benefited from the enlarged 2 582 

km grid and the presumably improved southern boundary conditions provided by the outer grid 583 

ensemble. 584 

 All ensemble forecasts that assimilated conventional and/or radar data outperformed the 585 

control experiment (which assimilated neither) in terms of radar reflectivity probabilistic forecasts.  586 

The most skillful forecast, in terms of the area under the relative operating characteristic (ROC) 587 

curve (AUC), was produced by the ensemble assimilating both radar and conventional observations, 588 

though the result of assimilating radar data alone is almost as good.  Assimilation of conventional 589 

observations alone resulted in modest improvement over the control experiment, with the greatest 590 

impact in the ensemble analysis and during the first two hours of the ensemble forecast.  In 591 

comparison, the positive impact of assimilating radar observations is retained throughout the 3-hour 592 

forecast period.  Assimilating radar data imparted the most skill to probabilistic reflectivity forecasts 593 

for thresholds that include light and/or moderate precipitation (i.e., 10-40 dBZ).   594 
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When radar and conventional data were assimilated together, the resulting probabilistic 595 

forecasts of Z closely resemble those obtained by assimilating radar data alone, in terms of 596 

structure, bias, and skill, although the positive impact of conventional data is evident in AUC skill 597 

assessments in the 1- and 2-hour ensemble forecasts.  Though conventional observations are 598 

relatively sparse, particularly above the surface, and primarily measure quantities only indirectly 599 

related to precipitation (such as temperature, humidity, and wind velocity), they provide valuable 600 

information on the near-surface temperature, moisture, and wind fields, all of which can help 601 

improve the accuracy of forecasts of convective storms. 602 

Probabilistic forecasts in all experiments over-predicted the spatial extent of precipitation.  A 603 

high-bias in heavy precipitation and a low-bias in light precipitation (> 20 dBZ) were noted in the 604 

radar-assimilating ensembles.  The high-bias in heavy precipitation was absent in the ensemble 605 

assimilating conventional data only, but a strong high-bias in light to moderate precipitation was 606 

noted.  When radar and conventional data were assimilated together, the bias behavior was similar 607 

to the ensemble assimilating radar data alone. 608 

 All four forecast ensembles predicted a discernible (> 0.1) probability of a near-surface 609 

mesovortex being present near the observed mesovortex location in a 2-hour forecast.  The 610 

experiment assimilating both radar and conventional observations produced the most accurate 611 

prediction, with a region of moderately-high (maximum > 0.5) probability tightly concentrated near 612 

and just to the northwest of the observed mesovortex.  The forecast in the ensemble assimilating 613 

radar data alone yielded a more dispersed region of low-to-moderate (maximum < 0.4) probability 614 

near the observed mesovortex and to the north and west.  Both radar-assimilating forecasts 615 

outperformed the other two ensembles (which assimilated conventional data only or no data at all).  616 

While conventional observations can help to improve the near-surface wind field, as found by 617 
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Schenkman et al. (2011), it appears that they are only beneficial if the ensemble already has a 618 

reasonably accurate representation of the MCS, which for this case requires the assimilation of radar 619 

observations.   In short, for prediction of the mesovortex in this case, conventional data provided a 620 

strong benefit, but only when assimilated alongside radar observations. This is consistent with the 621 

findings of the observing system simulation experiments in Dong et al. (2011). 622 

 Adding conventional observations resulted in substantial improvements to 2-hour ensemble-623 

mean forecasts of surface dewpoint and temperature.  Forecast error, verified against Oklahoma 624 

Mesonet observations, were reduced somewhat over the region near the MCS for 2 m temperature 625 

when both radar and conventional data are assimilated compared to when just radar data are used.  626 

In the ensemble assimilating radar data alone, a substantial dry bias was present in the 2-hour 627 

surface dewpoint forecast—this bias was greatly reduced in the ensemble assimilating both radar 628 

and conventional data.  The lowest biases in those variables are found when conventional data were 629 

assimilated alone.  These reductions in bias show the value of surface observations—particularly 630 

surface observations with high temporal and spatial resolution—for convective scale forecasts.   631 

 The choice of horizontal localization radius is found to be important for assimilation of 632 

conventional observations.  Localization radii of 100 to 300 km were tested for surface 633 

observations, and 150 to 800 km for upper air observations.  Larger radii were found to produce 634 

better ensemble forecasts for precipitation and mesovortices.  We theorize that, for this case, since 635 

the bulk of conventional data was confined to the area covered by the Oklahoma Mesonet, using 636 

larger localization radii helped spread the information in the mesonet surface observations 637 

upstream, allowing its benefit to persist longer in the ensemble forecasts.  Sobash and Stensrud (2012) 638 

found that convective-scale EnKF DA and forecasts of an MCS, obtained using an OSSE framework, were 639 

sensitive to the covariance localization used for radar observations.  While we did not vary covariance 640 
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localization radii for radar observations in this study, this topic has been actively investigated through 641 

numerical experiments at CAPS. At 1-2 km grid spacing, a localization radius of 6 km has been found to 642 

work well for radar observations (Xue et al. 2006).   643 

 Though the experiments presented in this paper represent a substantial improvement from 644 

prior studies, we note that some shortcomings remain.  The experiments presented in this study use 645 

a single moment microphysical scheme; for this case, Putnam et al. (2013) found that using a dual-646 

moment microphysical scheme resulted in improved representation of the trailing convective line, 647 

and better representation of dual-polarimetric radar signatures in emulated radar data obtained from 648 

model forecasts.  Though the use of a dual-moment microphysical scheme increases the 649 

computational cost and complexity of DA and NWP, it offers a promising means of improving 650 

analysis and forecast quality. 651 

 Looking forward toward the implementation of real-time ensemble-forecast-based severe 652 

weather warnings, as envisioned in the Warn-on-Forecast paradigm (Stensrud et al. 2009), the 653 

relative benefit of various data sources should be considered together with their associated 654 

assimilation costs. As efficient parallel EnKF algorithms suitable for dense observations are 655 

developed (e.g., Wang et al. 2013), real-time implementation of such systems is increasingly within 656 

reach.  Data assimilation experiments, possibly run in a quasi-operational realtime environment, 657 

could provide opportunities to examine the impact of multi-scale data sources on the forecasting of 658 

a large number of cases, leading to more robust conclusions on the impacts. Such studies should be 659 

pursued in the future. 660 
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Fig. 1. Geographic extent of the outer model domain (6 km horizontal grid spacing) and the nested 

inner domain (2 km horizontal grid spacing). Surface elevation (in meters above mean sea level) is 

plotted for reference. Also shown for reference is the smaller 2-km domain used in SXJ11 and 

SXJ12.  The three black dots in western and central Oklahoma indicate the locations of Oklahoma 

Mesonet stations MARE (Marena), NRMN (Norman), and GRA2 (Grandfield) used for timeseries 

verification. 

Fig. 2. Flow diagram for forecast experiments.  The outer nest forecast is initialized at 1800 UTC on 

8 May 2007 via interpolation from the 1800 UTC NAM analysis; 6-hourly NAM analyses and the 

intervening 3-hour forecasts are used as boundary conditions for the outer nest.  The inner nest is 

initialized at 0100 UTC on 9 May 2007 using the outer nest ensemble for initial and boundary 

conditions. 

Fig. 3. Observations assimilated using EnKF on the inner nested grid (2 km grid spacing). The 

dashed circles and large solid circles indicate 50 and 150 km radius range rings, respectively, for 

WSR-88D radar sites used. Small, thin circles indicate 30 km range rings for CASA X-band radar 

sites used, black triangles indicate ASOS and AWOS surface station sites, squares indicate 

Oklahoma Mesonet station sites, and diamonds indicate wind profiler sites.  The red box indicates 

the Oklahoma verification subdomain; the smaller green box indicates the verification subdomain 

used in SXJ12. 
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Fig. 4. Neighborhood ensemble probabilities (shaded) of reflectivity exceeding 25 dBZ, P[ Z > 25 

dBZ ] , at model grid level 10 (approximately 2 km above the surface) for experiment NoMMP of 

SXJ12 at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 UTC, and RAD at (d) 0300 UTC, (e) 0400 

UTC, and (f) 0500 UTC.  The bold black line in each panel indicates the location of the 25 dBZ 

radar reflectivity contour observed by the WSR-88D radar network.  The leading convective line, 

trailing convective line, and stratiform region of the MCS are indicated in panel (a). 

Fig. 5. Area under the ROC curve (AUC) for RADCONV, RADC, and two experiments from 

SXJ12 (CNTL and NoMMP) at 0300, 0400, and 0500 UTC for 1-, 2-, and 3-hour forecasts of radar 

reflectivity at the 25 dBZ threshold on vertical grid level k = 10 (slightly more than 2 km above 

mean sea level) calculated over the verification subdomain of SXJ12 (the green box in Fig. 2). 

Fig. 6. As Fig. 4, but for P[ Z > 40 dBZ ]  and the 40 dBZ radar reflectivity contour. 

Fig. 7. Average root-mean-square (RMS) innovation (solid lines) of ensemble mean and the 

ensemble spread (dotted lines) of radial velocity (m s-1) over the observation region of four WSR-

88D radars within the model domain from 0110 to 0200 UTC for all experiments.  Calculations are 

limited to locations where observed and/or model (ensemble mean) reflectivity exceeds 15 dBZ. 

Fig. 8. As Fig. 7 but for radar reflectivity (dBZ) instead of radial velocity. 

Fig. 9. Probability-matched ensemble mean reflectivity at model grid level 10 (approximately 2 km 

above the surface) for the 0200 UTC ensemble analyses of (a) RADCONV, (b) RAD, (c) CONV, 

and (d) CNTL.  Also shown is (e) observed reflectivity at 0200 from the WSR-88D network, 

interpolated to the model grid. 

Fig. 10. Neighborhood ensemble probabilities (shaded) of radar reflectivity exceeding 25 dBZ, P[ Z 

> 25 dBZ ] , at model grid level 10 (approximately 2 km above the surface) for (a-c) RADCONV, 
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(d-f) RAD, (g-i) CONV, and (j-l) CNTL at 0300, 0400, and 0500 UTC.  The region of radar 

reflectivity exceeding 25 dBZ observed by the WSR-88D radar network at the corresponding time is 

outlined by a bold black contour.  Urban boundaries are shown in purple. 

Fig. 11. Area under the relative operating characteristic (ROC) curve (AUC) (solid, bold lines) for 

all experiments at (a) 0200, (b) 0300, (c) 0400, and (d) 0500 UTC for forecasts of radar reflectivity 

at vertical grid level k = 10 (slightly more than 2 km above mean sea level) exceeding threshold 

values ranging from 10 to 50 dBZ at intervals of 2 dBZ.  Also shown are 90% confidence intervals 

calculated using a 1000-member bootstrap to resample the ensemble (shaded regions).  Calculations 

are performed over the Oklahoma verification subdomain (the red box in Fig. 2).  In each panel, the 

green region indicates AUC values associated with an operationally-useful forecast (AUC > 0.7).  

The red region indicates forecasts with no skill (AUC < 0.5). 

Fig. 12. Reliability and sharpness diagrams for NEP forecasts of P[Z > 25 dBZ] for all experiments 

at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 UTC calculated over the Oklahoma verification 

subdomain (the red box in Fig. 2).  Forecast probability bins are spaced at intervals of 0.05. 

Fig. 13. Hourly, domain-wide histograms of forecast radar reflectivity for all ensemble forecast 

experiments, compared to WSR-88D observed radar reflectivity interpolated to the ensemble 

forecast grid (bottom row).  Bins are placed every 1 dBZ.  The vertical axis indicates the number of 

model grid volumes within each bin, normalized by the size of the forecast ensemble. 

Fig. 14. Ensemble-based probability of a significant near-surface mesovortex occurring within 25 

km of a point (shaded) at 0400 UTC for (a) RADCONV, (b) RAD, (c) CONV, and (d) CNTL.  The 

location of the observed tornadic mesovortex (located within the line-end vortex of the MCS) at 

0400 UTC is indicated by the black triangle in each panel.  Urban boundaries are shown in purple. 

Fig. 15. Contours of the difference between ensemble mean surface (2 m) temperature forecast and 
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objectively-analyzed Oklahoma Mesonet observations at 0400 UTC for (a) RADCONV, (b) RAD, 

(c) CONV, and (d) CNTL.  Red areas indicate an ensemble mean temperature warmer than observed 

by the mesonet, while blue areas indicate an ensemble mean colder than observations. 

Fig. 16. Contours of the difference between ensemble mean surface (2 m) dewpoint forecast and 

objectively-analyzed Oklahoma Mesonet observations at 0400 UTC for (a) RADCONV, (b) RAD, 

(c) CONV, and (d) CNTL.  Green areas indicate an ensemble mean dewpoint higher than observed 

by the mesonet, while brown areas indicate an ensemble mean dewpoint lower than observations. 

Fig. 17. Observed surface (2 m) temperature (F) (solid black lines) at 5 minute intervals between 

0105 UTC and 0500 UTC from Oklahoma Mesonet sites at (a-d) Marena (MARE), (e-h) Norman 

(NRMN), and (i-l) Grandfield (GRA2).  Also shown are ensemble mean (thick colored lines) and 5th 

to 95th percentile range (shaded colored regions) for experiments RADCONV (purple; (a), (i), and 

(j)); RAD (blue; (b), (f), and (j));  CONV (red; (c), (g), and (k)); and CNTL (gray; (d), (h), and (l)) 

interpolated to the location of the corresponding Oklahoma Mesonet sites.  The vertical dotted line 

in each panel denotes the end of the DA period at 0200 UTC. 

Fig. 18. As Fig. 17, but for observed surface (2 m) dewpoint (solid black lines) and ensemble mean 

(thick colored lines) and the 5th to 95th percentile range within the ensemble (shaded colored 

regions) of dewpoint interpolated to the corresponding Oklahoma Mesonet site. 

Fig. 19. Neighborhood ensemble probability (shaded) of radar reflectivity exceeding 25 dBZ, P[ Z > 

25 dBZ ] , at model grid level 10 (approximately 2 km above the surface) for (a-c) CONV, and (d-f) 

a variant of CONV using reduced localization radii for conventional data assimilation, at 0300, 

0400, and 0500 UTC.  The region of radar reflectivity exceeding 25 dBZ observed by the WSR-88D 

radar network at the corresponding time is outlined by a bold black contour.  Urban boundaries are 

shown in purple.  The localization radius used to assimilate surface and upper-air data is noted in 
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each panel. 

Fig. 20. Ensemble-based probability of a significant near-surface mesovortex occurring within 25 

km of a point (shaded) at 0400 UTC for (a) RADCONV, (b) a variant of RADCONV using reduced 

localization radii for conventional data assimilation, (c) CONV, and (d) a variant of CONV using 

reduced localization radii for conventional data assimilation. The location of the observed tornadic 

mesovortex at 0400 UTC is indicated by the black triangle in each panel. Urban boundaries are 

shown in purple. The localization radius used to assimilate surface, upper-air, and (if used) radar 

observations, is noted in each panel. 
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Table 1.  Assumed observation error magnitude for conventional observations. 
 

Data Type u (ms-1) v (ms-1) Temperature (K) Dewpoint (K) Pressure (hPa) 

Surface 1.5 1.5 1.5 2.0 2.0 
Upper-air 2.5 2.5 1.2 2.0 0.6 
Profiler 2.5 2.5    
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Table 2.  Summary of experiments. 
 

Experiment Name 
Radar Data Used? Conventional Data Used? 

Outer Domain Inner Domain Outer Domain Inner Domain 

RADCONV NO YES YES YES 
RAD NO YES YES NO 
CONV NO NO YES YES 
CNTL NO NO YES NO 
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Fig. 1. Geographic extent of the outer model domain (6 km horizontal grid spacing) and the nested 
inner domain (2 km horizontal grid spacing). Surface elevation (in meters above mean sea level) is 
plotted for reference. Also shown for reference is the smaller 2-km domain used in SXJ11 and 
SXJ12.  The three black dots in western and central Oklahoma indicate the locations of Oklahoma 
Mesonet stations MARE (Marena), NRMN (Norman), and GRA2 (Grandfield) used for timeseries 
verification. 
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Fig. 2. Flow diagram for forecast experiments.  The outer nest forecast is initialized at 1800 UTC on 
8 May 2007 via interpolation from the 1800 UTC NAM analysis; 6-hourly NAM analyses and the 
intervening 3-hour forecasts are used as boundary conditions for the outer nest.  The inner nest is 
initialized at 0100 UTC on 9 May 2007 using the outer nest ensemble for initial and boundary 
conditions. 
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Fig. 3. Observations assimilated using EnKF on the inner nested grid (2 km grid spacing). The 
dashed circles and large solid circles indicate 50 and 150 km radius range rings, respectively, for 
WSR-88D radar sites used. Small, thin circles indicate 30 km range rings for CASA X-band radar 
sites used, black triangles indicate ASOS and AWOS surface station sites, squares indicate 
Oklahoma Mesonet station sites, and diamonds indicate wind profiler sites.  The red box indicates 
the Oklahoma verification subdomain; the smaller green box indicates the verification subdomain 
used in SXJ12. 
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Fig. 4. Neighborhood ensemble probabilities (shaded) of reflectivity exceeding 25 dBZ, P[ Z > 25 
dBZ ] , at model grid level 10 (approximately 2 km above the surface) for experiment NoMMP of 
SXJ12 at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 UTC, and RAD at (d) 0300 UTC, (e) 0400 
UTC, and (f) 0500 UTC.  The bold black line in each panel indicates the location of the 25 dBZ 
radar reflectivity contour observed by the WSR-88D radar network.  The leading convective line, 
trailing convective line, and stratiform region of the MCS are indicated in panel (a). 
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Fig. 5. Area under the ROC curve (AUC) for RADCONV, RADC, and two experiments from 
SXJ12 (CNTL and NoMMP) at 0300, 0400, and 0500 UTC for 1-, 2-, and 3-hour forecasts of radar 
reflectivity at the 25 dBZ threshold on vertical grid level k = 10 (slightly more than 2 km above 
mean sea level) calculated over the verification subdomain of SXJ12 (the green box in Fig. 2). 
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Fig. 6. As Fig. 4, but for P[ Z > 40 dBZ ]  and the 40 dBZ radar reflectivity contour. 
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Fig. 7. Average root-mean-square (RMS) innovation (solid lines) of ensemble mean and the 
ensemble spread (dotted lines) of radial velocity (m s-1) over the observation region of four WSR-
88D radars within the model domain from 0110 to 0200 UTC for all experiments.  Calculations are 
limited to locations where observed and/or model (ensemble mean) reflectivity exceeds 15 dBZ. 
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Fig. 8. As Fig. 7 but for radar reflectivity (dBZ) instead of radial velocity. 
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Fig. 9. Probability-matched ensemble mean reflectivity at model grid level 10 (approximately 2 km 
above the surface) for the 0200 UTC ensemble analyses of (a) RADCONV, (b) RAD, (c) CONV, 
and (d) CNTL.  Also shown is (e) observed reflectivity at 0200 from the WSR-88D network, 
interpolated to the model grid. 
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Fig. 10. Neighborhood ensemble probabilities (shaded) of radar reflectivity exceeding 25 dBZ, P[ Z 
> 25 dBZ ] , at model grid level 10 (approximately 2 km above the surface) for (a-c) RADCONV, 
(d-f) RAD, (g-i) CONV, and (j-l) CNTL at 0300, 0400, and 0500 UTC.  The region of radar 
reflectivity exceeding 25 dBZ observed by the WSR-88D radar network at the corresponding time is 
outlined by a bold black contour.  Urban boundaries are shown in purple. 
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Fig. 11. Area under the relative operating characteristic (ROC) curve (AUC) (solid, bold lines) for 
all experiments for the analyses at (a) 0200 UTC, and forecasts at (b) 0300, (c) 0400, and (d) 0500 
UTC for forecasts of radar reflectivity at vertical grid level k = 10 (slightly more than 2 km above 
mean sea level) exceeding threshold values ranging from 10 to 50 dBZ at intervals of 2 dBZ.  Also 
shown are 90% confidence intervals calculated using a 1000-member bootstrap to resample the 
ensemble (shaded regions).  Calculations are performed over the Oklahoma verification subdomain 
(the red box in Fig. 2).  In each panel, the green region indicates AUC values associated with an 
operationally-useful forecast (AUC > 0.7).  The red region indicates forecasts with no skill (AUC < 
0.5). 



26 

 

 

Fig. 12. Reliability and sharpness diagrams for NEP forecasts of P[Z > 25 dBZ] for all experiments 
at (a) 0200 UTC, (b) 0300 UTC, (c) 0400 UTC, and (d) 0500 UTC calculated over the Oklahoma 
verification subdomain (the red box in Fig. 2).  Forecast probability bins are spaced at intervals of 
0.05. 
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Fig. 13. Hourly, domain-wide histograms of forecast radar reflectivity for all ensemble forecast 
experiments, compared to WSR-88D observed radar reflectivity interpolated to the ensemble 
forecast grid (bottom row).  Bins are placed every 1 dBZ.  The vertical axis indicates the number of 
model grid volumes within each bin, normalized by the size of the forecast ensemble. 
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Fig. 14. Ensemble-based probability of a significant near-surface mesovortex occurring within 25 
km of a point (shaded) at 0400 UTC for (a) RADCONV, (b) RAD, (c) CONV, and (d) CNTL.  The 
location of the observed tornadic mesovortex (located within the line-end vortex of the MCS) at 
0400 UTC is indicated by the black triangle in each panel.  Urban boundaries are shown in purple. 
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Fig. 15. Contours of the difference between ensemble mean surface (2 m) temperature forecast and 
Oklahoma Mesonet observations at 0400 UTC for (a) RADCONV, (b) RAD, (c) CONV, and (d) 
CNTL.  Red areas indicate an ensemble mean temperature warmer than observed by the mesonet, 
while blue areas indicate an ensemble mean colder than observations. 
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Fig. 16. Contours of the difference between ensemble mean surface (2 m) dewpoint forecast and 
Oklahoma Mesonet observations at 0400 UTC for (a) RADCONV, (b) RAD, (c) CONV, and (d) 
CNTL.  Green areas indicate an ensemble mean dewpoint higher than observed by the mesonet, 
while brown areas indicate an ensemble mean dewpoint lower than observations. 
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Fig. 17. Observed surface (2 m) temperature (F) (solid black lines) at 5 minute intervals between 
0105 UTC and 0500 UTC from Oklahoma Mesonet sites at (a-d) Marena (MARE), (e-h) Norman 
(NRMN), and (i-l) Grandfield (GRA2).  Also shown are ensemble mean (thick colored lines) and 5th 
to 95th percentile range (shaded colored regions) for experiments RADCONV (purple; (a), (i), and 
(j)); RAD (blue; (b), (f), and (j));  CONV (red; (c), (g), and (k)); and CNTL (gray; (d), (h), and (l)) 
interpolated to the location of the corresponding Oklahoma Mesonet sites.  The vertical dotted line 
in each panel denotes the end of the DA period at 0200 UTC. 
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Fig. 18. As Fig. 17, but for observed surface (2 m) dewpoint (solid black lines) and ensemble mean 
(thick colored lines) and the 5th to 95th percentile range within the ensemble (shaded colored 
regions) of dewpoint interpolated to the corresponding Oklahoma Mesonet site. 
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Fig. 19. Neighborhood ensemble probability (shaded) of radar reflectivity exceeding 25 dBZ, P[ Z > 
25 dBZ ] , at model grid level 10 (approximately 2 km above the surface) for (a-c) CONV, and (d-f) 
a variant of CONV using reduced localization radii for conventional data assimilation, at 0300, 
0400, and 0500 UTC.  The region of radar reflectivity exceeding 25 dBZ observed by the WSR-88D 
radar network at the corresponding time is outlined by a bold black contour.  Urban boundaries are 
shown in purple.  The localization radius used to assimilate surface and upper-air data is noted in 
each panel. 
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Fig. 20. Ensemble-based probability of a significant near-surface mesovortex occurring within 25 
km of a point (shaded) at 0400 UTC for (a) RADCONV, (b) a variant of RADCONV using reduced 
localization radii for conventional data assimilation, (c) CONV, and (d) a variant of CONV using 
reduced localization radii for conventional data assimilation. The location of the observed tornadic 
mesovortex at 0400 UTC is indicated by the black triangle in each panel. Urban boundaries are 
shown in purple. The localization radius used to assimilate surface, upper-air, and (if used) radar 
observations, is noted in each panel. 


