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Abstract 

This study examines the ability of a storm-scale numerical weather prediction (NWP) 

model to predict precipitation and mesovortices within a tornadic mesoscale convective system 

that occurred over Oklahoma on 8-9 May 2007, when the model is initialized from ensemble 

Kalman filter (EnKF) analyses including data from 4 CASA X-band and 5 WSR-88D S-band 

radars.  Ensemble forecasts are performed and probabilistic forecast products generated, 

focusing on prediction of radar reflectivity (a proxy of quantitative precipitation) and 

mesovortices (an indication of tornado potential).  

 The ensemble assimilating data from both CASA and WSR-88D radars and using a 

mixed-microphysics ensemble during data assimilation produces the best probabilistic meso-

vortex forecast.  The use of multiple microphysics schemes within the ensemble aims to address 

at least partially the model physics uncertainty and effectively plays a role of flow-dependent 

inflation (in precipitation regions) during EnKF data assimilation.  The ensemble predicts with 

high probability (approximately 0.65) the near-surface meso-vortex associated with the first of 

three reported tornadoes.  Though a bias toward stronger precipitation is noted in the ensemble 

forecasts, all experiments produce skillful probabilistic forecasts of radar reflectivity on a 0-3 

hour timescale as evaluated by multiple probabilistic verification metrics.  These results suggest 

that both inclusion of CASA radar data and use of a mixed-microphysics ensemble during EnKF 

data assimilation positively impact the skill of 2-3 hour ensemble forecasts of mesovortices, 

despite having little impact on the quality of precipitation forecasts (analyzed in terms of 

predicted radar reflectivity), and are an important step toward an operational EnKF-based 

ensemble analysis and probabilistic forecast system to support convective-scale warn-on-forecast 

operations.
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1. Introduction 

 Since the inception of explicit numerical weather prediction (NWP) of severe convective 

storms (Lilly 1990), assimilation of Doppler weather radar data has been shown to be critical and 

often effective for initializing such model predictions (e.g., Sun et al. 1991; Sun and Crook 1998; 

Xue et al. 2003; Hu et al. 2006).  Recent studies have produced promising results assimilating 

Doppler radar data for convective-scale NWP in real-time and over large domains (e.g., Xue et 

al. 2008).  The ensemble Kalman filter (EnKF) technique, initially developed by Evensen (1994, 

2003), has been gaining popularity as an effective method of radar data assimilation for storm-

scale NWP (e.g., Snyder and Zhang 2003; Dowell et al. 2004; Tong and Xue 2005b; Tong and 

Xue 2008).  Though EnKF is more computationally expensive than the 3-dimensional 

variational method (3DVAR) widely used operationally, it provides flow-dependent multivariate 

background error covariances and cross-covariances that 3DVAR cannot. Such cross-covariances 

are essential for radar data assimilation, because most state variables are not directly observed 

(Tong and Xue 2005a, 2008).  Additional comments on the relative merits of various radar data 

assimilation methods including 3DVAR, 4DVAR (4-D variational) and EnKF for convective 

storm analysis can be found in Tong and Xue (2005a).  As available computational power 

increases, it will soon become feasible to run a real-time convective-scale forecast system which 

assimilates data via EnKF (Zhang et al. 2009) and produces convective-scale ensemble forecasts 

(e.g., Xue et al. 2008).  

 One of the major goals of the National Weather Service (NWS) in the coming decade is 

to develop a warn-on-forecast paradigm for convective-scale severe weather warnings (e.g., 

tornado, severe thunderstorm and flash flood warnings) in order to increase warning lead-time 

beyond what is possible with nowcasting techniques alone.  Such an increase in warning lead-
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time would allow entities such as hospitals and stadiums sufficient time to respond in the event 

of a warning (Stensrud et al. 2009).  To achieve this goal, reliable short-term (0 – 3 hour) 

forecasts at the convective scale will be vital.   

Due to the chaotic nature of the atmosphere, and inevitable errors in observations and 

NWP models, weather forecasts always contain uncertainty. No forecast is therefore complete 

without a description of its uncertainty (NRC 2006), which is often expressed in terms of 

forecast probability. Ensemble forecasting offers a practical way to provide a probabilistic 

forecast (Leith 1974). Global and regional ensemble forecasting has been operational for nearly 

two decades (e.g., Toth and Kalnay 1993; Houtekamer et al. 1996; Du et al. 2003; Bowler and 

Mylne 2009); by comparison, convective-scale ensemble forecasting is still in its infancy (Kong 

et al. 2006; Xue et al. 2011), though a few recent papers have sought to address the topic.  

Wandashin et al. (2010) use an idealized 2-dimensional model to investigate the predictability of 

ensemble forecasts of mesoscale convective systems, while Aksoy et al. (2010) used the WRF 

model to assimilate Doppler radar observations and perform idealized ensemble predictions of 

storms with both supercellular and linear convective modes.  Stensrud and Gao (2010) 

assimilate radar data using 3DVAR and perform short-range ensemble forecasts of a supercell 

case.  All three of these recent studies demonstrate the value of using ensembles for short-range 

convective NWP. Convective scale weather poses a greater prediction challenge due to its 

intermittent nature, smaller spatial and temporal scale, higher nonlinearity, and often due to 

incomplete observation coverage; these challenges increase the forecast uncertainty, making 

probabilistic forecasting even more crucial (Stensrud et al. 2009; Xue et al. 2011). 

 While it is possible to obtain probabilistic forecast products from a single deterministic 

forecast by examining the occurrence of an event at the surrounding grid points (Theis et al. 
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2005; Schwartz et al. 2009), the capability of such a method is limited by inherent biases and 

errors in the deterministic forecast used. One such source of error is microphysical 

parameterization; Snook and Xue (2008) and Dawson et al. (2009) found that the choice of 

microphysical scheme (and the parameter settings therein) strongly impact the mode and 

intensity of convection predicted.  Furthermore, such probabilistic forecast products are 

inadequate in addressing uncertainty in the initial condition and dynamic error growth. 

Convective-scale errors generally grow very quickly (Lorenz 1969), greatly limiting the utility of 

a single deterministic forecast. 

 EnKF provides a set of analyses that, in principle, best characterize the analysis 

uncertainty, making them desirable initial conditions for ensemble forecasts. At the global scale, 

ensembles using EnKF analysis initial conditions have shown superior probabilistic forecasting 

performance compared to those using more traditional perturbation methods (Houtekamer et al. 

2005; Hamill et al. 2011). EnKF methods have proven effective in generating dynamically 

consistent wind, temperature, and microphysical fields for convective storms when assimilating 

Doppler radar reflectivity and radial velocity data (e.g., Dowell et al. 2004; Tong 2006; Snook et 

al. 2011) but probabilistic forecasts at the convective scale using EnKF analyses has so far 

received limited attention. Zhang et al. (2010) is an example where convection-permitting-

resolution ensemble forecasts of a tropical cyclone were initialized from global EnKF analyses.  

 This study details the results of ensemble forecasts produced from the EnKF analyses of 

the 8-9 May 2007 tornadic mesoscale convective system presented in Snook et al. (2011, SXJ11 

hereafter), with the goal of evaluating the suitability of EnKF analyses of radar data for 

initializing an ensemble for the short-term convective-scale probabilistic forecast goals of “warn-

on-forecast” (Stensrud et al. 2009).  We use a neighborhood ensemble probability (NEP) 
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approach (Schwartz et al. 2010) to obtain probabilistic forecasts of radar reflectivity, and an 

object-based ensemble approach to obtain probabilistic forecasts of near-surface meso-vortices.  

The value of assimilating X-band radar data by the Engineering Research Center for 

Collaborative Adaptive Sensing of the Atmosphere (CASA) (McLaughlin et al. 2009) for 

improving the forecasts is evaluated, and the impact of microphysical parameterization during 

analysis and forecast periods is examined. 

 The remainder of this paper is organized as follows:  Section 2 discusses the 

methodology used in the ensemble forecasts, as well as techniques used to generate probabilistic 

forecast products.  Section 3 examines the results of ensemble and probabilistic forecasts in 

terms of simulated radar reflectivity and low-level mesovortices and verifies them against 

observations. Finally, section 4 contains a summary of analysis and forecast results, as well as 

concluding remarks. 

 

2. Forecast Setup and Verification Methodology 

 Ensemble forecasts have become an indispensable part of convective-scale NWP in 

operational and research settings, providing valuable information about forecast sensitivity and 

uncertainty, as well as probabilistic forecast guidance (NRC 2006).  In this study, 3-hour storm-

scale ensemble forecasts are examined for the tornadic mesoscale convective system (MCS) that 

occurred over southwestern and central Oklahoma on 8-9 May 2007; this was the first tornadic 

event observed by the then newly-deployed CASA IP-1 (Integrated Project No. 1) radar network 

(McLaughlin et al. 2009; Brotzge 2010) . During this event, a pronounced line-end vortex (LEV) 

developed within the MCS and moved through much of southwest/central Oklahoma, passing 

directly over the CASA IP-1 network. The MCS spawned two confirmed EF-1 tornadoes and one 
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confirmed EF-0 tornado in central Oklahoma between 0354 UTC and 0443 UTC, just north of 

the CASA radar network. Additional details regarding the 8-9 May 2007 MCS can be found in 

SXJ11. 

To quantify the impact of the new CASA radar data in storm-scale NWP, SXJ11 

assimilated data from 4 CASA IP-1 radars and 5 WSR-88D radars using the ARPS ensemble 

Kalman filter (EnKF) system configured with full model physics and real terrain. The ensemble 

contained 40 members, and radar data are assimilated every 5 minutes for 1 hour.  While the 

assimilation of WSR-88D data alone produced a reasonably accurate analysis of the convective 

system, assimilating CASA data in addition to WSR-88D data was found to improve the 

resulting analysis. Use of a mixed-microphysics ensemble was found to alleviate under-

dispersion by increasing the ensemble spread. 

In this study, the EnKF ensemble analyses produced by SXJ11, valid at 0200 of 9 May 

2007, are used to initialize 3-hour ensemble forecasts.  The model setup and naming convention 

used for these forecast experiments follow those in SXJ11. The computational domain has 256 × 

256 × 40 grid points with a 2 km horizontal grid spacing and stretched vertical grid spacing (see 

Fig. 1).  The analyses used as initial conditions were produced by assimilating radar data at 5-

minute intervals for 1 hour, and provide an initial model state that closely matches the 

observations (SXJ11); the ongoing MCS is represented relatively well, as shown in comparison 

of the mean analyses of composite radar reflectivity in the ensemble to that observed by the 

WSR-88D network (Fig. 2).  Results from three ensemble forecast experiments are presented 

here.  The control experiment (hereafter “CNTL”) assimilates both CASA and WSR-88D radar 

data and contains 40 ARPS ensemble members; 16 of these use the Lin ice microphysical 

scheme (Lin et al. 1983), 16 use the WRF single-moment 6-class (WSM6) ice microphysics 
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scheme (Hong and Lim 2006), and the remaining 8 members use the NWP explicit micropyhsics 

(NEM) scheme developed by Schultz (1995).  The second experiment, NoMMP, assimilates the 

same data as CNTL but uses the Lin microphysics scheme in all 40 of its ensemble members. 

The third experiment, NoCASA, uses the same ensemble setup as CNTL but does not assimilate 

CASA data.   

To isolate the impact of using a mixed-microphysics ensemble during the forecast period, 

two more ensemble forecast experiments are run in addition to the three mentioned above.  

Experiments CNTL_LIN and NoCASA_LIN are initialized from the CNTL and NoCASA initial 

conditions (respectively), but use a single-microphysics forecast ensemble consisting of 40 

ARPS members using the Lin microphysics scheme, as in NoMMP.  Though the number of 

microphysical species is the same in the Lin, WSM-6, and NEM microphysical schemes, the 

WSM-6 scheme uses graupel whereas the Lin and NEM schemes use hail.  To solve this 

inconsistency, hail and graupel are treated as interchangeable when initializing a Lin forecast 

ensemble member from a WSM-6 member analysis in CNTL_LIN and NoCASA_LIN.  A 

summary of all forecast experiments included in this study is provided in Table 1. 

In all experiments, a reduced rain intercept parameter of 8×105 was used, consistent with 

Snook and Xue (2008), who found that reducing the rain intercept parameter yielded more 

realistic cold-pool structure.  A timeline for these experiments is presented in Fig. 3.  Lateral 

boundary conditions for all ensemble members are obtained from the NCEP NAM 6-hourly 

analyses and intervening 3 hour forecasts.  Because of the relatively short forecast period and 

the use of a relatively large domain, the absence of boundary condition perturbations did not 

negatively impact ensemble data assimilation and prediction in the main regions of interest. 

 Forecast verification is performed for radar reflectivity at 0300, 0400, and 0500 UTC, and 
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for low-level mesovortices at 0400, 0420, and 0440 UTC; the latter times correspond closely to 

tornado reports received during this event at 0354, 0426, and 0443 UTC (see section 2 of 

SXJ11).  Given the 2-km horizontal grid spacing used, tornado-scale circulations cannot be 

resolved, we therefore focus on prediction of resolvable low-level circulations linked to the 

observed tornadoes, rather than on the tornadoes themselves. With the 2-km horizontal grid 

spacing used, the mesovortices (Trapp and Weisman 2003) which were present in this case can 

be resolved. 

 Because convective cells are highly localized, even small displacement errors in a storm-

scale forecast can result in very low objective skill scores when verified on a point-by-point 

basis, even though the forecast being scored may still be quite valuable to researchers and 

operational meteorologists (Baldwin et al. 2001; Schwartz et al. 2009). To alleviate this problem, 

Schwartz et al. (2009) applied a probabilistic “neighborhood” approach following Roberts and 

Lean (2008), where the probability of an event (e.g., radar reflectivity > 40 dBZ; rainfall rate > 

2.0 cm/hr; hail mixing ratio > 0) at a grid point is determined by conditions at all grid points 

within a given radius of influence r from that grid point; this collection of points comprises the 

neighborhood for the selected grid point.  In this study, as was done in Schwartz et al. (2010), 

the neighborhood is extended to include all grid points on the same model level within the radius 

of influence from every ensemble member.  Thus, drawing from Schwartz et al. (2009; 2010), 

the forecast probability (Pi) of an event at the ith grid point of the ensemble forecast is defined 

by: 

  
1

1 N

i j
j

P B
N 

           (1) 

where N is the unique collection of all points comprising the neighborhood for point i, and Bj is 
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the binary probability at the jth grid point of the neighborhood, defined to be 1 if the event was 

observed at that grid point, and 0 if it was not. Schwartz et al. (2010) call Pi neighborhood 

ensemble probability (NEP); further discussion can be found in that paper. 

 Mesovortices and other circulations cannot easily be treated as point variables, and are 

therefore not well-suited to a NEP method.  Thus, for prediction of mesovortices, we instead 

apply an object-based ensemble verification approach.  Significant low-level circulations are 

manually identified for each ensemble member in forecasts valid at 0400, 0420, and 0440 UTC.  

For a feature to count as a significant circulation, three criteria must be met: (1) vertical vorticity 

must exceed 0.02 s-1 at 2 km above ground level; (2) discernable rotation must be present in the 

horizontal wind field at this level, and (3) the feature must be located within a convective region 

with radar reflectivity exceeding 30 dBZ.  These criteria were chosen to discriminate true 

mesovortices from other phenomena, such as shear zones occurring along outflow boundaries.  

The binary probability Bim for the ith model grid volume of the mth ensemble member is 

calculated such that Bim = 1 if the center of that grid volume lies within a predefined distance (in 

this study, 25 km) of a circulation center identified in the forecast for that ensemble member, and 

Bim = 0 otherwise.  A purely ensemble-based probability results, 

1

1 ensN

i im
mens

P B
N 

          (2) 

where Nens is the number of members in the ensemble.  In essence, Pi from equation (2) can be 

viewed as the predicted probability of a strong near-surface vortex being present within 25 km of 

a given point; this forecast methodology is analogous to that used operationally by the Storm 

Prediction Center in their Day 1 tornado, hail, and wind outlook products, which forecast the 

probability of an event occurring within a 25 mile radius of a given point (Edwards et al. 2002). 



9 

 

 

3. Forecast Results and Analysis 

 We begin by presenting the results of ensemble and probabilistic forecasts of radar 

reflectivity (Z) for CNTL, CNTL_LIN and NoMMP.  Radar reflectivity, closely linked to 

precipitation, is a field of meteorological interest that can be directly verified against WSR-88D 

radar observations over the entire area of the convective system. Ensemble and probabilistic 

forecasts of low-level vortices are then analyzed; near-surface mesovortices were closely co-

located with the observed tornadoes in this event, as demonstrated by the proximity of rotational 

signatures in the KTLX storm-relative radial velocity observations (Fig. 4) to the tornadoes 

reported in association with them (SXJ11, their Fig. 1). Both the impact of assimilating CASA 

data and the use of a mixed-microphysics ensemble during the analysis and forecast periods are 

considered in evaluating the performance of the ensemble mesovortex forecasts. 

 

a.  Probability-matched ensemble mean forecasts of radar reflectivity 

 In ensemble forecasting, particularly at the convective scale, averaging the individual 

ensemble members to produce ensemble mean fields for precipitation-related variables (such as 

radar reflectivity) often leads to a smoother distribution with increased geographic extent and a 

low bias in intensity.  To counteract the low-bias tendency in the ensemble mean, it is often 

desirable to reassign the values of precipitation-related fields using values from the component 

ensemble members used to compute the mean; the result of this process (Ebert 2001) is the 

probability-matched (PM) mean.  The PM mean is a useful tool for forecasters, producing a 

single “best estimate” deterministic forecast; such ensemble-mean products for precipitation 

fields often outperform most or all of the ensemble members used to produce them (Ebert 2001).  
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PM mean Z is calculated at approximately 2 km above the surface for CNTL (Fig. 5a-c), 

CNTL_LIN (Fig. 5d-f), and NoMMP (Fig. 5g-i) at 1, 2, and 3 hours of forecast time, and 

compared with Z as observed by the WSR-88D radar network and interpolated to the model grid 

at the corresponding times (Fig. 5j-l). 

 In all experiments, the dominant convective mode is predicted with reasonable success 

(Fig. 5); the forecast ensembles predict a large mesoscale convective system with a trailing 

convective line in a similar location to the corresponding features in the WSR-88D observations 

(Fig. 5j-l).  There are noticeable errors in the PM mean forecasts, however; in particular, the 

leading convective line, extending southeast from the region of the LEV in the observations (Fig. 

5j-l) is not captured in the forecast ensemble.  In addition, the southern portion of the trailing 

convective line decays too quickly in the ensemble forecast at 0400 UTC and beyond in all 

forecast experiments (Fig. 5b-c, f-g, h-i).  Because of the prevailing south and south-

southwesterly flow during this case, the prediction of the southern portion of the trailing 

convective line is likely to have been affected by the flow conditions at the southern boundary of 

the model domain at the later times; the role of data assimilation tends to be diminished near the 

inflow boundaries.  

The Lin microphysics scheme, used in all 40 members of the NoMMP experiment during 

both the analysis and forecast periods, produces greater precipitation coverage than NEM and 

WSM schemes for this case (not shown). In addition, the reduced spread among NoMMP 

ensemble members as compared to the CNTL ensemble (SXJ11), results in much less variation 

in position (and thus higher ensemble mean values) in the trailing line, resulting in a more 

intense trailing line in the PM mean (Fig. 5g-i).  In contrast, CNTL used a mixed-microphysics 

ensemble containing members from the WSM-6 and NEM microphysical schemes, both of 
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which favored solutions with fewer regions of light precipitation.  Combined with greater 

variation among ensemble members, the result is a PM mean field with a weaker trailing line and 

less extensive regions of lighter precipitation in the northern portion of the system in CNTL (Fig. 

5c, f, i). 

 

b.  Probabilistic predictions of radar reflectivity 

Fast error growth and high levels of uncertainty from various sources make probabilistic 

forecast products potentially very valuable at the convective scale. Using a NEP method, as 

described in section 2, P[ Z > 25 dBZ] (Fig. 6) and P[ Z > 40 dBZ] (Fig. 7) are calculated at 

0300, 0400, and 0500 UTC for CNTL, CNTL_LIN, and NoMMP, and are compared with the 

corresponding reflectivity contour observed by the WSR-88D network.  A neighborhood radius 

of 5 km was used, resulting in a neighborhood consisting of 21 points in each ensemble member 

and an ensemble-wide neighborhood consisting of 840 forecast values across 40 members. 

The observed 25 dBZ threshold (the thick contour in Fig. 6) encompasses large areas, 

including the entire region surrounding the LEV circulation and much of the convective line 

extending to the south and southwest; areas with a high NEP of reflectivity exceeding 25 dBZ 

closely match regions where observed reflectivity exceeds 25 dBZ over the northern portion of 

the system throughout the forecast period (Fig. 6), though the forecast precipitation region does 

not extend quite as far north and east as in observations at 0400 and 0500 UTC.  The presence 

of the trailing convective line to the south and southwest is strongly indicated in the probabilistic 

forecasts, particularly in the NoMMP ensemble (Fig. 6g-i), though the decay of the southern 

portion of the line discussed in section 3a is evident in all experiments.   

Particularly at the 25 dBZ threshold, the spread among ensemble members in the single-
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microphysics forecast ensemble of NoMMP (Fig. 6g-i) is considerably less than that in the 

mixed-microphysics ensemble of CNTL (Fig. 6a-c), and also somewhat less than in CNTL_LIN 

(Fig. 6d-f) which uses single Lin microphysics in the ensemble forecast but starting from the 

mixed-microphysics ensemble analyses, as suggested by the probability (also by direct 

examination of the spread fields, not shown).  Both CNTL (Fig. 6a-c) and CNTL_LIN (Fig. 6d-

f) exhibit greater variation among ensemble members; the difference is most prominent in the 

trailing convective line.  Almost all members of NoMMP agree on a wide area of precipitation 

in excess of 25 dBZ in the trailing convective line at 0400 and 0500 UTC (Fig. 6h, i), giving rise 

to high probability there.  In CNTL (Fig. 6b, c) many members predict the precipitation in the 

trailing line, but there is much greater variation in the location and extent of that precipitation 

than in NoMMP.  Variation among ensemble members in CNTL_LIN (Error! Reference 

source not found.e, f) is greater than NoMMP, but far less than in CNTL.  The greater coverage 

of light precipitation in members using the Lin scheme and the reduced variation among 

ensemble members as a result of the use of a single-microphysics ensemble result in a large 

region of very high probability of Z > 25 dBZ associated with the trailing line in NoMMP, 

particularly at 0400 and 0500 UTC (Fig. 6h, i).  In general, use of a mixed-microphysics 

ensemble results in increased ensemble spread in a variety of model fields, particularly those 

closely related to precipitation processes, due to variation in hydrometeor type and distribution 

resulting from different treatment of microphysical processes. Increased spread alone does not 

necessarily improve the derived probabilistic forecast products, however, as we will consider 

later in this section through skill-score analyses. It does seem to help better account for model 

uncertainty with precipitation physics during the EnKF analysis. 

The 40 dBZ threshold is exceeded only in small, localized areas in the WSR-88D 
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observations (Fig. 7), in individual convective elements within the core of the LEV and the 

leading convective line.  Near the LEV (c.f. Fig. 5i-l) where observed radar reflectivity exceeds 

40 dBZ, moderate to high NEP values are found (Fig. 7), although observed reflectivity 

exceeding 40 dBZ in the leading convective line is largely missed by the forecast ensembles. 

Particularly at later forecast times, all experiments strongly overestimate the geographic 

coverage of 40 dBZ echoes, due in part to spurious convection that develops near the CASA 

radar network (Fig. 7c, f, i).  The causes of this spurious convection are considered in section 

3c.  The intensity of the trailing convective line extending southeast and south of the CASA 

domain into north-central Texas (Fig. 7) is also overestimated; moderate to high NEP values are 

present in areas where no reflectivity exceeding 40 dBZ was observed.  The ensemble 

adequately forecasts the extent and location of regions of moderate precipitation within the 

system (Fig. 6), but a combination of position and intensity errors, and development of spurious 

convection limits forecast skill for more intense convective cores (Fig. 7). 

 To more quantitatively evaluate the skill of the NEP forecasts of radar reflectivity, we 

next examine their performance using the Relative Operating Characteristic (ROC) skill score 

(Mason and Graham 1999).  The ROC Skill Score (RSS) is derived from the area under the ROC 

curve (Mason and Graham 1999), and is given by RSS 2 1ROCA  , where AROC is the area under 

the ROC curve.  The RSS has a maximum value of 1.0 for a perfect probabilistic forecast, and a 

minimum of -1.0, with scores at or below 0.0 indicating forecasts with no skill.  The ROC 

measures hit and false alarm rates at varying probability thresholds (Mason and Graham 1999); 

thus RSS is a summary statistic providing information on the ability of the probabilistic forecast 

system to correctly discriminate between events and non-events. RSS is calculated for forecasts 

of reflectivity exceeding 25 dBZ at grid level 10, over the entire model domain (Fig. 8a), as well 
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as over the verification sub-domain (Fig. 8b) located within and downwind of the CASA radar 

network (see Fig. 1). In all experiments, the RSS is considerably higher over the verification sub-

domain (Fig. 8b) than over the entire domain (Fig. 8a), because of error associated with the 

trailing convective line south and southwest of the CASA network. 

All forecast ensembles show considerable skill in forecasting reflectivity exceeding 25 

dBZ.  The 1-hour ensemble forecasts (valid at 0300 UTC) show the greatest skill, with 

verification sub-domain RSSs ranging from 0.84 to 0.89.  RSSs steadily decrease between 0300 

and 0500 UTC (Fig. 8), with domain-wide values (Fig. 8a) remaining slightly lower than those 

over the verification sub-domain (Fig. 8b).  The minimum RSS of 0.40, obtained for 

NoCASA_LIN on the full domain at 0500 UTC, corresponds to an area under the ROC curve of 

0.70; a ROC area of 0.70 is often considered to be the lower bound for a skillful forecast (Buizza 

1997; Kong et al. 2011), thus all experiments produced skillful 1, 2, and 3 hour NEP forecasts for 

regions of Z exceeding 25 dBZ. 

 NoMMP has the highest domain-wide RSS (Fig. 8a) throughout the forecast period and 

the highest RSS within the verification sub-domain (Fig. 8b) at 0300 and 0400 UTC; at 0500 

UTC, however, NoMMP actually has the lowest RSS in the sub-domain, while CNTL_LIN has 

the highest.  For this case, ensemble members using Lin microphysics showed, on average, 

slightly better agreement with observed Z than members using WSM6 or NEM microphysics.  

When ROC skill scores are calculated for three sub-ensembles within CNTL, grouped by the 

microphysics scheme used, the Lin sub-ensemble produces the highest RSS, while the NEM sub-

ensemble produces the lowest (not shown).  Similarly, within the verification sub-domain, RSSs 

decrease more slowly with time for CNTL_LIN and NoCASA_LIN than for their mixed-

microphysics counterparts CNTL and NoCASA (Fig. 8b).  The slightly improved RSS 
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performance in CNTL_LIN and NoCASA_LIN at later times appears to be in part due to slightly 

faster movement of the trailing convective line, in better agreement with observations.  These 

results suggest a positive impact of using a mixed-microphysics ensemble during the assimilation 

period, but an improved forecast error trend when using the Lin scheme only during the 

subsequent ensemble forecast, at least for this case.  The difference in the error trend is 

especially notable at longer forecast ranges when the impact of initial condition is reduced 

relative to the impact of forecast model. This is believed to be due to the relatively better 

performance of the Lin scheme, especially when compared to the simplified Schultz scheme. 

 When the ensemble forecasts are evaluated using the Brier score (Brier 1950) (not 

shown), another metric commonly used in probabilistic forecast evaluation, the conclusions 

drawn from verification using the RSS remain valid.  Brier scores for CNTL_LIN and 

NoCASA_LIN deteriorate more slowly with time than those of their mixed-microphysics 

counterparts, CNTL and NoCASA, a result which matches the improved error trend of the 

single-microphysics forecast ensembles seen in verification using the RSS.  Also, as with the 

RSS, NoMMP initially yields a good Brier score compared to the ensembles that used mixed-

microphysics during data assimilation, but exhibits the fastest deterioration of Brier score during 

the forecast period (and, by 0500 UTC, the worst Brier scores of any experiment).  

 

c.  Prominent biases and errors within the ensemble forecasts 

 During the discussion of the NEP forecasts of radar reflectivity exceeding 40 dBZ (Fig. 

7), we noted that the ensemble forecasts predict high probabilities of reflectivity exceeding 40 

dBZ in regions where no 40 dBZ reflectivity values were observed, particularly at 0400 and 0500 

UTC.  To more closely examine biases in reflectivity within the ensemble forecasts, we 
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construct domain-wide histograms of radar reflectivity each hour from 0200 UTC to 0500 UTC 

in the ensemble mean and ensemble member forecasts of CNTL, and compare them to 

histograms constructed from radar reflectivity observed by the WSR-88D radar network and 

interpolated to the model grid.  Bins are placed at intervals of 1 dBZ, and histograms 

constructed using the individual ensemble members are normalized by the size of the ensemble.  

The resulting histograms are shown in Fig. 9. 

 Two prominent biases are evident in the histograms of Z for both the ensemble mean and 

the ensemble members: an under-prediction (low bias) of weak (<25 dBZ) precipitation regions, 

and an over-prediction (high bias) of areas of intense (>40 dBZ) precipitation (Fig. 9).  At the 

initial time (0200 UTC), only the under-prediction of low Z is present in the ensemble members 

and the ensemble mean; the histograms match observations well for Z greater than approximately 

25 dBZ (Fig. 9).  By 0300 UTC both biases are present in both the ensemble mean and the 

ensemble members; the magnitude of these biases remains relatively constant from 0300 to 0500 

UTC (Fig. 9f-h, j-l).   

Both the low-bias in weak precipitation and the high bias in strong precipitation are 

smaller in magnitude for the ensemble mean than for the individual ensemble members at and 

after 0300 UTC (Fig. 9f-h, j-l).  The primary source of these differences is smoothing and 

decreased intensity of Z in the ensemble mean due to differences in the position of small-scale 

reflectivity features among individual ensemble members.  While this smoothing leads to a 

distribution of Z that agrees more closely with observations in this case, such smoothing is not 

universally desirable; for example, in the absence of the high bias in intense precipitation seen in 

the ensemble members in this case, the smoothing would degrade, not improve, the distribution 

of Z in the ensemble mean. 
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In addition to the two biases identified above, a third bias is also evident in the 

histograms of Fig. 9: a low-bias in total histogram population (number of grid cell volumes 

having  10 dBZ values) in the ensemble forecast compared to the observations.  This bias is 

present in both the ensemble mean (Fig. 9e-h) and the individual ensemble members (Fig. 9i-l), 

but is more prominent in the ensemble members.  Because a low-bias in total histogram 

population corresponds to a smaller spatial coverage, the low-bias is mitigated in the ensemble 

mean by the spatial smoothing inherent in the ensemble mean.  This low bias results largely 

from the low bias of reflectivity of less than 30 dBZ in the ensemble, and appears to be a result 

of under-prediction of the extent of stratiform precipitation within the system (see Fig. 6). 

The high bias in intense precipitation observed in the ensemble can be in part attributed to 

spurious convection that developed in and near the CASA radar network, as noted in section 3a.  

To provide additional insight into the source of this spurious convection, we calculate ensemble 

mean horizontal wind convergence fields at the first model level above ground (Fig. 10a, b) and 

show them together with potential temperature and horizontal winds at the same level (Fig. 10c, 

d), for CNTL at 0300 and 0400 UTC (Fig. 10).  In the ensemble, the cold pool in the wake of 

the MCS (cf. Fig. 5) is relatively weak, with temperatures at and near the surface under the MCS 

only around 2 to 3 K cooler than the surrounding area (Fig. 10c, d).  By comparison, many 

Oklahoma mesonet sites in southwestern Oklahoma recorded temperature drops of around 4 K 

during the passage of the MCS (not shown).  In addition, particularly at 0300 UTC (Fig. 10a), 

the strongest convergence near the surface occurs behind the MCS, in and near the CASA 

domain (Fig. 10c), where strong near-surface southeasterly and easterly flows upwind of the 

CASA domain transitions to weaker, more directionally-varying flow within (and to the 

northwest of) the CASA domain (Fig. 10).  The combination of low-level convergence and 
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relatively warm, buoyant air in the wake of the MCS seem to have contributed to the 

development of the spurious convection in this region in the model between 0300 and 0500 

UTC. 

 

d.  Impact of microphysics on ensemble reflectivity forecasts 

 To examine the impact of model microphysics during the ensemble forecasts, we 

calculate and compare RMS innovation of radar reflectivity (Z) for ensemble forecast 

experiments CNTL and CNTL_LIN.  As discussed in section 2, the CNTL and CNTL_LIN 

ensembles start from the same initial conditions, but CNTL uses a mixed-microphysics 

ensemble, while CNTL_LIN uses a single-microphysics ensemble consisting only of Lin 

microphysics members. Innovation is calculated using all grid volumes where the reflectivity 

observed by the WSR-88D radar network (interpolated to the model grid) exceeds 15 dBZ; this 

analysis technique is similar to that used in Aksoy et al. (2010).  Innovation values for each 

individual ensemble member, as well as the ensemble mean and probability-matched (PM) 

ensemble mean, are shown at 1, 2, and 3 hours of forecast time (0300, 0400, and 0500 UTC 

respectively) in Fig. 11.   

Both CNTL and CNTL_LIN exhibit similar evolution of RMS innovation of Z for the 

ensemble mean and PM mean forecasts.  The ensemble mean consistently outperforms the PM 

mean, as well as most individual ensemble members (Fig. 11).  This result is in agreement with 

Aksoy et al. (2010), whose ensemble mean RMS innovation of Z was also lower than most of 

their ensemble members.  The relatively good performance of the ensemble mean can be 

attributed to the high bias in the reflectivity forecast (Fig. 9) discussed in section 3b, since 

position differences in the strongest reflectivity cores between individual members give an 
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ensemble mean Z field that is smoother and contains lower reflectivity values than the individual 

members.  The PM mean, though it contains the same spatial structure as the ensemble mean, 

has the same high bias as the individual ensemble members.  Because the ensemble mean 

consistently outperforms the PM mean, we can conclude that it is the absence of the high bias, 

rather than improved spatial structure of the Z field, that results in lower RMS innovation of Z in 

the ensemble mean. 

In the CNTL ensemble, the individual ensemble members exhibit a trimodal distribution, 

grouped into three clusters segregated by the microphysical scheme used in the model.  The 

cluster of members using the Lin microphysical scheme has the lowest RMS innovation, 

followed by the cluster of members using WSM-6 microphysics, and the cluster using NEM 

microphysics has the highest RMS innovation values.  The strong clustering in CNTL indicates 

that error associated with the microphysical parameterization is a dominant factor in model error 

in Z during the ensemble forecast; in CNTL_LIN, where all members used the Lin microphysical 

scheme, the ensemble members have a unimodal distribution.  Though the increased ensemble 

dispersion of CNTL is desirable, ensemble dispersion could also be increased using other 

methods, such as perturbed boundary conditions, perturbations within a microphysical scheme, 

and the use of different spread-maintenance techniques during the assimilation period; such 

methods will be a subject for future work.  Because the microphysical parameterization appears 

to be a dominant source of error in the forecasts, using a more sophisticated 2- or 3-moment 

microphysical scheme might also be desirable to reduce overall RMS error in the ensemble; this 

too could be a subject for future study. 

  

e.  Ensemble and probabilistic forecasts of mesovortices 
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Forecast ensemble members of CNTL, NoMMP, and NoCASA were manually examined 

at 0400, 0420, and 0440 UTC to identify significant low-level vortices, as outlined in section 2. 

Such low-level vortices are considered objects for the purpose of verification.  Equation (2) was 

then applied to generate forecasts of the probability of a significant (vertical vorticity ζ > 0.02 s-

1) low-level vortex being present within 25 km of a point.  The results of this analysis are 

presented in Fig. 12; the probabilities thus calculated are shown at 0400, 0420, and 0440 UTC 

for CNTL (Fig. 12a-c), NoMMP (Fig. 12d-f), and NoCASA (Fig. 12g-i), along with the locations 

of reported tornadoes (which were co-located with their parent mesovortices). 

 All three forecast ensembles predict near-surface vortices in the vicinity of the reported 

tornadic activity at 0400, 0420, and 0440 UTC (Fig. 12).  At 0400 and 0420 UTC, the 

probability field of CNTL exhibits a tight concentration of the highest probability values close to 

the reported tornado location (Fig. 12a, b).  At 0400 UTC, the location of the maximum near-

surface vortex probability for CNTL of 0.65 (Fig. 12a) is located within 3 km of the reported 

tornado, and its probability field is tightly concentrated around the location of the observed 

tornado.  In NoMMP and NoCASA (Fig. 12d, g) maximum probabilities are located 

approximately 10 and 20 km, respectively, from the reported tornado location. NoCASA and 

NoMMP forecast probabilities are only 0.43 and 0.35 (respectively) at the reported tornado 

location at 0400 UTC, and, especially in NoMMP (Fig. 12d), have relatively diffuse probability 

distributions with lower maxima.  In NoMMP, this difference results from a wider spread of 

vortex location predictions seen within the single-microphysics ensemble.  The only difference 

between NoCASA and CNTL, however, was the absence or presence of CASA radar data during 

the assimilation period, suggesting that assimilating CASA data positively impacts the prediction 

of low-level vortex features, yielding a higher maximum probability prediction at 0400 UTC in 
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the vicinity of the observed tornado. This finding is consistent with that of Schenkman et al 

(2011), where low-level radial velocity data from CASA radars were found to improve the LEV 

forecast. 

 The results at 0420 UTC (Fig. 12b, e, and h) are similar to those at 0400 UTC: CNTL 

(Fig. 12b) produces the highest maximum probability (between 0.4 and 0.5) and exhibits a 

probability field concentrated close to the reported tornado location. NoCASA (Fig. 12h) and 

NoMMP (Fig. 12e) predict lower probabilities (approximately 0.2 and 0.1 respectively) of a 

significant low-level vortex being present in the vicinity of the observed tornado.  The 

probability in the vicinity of the observed tornado is lower in all three experiments at 0420 UTC 

than at 0400 UTC.  At 0440 UTC (Fig. 12g-i), CNTL and NoCASA both feature probability 

fields with the highest predicted probabilities in close proximity to the observed tornado.   

Unlike at 0400 and 0420 UTC, the probability near the reported tornado location is actually 

slightly higher in NoCASA than in CNTL.  NoMMP performs poorly at 0440 UTC, (Fig. 12h), 

predicting generally low probability of significant vortices, with the highest probabilities located 

several tens of kilometers away from the reported tornado.  Because of the small size of the 

CASA domain and increasing impact of model factors (such as microphysical parameterization) 

as the forecast period proceeds, the greatest impact of CASA data from the initial condition of 

the ensemble would be expected at shorter forecast times, consistent with the results shown in 

Fig. 12. 

One issue that arises when considering prediction of tornadic mesovortices is a question 

of the limits of predictability for these features.  Smaller features within atmospheric flows tend 

to exhibit error growth on shorter time scales (Lorenz 1969), and indeed, the tornadoes observed 

during this case formed and decayed with time scales of less than an hour.  The tornadic 
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mesovortices within the 8-9 May 2007 MCS, however, were strongly forced by larger-scale 

features within the MCS that spawned them.  Because MCS’s often exhibit predictability on a 

significantly longer time scale (Carbone et al. 2002), we believe that it is therefore reasonable to 

consider ensemble predictions of the tornadic mesovortices within the MCS at time scales of 2-3 

hours because of this larger-scale forcing. 

 We further examine the role of microphysics in vortex prediction by plotting locations of 

low-level vortex centers in individual ensemble members at 0400 UTC, along with the ensemble 

mean vortex location and the location of the EF-1 Minco tornado (reported to have begun at 

0354 UTC), for CNTL (Fig. 13a), NoMMP (Fig. 13b), and NoCASA (Fig. 13c).  Each low-level 

vortex center is marked by a letter corresponding to the microphysical scheme used in the 

member that produced it (“L” for Lin, “W” for WSM-6, and “N” for NEM).  CNTL (Fig. 13a) 

exhibits the closest clustering of predicted low-level vortices around the location of the observed 

tornado; 26 of 40 (65%) ensemble members predict a low-level vortex center within 25 km.  

These 26 members include 12 of the 16 Lin members and 11 of the 16 WSM-6 members, but 

only 3 of the 8 NEM members.  In NoCASA (Fig. 13c) 17 of 40 (43%) members predict vortex 

centers within 25 km of the observed tornado location; these 17 members consist of 10 Lin, 5 

WSM-6, and 2 NEM members.  In CNTL and NoCASA, Lin ensemble members have the least 

error in vortex location, while NEM members have the most; many NEM members are outliers 

(see Fig. 13a, c), or fail to produce significant low-level vortices.  In the NoMMP ensemble 

(Fig. 13b), predicted vortex locations vary substantially among members; only 14 members 

(35%) predict low-level vortices within 25 km of the observed tornado location, underscoring the 

positive impact of a mixed-microphysics forecast ensemble in mesovortex prediction.   

 Despite differences in the distribution of individual members, the forecast ensemble mean 
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low-level vortex locations (marked by “EM” in Fig. 13a-c) were similar in all three experiments.  

In each case the ensemble mean location was located slightly to the northwest of the observed 

tornado location, with the difference in position ranging from approximately 12 km in CNTL 

(Fig. 13a) to 18 km in NoCASA (Fig. 13c).  This result underscores the importance of 

probabilistic information on forecast uncertainty; while CNTL produced a much sharper 

probabilistic forecast of the low-level vortex than NoMMP, ensemble mean vortex locations 

differed by only about 3 km, or 1.5 grid intervals (Fig. 13a, b) between the two experiments.  

Also, NoCASA forecasted a higher vortex probability with more individual members clustered 

around the true vortex location than NoMMP but its ensemble mean vortex location had a larger 

position error (Fig. 13b, c).  Probabilistic information is important in assessing the reliability of 

these forecasts; an ensemble mean or single deterministic forecast cannot provide such 

information. 

 

4. Discussion and Summary 

 In this paper, we perform 3-hour ensemble forecasts for the tornadic MCS of 8-9 May 

2007 that occurred over northern Texas and southern and central Oklahoma, starting from 

ensemble Kalman filter analyses produced by assimilating CASA and WSR-88D radar data. We 

examine the impact of assimilating CASA (in addition to WSR-88D) radar data on the forecast, 

and the impact of the model microphysics during both the assimilation and forecast periods. The 

choice of microphysical scheme made a significant impact on forecast evolution for predictions 

of radar reflectivity and mesovortices. Ensemble members using the Lin or WSM-6 scheme 

performed considerably better in prediction of low-level mesovortex locations than members 

using the NEM microphysical scheme, while members using the Lin microphysical scheme were 
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found to perform best in terms of RMS innovation for prediction of radar reflectivity. 

 From the ensemble forecast experiments, probabilistic predictions for radar reflectivity 

and low-level circulations are obtained.  A neighborhood ensemble probability approach 

(Schwartz et al. 2010) is applied to generate 60-180 minute probabilistic forecasts for radar 

reflectivity, and an object-oriented ensemble forecast approach is used to generate 120-160 

minute probabilistic forecasts of low-level vortex location.  Both the assimilation of CASA data 

and the use of a mixed-microphysics ensemble during the EnKF data assimilation cycles have a 

positive impact on forecasts of mesovortices.  

All ensemble forecast experiments predict the dominant convective mode during the 

forecast period reasonably well, indicating a MCS with an embedded LEV, and a trailing 

convective line extending to the south, though the southern end of the convective line decays too 

quickly in the forecasts as compared to the observations.  Two prominent biases are present in 

the ensemble member and ensemble mean forecasts of radar reflectivity: a low bias for light (< 

25 dBZ) precipitation, and a high bias for intense (> 40 dBZ) precipitation.  Microphysical 

parameterization is found to be a dominant factor in model error in reflectivity forecasts.  When 

a single microphysics scheme is used, the innovation of radar reflectivity within the forecast 

ensemble exhibits a unimodal distribution, but when a mixed-microphysics scheme containing 

members of three different single-moment microphysics schemes is used, a trimodal distribution 

results, segregated by microphysical scheme. 

The ensemble forecasts predict the location of tornadic mesovortices between 120 and 

160 minutes of forecast time with varying degrees of success.  The CNTL ensemble performs 

particularly well, predicting a localized region of high (maximum of 0.65) neighborhood 

ensemble probability of a significant low-level vortex in close proximity to the observed 
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mesovortex that spawned the 0354 UTC EF-1 Minco tornado.  NoCASA and NoMMP predict 

comparatively diffuse probability fields with lower probability values. 

 The results of this study are encouraging with regard to development of a future warn-on-

forecast severe weather warning system (Stensrud et al. 2009), demonstrating that, at least for the 

case studied, it is possible to provide useful probabilistic predictions of convective hazards, 

including areas of heavy precipitation and tornadic mesovortices, with lead times of 1 to 3 hours. 

Significant challenges do remain; the results of this study indicate that controlling model bias 

and maintaining appropriate ensemble spread will be particularly important in probabilistic 

predictions of this kind.  In addition, the robustness of such probabilistic predictions still needs 

to be tested and calibrated over a large number of cases including a wide range of tornadic and 

non-tornadic convective storms.  We also note that objective identification and verification of 

tornado-scale vortices is non-trivial (Potvin et al. 2009).  At present, the high computational cost 

of performing such high-resolution predictions in real-time remains a barrier to operational 

implementation which will need to be addressed with algorithm and code optimizations and 

access to petascale computing systems. Further improvement in the prediction model and the 

inclusion of other available observations are also important; such work is ongoing with this and 

other cases. Despite the use of a single case in this study, we believe such careful case studies 

represent an essential first step towards full systematic testing and operational implementation. 
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Fig. 2. Composite radar reflectivity (dBZ) of the ensemble mean analysis state from at 0200 
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Fig. 4.  Storm-relative radial velocity from observed level-III WSR-88D data for the 1.5 degree 
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Mesovortices associated with the reported tornadoes are circled.  Urban and county boundaries 
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Fig. 5. Probability-matched ensemble mean forecasts of reflectivity (shaded) at model grid level 

10 (about 2 km AGL) for (a-c) CNTL, (d-f) CNTL_LIN, and (g-i) NoMMP at 0300, 0400, and 

0500 UTC. Also shown is (j-l) reflectivity observed by the WSR-88D network, interpolated to 

the same model grid level at 0300, 0400, and 0500 UTC.  The center of the line-end vortex in 

the observations is indicated by the black marker in panels (j-l). 

Fig. 6. Neighborhood ensemble probabilities (shaded) of forecast reflectivity exceeding 25 dBZ, 

P[ Z > 25 dBZ ] , at model grid level 10 (about 2 km AGL), in an area surrounding the CASA 

domain, for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 UTC, CNTL_LIN at (d) 0300 
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UTC, (e) 0400 UTC, and (f) 0500 UTC, and NoMMP at (g) 0300 UTC, (h) 0400 UTC, and (i) 

0500 UTC.  The 25 dBZ radar reflectivity contours observed by the WSR-88D radars at the 

same time are in bold black contours. 

Fig. 7. As Fig. 6, but for P[ Z > 40 dBZ ]  and the 40 dBZ radar reflectivity contour. 

Fig. 8. ROC skill score for 1-, 2-, and 3-hour forecasts of radar reflectivity at the 25 dBZ 

threshold on vertical grid level k = 10 (slightly more than 2 km above mean sea level) calculated 

over (a) the entire horizontal model domain and (b) the ETS verification subdomain as depicted 

by the black outline in Fig. 1. 

Fig. 9. Domain-wide histograms of reflectivity intensity in ensemble forecast experiment CNTL 

during the 3-hour forecast period.  Shown are WSR-88D observations interpolated to the model 

grid (top row), the ensemble mean (center row), and individual ensemble members normalized 

by the size of the ensemble (bottom row).  The vertical axis indicates the number of model grid 

cell volumes (in thousands) containing reflectivity of a given intensity. 

Fig. 10. Ensemble mean horizontal wind convergence (s-1; shaded) at (a) 0300 and (b) 0400 

UTC, as well as horizontal winds (barbs) and potential temperature (K; shaded) at (c) 0300 and 

(d) 0400 UTC in CNTL at the first model level above ground. 

Fig. 11. RMS innovation of radar reflectivity during the forecast period for ensemble forecasts 

CNTL (left) and CNTL_LIN (right).  The ensemble mean forecast is indicated by the thick, 

solid black line, while the probability-matched ensemble mean forecast is indicated by the 

dashed black line.  The thin gray lines indicated innovation within individual ensemble 

members, with different shades of gray used for members using differing microphysical 

parameterization schemes. 

Fig. 12. Ensemble-based forecast of P[ low-level circulation with vertical vorticity ζ > 0.02 s-1 
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within 25 km of a point ]  for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 UTC; 

NoMMP at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC; and NoCASA at (g) 0300 UTC, (h) 

0400 UTC, and (i) 0500 UTC.  The triangles indicate the reported locations of the tornadoes 

reported at 0354 UTC (in panels (a), (d), and (g)), at 0426 UTC (in panels (b), (e), and (h)), and 

at 0443 UTC (in panels (c), (f), and (i)). 

Fig. 13. Locations of significant (vertical vorticity ζ > 0.02 s-1), discernible, low-level (grid level 

10, approximately 2 km above the surface) mesovortex centers for all ensemble members at 0400 

UTC in experiments (a) CNTL, (b) NoMMP, and (c) NoCASA.  Individual members are coded 

by microphysical type; members using Lin microphysics  are marked “L”, members using 

WSM6 microphysics are marked “W”, and members using NEM microphysics are marked “N”.  

The ensemble mean vortex location is marked “EM”.  The location of the EF1 tornado reported 

at 0354 UTC is marked by the black triangle. 
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Table 1.  Summary of forecast experiments. 
 
 CNTL CNTL_LIN NoCASA NoCASA_LIN NoMMP 
WSR-88D Assimilated? Yes Yes Yes Yes Yes 
CASA Assimilated? Yes Yes No No Yes 

Mixed-Microphysics 
Ensemble? 

Yes 
During Data 
Assimilation 

Only 
Yes 

During Data 
Assimilation 

Only 
No 
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Fig. 1. Geographic extent of the model domain.  Shading indicates surface elevation in meters 
above sea level.  The forecast verification sub-domain used for skill score calculations in  

 

Fig. 8b is indicated by the black box in the northeastern portion of the forecast domain.   
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Fig. 2. Composite radar reflectivity (dBZ) of the ensemble mean analysis state from at 0200 
UTC 9 May 2007 for (a) CNTL, (b) NoMMP, and (c) NoCASA, from which the deterministic 
forecasts in Fig. 4 were launched; also shown is (d) composite radar reflectivity (dBZ) observed 
by WSR-88D radars KAMA, KDYX, KFWS, KLBB, and KTLX at 0200 UTC 9 May 2007.  30 
km CASA radar range rings are included for reference.  This figure is a reproduction of Fig. 4 of 
Snook et al. (2011). 
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Fig. 3.  Forecast diagram detailing the analysis and forecast periods for experiments CNTL, 
NoMMP, and NoCASA.  
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Fig. 4.  Storm-relative radial velocity from observed level-III WSR-88D data for the 1.5 degree 
elevation scan of KTLX at (a) 0400 UTC, (b) 0420 UTC, and (c) 0440 UTC, 9 May 2007.  
Mesovortices associated with the reported tornadoes are circled.  Urban and county boundaries 
are shown. 
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Fig. 5. Probability-matched ensemble mean forecasts of reflectivity (shaded) at model grid level 
10 (about 2 km AGL) for (a-c) CNTL, (d-f) CNTL_LIN, and (g-i) NoMMP at 0300, 0400, and 
0500 UTC. Also shown is (j-l) reflectivity observed by the WSR-88D network, interpolated to 
the same model grid level at 0300, 0400, and 0500 UTC.  The center of the line-end vortex in 
the observations is indicated by the black marker in panels (j-l). 
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Fig. 6. Neighborhood ensemble probabilities (shaded) of forecast reflectivity exceeding 25 dBZ, 
P[ Z > 25 dBZ ] , at model grid level 10 (about 2 km AGL), in an area surrounding the CASA 
domain, for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 UTC, CNTL_LIN at (d) 0300 
UTC, (e) 0400 UTC, and (f) 0500 UTC, and NoMMP at (g) 0300 UTC, (h) 0400 UTC, and (i) 
0500 UTC.  The 25 dBZ radar reflectivity contours observed by the WSR-88D radars at the 
same time are in bold black contours.  
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Fig. 7. As Fig. 6, but for P[ Z > 40 dBZ ]  and the 40 dBZ radar reflectivity contour. 
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Fig. 8. ROC skill score for 1-, 2-, and 3-hour forecasts of radar reflectivity at the 25 dBZ 
threshold on vertical grid level k = 10 (slightly more than 2 km above mean sea level) calculated 
over (a) the entire horizontal model domain and (b) the ETS verification subdomain as depicted 
by the black outline in Fig. 1. 
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Fig. 9. Domain-wide histograms of reflectivity intensity in ensemble forecast experiment CNTL 
during the 3-hour forecast period.  Shown are WSR-88D observations interpolated to the model 
grid (top row), the ensemble mean (center row), and individual ensemble members normalized 
by the size of the ensemble (bottom row).  The vertical axis indicates the number of model grid 
cell volumes (in thousands) containing reflectivity of a given intensity. 
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Fig. 10. Ensemble mean horizontal wind convergence (s-1; shaded) at (a) 0300 and (b) 0400 
UTC, as well as horizontal winds (barbs) and potential temperature (K; shaded) at (c) 0300 and 
(d) 0400 UTC in CNTL at the first model level above ground. 
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Fig. 11. RMS innovation of radar reflectivity during the forecast period for ensemble forecasts 
CNTL (left) and CNTL_LIN (right).  The ensemble mean forecast is indicated by the thick, 
solid black line, while the probability-matched ensemble mean forecast is indicated by the 
dashed black line.  The thin gray lines indicated innovation within individual ensemble 
members, with different shades of gray used for members using differing microphysical 
parameterization schemes. 
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Fig. 12. Ensemble-based forecast of P[ low-level circulation with vertical vorticity ζ > 0.02 s-1 
within 25 km of a point ]  for CNTL at (a) 0300 UTC, (b) 0400 UTC, and (c) 0500 UTC; 
NoMMP at (d) 0300 UTC, (e) 0400 UTC, and (f) 0500 UTC; and NoCASA at (g) 0300 UTC, (h) 
0400 UTC, and (i) 0500 UTC.  The triangles indicate the reported locations of the tornadoes 
reported at 0354 UTC (in panels (a), (d), and (g)), at 0426 UTC (in panels (b), (e), and (h)), and 
at 0443 UTC (in panels (c), (f), and (i)).   
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Fig. 13. Locations of significant (vertical vorticity ζ > 0.02 s-1), discernible, low-level (grid level 
10, approximately 2 km above the surface) mesovortex centers for all ensemble members at 0400 
UTC in experiments (a) CNTL, (b) NoMMP, and (c) NoCASA.  Individual members are coded 
by microphysical type; members using Lin microphysics  are marked “L”, members using 
WSM6 microphysics are marked “W”, and members using NEM microphysics are marked “N”.  
The ensemble mean vortex location is marked “EM”.  The location of the EF1 tornado reported 
at 0354 UTC is marked by the black triangle.  

 

 

 

 

 


