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ABSTRACT

One of the goals of the National Science Foundation Engineering Research Center (ERC) for Collabo-

rative Adaptive Sensing of the Atmosphere (CASA) is to improve storm-scale numerical weather prediction

(NWP) by collecting data with a dense X-band radar network that provides high-resolution low-level cov-

erage, and by assimilating such data into NWP models. During the first spring storm season after the de-

ployment of four radars in the CASA Integrated Project-1 (IP-1) network in southwest Oklahoma, a tornadic

mesoscale convective system (MCS) was captured by CASA and surrounding Weather Surveillance Radars-

1988 Doppler (WSR-88Ds) on 8–9 May 2007. The MCS moved across northwest Texas and western and

central Oklahoma; two tornadoes rated as category 1 on the enhanced Fujita scale (EF-1) and one tornado of

EF-0 intensity were reported during the event, just to the north of the IP-1 network. This was the first tornadic

convective system observed by CASA.

To quantify the impacts of CASA radar data in storm-scale NWP, a set of data assimilation experiments

were performed using the Advanced Regional Prediction System (ARPS) ensemble Kalman filter (EnKF)

system configured with full model physics and high-resolution terrain. Data from four CASA IP-1 radars and

five WSR-88Ds were assimilated in some of the experiments. The ensemble contained 40 members, and radar

data were assimilated every 5 min for 1 h. While the assimilation of WSR-88D data alone was able to produce

a reasonably accurate analysis of the convective system, assimilating CASA data in addition to WSR-88D

data is found to improve the representation of storm-scale circulations, particularly in the lowest few kilo-

meters of the atmosphere, as evidenced by analyses of gust front position and comparison of simulated Vr with

observations. Assimilating CASA data decreased RMS innovation of the resulting ensemble mean analyses of

Z, particularly in early assimilation cycles, suggesting that the addition of CASA data allowed the EnKF

system to more quickly achieve a good result. Use of multiple microphysics schemes in the forecast ensemble

was found to alleviate underdispersion by increasing the ensemble spread. This work is the first assimilating

real CASA data into an NWP model using EnKF.

1. Introduction

Accurate prediction of individual deep, moist convec-

tive storms is one of the major challenges of modern

numerical weather prediction (NWP) in research and

operational settings. Fully resolving all important storm-

scale circulations is very expensive from a computational

standpoint. In addition, most existing observing networks

are quite sparse relative to the spatial scale of the flows

being predicted, and offer incomplete observational

coverage in both physical and parameter spaces. These

challenges are then compounded by uncertainties and

errors within NWP models. As computational power con-

tinues to increase, and as new high-resolution observing

platforms, such as densely networked X-band radars

(McLaughlin et al. 2009), are deployed to address the

issues described above, a new challenge has arisen: as-

similating data from multiple observing systems to best

estimate the current state of the atmosphere and ini-

tialize storm-scale NWP models.

Because convective-scale errors generally grow very

quickly (Lorenz 1969), it is vital to obtain the best possible
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estimate of the atmospheric state for NWP model ini-

tialization, ideally accompanied with an estimate of

the uncertainty. While objective analysis can often be

used for the purpose of obtaining a gridded analysis

when observed and state variables are the same, remote

sensing platforms such as radar and satellite do not di-

rectly observe most state variables, necessitating ad-

vanced data assimilation methods able to ‘‘retrieve’’

state variables not directly observed. Such methods usu-

ally take advantage of physical laws linking various state

variables and/or utilize information contained in obser-

vations taken at different times. They also try to obtain

the ‘‘optimal’’ state estimation by taking into account

errors associated with various sources of information.

Four-dimensional variational data assimilation (4DVAR)

directly uses the numerical model to provide con-

straints among the estimated state variables, while the

ensemble Kalman filter (EnKF) approach (Evensen

1994) utilizes statistical correlations among variables

derived from an ensemble of predictions to achieve

a similar goal.

For convective-scale NWP, the only observing plat-

form currently capable of providing spatially and tem-

porally complete coverage of a convective system at

a resolution sufficient to capture storm-scale features

is Doppler radar. In the United States, the National

Weather Service (NWS), together with other collab-

orating agencies, operates the Weather Surveillance

Radars-1988 Doppler (WSR-88D) network (Crum et al.

1993), consisting of 158 S-band Doppler radars with a

maximum range of 248 n mi. While the WSR-88D net-

work is relatively efficient at scanning the precipitating

atmosphere, the long-range radars composing the WSR-

88D network cannot reach the lower troposphere be-

yond a limited distance from the radar site because

of the curvature of the earth. Limited low-level radar

coverage presents a problem for convective-scale data

assimilation and NWP; many aspects of storm- and

substorm-scale dynamics are sensitive to the near-

surface atmospheric state, including the low-level cold

pool and its interaction with the surrounding environment

(e.g., Rotunno et al. 1988; Markowski et al. 2002; Snook

and Xue 2008).

To address the near-surface observation problem de-

scribed above, the Engineering Research Center (ERC)

for Collaborative Adaptive Sensing of the Atmosphere

(CASA) was established to develop short-range, net-

worked X-band radars designed to be deployed in close

proximity to one another (McLaughlin et al. 2009). The

primary CASA test bed is located in southwest Okla-

homa and consists of a network of four dual-polarized

X-band radars with a maximum range of 40 km (Brotzge

and Lemon 2010). This radar network is located roughly

halfway between WSR-88D sites KTLX at Oklahoma

City and KFDR at Frederick, Oklahoma, a location

upstream of the Oklahoma City metropolitan area during

prevailing westerly and southwesterly flow during the

warm season. At the network location, neither KTLX nor

KFDR can sample the lowest kilometer of the atmo-

sphere (Xue et al. 2006), maximizing the potential ben-

efits of increased low-level coverage provided by the

CASA radars. A comparison of the key specifications

of CASA and WSR-88D radars is shown in Table 1.

Despite having relatively wide beams compared to WSR-

88D (Table 1), the CASA radars possess such advantages

as a radial gate spacing of 100 m, a shorter mean range

distance of observations (hence higher mean cross-

beam resolutions), and a dynamic adaptive scanning

strategy that identifies targets of meteorological interest

and chooses an optimal combination of sector scans and

full-circle scans at up to eight elevation angles to maxi-

mize the spatial and temporal coverage patterns of the

features of greatest interest (Brotzge et al. 2005).

Commonly used methods for assimilating radar data into

storm-scale NWP models include the three-dimensional

variational data assimilation (3DVAR, e.g., Xue et al.

2003; Hu et al. 2006) and four-dimensional variational

data assimilation (4DVAR, e.g., Sun et al. 1991; Sun

and Crook 1997, 1998) methods, and EnKF (e.g., Snyder

and Zhang 2003; Dowell et al. 2004b; Tong and Xue

2005b). Compared to 3DVAR, EnKF has the notable

advantage of being able to incorporate multivariate,

TABLE 1. Comparison of CASA X-band and WSR-88D S-band radar specifications.

CASA WSR-88D

Wavelength (cm) 3.19 (X band) 10.0 (S band)

Max peak power (kW) 25 750

Pulse repetition frequency (kHz) Variable up to 3.33 0.3–1.3

3-dB beamwidth (8) 2.0 0.95

Polarization Dual linear (V, H) Single polarization (H only)

Rotation rate (8 s21) Variable up to 120 36

Antenna gain (dB) 38 45

Antenna diameter (m) 1.5 8.5

Max range (km) 40 459
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flow-dependent error covariance, including cross co-

variance, as derived from the ensemble (Evensen 2003),

allowing effective ‘‘retrievals’’ of state variables from

radial velocity and radar reflectivity (Snyder and Zhang

2003; Tong and Xue 2005b). Unlike 4DVAR, EnKF

does not require the development of an adjoint model;

such development is labor intensive and the resulting

adjoint model often has difficulties with highly nonlinear

processes. In addition, ensemble forecasts are believed

to be particularly important for storm-scale NWP (Xue

et al. 2007). EnKF naturally provides a set of analyses

that in principle best characterizes the analysis un-

certainty; such analyses can therefore serve as initial

conditions for ensemble forecasts.

One of the important goals for the CASA project is

to evaluate the value and benefit of data collected by its

experimental testbed radars. Preliminary results using

the Advanced Regional Prediction System (ARPS;

Xue et al. 2000; Xue et al. 2003) Data Analysis System

(ADAS; Brewster 1996), together with its cloud anal-

ysis package, for data assimilation (Brewster et al.

2007) show a generally positive impact from the addi-

tion of IP-1 data. On 8–9 May 2007, a mesoscale con-

vective system (MCS) with a pronounced line-end

vortex (LEV) developed over southwestern Oklahoma

and produced several tornadoes shortly after moving

out of the CASA domain. Schenkman et al. (2010) studied

this case, using ARPS 3DVAR and a cloud analysis to

assimilate CASA and WSR-88D reflectivity and radial

velocity data, and demonstrated positive impacts of CASA

IP-1 data on the prediction of the MCS. In this study, we

apply the ARPS EnKF system (Tong and Xue 2005a,b;

Xue et al. 2006) to the 8–9 May 2007 LEV event and fur-

ther evaluate the impacts of CASA radar data.

EnKF has proven to be very effective in retrieving

accurate and dynamically consistent wind, temperature,

and microphysical fields from reflectivity and radial ve-

locity observations when using simulated observations

(e.g., Snyder and Zhang 2003; Zhang et al. 2004; Tong

and Xue 2005a; Xue et al. 2006; Tong and Xue 2008a).

Obtaining analyses that lead to good short-range fore-

casts of convective storms, however, remains a challenge

(Dowell et al. 2004a; Tong 2006); most storm-scale

EnKF studies to date have focused on analysis rather

than forecasting; thus, relatively few papers showing

good forecast results have been published so far, except

for Lei et al. (2009) and Dowell et al. (2010). This study

investigates the ability of a storm-scale EnKF system to

produce a quality analysis by assimilating radial velocity

and reflectivity data from four X-band CASA IP-1

radars and five S-band WSR-88D radars during CASA’s

first observed tornadic system. Forecast results will be

addressed in a future paper.

CASA also seeks to detect, track, analyze, and pre-

dict tornadoes or processes leading to tornadogenesis

(McLaughlin et al. 2009). Most previous studies in-

volving analysis or simulation of tornadic storms have

focused on supercells (e.g., Klemp et al. 1981; Klemp

and Rotunno 1983; Rotunno 1993; Dowell and Bluestein

1997; Dowell et al. 2004b). While not as common as

tornadoes within supercells, nonsupercellular tornadoes

make up a significant portion of tornado occurrences.

Trapp et al. (2005) found evidence suggesting that ap-

proximately 20% of tornadoes within the continental

United States are not associated with cellular convec-

tion, and that most tornadoes from noncellular convec-

tion occur in association with bow echoes, or LEVs (e.g.,

Weisman 1993), within an MCS, as was the case on 8–9

May 2007.

This study addresses two major goals: 1) developing

and demonstrating the ability of an EnKF method in

assimilating real data from radars with different oper-

ating characteristics (including S-band WSR-88D radars

with 3608 scans and X-band CASA radars with sector

scans) to accurately estimate the state of a mesoscale

convective system and 2) assessing the added value of

CASA radar data in the resulting analyses. The re-

mainder of this paper is organized as follows. Section 2

describes the details of the 8–9 May 2007 MCS case, the

radar data used and their preprocessing, the numerical

model used, and the EnKF data assimilation method

and procedure. In section 3, results of the EnKF analysis

are presented and analyzed. Section 4 contains further

discussion, a summary, and our conclusions.

2. Case, data, and methods

In this study, we apply a version of the ARPS EnKF

data assimilation system (Tong and Xue 2005b; Xue

et al. 2006; Tong and Xue 2008b), modified to allow the

use of mixed-microphysics ensembles, to assimilate the

CASA and WSR-88D radar data gathered on 8–9 May

2007 during the first tornadic case observed by the CASA

IP-1 radar network. During this event, an MCS with

a pronounced LEV developed and moved through much

of southwest/central Oklahoma and passed directly over

the CASA IP-1 network. This system spawned two tor-

nadoes confirmed as category 1 events on the enhanced

Fujita scale (EF-1) and one confirmed EF-0 tornado in

central Oklahoma between 0354 and 0443 UTC, just

north of the IP-1 network.

a. 8–9 May 2007 case overview

The location, timing, and intensity of the three torna-

does that developed during the evening of 8 May 2007

are summarized in Fig. 1. Among the two EF1 tornadoes,

3448 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



the first occurred near Minco, Oklahoma, at 0354 UTC

9 May 2007, and the second occurred near El Reno,

Oklahoma, at 0443 UTC. The third, weaker, EF-0 tor-

nado was confirmed near Union City, Oklahoma, re-

ported at 0426 UTC. The El Reno tornado was the most

destructive of the three, causing an estimated $3 million

of damage. Of these three tornadoes, only for the

El Reno tornado did the NWS issue a tornado warning

prior to tornado occurrence, underscoring the challenge

of forecasting tornadoes within MCSs.

During the afternoon and evening of 8 May 2007,

a surface low was developing in southwest Oklahoma

near the intersection of a nearly stationary east–west

frontal boundary and an advancing cold front to the west

(not shown). Multicellular convection along the cold

front grew into an MCS (Kumjian and Ryzhkov 2008)

beginning around 1200 UTC on 8 May 2007, in an area

of upper-level divergence associated with a cyclonically

curved jet streak. The MCS continued to grow in cov-

erage, and by 0000 UTC on 9 May 2007 extended over

much of central and north Texas and southwestern

Oklahoma, and featured a surging bow echo located

along its leading edge (Fig. 2a). While the portion of the

MCS in Texas began to weaken after 0100 UTC, the

northern portion of the system persisted until approxi-

mately 0730 UTC (Figs. 2b–f). Strong low-level rotation

was observed in the system as early as 0021 UTC and

a brief tornado was reported by local media west of Lake

Elsworth, Oklahoma, at 0115 UTC; however, a subse-

quent damage survey was unable to confirm this report

(Brotzge et al. 2010), and no further tornadic activity was

reported until 0354 UTC.

Beginning at approximately 2200 UTC on 8 May, an

LEV formed near the northern end of the bow echo, just

south of the Red River in northwest Texas. The de-

velopment of the LEV occurred as the MCS merged

with a supercell to its northeast (Schenkman et al. 2010).

The LEV moved north-northeast and contracted as

it moved into southwestern Oklahoma (Brotzge et al.

2010). The LEV intensified between 0230 and 0300 UTC

as it interacted with and absorbed a supercell in Comanche

County, Oklahoma (Figs. 2b and 2c); evidence of this

intensification was present in both WSR-88D radar

reflectivity and mesonet observations (Schenkman et al.

2010). The LEV reached its peak intensity between

0330 and 0530 UTC (Figs. 2e and 2f), during which

time all three reported tornadoes occurred. Observa-

tions from the Oklahoma Mesonet indicate that at its

peak, the LEV contained a well-defined surface circu-

lation with approximately 25 m s21 of horizontal wind

shear (Schenkman et al. 2010). The observed evolution

of the MCS and its associated LEV closely fits the con-

ceptual model presented in Fujita (1978), as well as the

conceptual model of an asymmetric convective system

presented by Houze et al. (1989).

b. Model configuration and experiment setup

In this study, a 259 3 259 3 43 ARPS grid with 2-km

horizontal spacing is used for analyses and forecasts;

vertical grid stretching is applied, giving a near-surface

vertical grid spacing of approximately 100 m. The model

top is at a height of 20 km. Full model physics are used

(Xue et al. 2001), including the National Aeronautics

and Space Administration (NASA) Goddard Space Flight

Center long- and shortwave radiation parameterization,

a two-layer soil model, surface fluxes parameterized

using predicted surface temperature and water content,

and a 1.5-order turbulent kinetic energy (TKE) based

subgrid-scale turbulence parameterization, along with

high-resolution terrain. A 1-h-long preforecast is performed

before EnKF data assimilation cycles begin, initialized

from the 9 May 2007 NCEP 0000 UTC North American

Mesoscale (NAM) model analysis. At 0100 UTC, smoothed

random perturbations are added to the 1-h forecast using

FIG. 1. Summary of tornadic activity associated with the 8–9 May

2007 convective system. CASA radars (indicated by black squares)

are identified; 40 km CASA range rings are indicated in gray.

Oklahoma counties are shown and labeled. Confirmed tornadoes

during the 9 May 2007 case are indicated by black triangles with the

time of occurrence noted (all times shown are for 9 May 2007). The

tornadoes reported at 0354 and 0443 UTC were of EF-1 intensity

on the enhanced Fujita scale; the tornado reported at 0426 UTC

was of EF-0 intensity.
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FIG. 2. Composite radar reflectivity mosaic (dBZ) as observed by WSR-88D radars KAMA, KDYX, KFWS,

KLBB, and KTLX at (a) 0000, (b) 0100, (c) 0200, (d) 0300, (e) 0400, and (f) 0500 UTC 9 May 2007. 30 km CASA radar

range rings are included for reference. Urban boundaries are shown in purple. The black box surrounding the CASA

radar network in (a) denotes the CASA subdomain used for RMS innovation and spread calculations and updraft

flux analyses. WSR-88D radar sites are indicated in (a).
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the method of Tong and Xue (2008a) to create a set of

initial conditions from which ensemble forecasts are

launched. The smoothed perturbations with a horizontal

length scale of 8 km and a vertical length scale of 5 km

are added to the horizontal wind field with a standard

deviation of 2 m s21; to the mixing ratios of hydrometeors,

cloud water, and cloud ice with a standard deviation of

0.001 kg kg21; and to the potential temperature field

using positive perturbations only with a standard de-

viation of 2 K. The EnKF algorithm used is the ensem-

ble square root filter (EnSRF) of Whitaker and Hamill

(2002). Radar data are assimilated every 5 min from

0100 to 0200 UTC. The observation error standard de-

viations are assumed to be 1 m s21 for radial velocity

and 2 dBZ for radar reflectivity. The observation oper-

ator used to map the model state to observation space

for radar reflectivity and radial velocity follows that of

Jung et al. (2008). To sample radar data on the radar

elevation angles, a Gaussian power-gain function fol-

lowing Wood and Brown (1997) is used as in Xue et al.

(2006). The covariance localization radius is set to

6 km. Lateral boundary conditions are provided by the

NCEP NAM 6-hourly analyses and intervening 3-h fore-

casts. This setup is summarized in Fig. 3; forecast results

from 0200 to 0500 UTC (Fig. 3) will be the subject of a

future paper.

Results from three experiments are reported here:

a control experiment (hereafter referred to as CNTL)

using a mixture of three microphysics schemes (de-

scribed below) in the forecast ensemble and assimilating

both WSR-88D and CASA data, an experiment using a

mixed-microphysics ensemble and WSR-88D data only

(hereafter NoCASA), and an experiment assimilating

both WSR-88D and CASA data using a single- rather

than mixed-microphysics ensemble (hereafter NoMMP).

NoCASA is run to evaluate the impacts of including

CASA data in the analysis procedure, while NoMMP

is run to examine the ability of a mixed-microphysics en-

semble in reducing the underdispersion of the ensemble.

Fujita et al. (2007) found that the use of multiple physics

parameterization schemes in their mesoscale EnKF sys-

tem improved the resulting analysis of mesoscale features,

and Meng and Zhang (2007) also reported that using a

mixed-microphysics ensemble positively impacted their

mesoscale analyses. However, these previous studies

were not at a convection-resolving resolution and did not

include radar. The differences in ensemble setup between

experiments CNTL, NoCASA, and NoMMP are sum-

marized in Table 2.

In all experiments, 5-min-interval level-II volume

scans of WSR-88D radial velocity and reflectivity from

five WSR-88D radars are assimilated: they include ra-

dars at Oklahoma City (KTLX); Vance Air Force Base,

Oklahoma (KVNX); Amarillo, Texas (KAMA); Dyess

Air Force Base, Texas (KDYX); and Lubbock, Texas

(KLBB). In experiments using CASA data, aggregate

volumes of radial velocity and reflectivity data are as-

similated, also at 5-min intervals, from each of the four

CASA IP-1 radars: Cyril, Oklahoma (KCYR); Lawton,

Oklahoma (KLWE); Rush Springs, Oklahoma (KRSP);

and Chickasha, Oklahoma (KSAO). Aggregate CASA

radar volumes are created by first interpolating raw

CASA sector scan data on observed elevations to a

uniform radial grid with azimuthal spacing of 18, and

then interpolating in time to the center of a 5-min win-

dow valid at the assimilation time. For each radial, the

FIG. 3. Flow diagram for experiments CNTL, NoMMP, and NoCASA. Initial forecasts were

started at 0000 UTC on 9 May 2007. The shaded area indicates the period during which radar

data were assimilated, from 0100 UTC to 0200 UTC.

TABLE 2. Summary of experiments.

CNTL NoCASA NoMMP

WSR-88D radar used? Yes Yes Yes

CASA radar used? Yes No Yes

Ensemble size 40 40 40

No. of Lin microphysics members 16 16 40

No. of WSM-6 microphysics

members

16 16 0

No. of NEM microphysics

members

8 8 0
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nearest data before and after the assimilation time

within the 5-min window are linearly interpolated in

time to obtain the corresponding radial in the aggregate

volume scan. If only one scan is available for a given

radial, that scan is used. If no scans are available, that

radial is marked as missing.

A summary of the radars used and their locations is

provided in Table 3. The WSR-88D radar sites used

were selected to provide the best coverage of the MCS;

KFDR is excluded because its level-II data are un-

available during the assimilation period. WSR-88D ra-

dar data underwent automated quality control during

preprocessing to eliminate noise and ground clutter, and

perform despeckling and velocity dealiasing (Brewster

et al. 2005). CASA radar data were subject to automated

quality control during signal processing, including fil-

tering of ground clutter, velocity dealiasing, and range

overlay suppression (Bharadwaj et al. 2010). No addi-

tional quality control was performed on CASA data

during interpolation. We point out here that while some

previous convective-scale EnKF studies have used real

radar data (e.g., Tong 2006; Aksoy et al. 2009; Dowell

and Wicker 2009; Aksoy et al. 2010), and some have

used full-terrain and model physics (e.g., Tong 2006;

Meng and Zhang 2007; Stensrud and Gao 2010), to the

authors’ knowledge, this is the first study to assimilate

real radar reflectivity and radial velocity observations

from multiple radar networks (WSR-88D and CASA)

using full-terrain and model physics.

To counteract the inherent tendency of the ensemble

to converge to a solution different from the true state of

the atmosphere, a method for maintaining ensemble

spread is needed (Anderson and Anderson 1999; Dowell

and Wicker 2009). To this end, a multiplicative covari-

ance inflation (Anderson and Anderson 1999; Tong and

Xue 2005b) factor of g 5 1.25 is applied to the prior

ensemble; this value was found to be large enough to

maintain the ensemble spread, but not so large as to

cause numerical instability in the model time integra-

tion (a problem that occurred in tests using too large an

inflation factor). In recent work, other techniques have

been applied to increase ensemble spread; for example,

Zhang et al. (2004) used a ‘‘relaxation’’ technique, re-

storing a preset fraction of ensemble spread reduced by

the filter correction. Random additive perturbations to

various model fields have also been employed; Dowell

and Wicker (2009) found that applying smoothed ad-

ditive perturbations to the horizontal wind, potential

temperature, and water vapor fields yielded a signifi-

cant increase in the resulting ensemble spread. Additive

errors were tried in our earlier experiments without sig-

nificant improvement to our results and are hence not

used here. It is likely that proper scaling may be needed

and an optimal combination with multiplicative inflation

may exist, which will be a subject for future studies.

Because of the strong reflectivity attenuation inherent

to X-band radar data in areas of heavy precipitation,

attenuation correction using a polarimetric differential

phase (Chandrasekar et al. 2004) was applied to CASA

data before they were used. Accurate attenuation cor-

rection is vital; if uncorrected, attenuated radar data

were assimilated, the erroneously low values of reflec-

tivity in the attenuated regions would negatively impact

the analysis. While the attenuation correction algo-

rithm used has been shown to accurately retrieve un-

attenuated reflectivity values (Chandrasekar et al. 2004),

it can only do so when the reflected power is above the

noise floor of the radar receiver. When total attenuation

occurs, the resulting radar data cannot be objectively

distinguished from true clear-air data; these areas of

total attenuation appear as ‘‘shadows’’ of near-zero re-

flectivity in areas that may actually contain significant

precipitation. To avoid erroneous assimilation of com-

pletely attenuated reflectivity data, CASA reflectivity

and radial velocity data were assimilated only in regions

where attenuation-corrected reflectivity exceeded 20 dBZ.

Unfortunately, this constraint eliminates the ability of

CASA reflectivity data to suppress spurious storms that

occur in regions free of observed reflectivity; Tong and

Xue (2005a,b) showed that the assimilation of reflectivity

data in nonprecipitation regions is very beneficial in

suppressing spurious storms. Furthermore, though CASA

data were not assimilated when the attenuation-corrected

reflectivity was less than 20 dBZ, because no reliable way

exists to objectively distinguish fully attenuated regions

from clear-air echo regions, attenuated areas were in-

cluded in the RMS innovation computation at CASA sites,

resulting in increased RMS innovation values for the

CASA radars. Finding new ways to more effectively use

X-band reflectivity data remains an important research

topic (Xue et al. 2009).

As in Xue et al. (2006), a 40-member ensemble is used.

For CNTL and NoCASA, three different single-moment

TABLE 3. List of radars used for data assimilation and their site

locations and elevations.

Radar Radar type Lat (8N) Lon (8W) Elev (m)

KAMA WSR-88D 35.2333 101.7092 1113

KDYX WSR-88D 32.5383 99.2544 357

KLBB WSR-88D 33.6542 101.8142 1013

KTLX WSR-88D 35.3331 97.2778 384

KVNX WSR-88D 36.7408 98.1278 379

KCYR CASA 34.8739 98.2522 448

KLWE CASA 34.6239 98.2708 396

KRSP CASA 34.8128 97.9306 436

KSAO CASA 35.0314 97.9562 356
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ice microphysics schemes are used in the ensemble. The

schemes used are an implementation of the three-ice

scheme of Lin et al. (1983) with modifications following

Tao and Simpson (1993), an ARPS implementation of

the Weather Research and Forecasting (WRF) model

single-moment six-class microphysics (WSM6) scheme

(Hong and Lim 2006), and the simplified NWP explicit

microphysics (NEM) scheme of Schultz (1995). In CNTL

and NoCASA, 16 members use the Lin scheme, 16 use the

WSM6 scheme, and 8 use the NEM scheme. In NoMMP,

all 40 ensemble members employ the Lin microphysical

scheme.

3. Results and analysis

By the end of the assimilation period at 0200 UTC

9 May 2007, all three experiments produce an MCS with

reflectivity structure very similar to that observed by

radar. Composite radar data calculated from model

fields for CNTL, NoCASA, and NoMMP (Figs. 4a–c)

correspond well to the composite radar reflectivity mea-

sured by WSR-88D (Fig. 4d). The analyzed composite

reflectivity at 0200 UTC for all three experiments com-

pares closely with the observed reflectivity in terms of

the intensity and location of the main convective cells

and stratiform rain region and the overall shape of the

bow echo (Fig. 4). In both the model simulations and

observations, a LEV is present at the northern end of the

line of strongest convection, located in the western por-

tion of the CASA IP-1 network (Fig. 4). Subtle differ-

ences between experiments are present in the composite

reflectivity fields near the CASA network (Figs. 4a–c).

Minor differences between the analyses (Figs. 4a–c) and

the observations (Fig. 4d) of radar reflectivity are notable

FIG. 4. Composite radar reflectivity (dBZ) of the final ensemble mean analysis state at 0200 UTC 9 May 2007 for

(a) CNTL, (b) NoMMP, and (c) NoCASA; also (d) composite radar reflectivity mosaic (dBZ) observed by WSR-88D

radars KAMA, KDYX, KFWS, KLBB, and KTLX at 0200 UTC 9 May 2007. 30 km CASA radar range rings are

included for reference.
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in the southern portion of the domain, where all three

experiments underestimate the coverage and intensity

of the strong echo region where the reflectivity is greater

than 35 dBZ. Insufficient low-level radar coverage in

southwestern portion of the domain is believed to have

contributed to the model error there, while underesti-

mation of the intensity of the main convective line is

likely due to undercorrection to the background forecast

by the ensemble filter, which can occur as a result of

underdispersion in the ensemble.

Despite the overall qualitative similarity in the ana-

lyzed reflectivity (Fig. 4), important differences between

the three experiments exist throughout the assimilation

period. Both the inclusion of CASA data and the use of

a mixed-microphysics ensemble produce notable dif-

ferences in the forecast and analysis states during the

assimilation cycles. We will examine these aspects in

turn, beginning with the impacts of additional CASA

radar data.

a. Impacts of assimilating CASA data

CASA seeks to improve storm-scale analyses and

forecasts by sampling the near-surface flow at high res-

olution. Experiment NoCASA is designed to evaluate

the impacts of withholding CASA data during assimi-

lation. While CNTL and NoCASA produce qualita-

tively similar reflectivity fields (Fig. 5), the impacts of

assimilating CASA data can be seen in horizontal wind

fields of CNTL and NoCASA, particularly in lower

levels of the atmosphere (Fig. 5); strong southerly and

southeasterly flow is present at 1 km above mean sea

level (approximately 700 m above the surface) within

the northern portion of the leading convective line in

CNTL (located in the region shared by the two western

CASA radars; see Fig. 5a), while the corresponding

flow in NoCASA is much weaker (Fig. 5c). In addition,

in experiments assimilating CASA data (Figs. 5a and

5b), in the southern portion of the CASA domain,

southwest winds are present within and just ahead the

convective line just to the south of the notch in the line

near the southwestern-most CASA radar (KLWE).

In contrast, this notch is less noticeable in NoCASA

(Fig. 5c), and the low-level winds in the region are from

the southeast. These differences represent the accu-

mulated effects of assimilating CASA data. This result

agrees well with results reported by Schenkman et al.

(2010), who found that the assimilation of CASA Vr

data for this case using a 3DVAR and cloud analysis

package had a strong impact on low-level winds and the

gust front structure.

The assimilation of CASA data results in a marked

increase in maximum vertical vorticity in the lowest

several kilometers of the atmosphere that sets the stage

for tornadic processes. Figure 6 shows the time–height

cross section of the maximum vertical vorticity within

a box tightly surrounding the CASA domain (depicted

in Fig. 2a), for experiments CNTL and NoCASA. In

CNTL, where CASA data were assimilated, much higher

maximum values of low-level vertical vorticity are con-

sistently present within this domain in both the forecast

priors and EnKF analyses as compared to NoCASA. In

particular, strong vertical vorticity is present in CNTL be-

tween 5100 and 6600 s of forecast time (0125–0150 UTC)

between the surface and the 3-km level; a much weaker

FIG. 5. Plots of composite radar reflectivity (color-fill) and the horizontal wind field (vectors) at 1 km above ground level for the final

ensemble mean analysis states of (a) CNTL, (b) NoMMP, and (c) NoCASA at 0200 UTC. 30 km CASA range rings and 60 km WSR-88D

range rings are shown for reference.

3454 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



maximum is also present in NoCASA, but it is not dis-

cernible until 5400 s (0130 UTC).

Between 0125 and 0150 UTC, a strong low-level cir-

culation is present west-southwest of KTLX, within

the CASA domain. This circulation is visible in CASA

and WSR-88D radar observations between 0120 and

0150 UTC, but is much better resolved by CASA radars

due in large part to shorter range (not shown). The NWS

Norman, Oklahoma, forecast office issued a tornado

warning for the storm cell containing this circulation at

0126 UTC, although a later storm survey found no evi-

dence of an actual tornado at this particular time and

location. Inclusion of CASA data resulted in the analysis

of a stronger low-level rotation within the CASA domain,

matching more closely with the observed evolution of the

MCS. In CNTL, where CASA data were assimilated, this

circulation is present throughout the time it was observed

by radar (Fig. 6a); in contrast, NoCASA is slower in de-

veloping such a circulation pattern and the resulting low-

level vertical vorticity is weaker (Fig. 6c).

The tornado-warned mesovortex is well observed by

CASA radar KCYR. The 28-elevation Vr observations

from KCYR at 0140 UTC (Fig. 7a) show a strong cir-

culation present between 5 and 20 km to the west of the

radar site, with 45 m s21 of horizontal wind shear over

a distance of approximately 12 km. Simulated KCYR

Vr observations from the 0140 UTC ensemble mean

analysis of CNTL (Fig. 7b) also indicate the presence of

a mesovortex circulation that closely matches the loca-

tion and size of that seen in the KCYR observations, but

with a slightly weaker maximum horizontal shear of

around 40 m s21 across the vortex. Simulated KCYR Vr

observations from NoCASA (Fig. 7c) show no strong

circulation at the 28 elevation; instead, a convergent

signature with only very weak rotation is present near

the location of the observed mesovortex. In addition,

NoCASA (Fig. 7c) greatly underestimates the region

of positive Vr observed to the northwest of KCYR

(Fig. 7a); in contrast, the ensemble mean analysis of CNTL

(Fig. 7b) indicates a flow that closely matches the KCYR

FIG. 6. Time-height plot of maximum vertical vorticity (s21) for the (a) ensemble mean forecast and (b) analysis of

CNTL, and the (c) forecast and (d) analysis of NoCASA during the analysis period. Time is denoted in seconds since

forecast initialization and ranges from 3900 s (0105 UTC) to 7200 s (0200 UTC). Height is shown in kilometers above

ground level.
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observations. These results highlight the importance

of assimilated near-surface CASA radar data in accu-

rately capturing the near-surface flow in this convective

system.

The impacts of assimilated CASA data are also evi-

dent in the surface wind field and cold pool structure in

the 0140 UTC analysis. In experiment CNTL (Fig. 8a),

a moderately intense surface circulation pattern is pres-

ent, horizontally collocated with that indicated by KCYR

Vr observations. In the CNTL analysis, a moderately

strong gust front is present to the south and southeast of

the surface circulation, with strong inflow of between 15

and 25 m s21 ahead of the gust front. The location of the

gust front in the 0140 UTC CNTL analysis (Fig. 8a) is

similar to that indicated by the full-resolution 0139 UTC

KCYR 28 Vr observations (Fig. 8c); at the location of the

mesovortex, these observations were 500–700 m above

the surface. The surface wind field in the 0140 UTC en-

semble mean analysis of NoCASA shows only weak ro-

tation within a convergent shear zone (Fig. 8b), consistent

with the simulated Vr observations of Fig. 7c. While the

gust front present in NoCASA is positioned similarly to

that in CNTL, it is much weaker, with a cross-frontal

temperature difference of less than 2 K; this is too weak

compared to potential temperature decreases of 3–4 K as

measured by nearby Oklahoma Mesonet stations during

passage of the gust front (not shown).

The stronger low-level circulation of CNTL is ac-

companied by more vigorous convective updrafts over

the CASA subdomain. Total updraft flux is calculated

at each model level over the CASA subdomain outlined

in Fig. 2a; the resulting vertical profiles of updraft flux

for the CNTL and NoCASA 0140 UTC ensemble mean

analyses are plotted in Fig. 9a. Greater updraft flux is

present in CNTL than in NoCASA, particularly below

the 5-km level. Much of the difference in updraft flux

between CNTL and NoCASA can be attributed to

greater updraft velocities in CNTL; histograms of updraft

velocity for the 0140 UTC analyses of CNTL (Fig. 9b)

and NoCASA (Fig. 9c) in model grid cells where the

vertical velocity was greater than or equal to 4 m s21

indicate that more regions of strong updrafts are pres-

ent in CNTL than in NoCASA. In the 0140 UTC CNTL

analysis, updrafts in excess of 16 m s21 are present in

more than 100 grid cells; the maximum updraft veloc-

ity observed within the CASA subdomain exceeds

24 m s21. In NoCASA, only about 30 grid cells have

updrafts exceeding 16 m s21, and the maximum updraft

velocity within the CASA domain is less than 19 m s21.

Similar behavior was noted at other analysis times and

during the forecast cycles, with stronger updrafts and

greater updraft fluxes present in CNTL than in NoCASA

(not shown).

FIG. 7. Radial velocity for the 0140 UTC at the 28 elevation

(a) as observed by CASA radar KCYR, and simulated from the

0140 UTC EnKF analyses of (b) CNTL and (c) NoCASA. The

arrows highlight the circulation in the region of the tornado-

warned mesovortex.
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b. Innovation statistics during the EnKF
analysis cycles

To more quantitatively assess the behavior of the

EnKF analyses, average root-mean-square (RMS) val-

ues of observation innovation (the difference between

observations and the model state in the form of observed

quantities) and ensemble spread are examined. Obser-

vation innovations and ensemble spread are calculated

for each of the four CASA radars, as well as WSR-88D

radars KTLX and KVNX, for radar reflectivity Z (Fig. 10)

and radial velocity Vr (Fig. 11), in experiments CNTL

and NoCASA. Innovations in Figs. 10 and 11 are cal-

culated for the ensemble mean fields at locations where

either the observed or model reflectivity is greater than

or equal to 15 dBZ. The calculation is further limited

to the area within the CASA subdomain (cf. Fig. 2a).

In NoCASA, RMS innovations for the CASA radars

are calculated against CASA data that were not as-

similated; these observations are therefore from inde-

pendent sources. Nevertheless, EnKF data assimilation

in NoCASA was able to decrease the average inno-

vations at all CASA sites for Z during every assimila-

tion cycle, and for Vr during almost every assimilation

cycle (Figs. 10 and 11). Given that different radars

measure different components of the velocity field, the

reduction in innovation against independent, unassimilated

radial velocity measurements indicates the good perfor-

mance of the EnKF.

Assimilation of CASA data resulted in a slight but

notable decrease in RMS innovation in the analysis of

Z in CNTL as compared to NoCASA (Fig. 11). The

overall decrease was greater for the CASA radars, due

to the absence of CASA data in NoCASA. Among the

WSR-88D radars, only KTLX and KVNX are included

for the comparisons between CNTL and NoCASA in

Figs. 10–12 because they are located close to the center

of the convective system during the assimilation period

and share the greatest overlap with the CASA domain.

The RMS innovations of Vr at KTLX and KVNX differ

little between CNTL and NoCASA (Figs. 10a and 10b),

though the RMS innovation of the CNTL analysis is

very slightly lower than that of NoCASA at KTLX

during early assimilation cycles (Fig. 10a). In contrast,

FIG. 8. Horizontal winds (barbs) and potential temperature

(shaded) at the first model level above the surface near CASA

radar KCYR for the 0140 UTC ensemble mean analysis in (a)

 
CNTL and (b) NoCASA. The position of a gust front associated

with the embedded mesovortex is indicated. Also shown are

(c) full-resolution radial velocity observations from the 28 elevation

of CASA radar KCYR shortly before 0140 UTC. The gust front

position indicated by the radial velocity observations is indicated

by the yellow line.
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a larger improvement is seen in Z for CNTL during

early cycles for KTLX and early to middle cycles for

KVNX as compared to NoCASA (Fig. 11). These re-

sults suggest that the inclusion of CASA data mod-

estly improved the analyzed reflectivity field within

the model, particularly during early assimilation cy-

cles, with less improvement to the analysis of radial

velocity.

For the WSR-88D sites (KTLX and KVNX), the

greatest differences in RMS innovations of Z and Vr

between CNTL and NoCASA occurred in the first six

assimilation cycles (Figs. 10a,b and 11a,b). In addition,

fewer cycles were needed for the analysis to reach its

minimum RMS innovation value for Z in CNTL than in

NoCASA. While the minimum RMS innovation of the

analysis for Z was not reached until around the 8th as-

similation cycle at KTLX (Fig. 11a) and the 11th as-

similation cycle for KVNX (Fig. 11b) in NoCASA, the

RMS innovation of the analysis reached its minimum

value for these radars in CNTL by the 4th and 3rd cycles,

respectively (Figs. 11a and 11b). Assimilation of CASA

data reduces the number of cycles needed for the EnKF

analysis to reach a relatively stable and low level of RMS

innovation in Z.

One important measure of the performance of an

EnKF data assimilation system is statistical consistency,

as discussed in Snyder and Zhang (2003) and Dowell

et al. (2004b). For forecasts and observations with in-

dependent error characteristics, the variance of the in-

novation should be equal to the sum of the observation

and forecast error variances:

s2
d 5 s2

o 1 s2
f . (1)

Following Dowell et al. (2004b), we arrive from (1) at a

consistency relation valid for observations yo and model

forecast state xf, with angle brackets representing an

average over all available observations at a time and

overbars denoting an ensemble mean:

s2
o 1

1

N 2 1
�
N

i51
[H(x

f
i ) 2 H(xf )]2

* +

hf[yo 2 H(xf )] 2 h[yo 2 H(xf )]ig2i
’ 1, (2)

where N is the ensemble size, i is the ensemble index,

and H is the observation operator. In practice, values of

FIG. 9. (a) Total updraft mass flux profiles within the CASA subdomain (as denoted in Fig. 2a) at 0140 UTC for

experiments CNTL and NoCASA. Histograms of vertical velocity exceeding 4 m s21 within updraft regions in the

CASA subdomain are plotted for (b) CNTL and (c) NoCASA.
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the consistency ratio well below 1 are often seen in

EnKF studies (e.g., Dowell et al. 2004a), indicating a

general tendency for underdispersion in the ensemble.

Time series of the consistency ratio for CNTL and

NoCASA, calculated during the assimilation period for

four CASA and two WSR-88D (KTLX and KVNX)

radars, are shown in Fig. 12. Values of the consistency

ratio for Vr and Z in both CNTL and NoCASA fall

below the optimal value of approximately 1 throughout

much of the period (Fig. 12) with the exception being for

Z in early cycles at the WSR-88D radar sites (Figs. 12a

and 12b) and CASA sites KRSP and KSAO (Figs. 12e

and 12f). Consistency ratio for Z was much higher at the

WSR-88D radar sites than at CASA sites in both CNTL

and NoCASA. Lower values of the consistency ratio

were observed for Vr than for Z, with Vr consistency

ratio values of between 0.1 and 0.3 being common for

the CASA radars; WSR-88D sites KTLX and KVNX

yielded Vr consistency ratios ranging from 0.2 to 0.3.

Consistency ratios for Z were higher, ranging between

0.5 and 1.0 for WSR-88D radars, and 0.2 and 1.0 for

CASA radars. Very high values (greater than 2.0) of

consistency ratio for Z were present during the first few

assimilation cycles due to the very high values of RMS

ensemble spread for Z at these times (see Fig. 12).

Values of the consistency ratio in experiments NoCASA

and CNTL are slightly lower than those seen in previous

real-data studies using a similar EnKF setup, such as

Dowell et al. (2004a). One can infer from the partic-

ularly low values of the consistency ratio seen for Vr

(Fig. 12) that a significant amount of underdispersion

exists in the radial velocity field in both NoCASA and

CNTL. In this study, we assumed an observation error

standard deviation of 1 m s21 for radial velocity ob-

servations. The relatively small assumed observation

error may be a contributing factor in the low values of

the consistency ratio observed. In future studies, we

will consider increasing the assumed observation error

FIG. 10. Average root-mean-square (RMS) innovation (solid lines) and spread (dotted lines) of radial velocity

(in m s21) for WSR-88D radars KTLX and KVNX, as well as all four CASA radars for experiments CNTL (black

lines) and NoCASA (gray lines) calculated every 5 min during the assimilation period. Calculations were limited

to the CASA verification domain indicated in Fig. 2a at locations where either observed or model reflectivity is

greater than or equal to 15 dBZ. The assimilation period lasts from 0100 UTC (3600 s) to 0200 UTC (7200 s of

model time).
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to 2 m s 21 for Vr. Values of the consistency ratio for Z

are also below 1, suggesting insufficient ensemble spread

in the reflectivity field, but this deficiency is not as severe

as that in the radial velocity field. Dowell and Wicker

(2009) addressed underdispersion in radial velocity by

using additive perturbations to the horizontal wind field;

however, initial tests for this case including additive

perturbations to the wind field did not show improve-

ment in RMS innovation for radar reflectivity and radial

velocity observations when compared against analyses

using multiplicative covariance inflation alone; further

tests using perturbations with different perturbation

magnitudes and scales will be explored in future work on

this case.

The difference in the consistency ratio time series

(Fig. 12) between CASA and NoCASA for Z (and to

a lesser extent Vr) indicates that the underdispersion is

slightly less severe in CNTL than in NoCASA, partic-

ularly during early assimilation cycles and at the WSR-

88D radar sites (Figs. 12a and 12b). Assimilation of

CASA data slightly decreases the underdispersion of

radar reflectivity within the ensemble; this is a somewhat

counterintuitive result, as increasing the amount of data

assimilated usually results in decreased spread within

the ensemble. This is likely to be due to the way that

initial perturbations are added. In this study, initial

perturbations were only added to grid points within

2 km in the horizontal and 1 km in the vertical of ob-

served radar reflectivity exceeding a threshold of 5 dBZ,

following the methodology of Tong and Xue (2005b).

Because CNTL includes CASA data in addition to

WSR-88D radar data, the region containing initial per-

turbations is slightly larger in CNTL than in NoCASA,

particularly at low levels where only CASA radar data

are available. Accordingly, the initial difference in RMS

spread is greater for CASA radars and very small for

WSR-88D radars (Fig. 10). The effects of this slight

difference in the initial perturbation region fade as as-

similation cycles are performed; by the end of the as-

similation window CNTL shows smaller spread in the

later cycles due to faster spread reduction, as expected

when assimilating more observations.

c. Impact of using a mixed-microphysics ensemble

In previous studies, using different parameterization

schemes among ensemble members (e.g., Meng and

Zhang 2007) and including perturbations of micro-

physical parameters within the ensemble (e.g., Ge et al.

FIG. 11. As in Fig. 10, but for radar reflectivity (in dBZ) instead of for radial velocity.
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2010) have been shown to be effective in increasing

ensemble spread and reducing underdispersion within

the ensemble. However, the use of multiple microphysics

schemes for real-case storm-scale radar data assimilation

has, to our knowledge, not been reported in the liter-

ature. In this section, different microphysics schemes

are used among ensemble members and the effects on

the analysis are investigated. Experiment NoMMP was

performed to evaluate the effects of using a mixed-

microphysics ensemble; NoMMP differed from CNTL

only in that it used Lin microphysics for all members in

the ensemble forecast (see Table 2).

Time series of RMS innovation and spread during the

assimilation for experiments CNTL and NoMMP are

presented in Fig. 13 for Vr and Fig. 14 for Z. Since the

impacts of the mixed-microphysics ensemble are present

throughout the model domain, RMS spread and in-

novation calculations were not limited to the CASA

subdomain (see Fig. 2a) for comparisons between CNTL

and NoMMP. Thus, unlike in the comparison between

CNTL and NoCASA, calculations are presented for all

five WSR-88D radars in addition to the four CASA ra-

dars; data from all these radar sites were assimilated in

both CNTL and NoMMP.

The impact of the mixed-microphysics ensemble on

RMS innovation of Vr (Fig. 13) is relatively small. The

RMS innovation of the Vr analysis of CNTL is slightly

lower than that of NoMMP at KTLX during the first five

assimilation cycles (Fig. 13d); however, farther to the

west, at radar site KAMA (Fig. 13a), NoMMP actually

produces a slightly lower RMS innovation for Vr during

later cycles of the assimilation period. At most sites no

significant difference in RMS innovation of Vr can be

seen. Likewise, the RMS ensemble spread of Vr is vir-

tually unchanged between CNTL and NoMMP.

In contrast to Vr, differences between the RMS in-

novation and ensemble spread of Z in NoMMP and

CNTL (Fig. 14) are much more prominent. Compared to

NoMMP, ensemble spread of Z in CNTL grows faster

during the forecast step and remains higher during the

analysis step; greater ensemble spread is consistently

present in CNTL during forecasts and analyses than in

FIG. 12. Consistency ratio of Z (solid lines) and Vr (short dashed lines) for two WSR-88D radars (KTLX and

KVNX) and four CASA radars for experiments CNTL (black lines) and NoCASA (gray lines) calculated every

5 min during the assimilation period. Calculations were limited to the CASA verification domain indicated in Fig. 2a.

The assimilation period lasts from 0100 UTC (3600 s of model time) to 0200 UTC (7200 s of model time). The thin,

horizontal gray dashed line indicates the theoretically ideal consistency ratio of 1.0.
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NoMMP at every radar site. The average RMS ensem-

ble spread of Z during the forecast step decreases in the

first several cycles and remains largely constant during

the remainder of the assimilation period. Average RMS

ensemble spread values for Z at the end of the assimi-

lation period range between about 3 and 5 dBZ in CNTL

and between 1 and 4 dBZ in NoMMP.

Differences in the RMS innovation values of Z be-

tween CNTL and NoMMP (Fig. 14) are also noticeable

but not as prominent as differences in RMS ensemble

spread. Error in the forecast ensemble grows more

quickly in CNTL than in NoMMP, evidenced by a steeper

increase between each analysis and the subsequent fore-

cast at every WSR-88D radar site, as members using

different microphysics schemes arrive at varying solu-

tions because of differences in their treatments of the

microphysics processes. The faster growth of RMS in-

novation in CNTL (Fig. 14) can be attributed in part to

variations in the reflectivity formulation between the

Lin, WSM, and NEM microphysical schemes; for this

case, the NEM microphysics scheme greatly under-

predicts the coverage of stratiform rain; thus, members

using the NEM microphysics scheme within the CNTL

ensemble act to increase the RMS innovation during the

forecast cycles. When innovation statistics for Z were

derived for subsets of CNTL members using individual

microphysical schemes, the subset consisting of NEM

members within CNTL had the most rapid increase in

RMS innovation of Z during forecast steps, while the

subset consisting of Lin members within CNTL had

the slowest increase (not shown). However, despite the

higher RMS innovation values of Z present during the

forecast step in CNTL, the RMS innovation of the anal-

ysis of Z in CNTL is equal to or lower than that of

NoMMP for almost every analysis cycle at all radar

sites. The greatest differences can be seen at KAMA and

FIG. 13. As in Fig. 10, but for experiments CNTL (black lines) and NoMMP (gray lines) including WSR-88D radars KAMA, KDYX, and

KLBB and performing calculations over the entire model domain.
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KVNX, where CNTL produces analyses of Z with an

average RMS innovation of between 0.3 and 1 dBZ

lower than the corresponding analyses in NoMMP for

most of the assimilation period. At the CASA radar

sites, differences between CNTL and NoMMP are more

difficult to discern; at these sites the two experiments

produced qualitatively similar RMS innovation and en-

semble spread time series.

Comparison of the consistency ratio calculated for Vr

and Z for experiments CNTL and NoMMP (Fig. 15)

reveals that use of the mixed-microphysics ensemble

results in a higher consistency ratio than the single-

microphysics ensemble for Z because of the increased

ensemble spread of radar reflectivity in the mixed-

microphysics case. In both CNTL and NoMMP the con-

sistency ratio of Vr is well below 1.0, ranging between 0.25

and 0.5 for WSR-88D radars and 0.1 and 0.25 for CASA

radars. While the consistency ratio of Vr is virtually un-

changed between CNTL and NoMMP, the consistency

ratio of Z is considerably higher in CNTL than in

NoMMP at all radar sites throughout the assimilation

period. Though the consistency ratio of Z for CNTL still

remains below the optimal value of 1.0 at most radar

sites, particularly late in the assimilation period, the higher

consistency ratio values for Z in CNTL suggest that CNTL

exhibits significantly less underdispersion than NoMMP

(Fig. 15).

Though the ensemble spread in Z is increased signif-

icantly when a mixed-microphysics ensemble is used,

the ensemble spread of Vr is less impacted; this is be-

lieved to be due to the less direct link between the wind

fields and microphysical states. These results are con-

sistent with the findings of Meng and Zhang (2007), who

noted greater impacts to thermodynamic and moisture

fields than to wind fields when assimilating rawinsonde

data using an EnKF method, and are also consistent with

the findings of Fujita et al. (2007). Within a model, the

microphysical scheme directly impacts the microphysics

FIG. 14. As in Fig. 13, but for radar reflectivity (in dBZ) instead of radial velocity.
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species, which in turn directly affects the model estimate

of reflectivity. In contrast, the microphysical scheme

only influences the model wind field through indirect

interactions. As a result, the use of a mixed-microphysics

ensemble produces a notable increase in the ensemble

spread of Z but a smaller increase in ensemble spread

of Vr.

4. Summary and discussion

In this paper, radar reflectivity and radial velocity

from 4 experimental CASA X-band radars, in addition

to data from existing operational WSR-88D radars, are

assimilated to evaluate the impact of dense, low-level,

high-resolution radar data on ensemble Kalman filter

analysis of a convective system. The ARPS ensemble

Kalman filter assimilation system, modified to enable

a mixed-microphysics ensemble, is used to conduct

a set of three experiments for the case of the non-

supercellular, tornadic MCS that occurred over north-

ern Texas and southwestern and central Oklahoma on

8–9 May 2007; this case was the first tornadic event

observed by the then newly deployed CASA network.

During the event, one EF-0 and two EF-1 tornadoes

were produced in association with a line-end vortex

(LEV) embedded within the MCS. The effect of using

a single microphysical scheme versus a mixture of mi-

crophysics schemes within the forecast ensemble as

a means to increase ensemble spread and better cap-

ture the true atmospheric state within the analysis en-

velope is investigated. By assimilating radar data for

one hour at 5 min intervals, analyses were obtained of

the reflectivity fields that were in general agreement

with the observations in all three experiments presented.

Physically realistic analyses of the flow fields were also

obtained.

FIG. 15. As in Fig. 12, but for experiments CNTL (black lines) and NoMMP (gray lines) including WSR-88D radars KAMA, KDYX, and

KLBB and performing calculations over the entire model domain.
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Inclusion of CASA data resulted in a noticeable im-

provement of the mean ensemble analysis, as evidenced

by the improved representation of observed near-surface

circulations within the CASA domain as compared to

low-level observations from KCYR (Figs. 7 and 8). In

the control experiment (CNTL) which included addi-

tional CASA data and used a multimicrophysics en-

semble, a time-height cross-section of vertical vorticity

indicated a local near-surface vorticity maximum oc-

curring at the time of an observed, tornado-warned low-

level circulation; this maximum was much weaker in the

experiment in which no CASA data was assimilated

(NoCASA). Comparison of observed and simulated

radial velocity Vr for the KCYR radar site shows a

strong circulation at the two degree elevation angle in

observations (Fig. 7a) and in CNTL (Fig. 7b), but only

a weak circulation in NoCASA (Fig. 7c). Analysis of

surface winds and cold pool intensity reveals a stronger

surface circulation in CNTL (Fig. 8a), with enhanced

inflow as compared to NoCASA (Fig. 8b) as well as

a gust front structure more consistent with near-surface

KCYR Vr observations (Fig. 8c). The most significant

differences between CNTL and NoCASA are seen in

the lowest few kilometers of the atmosphere; this is the

region where WSR-88D coverage is poor and where CASA

contributes most.

Assimilation of CASA data made a modest positive

impact on average RMS innovation and ensemble

spread statistics; assimilating CASA data resulted in

a slight reduction in RMS innovation statistics at WSR-

88D radar sites whose coverage areas overlapped the

CASA IP1 domain (KTLX and KVNX). This reduction

was present in RMS innovation statistics for both radial

velocity Vr and radar reflectivity Z, though the reduction

was larger for Z, and was greatest in the first six assim-

ilation cycles. From the notable improvement in early

cycles, we can conclude that assimilation of CASA data

allowed the EnKF system to more quickly achieve

a good estimate of the atmospheric state. With regard to

ensemble spread of Vr and Z, however, assimilation of

CASA data had very little impact.

The use of a mixed-microphysics ensemble resulted in

increased spread within the ensemble, particularly for Z;

this effect was beneficial in reducing underdispersion

among ensemble members and in improving the statis-

tical consistency of the EnKF analysis. In experiment

CNTL, where a mixed-microphysics ensemble was used,

the ensemble spread of Z at all radar sites is greatly in-

creased compared to experiment NoMMP, which used

a single-microphysics scheme for all ensemble mem-

bers. During much of the assimilation period, the en-

semble spread of Z in CNTL was more than twice that

of NoMMP. Compared to NoMMP, CNTL displayed

slightly lower RMS innovation values for both Vr and Z,

as well as a marked increase in the consistency ratio,

demonstrating the ability of the mixed-microphysics

ensemble in helping to alleviate underdispersion of the

analysis ensemble in CNTL. While still below the opti-

mal value of approximately 1.0, the consistency ratio for

Z in CNTL is much higher than that of NoMMP. Even in

CNTL, however, underdispersion is still present in Z,

and all three experiments show marked underdispersion

in Vr, despite the application of rather large multipli-

cative covariance inflation of 25%. The use of a mixed-

microphysics ensemble, while beneficial in alleviating

underdispersion in the ensemble, is not alone sufficient

to counteract the low ensemble spread often observed in

EnKF studies, at least for this case. Underdispersion is

a common problem in storm-scale data assimilation that

deserves further investigation. Possible methods to ad-

dress this issue include additive perturbations (Dowell

and Wicker 2009) and adaptive inflation (Anderson

2007) techniques. To address underdispersion in Vr,

planetary boundary layer and subgrid-scale turbulence

mixing parameterization perturbations might be bene-

ficial; this can be a topic for future research.

For a tornadic system, such as the one in this study,

a horizontal grid spacing of 2 km is clearly insufficient to

fully resolve all important substorm-scale processes.

While this resolution is able to capture the bookend

vortex and low-level mesocyclone circulations observed

in this case, a significantly smaller grid spacing (on the

order of 100 m) would be necessary to capture tornado-

scale circulations. Insufficient resolution may be another

important cause of underdispersion, because a signifi-

cant part of the energy spectrum that can contribute

significantly to the ensemble dispersion may be missing

(e.g., Nutter et al. 2004). In the future, we intend to in-

vestigate this issue by using much higher spatial reso-

lutions; such an increase in resolution will require the

use of an efficient parallel EnKF system. Another pos-

sible cause of underdispersion is insufficient perturba-

tion to the mesoscale environment in which the MCS is

embedded. While we believe our domain is large enough

for the lateral boundary condition to have only a mini-

mal impact during the limited length of assimilation,

storm-scale EnKF cycles nested within a mesoscale en-

semble system have been shown, in general, to perform

better (Lei et al. 2009). Since the primary goal of this

study is to examine the impact of CASA radar data from

the first tornadic case observed by the CASA IP-1 net-

work using a data assimilation method that is still in the

early stages of successful application to real storm cases,

we believe the results presented in this paper meet our

primary goal even though there remain a number of is-

sues that merit further investigation.
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Finally, we note the challenges of working with X-band

Doppler radar data, perhaps the greatest of which is re-

flectivity attenuation. While S-band radars, such as the

WSR-88D network suffer very little attenuation, even

through heavy precipitation, attenuation at X-band is

much more significant. An X-band beam from a CASA

radar passing through heavy precipitation (50 dBZ or

greater) for more than approximately 10 km is atten-

uated completely, leaving a ‘‘shadow’’ of near-zero re-

flectivity returns beyond the range where complete

attenuation occurs. Additionally, even when attenua-

tion is only partial, error within the attenuation correc-

tion algorithm leads to discrepancies between X-band

and S-band observations of the same volume of the at-

mosphere (note that attenuation correction has been

applied to CASA reflectivity data used in this study). To

avoid assimilating spurious reflectivity in regions of com-

plete attenuation, we used CASA data above a 20-dBZ

threshold only; however, doing so also eliminated the

ability of the CASA radar data to suppress spurious

convection, which has been shown to be one of the

most valuable aspects of reflectivity data (Tong and Xue

2005a,b). Finding effective ways to better correct for

attenuation and to objectively identify and remove data

associated with complete attenuation will likely improve

the positive impact of CASA type data. A promising

method proposed by Xue et al. (2009) will be tested with

this case in the future.
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