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ABSTRACT 17 

To inform the optimization of the future operational Rapid Refresh Forecast System 18 

(RRFS), the Center for Analysis and Prediction of Storms (CAPS) performed three sets of 19 

CONUS-domain 3-km FV3-LAM ensemble forecasts with various configurations during the 20 

2022 NOAA Hazardous Weather Testbed Spring Forecasting Experiment in real time.  The 21 

first set used different physics parameterizations, the second set included additional initial and 22 

lateral boundary condition perturbations, and the third introduced additional stochastic physics 23 

perturbations.  This study evaluates precipitation, temperature, dewpoint, and wind forecasts, 24 

and compares them to those of the operational High-Resolution Ensemble Forecast (HREF) 25 

and Global Ensemble Forecast System (GEFS).  Precipitation forecasts are verified against 26 

NCEP Stage-IV precipitation analyses, while temperature, dewpoint, and wind forecasts are 27 

verified against URMA surface analyses and radiosonde observations.   28 

Overall, the ensemble configurations tested are generally suitable for predicting spring-29 

season convective rainfall.  The CAPS forecasts generally outperform GEFS in terms of ETS, 30 

frequency bias, and area under the ROC curve, approaching (but not exceeding) the 31 

performance of HREF in some metrics.  Including stochastic physics perturbations resulted in 32 

forecasts objectively very similar to those without such perturbations, except for a small but 33 

consistent positive impact on ensemble spread of surface variables throughout the 84-hour 34 

forecast period.  The CAPS forecasts have a near-neutral to slightly negative bias in total 35 

precipitation coverage.  Forecasts using the NSSL microphysics scheme have more total 36 

rainfall than forecasts using the Thompson scheme and Stage-IV analyses, while forecasts 37 

using the NOAH-MP land surface model generally have lower total precipitation than other 38 

forecasts.   39 

  40 
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1. Introduction  41 

As part of the transition to the Unified Forecast System (UFS) framework for operational 42 

numerical weather prediction (NWP) systems, the National Oceanic and Atmospheric 43 

Administration (NOAA) is developing a rapidly-updating convection-allowing ensemble 44 

forecasting system—the Rapid Refresh Forecast System (RRFS; Banos et al 2022, Carley et 45 

al. 2023)—which is planned to facilitate the retirement of a large portion of operational high-46 

resolution forecasting systems currently used by the National Weather Service (NWS).  The 47 

RRFS will use the limited area variant (Black et al. 2021) of the Finite-Volume Cubed-Sphere 48 

(FV3) Model (FV3-LAM) (Lin 2004) and include an ensemble of forecasts optimized for short-49 

range prediction of high-impact weather. To assist in optimizing the ensemble design and 50 

physics parameterization choices for the RRFS, the Center for the Analysis and Prediction of 51 

Storms (CAPS) at the University of Oklahoma has been running experimental FV3-LAM 52 

ensemble forecasts during the NOAA Hazardous Weather Testbed (HWT) Spring Forecasting 53 

Experiment (SFE; Clark et al. 2020; Roberts et al. 2020) and the Hydrometerology Testbed 54 

(HMT) Flash Flood and Intense Rainfall Experiment (FFaIR) and Winter Weather Experiments 55 

(NOAA 2023) since 2018—the ensemble membership and model configuration of these 56 

forecast ensembles has varied from experiment to experiment. These experiments have 57 

demonstrated the ability of convection-allowing FV3-LAM ensembles to generate skillful 58 

forecasts, while also documenting systematic biases associated with different physics and land-59 

surface model combinations (Zhang et al. 2019; Snook et al. 2019; Supinie et al. 2022; Hu et 60 

al. 2023). 61 

During the 2022 HWT SFE, CAPS ran a 21-member FV3-LAM ensemble; member 62 

configurations were selected to use various combinations of land surface models (LSMs), and 63 

planetary boundary layer (PBL), surface layer, and microphysical schemes. The 2022 HWT 64 

SFE configurations evolved from those used in 2020 and 2021 (Supinie et al. 2022; Hu et al. 65 

2023). In the 2022 ensemble, initial conditions from experimental RRFS EnVar and EnKF 66 

analyses (Carley et al. 2024) are used, instead of the GFS and Global Ensemble Forecast 67 

System (GEFS) analyses used in prior years.  Ensemble analyses from the experimental RRFS 68 

EnKF run by the NOAA Global Systems Laboratory (GSL) are used to initialize perturbed-IC 69 

ensemble members; unperturbed members are initialized using 3DEnVar analysis with 70 

ensemble covariance provided by the EnKF system so that two systems are coupled.  In this 71 

sense the CAPS FV3-LAM forecasts of 2022 can be considered “hot start” forecast runs.  The 72 
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experimental RRFS EnVar and EnKF analyses were run by GSL as hourly cycled DA systems 73 

as prototypes of the planned operational RRFS.  74 

Multiple suites of physics parameterization schemes are chosen for the CAPS FV3-LAM 75 

forecasts, partly based on earlier performance evaluations (e.g., Supinie et al. 2022; Hu et al. 76 

2023) and partly based on the likelihood of continued support and operational use by the NWS. 77 

Stochastic physics perturbations are also included for five ensemble members.  Model 78 

configurations in this ensemble are designed to resemble current and proposed convection-79 

allowing model configurations (these configurations are discussed in greater detail below in 80 

section 2a).  The primary goal of this study is to examine the performance of these forecasts, 81 

including deterministic forecast performance of selected members and ensemble forecast 82 

performance of several sub-ensembles (i.e., subsets of the 21 members intended to investigate 83 

different ensemble design considerations), with emphasis on precipitation forecasts.   84 

Among the 21 forecast members, five use the same initial condition (IC) and lateral 85 

boundary conditions (LBCs), with differences in physics parameterizations only, allowing for 86 

the evaluation of physics performance. These same physics combinations are also used in other 87 

sub-ensembles that introduce IC, LBC, and stochastic physics perturbations. The use of physics 88 

diversity has been shown to help improve the spread and probabilistic forecast performance of 89 

ensembles, especially at the mesoscale and convective scale (e.g., Stensrud et al. 2020; Clark 90 

et al. 2008; Berner et al. 2011), and is used in the current NWS operational High-Resolution 91 

Ensemble Forecast (HREF) system (Jirak et al. 2012; Roberts et al. 2019) which is also a multi-92 

model ensemble. Real-time HWT ensemble forecasts produced by CAPS over the years have 93 

also used multiple physics configurations (e.g., Schwartz et al. 2008; Loken et al. 2019; Supinie 94 

et al. 2022; Hu et al. 2023).   95 

Inclusion of stochastic physics perturbations has also been shown to improve ensemble 96 

characteristics; several perturbation approaches have been investigated in prior studies, 97 

including stochastic kinetic energy backscatter (SKEB; Berner et al. 2009), stochastic 98 

perturbations of physics tendencies (SPPT; Buizza et al. 1999, Palmer et al. 2009), stochastic 99 

perturbed humidity (SHUM; Thompkins and Berner 2008), stochastic parameter perturbations 100 

(SPP; Jankov et al., 2017, 2019), and cellular automata (Bengtsson et al. 2013).  The current 101 

NCEP GEFS uses SPPT and SKEB perturbations (Zhou et al. 2022).  Jankov et al. (2017, 2019) 102 

demonstrated that a single-physics ensemble with stochastic physics could perform comparably 103 

to a multi-physics ensemble for regional systems. Kalina et al. (2021) found in experimental 104 
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configurations of the High-Resolution Rapid Refresh Ensemble (HRRRE) that SPP helped 105 

increase ensemble spread in surface forecast variables. They also found that SPP increased the 106 

reliability of near-term HRRRE precipitation forecasts but exacerbated a preexisting low-107 

frequency bias in the prediction of heavy rainfall in HRRRE.   108 

Important questions regarding stochastic physics perturbations remain to be solved.  One 109 

such question is whether random perturbations introduced into physics parameters or physics 110 

tendencies cause deterioration in individual members’ forecast performance.  Another question 111 

is whether stochastic perturbations using a single physics suite can create sufficient spread 112 

within an ensemble—if so, the cost of having to develop and maintain multiple physics 113 

packages can be alleviated, allowing more resources to be devoted to the improvement of the 114 

best-performing physics suite.  Thus far, the findings concerning the optimal ensemble 115 

configurations in terms of physics combinations and the use of stochastic perturbations are still 116 

inconclusive, and the answers are likely dependent on the specific models used, their 117 

implementation, and their applications. One subset of the CAPS ensemble examined in this 118 

study uses a combination of SKEB, SPPT and SHUM stochastic perturbations, offering us an 119 

opportunity to examine the effects of stochastic perturbations as well as to test the robustness 120 

of their implementations in combination with multiple physics parameterizations.  It should be 121 

noted, however, that stochastic physics perturbations can be strongly impacted by the choice 122 

of model dynamic core, and further evaluation would be needed in the context of any specific 123 

future RRFS ensemble. 124 

Though in this study we document and compare the performance of the CAPS ensembles 125 

to existing operational forecasts as a baseline, the primary focus is on the relative performance 126 

of the sub-ensembles and the effects of physics diversity, IC and LBC perturbations, and 127 

stochastic physics perturbations.  These experiments  have helped to inform future operational 128 

RRFS ensemble design; members of the RRFS development team directly consulted with 129 

CAPS, and the results presented in this study were highly influential in the construction of the 130 

initial version of RRFS.   131 

The remainder of this study is organized as follows: the specifics of the 2022 CAPS HWT 132 

SFE ensemble forecasts, including the sub-ensemble design considerations and the verification 133 

datasets and methodologies, are discussed in section 2.  Objective and subjective verifications 134 

of the ensembles using Stage-IV precipitation data, surface analyses, and sounding data are 135 

presented in section 3. Conclusions and operational implications are discussed in section 4. 136 
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 137 

2. FV3-LAM Configuration, Verification Data, and Methodology 138 

a. Model configurations and ensemble design 139 

The forecasts produced by CAPS during 2022 HWT SFE (referred to hereafter as the 140 

“CAPS ensemble”) use a model domain shown in Fig. 1, which covers the contiguous United 141 

States (CONUS) with a horizontal grid spacing of ~3 km and 1821 × 1093 grid points together 142 

with 65 vertical layers.  Forecasts were generated on weekdays from 2 May 2022 through 3 143 

Jun. 2022, and were initialized at 0000 UTC and run for 84 hours of forecast time, providing 144 

1200-1200 UTC daily forecasts for days 1, 2, and 3 (12-36, 36-60, and 60-84 hours of forecast 145 

time, respectively).  Due to technical issues, the most common of which was unavailable or 146 

incomplete RRFS EnKF initial condition data, complete forecast ensemble data were only 147 

available for 13 of the 25 days during the 2022 HWT SFE period, as detailed below in section 148 

2b.  Post-processed model outputs were generated hourly using version 10.0.12 of the Unified 149 

Post-Processing (UPP) package developed and maintained primarily by the NOAA EMC 150 

(publicly available at https://github.com/NOAA-EMC/UPP); the UPP-processed outputs 151 

include a standard suite of 2D forecast fields which are used for the verifications and 152 

evaluations performed in this study.  All computation was done on the Frontera supercomputer 153 

operated by the Texas Advanced Computing Center (TACC).   154 
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 155 

Fig. 1. Map showing the extent of the native grid (black box) and output grid (red box) 156 
used for the 2022 CAPS FV3-LAM ensemble.  The output grid is interpolated from the native 157 
FV3-LAM grid which uses the Extended Schmidt Gnomonic grid (a cubed-sphere projection) 158 
to a Lambert conformal map projection. 159 

 160 

The CAPS ensemble consists of 21 FV3-LAM forecast members (summarized in Table 1); 161 

diversity among ensemble members is achieved via a combination of variation in physics 162 

configurations, IC and LBC perturbations, and the use of stochastic physics perturbations. It 163 

should be noted that, while physics, IC/LBC, and stochastic perturbations are all intended to 164 

increase ensemble spread, the goal is not merely to maximize spread; over-dispersion among 165 

ensemble members is just as undesirable as under-dispersion.  In practice, however, many 166 

convection-allowing ensembles tend to be under-dispersive, hence the focus in this study on 167 

methods for increasing ensemble dispersion.  All members use a version of FV3-LAM checked 168 

out from https://github.com/NOAA-GSL/ufs-weather-model on 30 March 2022 (tagged as 169 

“BaselineC-20220331”).  The Rapid Radiative Transfer Model for GCMs (RRTMG; Mlawer 170 

et al. 1997) radiation parameterization is used in all members.  For members using the NOAH 171 

or NOAH-MP LSM, soil temperature and moisture were initialized via interpolation from 172 

RRFS initial conditions containing RUC LSM variables.  For members using the NSSL 173 
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microphysical scheme, microphysical variables not present in IC data are initialized via 174 

estimation using a gamma distribution.  No cumulus parameterization scheme is used. 175 

 176 

Experiment Microphysics PBL Surface  LSM IC/BC Source 
Baseline member using GFS initial conditions 

M0B0L0_PG Thompson MYNN MYNN NOAH GFS/GFS 
Multi-Physics configurations: same initial and boundary conditions (P members) 

M0B0L0_P Thompson MYNN MYNN NOAH RRFS CNTL/GFS 
M1B0L0_P NSSL MYNN MYNN NOAH RRFS CNTL/GFS 
M0B0L1_P Thompson MYNN GFS NOAH-MP RRFS CNTL/GFS 
M1B2L2_P NSSL TKE-EDMF GFS RUC RRFS CNTL/GFS 
M0B2L1_P Thompson TKE-EDMF GFS NOAH-MP RRFS CNTL/GFS 

Physics + initial condition perturbation ensemble (PI sub-ensemble) 
M0B0L0_PI Thompson MYNN MYNN NOAH RRFS01/GEFS m1 
M0B1L0_PI Thompson Shin-Hong GFS NOAH RRFS02/GEFS m2 
M0B2L1_PI Thompson TKE-EDMF GFS NOAH-MP RRFS03/GEFS m3 
M0B0L1_PI Thompson MYNN GFS NOAH-MP RRFS04/GEFS m4 
M0B2L2_PI Thompson TKE-EDMF GFS RUC RRFS05/GEFS m5 
M1B0L0_PI NSSL MYNN MYNN NOAH RRFS06/GEFS m6 
M1B1L0_PI NSSL Shin-Hong GFS NOAH RRFS07/GEFS m7 
M1B2L1_PI NSSL TKE-EDMF GFS NOAH-MP RRFS08/GEFS m8 
M1B0L1_PI NSSL MYNN GFS NOAH-MP RRFS09/GEFS m9 
M1B2L2_PI NSSL TKE-EDMF GFS RUC RRFS10/GEFS m10 

Physics + initial condition + stochastic perturbation ensemble (PSI sub-ensemble) 
M0B0L0_PSI Thompson MYNN MYNN NOAH RRFS01/GEFS m1 
M1B0L0_PSI NSSL MYNN MYNN NOAH RRFS06/GEFS m6 
M0B0L1_PSI Thompson MYNN GFS NOAH-MP RRFS04/GEFS m4 
M1B2L2_PSI NSSL TKE-EDMF GFS RUC RRFS10/GEFS m10 
M0B2L1_PSI Thompson TKE-EDMF GFS NOAH-MP RRFS03/GEFS m3 

Table 1. Member configurations for the 2022 CAPS FV3-LAM ensemble.  All members 177 
were run using FV3-LAM, and use the RRTMG radiation parameterization scheme.  Member 178 
names contain information regarding the configuration of each member: the number after 179 
“M” indicates the microphysical scheme, the number after “B” indicates the PBL scheme, 180 
and the number after “L” indicates the land surface model.  Suffixes indicate which sub-181 
ensemble a member belongs to: “P” for members which are part of the core configurations, 182 
“PI” for members in the initial condition perturbation ensemble which uses initial and 183 
boundary conditions derived from GEFS RRFS, and “PSI” for members in the sub-ensemble 184 
using stochastic physics perturbations in addition to the perturbations of the “PI” members.  185 
The baseline configuration member, which uses GFS initial conditions, has a “PG” suffix. 186 

 187 

The CAPS ensemble includes one member using a baseline configuration, and three groups 188 

of members investigating different aspects of ensemble design, including five members with 189 

core physics configurations and two sub-ensembles investigating different ensemble 190 
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perturbation strategies. The baseline configuration, labelled “M0B0L0_PG” in Table 1, uses 191 

the Thompson microphysical scheme, MYNN PBL and surface layer schemes, and the NOAH 192 

LSM, and uses ICs and LBCs from operational GFS.  A group of five members were run using 193 

core configurations focusing on physics diversity (hereafter referred to as the “physics” or “P” 194 

members, the latter designation referring to the suffixes in the naming convention used in Table 195 

1). Each of these members uses identical ICs and LBCs, but employs a unique combination of 196 

microphysics, PBL schemes, and LSMs (Table 1).  The physics combinations examined by the 197 

P members are designed to resemble current and proposed convection-allowing model 198 

configurations, including configurations similar to those of the GFS, the High-Resolution 199 

Rapid Refresh (HRRR), the NCEP North American Model (NAM), and the Warn-on-Forecast 200 

System (WoFS).  LBCs used by the P members match those of the baseline configuration, and 201 

ICs are obtained from the experimental RRFS prototype ensemble variational (EnVar) system.  202 

Within the core configurations of the P members, two microphysics schemes are 203 

examined—the National Severe Storms Laboratory (NSSL) scheme (Mansell et al. 2010; 204 

Mansell and Ziegler 2013), and the Thompson scheme (Thompson et al. 2004, 2008; 205 

Thompson and Eidhammer 2014).  Three PBL schemes are examined, including the MYNN 206 

scheme (Nakanishi and Niino 2009), the scale-aware Shin-Hong scheme (Shin and Hong 207 

2015), and the TKE-EDMF scheme (Han and Bretherton 2019).  The LSMs investigated 208 

include the NOAH (Ek et al. 2003), NOAH-MP (Niu et al. 2011), and RUC (Smirnova et al. 209 

2016) LSMs.  For further discussion of the implementation of these schemes within the FV3-210 

LAM version used in this study, we refer the reader to Supinie et al. (2022). 211 

One sub-ensemble adds IC and LBC diversity (hereafter referred to as the “IC/LBC 212 

perturbation” or the “PI” sub-ensemble).  In the PI sub-ensemble, initial conditions for each 213 

member are provided by the first 10 members of an experimental RRFS EnKF data assimilation 214 

(DA) system produced by GSL (Liu et al. 2023), and LBCs are obtained from GEFS member 215 

forecasts.  This sub-ensemble also includes physics diversity, with five of the ten members 216 

using physics combinations matching those of the five physics sub-ensemble members.   217 

The other sub-ensemble includes five members with stochastic physics perturbations in 218 

addition to physics and IC/LBC diversity (hereafter referred to as the “stochastic” or the “PSI” 219 

sub-ensemble).  Stochastic perturbations are generated using a combination of SPPT, SKEB 220 

and SHUM, using a unique random seed for each member.  SPPT perturbs the physics tendency 221 

terms in the equations of the U and V wind components, temperature, and water vapor mixing 222 



 

10 

File generated with AMS Word template 2.0 

ratio using a standard deviation of 0.7 in the red noise process used to generate stochastic 223 

perturbations (Buizza et al. 1999). SKEB perturbations are applied to the U- and V-component 224 

wind fields with a standard deviation of 0.5 m s-1.  SHUM is applied within the boundary layer 225 

to perturbations of the 3-dimensional specific humidity field using a normalized perturbation 226 

coefficient of 0.006.  For all stochastic methods, perturbations have a characteristic spatial 227 

length scale of 150 km and a characteristic time scale of six hours, and are updated hourly.  228 

These parameters were inherited from defaults in the UFS Short-range Weather Application 229 

package.  We believe that these settings are suitable for applications involving convective 230 

rainfall, and note that they are similar, at least in terms of time and length scales, to those used 231 

in prior studies (e.g., Jankov et al. 2017).  The five PSI sub-ensemble members have the same 232 

physics combinations as the P sub-ensemble members.  The physics combinations of the five 233 

PSI sub-ensemble members also match those of five corresponding PI ensemble members, 234 

allowing for a clean comparison of these PI and PSI members to evaluate the impact of 235 

stochastic physics perturbations. 236 

b. Data and methods for forecast evaluation 237 

In this study, we verify and evaluate 0-84 hour forecasts of the CAPS ensemble and its sub-238 

ensembles, with a particular focus on forecasts of precipitation.  The operational High 239 

Resolution Ensemble Forecast (HREF) and GEFS forecasts are used as references for 240 

comparison. The HREF is an “ensemble of opportunity” convection-allowing ensemble 241 

forecasting system made up of 5 forecasting systems running at similar 3-4 km grid spacings; 242 

through time-lagging HREF achieves 10 ensemble members (Jirak et al. 2012; Roberts et al. 243 

2020), and is the current operational standard at convection-allowing resolution over the 244 

CONUS. GEFS is included because HREF forecasts only run for 48 hours (allowing for only 245 

36-h forecasts after the 12-h time-lag members are accounted for); a substantial dry bias in 246 

precipitation at higher intensity thresholds is expected of the GEFS given its much coarser grid 247 

spacing of 0.25 degrees. Evaluation of GEFS and HREF forecasts is not a goal of this study; 248 

they are included purely as baselines against which to evaluate the CAPS forecast sub-249 

ensembles. 250 

The evaluations presented in this study were generated using the grid_stat and 251 

ensemble_stat modules of version 10.0.0 of the Model Evaluation Tools (MET) software 252 

package (Brown et al. 2021, DTC 2023).  The observation datasets used as “truth” for 253 

precipitation forecast evaluation are the NCEP Stage-IV 1-h, 6-h, and 24-h precipitation 254 
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analyses (Nelson et al. 2016), which combine WSR-88D radar-estimated rainfall with rain 255 

gauge observations (including manual error correction).  Because Stage-IV data are only valid 256 

over the United States, the verification is constrained to the land areas of the CONUS. 257 

Surface temperature and wind forecasts are verified against the NOAA UnRestricted 258 

Mesoscale Analysis (URMA).  URMA is very similar to the Real Time Mesoscale Analysis 259 

(RTMA; de Pondeca et al. 2011; Morris et al. 2020), but is generated 6 hours later to allow 260 

inclusion of late-arriving observations not used in RTMA (de Pondeca et al. 2015).  While 261 

URMA does involve interpolation of observations to a grid we note that it does so via a 262 

sophisticated, anisotropic 2DVAR analysis scheme and is designed to have high fidelity to 263 

surface observations, making it suitable for validation and verification of near-surface forecast 264 

fields (Supinie et al. 2022), and has previously been used operationally by NWS as a “truth 265 

analysis” (de Pondeca et al. 2015). Verifications of vertical profiles for temperature, dewpoint, 266 

and wind forecasts are performed against radiosonde observations (RAOB) at ~70 NWS 267 

operational sites within the CONUS.  For verification, all forecast data are interpolated to the 268 

grid of the analyses—either the Stage-IV grid (which has horizontal grid spacing of 269 

approximately 4.76 km) or the 2.5-km URMA grid—using MET’s mass-conserving 270 

“BUDGET” interpolation method.   271 

We examine the member-by-member performance of the CAPS ensemble using equitable 272 

threat score (ETS), frequency biases, and performance diagrams for precipitation forecasts at 273 

varying accumulated precipitation intensity thresholds, calculated using a 2 ´ 2 contingency 274 

table computed from model precipitation forecasts and observed Stage-IV precipitation 275 

accumulations.  Ensemble consensus forecasts of precipitation are also evaluated, including the 276 

probability-matched mean (PM mean; Ebert 2001), and the patchwise localized PM mean 277 

(LPM mean; Snook et al. 2019, 2020) of the CAPS ensemble and its sub-ensembles. The simple 278 

ensemble mean is not included because of well-known biases arising from the smoothing effect 279 

of ensemble averaging. Accumulation periods of 6-h and 24-h are considered.  We use both 280 

fixed and percentile thresholds for evaluating precipitation forecasts. An accumulation 281 

threshold of 1 mm is used as a proxy for geographic extent of precipitation, and a threshold of 282 

25 mm is used to focus on prediction of moderate to heavy precipitation.  For percentile 283 

thresholds, the 99th percentile of accumulated precipitation is used to focus on heavy 284 

precipitation, while the 90th percentile (for 24-h accumulations) and the 95th percentile (for 6-285 

h accumulations) are used to include regions of lighter precipitation.  The use of percentile 286 
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thresholds allows us to eliminate the impact of frequency bias (Carafo et al. 2021).  The 287 

ensemble mean RMSEs and ensemble spread of predicted temperature, dewpoint, and zonal 288 

wind are calculated against RAOB profile data to examine the performance of various 289 

ensembles. Similar comparisons are done for 2-m temperature, 2-m dewpoint, and 10-m zonal 290 

winds against URMA analyses. 291 

Following Supinie et al. (2022), we choose for the sake of simplicity not to use a 292 

neighborhood-based contingency table for many of our evaluations.  When a neighborhood is 293 

used, we apply the neighborhood maximum ensemble probability (NMEP; Schwartz and 294 

Sobash 2017).  Employing increasing neighborhood radii generally increased forecast skill, but 295 

resulted in similar relative performance among ensembles and sub-ensembles, as we discuss 296 

below in section 3b.  The forecast evaluations discussed in this study use forecasts initialized 297 

at 0000 UTC on each weekday from 13 May 2022 to 3 Jun. 2022 excluding 18 May, 30 May, 298 

and 2 June (for which complete data were not available), totaling 13 days of data.  While this 299 

represents a small sample size and somewhat limits the robustness of the results of this study, 300 

technical limitations precluded the generation of additional forecast runs: forecasts were not 301 

run prior to 13 May due to unavailability of experimental RRFS initial conditions from GSL, 302 

while a combination of missing RRFS initial conditions and other technical issues resulted in 303 

incomplete forecast output on later missing days. 304 

 305 

3. Forecast evaluation results 306 

a. Deterministic and probabilistic evaluations of precipitation forecasts 307 

There is little difference among individual members in ETS of precipitation exceeding the 308 

90th percentile threshold (Fig. 2); all members exhibit ETS declining from between 0.4 and 0.5 309 

on Day 1 (Fig. 2a) to between 0.3 and 0.4 on Day 3 (Fig. 2c).  Within each sub-ensemble, the 310 

members do not show significant differences, but the M0B2L1 member of each sub-ensemble 311 

consistently exhibits the highest ETS for Days 1, 2, and 3.  As expected, the PM and LPM 312 

outperform individual members in terms of ETS.   313 

Individual ensemble members do, however, exhibit substantial differences in their 90th 314 

percentile values (Fig. 2d-f).  The 90th percentile of observed Stage-IV precipitation ranges 315 

from around 2.5 mm for Day 1 (Fig. 2d) to near 3.0 mm for Day 3 (Fig. 2f)—this variation in 316 

observed 90th percentile is due to day-to-day variation in total precipitation accumulation.  In 317 
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contrast, the 90th percentile of individual member forecasts ranges from around 1.7 to 3.1 mm—318 

for most members, the 90th percentile of precipitation is slightly to substantially below the 319 

observed 90th percentile.  In all sub-ensembles and at all lead-times, the members using the 320 

NOAH-MP LSM (“L1” in the ensemble member naming scheme; see Table 1) consistently 321 

exhibit the lowest 90th percentile precipitation value, while members using the NSSL 322 

microphysics scheme (“M1” members; see Table 1) tend to exhibit the highest.  When sub-323 

ensemble consensus measures are considered, however, the 90th percentile of sub-ensemble 324 

PM and LPM means are generally in good agreement with the observed 90th percentile value 325 

(Fig. 2d-f).  Comparing the PI and PSI sub-ensembles, the inclusion of stochastic perturbations 326 

has little impact on ETS or 90th percentile value; no significant differences are noted.  327 

Furthermore, the consistent performance across sub-ensembles in terms of relative ETS and 328 

90th percentile value among physics configurations suggests that the choice of physics 329 

configuration has a stronger impact on the precipitation forecasts at the 90th percentile threshold 330 

than either IC/LBC perturbations or stochastic perturbations.   331 

 332 

Fig. 2.  (a-c) 90th percentile equitable threat score (ETS) and (d-f) 90th percentile rainfall 333 
amount for 24-h accumulated precipitation forecasts for (a, d) Day 1 (12-36 h), (b, e) Day 2 334 
(36-60 h), and (c, f) Day 3 (60-84 h) forecasts, aggregated over all available cases from the 335 
2022 HWT SFE period for the CAPS ensemble.  Error bars for each member in panels (a-c) 336 
indicate the 5.0-95.0 percentile range using bootstrap resampling (10,000 resamples).  The 337 
black bar in panels (d-f) indicates the 90th percentile of Stage-IV observed rainfall. 338 
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 339 

When we consider the 99th percentile for 24-h accumulated precipitation (Fig. 3), overall 340 

ETS values are somewhat lower than those at the 90th percentile, ranging from approximately 341 

0.15-0.20 on Day 1 (Fig. 3a) to around 0.10 for most members on Day 3 (Fig. 3c).  As at the 342 

90th percentile threshold, differences among members are not significant, and the performance 343 

of individual members within the PI and PSI sub-ensembles is similar.  Unlike at the 90th 344 

percentile, however, the 99th percentile of 24-h accumulated precipitation is higher than that of 345 

the observed Stage-IV precipitation for nearly all members on all three days (Fig. 3d-f).  Taken 346 

together with the 90th percentile statistics presented in Fig. 2d-f, we find that most members 347 

have precipitation distributions which are lighter than observed for light to moderate rainfall, 348 

but which have heavier than observed accumulations in the most intense precipitation regions.  349 

These results align with the findings of prior studies, such as Zhou et al. (2019), which have 350 

indicated that FV3-based models tend to over-predict heavy precipitation. 351 

 352 

Fig. 3.  As Fig. 2, but for the 99th percentile instead of the 90th. 353 

 354 

The conclusions drawn from Figs. 2, 3 regarding precipitation distributions can be 355 

contextualized via an analysis of average total 24-h accumulated rainfall per Stage-IV grid cell 356 

(Fig. 4).  In terms of total 24-h accumulated rainfall, the “M1” members, which use the NSSL 357 
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microphysical scheme, stand out as having more total rainfall than the “M0” members, which 358 

use the Thompson microphysical scheme—particularly for M1B2L2.  This pattern is consistent 359 

across sub-ensembles (i.e., it is present for “M1” members in the “P”, “PI”, and “PSI” sub-360 

ensembles), and results in the “M1” members consistently producing more total rainfall than 361 

the Stage-IV analysis (Fig. 4).  The “L1” members, which use the NOAH-MP land-surface 362 

model, are consistently among the lowest in terms of total rainfall. 363 

 364 

 365 
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Fig. 4.  Domain-averaged total 24-h accumulated precipitation for (a) 12-36 h, (b) 36-60 366 
h, and (c) 60-84 h of forecast time for selected CAPS FV3 members and ensemble/sub-367 
ensemble consensus forecasts (PM and LPM mean), compared to that of the Stage-IV 368 
analysis (“observed”).  Color-coding of the plotted bars matches that used in Figs. 2 and 3.  369 
The horizontal black line in each panel is plotted at the observed value (to facilitate visual 370 
comparison of forecasts with observations). 371 

 372 

Performance of 24-h rainfall accumulation forecasts is also examined in Fig. 5 via 373 

performance diagrams (Roebber 2009) using thresholds of 1.0 mm and 25.4 mm.  Forecast 374 

performance improves toward the upper right of the diagram; forecasts along the one-to-one 375 

diagonal are unbiased.  The performance diagrams shown in Fig. 5 use fixed rather than 376 

percentile-based precipitation thresholds, allowing forecast bias assessment.  At the 1.0 mm 377 

threshold (Fig. 5a, c, e), GEFS members exhibit a high bias, while the CAPS FV3 and HREF 378 

members and CAPS sub-ensemble PM and LPMs exhibit near-neutral or slightly low biases.   379 

At the 25.4 mm (1.0 inch) threshold (Fig. 5b, d, f), forecast accuracy is generally quite 380 

similar between the PI and PSI ensembles, with neither clearly outperforming the other.  At 381 

this higher threshold, HREF members perform similarly to or slightly better than the PI and 382 

PSI members; both the CAPS sub-ensembles and the HREF exhibit a slight over-prediction 383 

bias on day 1 (Fig. 5b), and close-to-unbiased performance on days 2 and 3 (Fig. 5d, f).  GEFS 384 

performs noticeably worse in both CSI and bias compared to the CAPS sub-ensembles and 385 

HREF, which is unsurprising given its much lower resolution. The overall performance of the 386 

CAPS sub-ensembles is similar to that noted by Johnson et al. (2023) for CAPS forecasts 387 

produced during the 2018 HWT SFE. 388 

 389 
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 390 

Fig. 5.  Performance diagrams (zoomed-in) for forecasts of 24-h accumulated 391 
precipitation exceeding (a, c, e) 0.04 inches or (b, d, f) 1.00 inches at forecast lead times of 392 
(a, b) 12-36 h, (c, d) 36-60 h, and (e, f) 60-84 h using all available days from the 2022 HWT 393 
SFE period.  The dark blue labelled contours indicate lines of constant critical success index 394 
(CSI), while the diagonal dotted line indicates a constant bias of 1.0.  Color-coding of 395 
ensemble members is indicated by the legends in panel (a). Due to the shorter run-length of 396 
HREF, HREF data are shown only in panels (a) and (b).  To facilitate readability, the left and 397 
right columns are zoomed in on different portions of the performance diagram. 398 

 399 
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The relative performances of the five-member PI and PSI sub-ensembles are compared to 400 

one another and to those of the five members of HREF without time-lagging and the five GEFS 401 

members which provided boundary conditions for the PSI sub-ensemble (see Table 1) in terms 402 

of area under the receiver operating characteristic (ROC) curve (AUC) (Mason 1982) for 403 

accumulated precipitation in Fig. 6.  Shown are verification for 1-h (Fig. 6a, b) and 6-h (Fig. 404 

6c, d) accumulation at 95th and 99th percentile thresholds. Due to limitations in the temporal 405 

resolution and format of available data, 1-h verification is shown only for the PI and PSI sub-406 

ensembles.  AUC measures resolution (i.e., the ability to distinguish between events and non-407 

events), and is constructed by calculating the area beneath the curve when plotting probability 408 

of detection (POD) versus probability of false detection (POFD) (e.g., Clark et al. 2021). 409 

At both percentile thresholds, the CAPS PI and PSI sub-ensembles exhibit qualitatively and 410 

quantitatively similar performance in terms of AUC, with only very minor differences between 411 

the two (Fig. 6).  Overall patterns of forecast skill are similar for 1-h and 6-h accumulations, 412 

though the 1-h accumulations exhibit additional evidence of diurnal variation in forecast skill 413 

in the PI and PSI sub-ensembles, with higher forecast skill between 0600 and 1200 UTC and 414 

lower forecast skill between 1800 and 0000 UTC; this pattern is particularly notable at the 95th 415 

percentile threshold (Fig. 6a). When the CAPS PI and PSI sub-ensembles are compared to the 416 

operational HREF and GEFS ensembles, HREF exhibits superior performance in terms of AUC 417 

up to 12 hours of forecast time, and then performs similarly to or better than the CAPS sub-418 

ensembles through the remainder of its forecast period (ending at 48 h of forecast time).  The 419 

CAPS sub-ensembles do outperform GEFS, particularly at the 99th percentile threshold (Fig. 420 

6d).  The superior performance of the CAPS sub-ensembles and HREF compared to GEFS is 421 

not surprising, given the large resolution difference (~3 km vs. ~25 km). The inferior 422 

performance of coarser-resolution global models in predicting precipitation (especially heavy 423 

precipitation) compared to convection-allowing models has been well-documented in previous 424 

studies (e.g., Zhu et al. 2018). 425 
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 426 

Fig. 6.  Area under the receiver operating characteristic curve (ROC AUC) for forecasts 427 
of (a, b) 1-h accumulated precipitation and (c, d) 6-h accumulated precipitation exceeding (a, 428 
c) the 95th percentile or (b, d) the 99th percentile at various forecast lead times.  Shown are the 429 
CAPS PI and PSI 5-member sub-ensembles compared to the five members of GEFS which 430 
provided boundary conditions for the CAPS FV3 PSI sub-ensemble and the 0000 UTC 431 
HREF. Values shown here are calculated using all days during the 2022 HWT SFE period 432 
with valid CAPS ensemble data.  Due to the shorter run-length of HREF, HREF is shown 433 
only for forecast times of 6 to 36 hours.  434 

 435 
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The impact of using a neighborhood during probabilistic forecast generation is examined 436 

in Fig. 7, which compares the AUC of forecasts generated using a pixelwise (no neighborhood) 437 

ensemble approach to those generated using ensemble NMEP with neighborhood radii of 20 438 

or 40 km.  Only 0 and 40 km radii are used for GEFS, as a neighborhood of 20 km is smaller 439 

than the grid spacing of GEFS.  Across neighborhood radii, HREF consistently exhibits the 440 

highest AUC, followed by the CAPS PI and PSI sub-ensembles which exhibit similar AUC 441 

performance to one another, slightly worse than HREF.  GEFS consistently exhibits the lowest 442 

AUC of the ensembles examined.  The impact of using a neighborhood via NMEP is uniformly 443 

positive in terms of AUC, but the increase in AUC is greater for the CAPS sub-ensembles and 444 

the HREF than it is for GEFS (Fig. 7c, g), likely because the relatively coarse GEFS grid results 445 

in fewer localized heavy rainfall areas for which forecasts would be greatly improved by using 446 

a 40 km neighborhood.  The CAPS sub-ensembles and the HREF, which both have native 447 

horizontal grid spacing of around 3 km, exhibit similar magnitudes of increase in AUC going 448 

from a 0 km to 20 km to 40 km neighborhood. 449 

 450 

Fig. 7.  Area under the receiver operating characteristic curve (ROC AUC) for forecasts 451 
of 6-h precipitation accumulation exceeding (a-d) the 95th percentile and (e-h) the 99th 452 
percentile at forecast lead times ranging from 6 hours to 84 hours for (a, e) the 5-member 453 
CAPS PI and (b, f) PSI sub-ensembles, as well as (c, g) the five members of GEFS which 454 
provided boundary conditions for the CAPS FV3 PSI sub-ensemble and (d, h) the 0000 UTC 455 
HREF.  Curves are plotted using NMEP with neighborhood radii of 0, 20, and 40 km for PI, 456 
PSI, and HREF, and with radii of 0 and 40 km for GEFS.  As in Fig. 6, values are calculated 457 
using all days during the 2022 HWT SFE period with valid CAPS ensemble data.   458 

 459 

Fractions Skill Score (FSS; Roberts and Lean 2008) is another neighborhood-focused 460 

forecast skill metric which evaluates the degree of similarity between a forecast and 461 
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observations at varying spatial scales.  FSS varies between 0.0 and 1.0, with higher values 462 

indicating higher forecast skill.  A forecast can be considered useful at a given scale if the FSS 463 

at that scale exceeds that which would be obtained at the grid scale from a forecast with 464 

probability at each point equal to the base rate of the event being evaluated (Roberts and Lean 465 

2008).    At the 90th percentile (Fig. 8), all CAPS forecast members exhibit skillful forecasts of 466 

24-h accumulated precipitation in terms of FSS, with modest variation among members.  In 467 

terms of ensemble consensus measures, the PM exhibits slightly higher skill than the LPM in 468 

terms of FSS at the 90th percentile, with the PI sub-ensemble slightly outperforming the PSI 469 

sub-ensemble.  Individual HREF members perform similarly to the best-performing CAPS 470 

members on Day 1 (Fig. 8a), while GEFS members consistently exhibit lower FSS than either 471 

CAPS or HREF members, although even GEFS is skillful at all scales on Day 1 and 2, and at 472 

all but the smallest scales on Day 3. 473 

 474 

Fig. 8.  Fractions Skill Score (FSS) for forecasts of 24-h precipitation accumulation 475 
exceeding the 90th percentile for (a) Day 1, (b) Day 2, and (c) Day 3 forecasts for individual 476 
CAPS ensemble members, the PM and LPM of the CAPS P, PI and PSI sub-ensembles, and 477 
corresponding members of the HREF and GEFS ensembles for comparison.  The horizontal 478 
dashed line indicates the minimum useful value of FSS. 479 
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 480 

At the 99th percentile (Fig. 9), there is more substantial variation in FSS across the CAPS 481 

members, although neither PI nor PSI members consistently outperform one another, while 482 

HREF members perform comparably to better-performing members of the CAPS sub-483 

ensembles (Fig. 9a).  GEFS performs notably worse than either the CAPS or HREF members.  484 

By Day 2, no GEFS member exhibits a skillful FSS at any scale up to 300 km (Fig. 9b, c).   485 
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 486 

Fig. 9.  As Fig. 8, but for the 99th percentile of 24-h accumulated rainfall instead of the 487 
90th percentile. The lower horizontal dashed line in each panel indicates the base rate, while 488 
the upper horizontal dashed line indicates the minimum useful value of FSS. 489 

 490 
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In Fig. 10, rank histograms are presented for forecasts of 24-h accumulated precipitation.  491 

Rank histograms measure ensemble reliability. Ideally, the fraction of points within each rank 492 

should be similar, leading to a flat rank histogram (Hamill 2001).  The PI and PSI sub-493 

ensembles (Fig. 10a-f) exhibit nearly flat rank histograms for 24-h accumulated precipitation 494 

for days 1-3, with a slight downward slope towards higher ranks, indicating slight over-495 

prediction of precipitation. When the CAPS P members are treated as a sub-ensemble, having 496 

no initial condition perturbations and relying entirely upon physics diversity to generate 497 

ensemble spread, under-dispersion is evident in the form of a U-shaped rank histogram (Fig. 498 

10g-i), underscoring the importance of the initial condition perturbations applied in the PI and 499 

PSI sub-ensembles.  Given the similarity between the PI and PSI sub-ensembles, it is likely 500 

that the initial condition perturbations impart greater impact than the stochastic perturbations.  501 

In contrast to the CAPS sub-ensembles, the GEFS 5-member sub-ensemble (Fig. 10j-l) shows 502 

a substantial over-forecasting bias on all days, with the strongest bias on day 1 (Fig. 10j).  The 503 

HREF 0000 UTC members (Fig. 10m) exhibit better rank histogram behavior than GEFS, but 504 

with slightly greater over-forecasting bias than the CAPS sub-ensembles (evidenced by the 505 

decreasing occurrence of grid cells at increasing ranks in HREF, compared to the flatter rank 506 

histogram of the CAPS PI and PSI sub-ensembles).  507 

  508 
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 509 

Fig. 10.  Rank histograms of 24-h accumulated precipitation for (a-c) the CAPS PI sub-510 
ensemble, (d-f) the CAPS PSI sub-ensemble, (g-i) the CAPS P sub-ensemble, (j-l) the five 511 
members of the GEFS which provided boundary conditions for the CAPS PSI 5-member sub-512 
ensemble, and (m) the 00 UTC members of the HREF.  Data are shown for forecast lead 513 
times of 12-36 h (left column), 36-60 h (center column), and 60-84 h (right column). 514 

 515 

b. Evaluations of wind, temperature, and dewpoint forecasts 516 

For 2 meter temperature (T), 2 meter dewpoint (Td), and 10 meter zonal wind (U), the 5-517 

member CAPS PI and PSI sub-ensembles consistently exhibit lower RMSEs and greater 518 

ensemble spread than GEFS, while HREF has the lowest RMSEs and highest spread 519 
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throughout that the period for which HREF forecasts are available (Fig. 11).  RMSE and spread 520 

curves exhibit a strong diurnal variation for T, Td, and U, with maxima typically occurring 521 

around 0000 UTC (during the afternoon and evening hours over the CONUS when convective 522 

activity is typically near its peak).  RMSEs of Td and U are very similar between the PI and PSI 523 

sub-ensembles, while RMSE of T is slightly higher in the PSI sub-ensemble during the diurnal 524 

maximum.  While statistics are not shown for the meridional wind component, performance is 525 

qualitatively similar to that of U (not shown).  For all three variables ensemble spread is 526 

consistently slightly higher for the PSI sub-ensemble than for the PI sub-ensemble, indicating 527 

that stochastic perturbations do help improve the ensemble spread, with only small increases 528 

in RMSE at a few times.  A small improvement in spread to RMSE ratio in the PSI sub-529 

ensemble compared to the PI sub-ensemble is present throughout the forecast period out to the 530 

maximum forecast lead-time of 84 h.   531 

 532 

Fig. 11.  RMSE and ensemble spread for forecasts of (a) 2-meter temperature (K), (b) 2-533 
meter dewpoint (K), and (c) 10-meter zonal (u) wind component (ms-1).  Shown are the 5-534 
member CAPS PI and PSI 5-member sub-ensembles compared to the five members of GEFS 535 
which provided boundary conditions for the CAPS FV3 PSI sub-ensemble and the 0000 UTC 536 
HREF. 537 

 538 

Vertical profiles of RMSE and spread calculated against sounding data are plotted for T, 539 

Td, and U at 36, 60, and 84 hours of forecast time in Fig. 12.    While some differences between 540 

the performance of the CAPS PI and PSI sub-ensembles were noted near the surface (Fig. 11), 541 

in Fig. 12 the CAPS PI and PSI sub-ensembles generally exhibit similar performance, both 542 

performing slightly better than the GEFS.  The most notable difference between the PI and PSI 543 

sub-ensembles is a slightly improved spread to RMSE ratio in the PSI sub-ensemble, primarily 544 

below 500 hPa.  At 36 hours, HREF exhibits slightly smaller RMSEs for T and U (Figs. 12a,g),  545 

slightly smaller spread for U (Fig. 12g) and larger spread for Td (Fig. 12d) than other ensembles. 546 
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Overall, HREF has better error-spread consistency, especially for Td.  Spread in temperature is 547 

slightly higher in GEFS than in the HREF or CAPS sub-ensembles at 60 and 84 hours, albeit 548 

with larger RMSE; this may reflect better tuning in the stochastic physics used by GEFS than 549 

in the CAPS PSI sub-ensemble. 550 

 551 

Fig. 12.  Vertical RMSE and spread profiles of (a-c) temperature, (d-f) dewpoint, and (g-552 
i) zonal wind component at forecast lead times of 36 h (left column), 60 h (center column), 553 
and 84 h (right column) for the 5-member CAPS PI and PSI sub-ensembles, as well as for the 554 
0000 UTC HREF and five members of GEFS. HREF data are available only up to 500 hPa. 555 

 556 

4. Summary and discussion 557 

During the 2022 NOAA HWT SFE, CAPS ran an ensemble of 21 FV3-LAM forecasts in 558 

real-time using a variety of configurations with different combinations of microphysical 559 
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schemes, LSMs, and PBL parameterizations.  These forecasts used 3-km grid spacing over the 560 

contiguous United States and were subdivided into three sub-ensembles: a “P” sub-ensemble 561 

with physics diversity only, a “PI” sub-ensemble that included perturbations to initial and 562 

lateral boundary conditions in addition to physics diversity, and a “PSI” sub-ensemble that 563 

included stochastic physics perturbations in addition to IC/LBC and physics diversity.  564 

Precipitation, temperature, dewpoint, and wind forecasts from this ensemble and its sub-565 

ensembles are evaluated using  the operational HREF and GEFS as references for comparison.   566 

For 6-h accumulated precipitation, the CAPS FV3-LAM forecasts exhibited 90th percentile 567 

values ranging from around 60% to 120% of the observed 90th percentile in Stage-IV rainfall, 568 

with more relative impact from model physics configuration than from the inclusion of initial 569 

and lateral boundary condition perturbations or stochastic perturbations  Members using the 570 

NOAH-MP LSM exhibited the lowest 90th percentile rainfall values, while members using the 571 

NSSL microphysics scheme exhibited among the highest 90th percentile values.  Similar 572 

patterns in the relative precipitation intensity of NOAH-MP and NSSL members were also 573 

noted in terms of domain-averaged total rainfall.  At the 99th percentile threshold, almost all 574 

members had 99th percentile values slightly above that of Stage-IV observations, with relatively 575 

little variation among members.  In general, many members exhibited underprediction at low 576 

rainfall rates and overprediction at relatively high rainfall rates.  Difference in ETS for 577 

individual forecast members, as well as among members in the PI and PSI sub-ensembles, were 578 

generally small at both percentile thresholds.  Sub-ensemble consensus, measured using the 579 

PM and LPM, showed good agreement with observed Stage-IV rainfall both in terms of 580 

percentile thresholds and domain-averaged total rainfall accumulation.  581 

Overall, the greatest positive impact of including stochastic perturbations (which were 582 

present in the CAPS PSI sub-ensemble but not in the PI sub-ensemble) was the improved 583 

spread-error ratio noted in forecasts of 2-m temperature and dewpoint and 10-m zonal wind.  584 

Some minor improvement in spread-error ratio is also noted for temperature, dewpoint, and 585 

zonal wind verified against soundings, extending up to around 500 hPa on forecast days 1 and 586 

2, with dewpoint exhibiting the greatest improvement.  When the PI and PSI sub-ensembles 587 

were compared using other metrics, including AUC for 6-h precipitation forecasts, 588 

performance diagrams, rank histograms, and FSS for 24-h accumulated rainfall, and domain-589 

averaged total rainfall, there was very little noticeable difference in the performance of the PI 590 

and PSI sub-ensembles.  These sub-ensemble evaluations do, however, highlight other 591 
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important aspects of CAPS forecast performance, such as the improved performance of the 592 

LPM mean over the PM mean in terms of FSS at higher precipitation thresholds, suggesting 593 

that the patchwise LPM algorithm being used is successful in its goal of retaining localized 594 

structures in the precipitation field.  We note that some prior studies have found greater benefit 595 

when applying stochastic perturbations.  For example, Jankov et al. (2019) found that including 596 

stochastic perturbations in a multi-physics CAM ensemble did improve the RMSE of 10-m 597 

wind forecasts, and Zhang (2019) reported a positive impact of stochastic perturbations for 598 

CAM forecasts of precipitation.  In light of these prior studies, it is possible that, with additional 599 

tuning of the stochastic perturbation methods used, greater benefit might be obtainable from 600 

inclusion of stochastic perturbations. 601 

Compared to the HREF and GEFS forecasts used as baseline comparisons for evaluation, 602 

the CAPS FV3-LAM forecasts typically performed slightly worse than (or at best no better 603 

than) HREF over the 0-48 hour forecast timeframe when HREF forecasts were available, 604 

though the CAPS FV3-LAM forecasts did consistently outperform GEFS throughout the 84 605 

hour forecast period.  The better performance of the CAPS FV3-LAM forecasts compared to 606 

GEFS is unsurprising given the much higher spatial resolution of the FV3-LAM forecasts.  607 

As was noted in the introduction, one of the motivations for this study is to inform the 608 

design of future convection-allowing NWP ensembles, in particular the planned RRFS 609 

ensemble using FV3-LAM.  Overall, the configurations of FV3-LAM examined in this study 610 

appear to be generally suitable for predicting spring season convective rainfall, outperforming 611 

GEFS across a variety of forecast quality metrics, and approaching the performance of HREF 612 

in some metrics.  HREF has been tuned and optimized over many years of operational use, and 613 

is widely used for prediction of severe weather and high-impact precipitation events, so the 614 

ability of an experimental FV3-based ensemble with limited tuning to approach the 615 

performance of HREF is encouraging.  We recommend that future studies continue 616 

investigation into the bias behavior of the NOAH-MP LSM; reducing the biases inherent in 617 

this scheme will help improve the performance of future operational ensembles.  The use of 618 

stochastic perturbations enhanced ensemble spread, but further optimization of their 619 

configurations is needed for them to contribute more significantly towards improving the 620 

ensemble spread without increasing biases of the ensembles.  Future investigations of 621 

stochastic physics perturbations could also examine the impacts of varying stochastic 622 

perturbation settings, or applying stochastic perturbation methods (such as SKEB, SPPT, and 623 
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SHUM) individually or in different combinations.  Ideally, if stochastic perturbations alone are 624 

able to outperform a multi-physics ensemble, efforts can be focused on developing and 625 

maintaining a single well-performing physics suite. Finally, we note that while this study 626 

generally focused on features aggregated over 6 or 24 hours, future studies will examine FV3-627 

LAM ensemble forecast performance in terms of more localized, shorter-duration features and 628 

severe weather hazards. 629 
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