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Abstract 

 The ensemble transform Kalman filter based-Ensemble/3DVAR (ETKF-En3DVAR) data 

assimilation (DA) systems are employed to evaluate the potential value of assimilating radar 

radial wind (Vr) data for the analysis and forecast of typhoon Saomai (2006). The DA system 

conducts cycling assimilation every 30 minutes when Saomai started to enter the radar coverage. 

Within the DA cycles, the control analysis is updated by the ETKF-En3DVAR algorithm 

whereas the forecast ensemble perturbations in the hybrid scheme are updated by the ETKF 

algorithm. The benefits from the use of the flow-dependent ensemble covariance are explored by 

comparing the analysis increments, analysis, and subsequent forecasts from the hybrid scheme 

with those by a pure 3DVAR using static background error covariance. Sensitivity to the 

horizontal correlation scale in the 3DVAR and the vertical covariance localization in the hybrid 

are also explored.  

 The reduced horizontal correlation scale in the 3DVAR yields much more reasonable 

circulation analyses than the default scale. The vertical covariance localization scale specified in 

terms of geometric height instead of model levels allows for desirable spreading of Vr data to the 

surface. It seems that the assimilation with the hybrid method lead to further improved vortex 

intensity forecast and track forecast of the typhoon compared to those in the analyses from the 

global forecast system (GFS) and 3DVAR. Results also indicated that the hybrid has significant 

effect on the 12-hour accumulated rainfall forecasts. Such improvements for analysis and 

forecast are probably due to the utilization of the flow-dependent background error covariance.  

Keywords: WRF model; hybrid assimilation; radar radial velocity  

 

1. Introduction 

 China suffers more typhoon damage than most other countries, and there are approximately 

nine tropical cyclones (TCs) landing in China coast each year in average (CMA; Yu, 2007; Song 

et al., 2010; Li et al., 2012). Accurate prediction of landfalling TCs in terms of the track 

and intensity is therefore crucial to protect the life and property in coastal areas. 

Improvements to TC forecasting can be attributed mainly to the improvements of numerical 

weather prediction (NWP) models, but also to more effective data assimilation (DA) approaches 

that can optimize based on both the forecast background and observations (Li et al., 2015; Wang 

et al., 2016). The uncertainties in DA procedures are typically characterized by error covariance 

matrices of the background state and observations. The background error matrices play important 

roles in determining the level of impacts of observations and how the observation information is 

distributed spatially and among the analysis variables. Given the localized characteristics of 

strong TC vortices and the associated large wind, temperature and moisture gradients, and fast 

forecast error growth with typical TC systems, it is difficult for DA systems to obtain accurate 

analysis of the inner core structures that are dynamical and thermodynamical consistent using 

static background error covariance (BEC) typically employed in 3D variational (3DVAR) DA 
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systems that are in common use at operational NWP centers. Even with a 4D variational 

(4DVAR) DA system, the use of flow-dependent BEC will still be beneficial.  

 Recently, ensemble-based DA techniques (Evensen, 1994) have been explored to yield 

better initial conditions (ICs) for TC forecasts and in some cases for initializing ensemble 

forecasts also (Zhang et al., 2009; Torn, 2010; Wu et al., 2010; Dong and Xue, 2013; Wang et 

al., 2014; Zhu et al., 2016). All these studies suggest that short-term ensemble forecasts can 

provide estimates of flow-dependent BEC and improve the subsequent forecasts. With ensemble 

sizes of 30 to 100 that are typically used in ensemble DA systems, the covariance matrix is rank 

deficient and result in sampling errors.   

 One potential solution to this problem is to combine the traditional static BEC with 

ensemble-derived BEC, as firstly proposed by Hamill and Snyder (2000), forming the so-called 

ensemble-variational (EnVar) hybrid method. Lorenc (2003) realized the combination of the 

BECs by extending the control variables (ECV) in the 3DVAR cost function. Among the hybrid 

DA studies, better analysis and forecast of TC track initialized with hybrid DA approach than 

3DVAR methods are found in both global (Buehner et al. (2010a,b) and regional (Wang, 2011; 

Poterjoy and Zhang, 2014; Shen and Min, 2015; Ito et al., 2016; Wang et al., 2017) models. In 

Wang (2011),  an ensemble transform Kalman filter (ETKF; Bishop et al., 2001) method was 

employed to update the forecast ensemble in the hybrid scheme. Shen and Min (2015) applied an 

ensemble of data assimilation technique based on perturbation of observations (EDA, 

Houtekamer et al., 1996) to updated the ensemble members with a different set of randomly 

perturbed observations. These studies focused on TC track forecasting at a relatively coarse 

resolution, without assimilating radar observations. Particularly, EDA method is relatively 

expensive due to its necessity of analysis for each ensemble member.  

Recent studies (Li et al., 2012; Shen et al., 2016) have assimilated radial velocity (Vr) 

observations using the hybrid method to initialize the TCs forecasts with their focus on the 

Atlantic basin. As is known to all, TCs are also frequent in the western North Pacific (WNP) 

causing severe damage along China’s coast. According to the author's best knowledge, the utility 

of the ensemble transform Kalman filter based-Ensemble/3DVAR (ETKF-En3DVAR) approach 

that assimilates Vr observations at cloud-scale resolution to the analysis and forecasts of 

landfalling TCs over WNP has not been examined in the previously published studies. This study 

serves this purpose.  

In our current study, the emphasis is put on the impacts of Vr data covering the inner core 

precipitation regions within a TC, on both track and intensity forecasts using a 5 km 

convection-permitting grid spacing. The test case to be investigated is Saomai (2006), one of the 

strongest landfalling TCs ever recorded in China (Zhao et al., 2008). The Vr data from Wenzhou 

radar (WZRD) are assimilated to examine its impact on the track forecasting and intensity. 

Recent research by Zhao et al. (2012) explored the impacts of assimilating of Ground-based 

velocity track display method (GBVTD) retrieved winds from one radar for the same super 

typhoon Saomai during its landfall, and found that the assimilation of retrieved winds can yield 
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better forecasts compared to those initialized by assimilating Vr data directly. Their results 

suggest that the improvements obtained by the GBVTD method are primarily due to the better 

spatial coverage of the typhoon inner core region from the retrieved winds compared to Vr data. 

It should be noted that the limitations of the GBVTD method is that the retrieved winds do not 

contain asymmetric wind components for wavenumbers beyond 3. In addition, the most 

important way of our work differs from Zhao et al (2012) is that we using the ETKF-En3DVAR 

method which adopted the flow-dependent BEC whereas they employing an Advanced Regional 

Prediction System (ARPS) 3DVAR DA technique. 

 Section 2 introduces the ETKF-En3DVAR technique. Section 3 presents the radar data and 

the experimental settings. Section 4 discusses the experiment results. Conclusions and 

discussions are given in section 5.  

 

2. The ETKF-En3DVAR algorithms 

The cost function of the ETKF-En3DVAR is defined as  
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 is the background term associated with the static B , Je  is the term related to the 

ensemble covariance, a  is the ECV. A  controls the spatial correlation of a . Jo  is the 

observation term. yo ' = yo -H xb( )  is the innovation vector as in 3DVAR; yo  denotes the 

observation; x
b
 is the background forecast, and H  is the linearized observation operator. Two 

cofficients, b1
 and b2
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The horizontal localization is performed using recursive filters (Hayden and Purser, 1995). 

Empirical orthogonal functions (EOFs) are employed for the vertical localization by 

transforming the ECV a  in Eq. (1). A general formulation to form the vertical covariance 

matrix, from which the EOFs are derived, can be written as, 
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where Cov(k1, k2) represents the correlation between model levels k1 and k2, L is the vertical 
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localization radius, and d stands for the distance between k1 and k2. Similarly, the default vertical 

covariance matrix used in WRF model data assimilation system (WRFDA) is defined as 
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Where N is the total number of model levels. The localization radius 110
k

N
 is in proportion to 

the model height, which means the localization radius is shorter when model level is lower. For 

Vr observations, more advanced correlation methods may be necessary to better spread the 

observation information to vertically stretched grid, which will be explicated in section 4a. 

 

3. Numerical experiments 

3.1. WRF model and radar data processing 

 A version 3.5 of the WRF model (Skamarock et al., 2005) is employed to conduct numerical 

experiments. All experiments are performed over a single domain shown in Figure 1 that has a 

401401 horizontal grid points spaced 5 km apart and covers the TC core area with 41 vertical 

levels and a model top of 100 hPa. The model physics include the WRF Single-Moment 6-Class 

scheme (Hong et al., 2004); the Rapid Radiative Transfer Model for longwave radiation with six 

molecular species (Mlawer et al., 1997); the MM5 shortwave radiation scheme (Dudhia, 1989); 

the Yonsei University (YSU) planetary boundary layer scheme (Noh et al., 2003); and the 

Kain-Fritsch cumulus parametrization (Kain, 2004). In the current study, the Level-II Vr 

observations assimilated were from the WZRD located in the east coast of China. During the 

landfall of typhoon Saomai, the WZRD is operated in volume coverage pattern 21 (VCP21) 

scanning strategy containing nine elevation angles from 0.5º to 19.5º. The quality control of the 

Vr observations is conducted using the 88d2arps package in the ARPS model and the SOLO 

software (Oye et al., 1995) developed by NCAR to identify unwanted radar echoes. The 

observational error for Vr data are empirically set as 2 -1m s  in the current study.  

3.2. The data assimilation experiments setup 

Before the real case experiments are carried out, we conduct single observation tests to 

investigate the impact of conducting vertical covariance localizations. For the real case of 

Saomai, a total of five experiments were performed to examine the impact of assimilating Vr data 

with different DA method. Table 1 summarizes the experiments. The simulation without any Vr 

observation DA (NoDA) is performed with initial and lateral boundary conditions (LBCs) 

derived from the NCEP operational GFS analysis at 0000 UTC 10 August 2006. Additionally, 

two groups of DA experiments were conducted in our current study. The first group of the DA 

experiments denoted as 3DVARa and 3DVARb which assimilated the Vr observations using the 

WRF 3DVAR method. The DA experiments conducted in the second group are denoted as 

HybridF and HybridH respectively.  
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A schematic diagram is provided by Figure 2 to depict the assimilation and forecast step for 

all experiments. In all DA experiments, the assimilation period is from 0300UTC to 0600 UTC 

August at half hour intervals. The two 3DVAR experiments contain three steps: (1) a 3 h forecast 

initialized from the GFS analysis at 0000 UTC 10 August; (2) assimilation of Vr data every 30 

minutes until 0600 UTC 10 August; and (3) a 12 h deterministic forecast initialized by the final 

analysis cycle in step (2) at 0600 UTC 10 August.  

For the second group of the hybrid DA experiments, similar steps are conducted: 1) 3 h 

ensemble forecasts initialized from perturbed GFS analysis valid at 0000 UTC 10 August are 

conducted to calculate the flow-dependent ensemble BEC. The LBCs and the ICs of the 

ensemble forecasts are randomly sampled from the GFS analyses based on the static BEC; 2) 

same to the 3DVAR DA experiments just instead of using the hybrid method; 3) The hybrid 

analysis at the end of DA cycles is employed to initialize a 12 h deterministic forecast. 

As mentioned by many other studies (Li et al., 2015; Shen and Min, 2015), the covariance 

matrix derived using the National Meteorological Center (NMC) method (Parrish and Derber, 

1992) with option 5 (CV5; Barker et al., 2012) based on the forecasts with different leading time 

mainly reflects the large-scale correlations. Following Li et al. (2012) and Shen and Min (2015), 

we rescale the static BEC by reducing the spatial correlation scale to 10% in 3DVARb, and in 

HybridH, while 3DVARa uses the default correlation scale for a comparison purpose. In 

HybridF and HybridH, two different sets of BEC weighting factors (1/ 2  = 1/1.001 and 1/2) 

were adopted. The former applies a 100% ensemble covariance, and the latter corresponds to a 

blend of 50% static BEC and 50% ensemble BEC. In HybridF, although 0% static BEC is used, 

the experiment is still conducted in the traditional EnVar framework. HybridF is different from 

the traditional EnKF. The analysis of HybridF is conducted by extending the control variables in 

the cost function in Eq. (1) with all observations assimilated simultaneously, while the analysis is 

achieved by solving the Kalman gain with observations assimilated sequentially.  

 

4. Results and discussion 

In this section, the analyses and forecasts of the 3DVAR and hybrid experiments are 

evaluated. Diagnostics are conducted to understand how Vr data from WZRD improve the 

analysis of TC and to examine how the improvement in the analyses impact the subsequent 

forecasts. Sensitivity to the horizontal correlation scale of the BEC is examined by comparing 

the results of 3DVARa and 3DVARb first, before examining the hybrid DA experiments. As in 

Li et al. (2012), before we assimilate the full set of Vr observations, we first examine the 

increments produced by a single Vr observation, which can help us understand the behaviors of 

the hybrid DA method with different configurations. 

4.1 Single observation experiments  

 Single observation tests with different vertical covariance localization methods are 

performed to estimate the spread of Vr observation by the ensemble BEC. Three initial 
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experiments were conducted. Experiment Vertloc_d used the default vertical covariance 

localization method developed by WRFDA described in section 2. The second experiment used 

the vertical localization method based on the geometric height (unit in km) rather than model 

levels, which is denoted as Vertloc_km.  The third experiment, without any vertical covariance 

localization method (referred to as Vertloc_no), serves as a baseline for evaluating the vertical 

covariance localization in the hybrid scheme. The impact of assimilating a single Vr observation 

at 3306.7 m above sea level with a -48.56 m s-1 innovation (observation minus background) is 

examined for all experiments at 0300 UTC 10 August 2006. The background is interpolated from 

the GFS final analysis at 0300 UTC 10 August 2006. The resulting analysis increments of the 

wind speed by HybridF from various DA experiments are illustrated in Figure 3. In both hybrid 

experiments, HybridF and HybridH, the radiuses for the vertical localization and horizontal 

localization are 3 and 20 km respectively, which are empirically determined. Sensitivity tests 

with different horizontal localization radiuses as 20, 60, 100, 600, and 1000 km are also 

conducted, among which the 20 km test yields the most reasonable increment (not shown). In 

Figure 3a, noisy wind increments are found at the upper levels, reaching the model top without 

vertical localization. As expected, the other two experiments with different vertical covariance 

localization methods avoid spurious correlation in a good way. For the Vertloc_km experiment, 

the analysis increment is efficiently confined close to the observation location, indicating that the 

new implemented vertical localization scheme is efficiently useful for Vr DA. A similar situation 

is shown in the Vertloc_d experiment, but the impact of Vr data could not spread to the surface. 

4.2 Results of Saomai case 
4.2.1 Wind increments 

The horizontal wind increments from 3DVARa, 3DVARb, HybridF, and HybridH at 700 

hPa, at 0300 UTC 10 August 2006 in the first analysis cycle are compared to show the impact of 

the Vr DA in Figure 4. Cyclonic and anti-cyclonic horizontal increment patterns in 3DVARa are 

observed of rather large scales in Figure 4a. The cyclonic and anti-cyclonic patterns are found to 

the southeast and the northwest of the observed TC center, respectively. At the typhoon center 

location, northeasterly wind increment is observed. Previous studies (e.g., Xiao and Sun, 2007; 

Li et al., 2012) also found such similar wind increments when assimilating Vr data with WRF 

3DVAR. There are no clear vortical wind increments in the analysis in the event that the 

background significantly underestimates the vortex intensity with the default BEC using the 

NMC method. The static BEC causes inappropriate large amount of smoothing of the Vr data 

and inappropriate large spreading of Vr observation information outside the region of the data 

coverage. As Sugimoto et al. (2009) pointed out that the BECs generated by the NMC method 

appears to be overestimated in terms of the spatial correlations scales. Therefore, the horizontal 

spatial scales in the BECs for assimilations of the Vr data with high spatial resolution should be 

tuned much smaller, which is quite regular practice in the ARPS with 3DVAR method (e.g., Hu 

et al., 2006; Schenkman et al., 2011). 3DVARb reduces the horizontal spatial correlation scale by 

a tuning factor of 0.1. Figure 4b shows that with the tuned horizontal spatial correlation scale a 
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strong cyclonic circulation increment is observed at 700 hPa around the observed center of TC, 

indicating an enhancement to the weak background vortex. Additionally, the large wind 

increments are more reasonably confined to the region of the observed TC center. However, it 

should be noted that even we rescale horizontal spatial correlation scale, noticeable anticyclonic 

incremental circulation is still found in northeast of the observation TC center. Recent studies by 

Xie and MacDonald (2012) and Sun and Wang (2013) suggested that the use of stream function 

and velocity potential as momentum control variables might not be suitable for analysis over a 

regional domain for small-scale problems. Other DA systems that using Vr data which adopt the 

Cartesian wind components (u,v) as momentum control variables. For example, Zhao et al. (2012) 

assimilated the Vr data for the same case of typhoon Saomai within the ARPS 3DVAR system 

which adopt the Cartesian wind components (u,v) as momentum control variables, no 

anticyclonic analysis increments were found. In the future, we need to do more research on this 

issue. Nevertheless, a thorough research on this issue is beyond the scope of our current study. 

The HybridF analysis after the first DA cycle yielded a clear asymmetric cyclonic pattern around 

the observed TC center (Figure 4c). With the use of the full weight ensemble BEC, the pattern of 

the wind increment is less axisymmetric, which can be attributed to the spatially inhomogeneous 

ensemble BEC estimated from the ensembles. HybridH placed a 50% weighting for both the 

static and ensemble BEC; the pattern of the wind increments is rather close to that of 3DVARb. 

However, the magnitude of the wind increments is in between those of 3DVARb and HybridF 

(Figure 4d).  

4.2.2 Diagnostics during the DA cycles 

     To examine how the model state fit the observations, the root-mean-square error (RMSE) 

of the background forecasts and the analyses against the Vr observations of 3DVARb, HybridH, 

and HybridF are presented in Figure 5a. For the hybrid DA experiments, the ensemble mean is 

utilized to calculate the innovation. The RMSE of Vr reduced gradually during the analysis 

cycles in all DA experiments. Also note that the RMSE of Vr reduced significantly after the first 

DA cycle, which is mainly due to the largest observation increments obtained in all DA 

experiments. In the following DA cycles, the RMSE of the analyses range between 3.5 and 4.5 m 

s-1. Such magnitudes of the errors are close to the observational errors applied in the Vr DA. The 

short term forecasts during cycles initialized from the analyses generally cause the Vr RMSE 

increasing by roughly 3 m s-1. Generally, HybridF yields the least analysis error, while 3DVARb 

the largest error and HybridH is in-between. Similar results are also found for the 30-min 

forecasts. At the end, the RMSE of HybridF and HybridH are about 3.5 m s-1, while the RMSE 

of 3DVARb is about 4.5 m s-1. Overall, the RMSE of all DA experiments, especially for the 

hybrid DA experiments, are largely reduced compared to the initial RMSEs of about 14 m s-1. 

    The minimum sea level pressure (MSLP) from the background forecasts and the analyses 

during the DA cycles are plotted in Figure 5b to investigate the DA impact on the analyzed 

typhoon intensity from 3DVARb, HybridH, and HybridF. The best track data from CMA are 

also plotted for verification. The MSLP stay overall constant as 920 hPa during the 3 h period. 
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The analyzed MSLP decreases by more than 20 hPa during the first analysis cycle in HybridF 

and HybridH (Figure 5b), while for the rest analysis cycles, the MSLP from analyses decrease 

slightly. The reduction of MSLP through the forecast is due to the pressure adjustments to the 

analyzed winds by DA. For the rest of the DA cycles, the center pressure of HybridF and 

HybridH are relatively stable at roughly 950 hPa. It seems that MSLP decreased more quickly in 

the short term forecasts during DA analyses in the hybrid DA experiments than it did in 

3DVARb experiment. At the end of the DA, the MSLP in the final analysis from HybridF is 

about 9.0 hPa lower than that in HybridH, yielding the least MSLP error. 

4.2.3 The analyzed typhoon structures 

 The MSLP along with the maximum surface wind (MSW) from NoDA, 3DVARb, HybridF, 

and HybridH at 0600 UTC are presented in Figure 6. Obviously, the typhoon intensity in the 

GFS analysis is too weak (Figure 6a). The MSW in the best track data is close to 60 m s-1 while 

the MSW in NoDA is only around 14.7 m s-1. After DA, 3DVARb, HybridH, and HybridF yield 

MSLP (MSW) as 953 hPa (47.4 m s-1), 946 hPa (49.1 m s-1), and 937 hPa (50.0 m s-1), 

respectively. The improvements of the typhoon intensity can be attributed to the flow-dependent 

BEC, since the multivariate correlation between the surface pressure and the wind is stronger 

than that in the static BEC. Besides the improvement in terms of the intensity, the location of 

analyzed typhoon is closer to the observed center with radar DA (Figure 6). In addition, it was 

also found that the center locations from HybridF were more accurate than both 3DVARb and 

HybridH.  

   Figure 7 shows the east-west vertical cross-sections through the analyzed typhoon center for 

the horizontal wind speed and potential temperature for NoDA, 3DVARb, HybridF, and 

HybridH. The weak vortex with a broad eye is evident without obvious inner core structure 

(Figure 7a). The GFS analysis as the background is not able to resolve any inner-core structure 

with a coarse resolution. The typhoon structure in 3DVARb and HybridH (Figure 7b, d) are well 

improved, with a stronger circulation compared to that in NoDA. HybridF (Figure 7c) yields a 

more upright and asymmetric eyewall than 3DVARb does. The potential temperature contours of 

HybridF and HybridH bend downward below ~600 hPa, indicating a warmer core structure 

(Figure 7c,d) as opposed to those in 3DVARb (Figure 7b).  

    To further examine the structures of analyzed TC, the azimuthally average tangential wind 

and temperature anomaly at 0600 UTC are shown in Figure 8. The temperature anomaly is 

defined as the deviation from the temperature averaged over a horizontal area within a radius of 

180 km centered at the TC center (Liu et al., 1999). The azimuthally averaged horizontal winds 

from the DA experiments are substantially stronger compared to those in NoDA, among which 

HybridF yields the strongest wind. In HybridF, the horizontal winds show much larger horizontal 

gradients in the inner core area compared to the other three experiments. The typhoon circulation 

directory from GFS analysis in NoDA is very weak with a broad eye (Figure 8a). Consistent with 

a stronger circulation in HybridF, a warm core is most obvious in its eye region at about 6 km, 

which is also consistent with observed common TC structures (Hawkins and Imbembo, 1976; 
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Liu et al., 1999; Emanuel, 2005; Halverson et al., 2006). In Figure 8b, the radius of maximum 

wind in the vortex reaches roughly 20 km. Similar results were found in HybridF and HybridH. 

For HybridF, the structures of the temperature anomalies and the horizontal winds are close to 

those of HybridH except with about 5 m s-1 stronger winds around the surface region (Figs. 8c 

and 8d). Generally speaking, the three DA experiments significantly improved the vortex 

circulation as well as the warm core structure. The Saomai analyzed by HybridF was more 

realistic than 3DVARb and HybridH. 

4.2.4 Track and intensity prediction 

 In this subsection, the forecast skills of the typhoon track and intensity from all experiments 

are discussed. Figure 9a shows the 12 h track forecasts along with the best tracks from CMA, 

while the corresponding track errors, MSLP, and MSW at different forecast lead time are shown 

in Figure 9 b, c, d. The track errors at 0600 UTC are smaller than 20 km from all DA 

experiments initially. In NoDA, the predicted typhoon tracks have a southward bias (Figure 9a), 

resulting in the largest track errors: they exceed 65 km at the end of forecast, with a 12 h mean 

track error of about 43 km (Figure 9b). Particularly worth mentioning is that the predicted 

typhoon tracks of NoDA have a northwestward bias in Figure 9a of Zhao et al. (2012). The 

differences in the results of NoDA experiments are caused by the ICs and LBCs. Zhao et al., 

(2012) use Japan Meteorological Agency 6 hourly gridded regional analysis to create the ICs 

and LBCs for the ARPS model whereas we used NCEP operational GFS analysis data as the ICs 

and LBCs for the WRF model. In comparison, the 12 h mean track errors in 3DVARb, HybridH, 

and HybridF are reduced to 30 km, 13 km, and 10 km, respectively (Figure 9b). In the first three 

hours of the forecast before the typhoon’s landfall, the tracks of the DA experiments are 

comparable with a small track error less than 20 km；the predicted track of HybridF fit the best 

track most closely, probably due to its improved initial vortex location and structure indicated in 

Figure 6. Also note that after the 9-h forecast, the vortex of 3DVARb tended to move northwest 

too fast, resulting in the track errors increasing with forecast lead time to over 46 km. However, 

the predicted tracks of the two hybrid DA experiments are close to each other. HybridF has the 

least track error during most of the forecast period. The main effects on the track are presumably 

due to the changes of the intensity, structure, and location of the analyzed typhoon. 

    The typhoon Saomai's MSLP and MSW during the 12 h forecasting leading time are 

presented in Figure 9c, d. The observed typhoon starts at 920 hPa for MSLP. Obviously, NoDA 

underestimated the strong vortex for the most of the forecasting period with highest MSLP. It is 

obvious that the radar DA is able to improve the intensity forecasts. Also note that the pressures 

in HybridF and HybridH rise at similar rates to the best track data before 1200 UTC. Their rates 

of rise are lower than the best track from 1200 UTC to 1500 UTC, which might be caused by the 

errors in the forecast model. In comparison with NoDA, 3DVARb, and HybridH, HybridF 

preponderant in terms of forecasting the MSLP. In Figure 9d, the MSW speeds for 3DVARb, 

HybridH, and HybridF are notably higher during the 12 h forecast period compared to those in 
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NoDA, but slightly weaker compared to the best track data. The MSW of HybridH and HybridF 

are comparable. 

4.2.5 Precipitation forecasting 

 The total accumulated precipitations during the 12 h forecast period from the four 

experiments are plotted in Figure 10 along with the automatic weather station rainfall 

observations. The NoDA experiment forecasts the precipitation pattern and amount rather poorly. 

It significantly underestimates the accumulated precipitation over land. Also note that there is a 

southward bias in the precipitation location, which may be due to its southward track bias and 

low intensity. According to the rainfall observation data, there is a maximum precipitation near 

27.5oN, close to the radar center and a band of heavy precipitation along the coast of Zhejiang 

and Fujian Province. HybridF showed significant improvement in forecasting the convective 

spiral rain band near its inner core area. 3DVARb yields too much spurious precipitation in the 

north of the vortex in southern Zhejiang Province. The heavy rain band in the north of the 

provincial border and other precipitation maximums in the south of the border are both well 

captured by HybridF and HybridH, although the strength and coverage are underpredicted 

(Figure 10c, d). Assimilating Vr data in HybridF enhanced the precipitation forecast in northern 

Fujian Province better than that in HybridH (Figure 10c, d). In terms of the weaker precipitation, 

all experiments produced similar general pattern to the available observations. In general, 

HybridF yielded the best distribution and magnitude for the precipitation probably due to its 

improved track, intensity and structure forecast of the typhoon.    

To further evaluate the precipitation forecast skill, equitable threat scores (ETS, also called 

Gilbert skill score; Schaefer, 1990) and bias scores based on the 12 h accumulated precipitation 

forecasts are plotted in Figure 11 for several prescribed precipitation thresholds. It is found that 

the ETS scores from the three Vr DA experiments are much higher than that from NoDA. 

Specifically, for most thresholds, HybridF obtains the highest ETS scores with least bias (close 

to one) and yields slightly higher ETS scores than HybridH as well. The NoDA experiment 

without Vr DA overpredicts the weak precipitation and underpredicts the heavy precipitation, 

especially for precipitation above 110 mm, which is related to a weaker predicted typhoon. The 

ETS scores from the NoDA experiment drop quickly above 50 mm threshold. For all thresholds, 

the hybrid DA experiments obtained higher ETSs compared to 3DVARb, with its improvements 

over 3DVARb more obvious when the precipitation threshold increases.  

 

5. Conclusions 

 This study investigated the impact of assimilating Vr data using the ETKF-En3DVAR 

versus the traditional variational DA methods on the analysis and forecast of typhoon Saomai 

(2006). With such a system, the flow-dependent BEC estimated from the ensemble forecasts is 

used in the variational framework, and the ensemble mean is updated by using a hybridized static 

BEC and ensemble BEC while the ensemble perturbations are updated with the computationally 

efficient ETKF. Vertical localization schemes are also preliminarily explored in our hybrid 
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framework, which are based on the geometric height rather than model levels. The following are 

the main conclusions from these experiments by comparing the analyses and subsequent 

forecasts: 

(1) The default BEC estimated with the NMC method only reflects synoptic scale error 

structures and always ignores strong vortex in the background. With the tuned horizontal spatial 

correlation scale in 3DVARb, appropriate adjustment to the weak background vortex is observed 

compared to that without tuning. 

(2) Experiments with different vertical covariance localization methods avoid spurious 

correlations in a good way. The vertical localization scheme based on a 3 km length scale is 

useful for Vr assimilation, resulting in analysis increments more efficiently confined around the 

location of the observation, which could reach the surface.  

(3) On average, the analyses of the three DA experiments (3DVARb, HybridH, and 

HybridF) fit the Vr data well. The root-mean-square errors of Vr yield the largest reduction in 

the first analysis cycle in three experiments. In general, HybridF produces the least analysis 

error, while 3DVARb the largest error and HybridH is in-between. Similar results are found for 

the 30-min forecasts. 

(4) For the DA cycles, the MSLP of HybridF and HybridH are well maintained at around 

950 hPa. In particular, it is found that MSLP in the hybrid experiments decreases much more 

quickly during the short term forecasts between different analyses than it did in 3DVARb. At the 

end of DA cycles, the final analysis of HybridF yields the least MSLP error. 

(5) For the analyzed typhoon structures, the center location from HybridF is more accurate 

than both 3DVARb and HybridH. Generally, three DA experiments are able to improve the 

vortex circulation and the thermodynamical core structure. HybridF yields much stronger vortex 

favorably in terms of the circulation and eyewall compared to other DA experiments.  

   (6) The track forecast with the hybrid DA method is significantly superior to the 3DVAR 

method. The tracks of the two hybrid DA experiments are very close. In comparison with NoDA, 

3DVARb, and HybridH, HybridF preponderant in terms of forecasting the MSLP. The MSW 

speeds for 3DVARb, HybridH, and HybridF are notably higher during the 12h forecast period 

compared to that in NoDA, but slightly weaker compared to the observed track. The MSW of 

HybridH and HybridF are comparable to each other. 

   (7) The ETS scores from the three Vr DA experiments are much higher than that from NoDA. 

For most thresholds, HybridF obtains the highest ETS scores with least bias (close to one) and 

yields slightly higher ETS scores than HybridH as well. The NoDA experiment without radar 

DA overpredicts the weak precipitation and underpredicts the heavy precipitation. For all 

thresholds, the hybrid experiments gain higher ETSs compared to 3DVARb, with its 

improvements over 3DVARb more significantly when the precipitation threshold increases.  

These findings suggest that hybrid DA method can improve the analysis and forecasts 

compared to 3DVAR method. There are some issues for further exploration and improvements. 

In our current study, ETKF-En3DVAR is employed to assimilate the Vr data to initialize the TC 
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forecast. Direct and thorough comparisons of WRF  ETKF-En3DVAR system with other 

hybrid DA methods such as EDA-En3DVAR are under way so as to reveal the impacts of 

different ensemble generation techniques within the EnVar framework for the analysis and 

forecasting of TCs at the convective scale. It should also be pointed out that no vortex relocation 

approach (Hsiao et al., 2010; Gao et al., 2014) is applied and only Vr data are used. Further work 

will examine the impact of conducting vortex relocation scheme and assimilating more in-situ 

observations within the ETKF-En3DVAR. It is acknowledged that the above findings and 

conclusions are based on a single super typhoon case. Further studies with more TC cases in 

terms of assimilating more complete observations types are required to obtain more 

comprehensive results. In addition, we plan to develop and establish the four-dimensional 

ensemble–variational (4DEnVar) technique based on the WRFDA system for TC forecasts as a 

natural extension of the current study. 
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Figure1. The WRF model domain and best track positions for typhoon Saomai (2006) from 

CMA from 0000 UTC 10 to 1800 UTC 10 August 2006. Also indicated are the WZRD location 

and maximum range coverage circles. 
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Figure 2. The flow charts for (a) NoDA experiment, (b) 3DVAR experiments (3DVARa 

and 3DVARb), and (c) hybrid experiments (HybridF and HybridH) initialized at 00UTC 

10 August 2006. 
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Figure3. The vertical cross section of the wind speed increment using a single WZRD Vr data 

point located at (26.919°N，121.983°E；3306.7m) using the configurations of experiment 

HybridF for (a) vertloc_no, (b) vertloc_d, and (c) vertloc_km at 0300 UTC 10 Aug 2006. 
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Figure 4. The 700 hPa wind analysis increments (m s-1) for (a) 3DVARa, (b) 3DVARb, (c) 

HybridF, and (d) HybridH at 0300 UTC 10 August 2006. The red typhoon symbol is the 

typhoon center from best track. 
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Figure 5. The forecast and analysis (sawtooth pattern during DA cycling) of (a) RMSE 

of radial velocity (m s-1), and (b) the minimum sea level pressures (hPa) together with 

the CMA best track estimate, for 3DVARb, HybridF, and HybridH from 0300 to 0600 

UTC 10 August 2006. 
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Figure 6. The analyzed sea level pressure (solid contours) and the surface wind vectors (m s-1) 

for (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH at 0600 UTC 10 August 2006. The 

red dot in the panels are observed typhoon center. 
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Figure 7. Vertical cross sections of analyzed horizontal wind speed (interval of 5 m s-1, shaded) 

and potential temperature (interval of 5 K, solid contours) for (a) NoDA, (b) 3DVARb, (c) 

HybridF, and (d) HybridH, at 0600 UTC 10 August 2006. 
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Figure 8. Radius-height plots of azimuthally averaged tangential wind (color shaded contours, m 

s-1) and temperature anomaly (solid contours with intervals of 2 K) at 0600 UTC for 

experiments (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH. 
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Figure 9. The predicted (a) tracks, (b) track errors, (c) minimum SLP, and (d) maximum surface 

winds speed by NoDA, 3DVARb, HybridF, and HybridH as compared to CMA best track 

estimates from 0600 UTC to 1800 UTC 10 August 2006. 
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Figure 10. 12h accumulated precipitation from 0600 UTC to 1800 UTC 10 August for (a) 

NoDA, (b) 3DVARb, (c) HybridF, (d) HybridH, and (e) automatic weather station observations. 

 

 

 

 

 

 

 



27 
 

 

Figure 11. (a) Equitable threat scores and (b) biases of the 12h accumulated precipitation verified 

against automatic weather station observations for NoDA, 3DVARb, HybridF, and HybridH.  

 

Table 1. List of experiments 

Experiment Description 

  NoDA No radar data assimilation. WRF model initial condition interpolated 
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from NCEP 1ox1o analysis 

         3DVARa Radar DA using WRF 3DVAR with static covariance from NMC method 

3DVARb Same as 3DVARa, except the horizontal spatial correlation in the static 

covariance is multiplied by 0.1. 

  HybridF Radar DA using hybrid method with full weight given to flow dependent 

covariance, with 1/ b1
 = 1/1001 and 1/b2

 = 1/1.001 in Eq. (1) 

  HybridH Hybrid method with equal weight given to static covariance (which is the 

same as 3DVARb) and flow-dependent covariance, with 1/ b1
 = 1/2 and 

1/ b2
 = 1/2 in Eq. (1) 

 

 

 

 

 

 

 

 

 

 

 


