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ABSTRACT

The prediction uncertainty of a hydrologic model is closely related to model formulation and the uncertainties
in model parameters and inputs. Currently, the foremost challenges concern not only whether hydrologic model
outputs match observations, but also whether or not model predictions are meaningful and useful in the contexts
of land use and climate change. The latter is difficult to determine given that model inputs, such as rainfall,
have errors and uncertainties that cannot be entirely eliminated. In this paper the physically based simulation
methodology developed by Sharif et al. is used to expand this investigation of the propagation of radar rainfall
estimation errors in hydrologic simulations. The methodology includes a physics-based mesoscale atmospheric
model, a three-dimensional radar simulator, and a two-dimensional infiltration-excess hydrologic model. A time
series of simulated three-dimensional precipitation fields over a large domain and a small study watershed are
used, which allows development of a large set of rainfall events with different rainfall volumes and vertical
reflectivity profiles. Simulation results reveal dominant range-dependent error sources, and frequent amplification
of radar rainfall estimation errors in terms of predicted hydrograph characteristics. It is found that in the case
of Hortonian runoff predictions, the variance of hydrograph prediction error due to radar rainfall errors decreases
for al radar ranges as the event magnitude increases. However, errors in Hortonian runoff predictions increase
significantly with range, particularly beyond about 80 km, where the reflectivity signal isincreasingly dominated
by three-dimensional rainfall heterogeneity with increasing range under otherwise ideal observing conditions.
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1. Introduction

The scientific and technological advances of the past
two decades have led to significant enhancements in
forecasting of precipitation and in understanding and
modeling of hydrologic processes. Construction of the
Weather Surveillance Radar-1988 Doppler (WSR-88D)
radar network and the deployment of a dual-polarization
WSR-88D test bed are examples of headway that has
been made in thisfield (Droegemeier et al. 2000). Many
look to the national network of WSR-88Ds to provide
the necessary information. Unfortunately, there is no
unique relationship between precipitation rate and re-
flectivity measured by the radar. It is not unusual for
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radar-derived precipitation estimates to be in error by a
factor of 2 or more. Because of earth curvature and
atmospheric refraction the height of the radar beam
above the earth’s surface increases with range. Kitchen
and Jackson (1993) asserted that the range effect is a
major cause of underestimated rain accumulation. Fur-
thermore, radar sampling volumes quadruple for every
doubling of range. This resolution degradation increases
the likelihood that precipitation fills only part of the
beam and yields reduced reflectivity over that of anearer
volume.

In this study, we seek improved understanding of the
sensitivity of a small infiltration-excess watershed to
radar rainfall estimation errors with emphasis on the
distance between the radar and catchment. Specifically,
for a large number of simulated rainfall/runoff events,
we seek to understand how the distance from the radar
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to the watershed affects radar-estimated 1) catchment
average rainfall volume, 2) peak discharge, 3) runoff
volume, and 4) hydrograph root-mean-square error.
These results have particular importance for predictions
of flash flooding in small, infiltration-excess catchments,
typical of urban and agricultural watersheds. The sim-
ulation framework includes simulated rainfall fields, as-
sumed to be the ground *‘truth,” aradar simulator, and
a physics-based distributed-parameter hydrologic mod-
el.

2. Simulation of radar rainfall estimation error
propagation

The impact of radar rainfall estimation errors on hy-
drologic predictions from physics-based models is an
important area of study, with broad applicationsranging
from flood forecasting to watershed ecology and man-
agement. Collier and Knowles (1986) found that, for a
given percent error in the precipitation estimation, an
equal or lesser error in the predicted streamflow would
result for some catchments; but in other circumstances
the errors were amplified. They suggested that under-
estimating rainfall could be worse than overestimation,
especially for large catchments. Wyss et al. (1990) con-
cluded that errorsin runoff predictions caused by errors
of radar-estimated precipitation were likely to be less
significant than the errors in the transformation from
rainfall to runoff. They suggested that identification of
an appropriate reflectivity—rainfall relationship in real
time is necessary to produce reliable hydrologic fore-
casts. Shah et al. (1996) asserted that the use of spatially
distributed precipitation was far more important when
modeling a dry catchment than when modeling a wet
catchment. Using the System Hydrologique European
(SHE) model on a 10.5 km? basin, they also concluded
that errors associated with lumping of the model pro-
cesses outweighed errors from lumping of the rainfall.
Borgaet al. (2000) found that radar rainfall biases mag-
nify the rainfall/runoff transformation in humid moun-
tainous watersheds. Winchell et al. (1997, 1998) found
that error in radar rainfall estimates resulting from the
use of inappropriate radar reflectivity—precipitation rate
(Z-R) relationship resulted in equal or larger errorsin
predicted runoff, regardless of runoff production mech-
anism. Pessoa et al. (1993) showed that different widely
accepted reflectivity—rainfall relationships resulted in
significantly different hydrographs. Ogden and Julien
(1994) identified two distinct sources of error when us-
ing radar rainfall inputs for hydrologic modeling, storm
smearing, and watershed smearing. Storm smearing is
caused by smoothing of rainfall-rate gradients in space
with increasing radar pulse volume, and has the effect
of changing the rainfall-rate distribution. Watershed
smearing is caused by interactions between radar sam-
pling volumes and watershed boundaries, which creates
uncertainty about the location of rainfall with respect
to the watershed.
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Several researchers used physically based simulations
of the radar measurement process to study the radar
rainfall estimation error structure (e.g., Krajewski and
Georgakakos 1985; Chandrasekar and Bringi 1987,
1988a,b; Chandrasekar et al. 1990; Krajewski et al.
1993; Anagnostou and Krajewski 1997; Borga et al.
1997). Krajewski et al. (1993) proposed a physically
based simulator of radar observations based on a two-
dimensional stochastic space-time model of rainfall
events and a statistically generated drop-size distribu-
tion. Making several extensions to this simulator, An-
agnostou and Krajewski (1997) complemented the two-
dimensional fields with a vertical structure of hydro-
meteors by choosing a cloud-type model, which resulted
in size, shape, and phase (mixed or single) distribution
at discrete elevations. They simulated effects such as
antenna beam pattern, horizontal and vertical gradients,
atmospheric gases, and rain attenuation and represented
the radar hardware noise by introducing random mea-
surement errors. Borga et al. (1997) used the same tool
to validate a brightband correction method.

Sharif et al. (2002) reported development of a sim-
ulation framework for the study of the impacts of radar
rainfall estimation errors on hydrologic model predic-
tions. The simulation framework is physically based and
consists of an atmospheric model, a simulator of radar
observations, and adistributed hydrologic model. Sharif
et a. (2002) coupled a physically based atmospheric
model of convective rainfall with an active microwave
radiative transfer model to simulate radar observation
of thunderstorms. Using the Advanced Regional Pre-
diction System (ARPS) atmospheric model they simu-
lated the well-documented tornadic supercell storm that
occurred near Del City, Oklahomaon 20 May 1977 (Xue
et al. 1995, 2000, 2001). Radar observations of that
storm were then simulated and used to evaluate the ef-
fects of range and orientation between catchment and
radar on distributed hydrologic simulations. In that
study, Sharif et a. (2002) used a modified version of
the radar simulator developed by Anagnostou and Kra-
jewski (1997). The runoff was computed using the phys-
ically based distributed-parameter hydrologic model
Cascade Two-Dimensional Model (CASC2D; Ogden
and Julien 2002). This simulation framework allows ex-
amination of the impacts of radar rainfall estimation
errors on land surface hydrologic predictions, while
avoiding the limitations imposed by the use of rain gage
data, such as undercatch, inadequate spatial sampling,
point-area differences (Krajewski and Smith 2002), and
gage calibration. Results from analysis of the 20 May
1977, supercell storm indicated that the geometry of the
radar beam and coordinate transformations due to radar—
watershed—storm orientation have an effect on both ra-
dar rainfal estimation and runoff prediction errors. In
addition to uncertainty in the radar reflectivity versus
rainfall intensity relation, Sharif et al. (2002) reported
significant range-dependent and orientation-related ra-
dar rainfall estimation errors. Using that approach, the
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authors were able to simulate several sources of radar
measurement and estimation errors, both systematic and
random and isolate the quantitative effects of various
radar-related sources of uncertainty. Pulse volume and
beam height were found to be the most dominant source
of errors at ranges greater than 50 km, much more sig-
nificant than the influence of random errors such as
raindrop-size distribution variation and radar noise.

3. Objectives

In this present study, a storm that covers a large area
is simulated, allowing the location of the study water-
shed to be moved within the storm domain and the
generation of different realizations of therainfall—radar—
runoff transformation process. This alows us to sig-
nificantly expand on the approach demonstrated in Sha-
rif et al. (2002), and develop meaningful statistics based
on amuch larger number of simulations. Inherent in the
investigation is the assumption that the rainfall gener-
ated by the atmospheric model, which is arealistic rep-
resentation of convective storm, is the ground truth. A
radar simulator is run and radar-estimated rainfall is
used from the simulated storm as input to a physically
based, infiltration-excess, hydrologic model. Our fun-
damental objectiveisto analyze the propagation of radar
rainfall estimation errors through runoff predictions
with emphasis on the range effect. The spatial and tem-
poral structure of the precipitation domain, combined
with use of 500 watershed locations within the storm
domain, allow the development of an ensemble of rain-
fall/runoff events with different rainfall fields. The en-
semble islarge enough to produce adequate statistics of
the range dependence of radar-estimated rainfall errors
and the propagation of these errors in runoff predictions
for watersheds of this shape and size. Statistics of the
influence of radar range on rainfall and runoff errorsare
computed. Relationships between rainfall volume, run-
off volume, and peak discharge errors and their range-
dependence are statistically analyzed. Because from our
previous study, Sharif et al. (2002), we found that range
errors are orientation-dependent, we average error sta-
tistics for each radar range over 24 orientations. In ad-
dition to the influence of radar range, the relationship
between the rainfall event magnitude and the prediction
error is also examined. The results of the present study
are more general than the results shown in the dem-
onstration of the methodology by Sharif et al. (2002),
because the morphology of the widespread convective
rainstorms used in this present study is much more var-
ied.

4. Storm simulation

The source of precipitation fields used in this study
is the ARPS simulation performed at 500-m horizontal
resolution and vertical resolution ranging from 20 m
near the ground to nearly 1 km at the model top, for
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the 21-22 January 1999 tornado outbreak that severely
impacted the U.S. state of Arkansas. The ARPS is a
three-dimensional, nonhydrostatic compressible atmo-
spheric model formulated in generalized terrain-follow-
ing coordinates. It contains a comprehensive physics
package and a self-contained data analysis, radar data
retrieval and assimilation system. The model has been
subjected to real-time weather prediction testing over
several regions since the mid-1990s. A comprehensive
description of the formulation, numerical solution meth-
ods, physics parameterizations, computational imple-
mentation, and configuration instructions for the ARPS
isgivenin Xueet al. (1995). More recent improvements
and model verifications are described in Xue et al.
(2000, 2001, 2003).

During the afternoon and evening of 21 January 1999,
a sequence of thunderstorms occurred along the south-
west—northeast diagonal axis of the state of Arkansas
(AR). Many of these storms, which produced significant
amounts of precipitation, contained strong vertical mo-
tion. A total of 56 tornadoes were reported statewide
with the strongest tornadoes rated F3 (maximum winds
71 to 92 m s~*) on the Fujita scale. Most of the tor-
nadoes, which unfortunately caused eight deaths, oc-
curred between 0400 and 2300 central standard time
(CST), or between 2200 UTC 21 January and 0500 UTC
22 January. This event is believed to be the largest
tornado outbreak in Arkansas up to this date.

The synoptic-scale features and events of this case
were documented in Xue et al. (2001), together with the
ARPS model prediction results on nested 32- and 6-km
resolution grids. For al simulations, fourth-order ad-
vection and computational mixing were used. The phys-
icsoptionsinclude the 1.5-order turbulent kinetic energy
(TKE)-based subgrid-scale turbulence and planetary
boundary layer (PBL) parameterization, atwo-layer soil
model, explicit grid-scaleice microphysicsand National
Aeronautics and Space Administration Goddard Space
Flight Center (NASA GSFC) radiation physics. Cu-
mulus parameterization scheme was used only on the
coarsest 32-km grid. With the ice microphysics scheme,
ARPS explicitly predicts five water and ice categories,
namely, cloud water and cloud ice, rainwater, snow, and
hail (Lin et al. 1983; Tao et al. 1989). References for
other physics options can be found in Xue et al. (2000,
2001, 2003).

Both 32- and 6-km grids successfully predicted the
general precipitation area aligned along the southwest—
northeast diagonal of the state of Arkansas. The onset
of precipitation using ARPS with a 6-km grid was de-
layed by as much as 4 h. Prediction results were much
improved when a 2-km grid was further nested within
the 6-km grid. The 2-km results were analyzed and com-
pared with radar observationsin Xueet al. (2003). These
forecasts started at 1200 UTC on 21 January, 8 h prior
to the first convective storms (about 2000 UTC) in Ar-
kansas, and about 10 h before the first tornado (2200
UTC). For a 10-h period beginning 8 h into the ARPS
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run (2000 UTC), thereis general agreement with respect
to the number of storms in the state of Arkansas, the
rotational characteristics of these storms, and the speed
and direction of storm-cell movement. There is addi-
tional consensus with respect to the organization of ini-
tialy isolated cellsinto lines and their subsequent prop-
agation, the transition from a straight line into a me-
soscale bow-shaped echo pattern, and the reasonable
timing of thunderstorm initiation and cessation of new
cell development.

Specifically, at 2300 UTC 21 January about a dozen
storm cells can be identified both in radar observations
and in the model, and both model and real stormsexhibit
isolated supercell storm characteristics with rotation
more readily identifiable in the model (see Xue et al.
2003). For the next 3 h, from 2300 UTC 21 January to
0200 UTC 22 January, both observations and model
simulations showed new cells continually being gen-
erated at the south end of the convective line while older
cells moved along the diagonal axis across the state of
Arkansas. By the end of this 3-h period, the line in the
model has turned more into the SW-NE orientation. As
more cells were created through the splitting process
and asthe low-level cold pool spread, the stormsbecame
closer to each other. As a result, some joined together,
creating connected line segments.

Inthe 2 h following 0200 UTC, the trend for the cells
to merge and form a continuous line continued both in
the model and in the real world. By 0400 UTC, the
southern end of the primary line is shown two to three
counties away from the southern state border. At 0600
UTC 22 January, the end time for the 2-km simulation,
the convective line was moving (eastward) across the
eastern Arkansas state border.

The focus of this paper is the period between 0200
and 0430 UTC 22 January, when the initial supercell
storms evolved into the precipitation line, located in the
northeastern region of Arkansas and southeast Missouri.
The finescale features and spatial variabilities of pre-
cipitation were studied. In this study, a simulation with
an even higher 500-m-resolution grid covering a 128
km X 128 km region of precipitation is performed at a
2-stime step to capture additional finescale details. This
grid is nested inside the 2-km domain. Instantaneous
model-predicted precipitation rates from this 500-m
simulation are plotted in Fig. 1 at 30-min intervals.

5. Radar estimation process simulation

Theradar simulator extracts three-dimensional values
of pressure, temperature, rainwater content, and water
vapor content from ARPS output to compute gradients
of atmospheric refraction. We simulate radar beam prop-
agation in three-dimensional space with consideration
of the beam curvature relative to the earth’s curvature.
The three-dimensional fields of rainwater computed by
ARPS are used to compute the volume backscattering
and extinction cross sections of hydrometeors (Ulaby et
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al. 1981). Although the radar simulator calculates the
refractive index at each grid cell, a constant value of
the refractive index slope was used because of the rel-
atively small impact on the hydrologic model output
(Sharif et al. 2002). The radar simulator also includes
dual-polarization capability, but we did not use this fea-
ture. Our study was confined to single-polarization radar
hardware, and used the default WSR-88D Z-R rela-
tionship of Z = 300R** (Fulton et al. 1998) to convert
reflectivities into rainfall-rate estimates. The radar
wavelength is assumed to be 10 cm, the beam elevation
angleis 0.5°, and the half-power beam widthis 1°, close
to WSR-88D’s value of 0.95°. The azimuthal resolution
of radar observations is 1°. The attenuation of electro-
magnetic waves by rain was computed from the radar
as a function of the radar wavelength (10 cm), rainfall
intensity, and distance between radar and hydrometeors.
Attenuation by atmospheric gases, which is typically
larger than rain attenuation for Shand, isonly afunction
of radar wavelength and distance (Doviak and Zrnic
1993). Because the attenuation of atmospheric gases can
be accounted for in real radar data processing systems,
it is not modeled in this study. The ability of the radar
simulator to produce radar reflectivity fields similar to
those estimated by ‘““‘true’” radars was demonstrated in
previous applications, e.g., Anagnostou and Krajewski
(1997) and Borga et a. (1997).

The hydrologic model CASC2D was run using the
true ARPS-generated rainfall fields and radar-estimated
rainfall fields. Hydrologic model outputs were compared
based on the true rainfall and the radar-estimates-based
rainfall by calculating four error statistics. These sta-
tistics are: the watershed total rainfall volume ratio, the
root-mean-square error in simulated hydrograph, the
simulated total runoff volume ratio, and the hydrograph
peak discharge ratio.

The main simulations focus on the effect of range
and highlight the spatial variability of the vertical rain-
water (or reflectivity) profile within the same storm as
well as to feature its impact on hydrologic model pre-
dictions. Although the atmospheric model included ice
microphysicsin its simulations, radar simulations above
the freezing level were not conducted.

6. Radar—storm—water shed setting

The watershed simulated in this study isthe 21.2 km?
Goodwin Creek experimental watershed located in
north-central Mississippi. The U.S. Department of Ag-
riculture-Agricultural Research Service (USDA-ARS)
National Sedimentation Laboratory has continuously
monitored the watershed since 1981. Alonso (1996) pro-
vides a detailed description of the watershed. The ele-
vation of the watershed ranges from 68 to 127 m and
the main channel has an average slope of 0.004 (Bingner
1996). The grid size used in CASC2D to model the
watershed is 125 m X 125 m, a compromise between
computational time and adeguate description of the spa-
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FiG. 2. Configuration of the simulated radar orientations around Goodwin Creek.
The radar range is varied along these orientations from 10- to 145-km in 5-km

increments.

tial variability of topography, soil texture, and land use/
land cover. The watershed characteristics, taken together
with the predominance of fine soil textures, indicate that
the Hortonian runoff production mechanism is dominant
during the growing season (Senarath et al. 2000; Ogden
and Dawdy 2003). The hydrologic model CASC2D was
rigorously calibrated and verified on this watershed by
Senarath et al. (2000), who found the model to produce
unbiased predictions of runoff response. Downer and
Ogden (2003) showed that the model represents the wa-
tershed’s runoff processes with reasonable accuracy by
verifying model predictions of soil moisture profiles at
two locations in the catchment. The watershed is ap-
proximately 9.5 km in length, and 4 km in maximum
width. Watersheds of this size can be severely impacted
by convective rainfall, with high likelihood for loss of
life due to flash flooding (Ogden et a. 2000). Theinitia
soil moisture state can have a significant effect, but only
if the soils are extremely wet or dry (Ogden and Dawdy
2003). We used a constant, intermediate value of initial
soil moisture to minimize this effect on our results.
We account for the influence of radar—watershed ori-
entation by placing the radar at 24 equispaced orien-
tations (every 15°) and vary the range along these di-
rections, as shown in Fig. 2, and then take the average
value from these 24 orientations. The distance between
the radar and the center of the catchment isvaried along
these directions from 10 to 145 km in 5-km range in-
crements. We limited the range to 145 km to keep the
beam below the freezing level. The 28 range increments
were the same for all 24 radar orientations in all wa-

tershed locations. The orientations were coded with
numbers 1-24, orientation 1 being exactly east of the
watershed center. True rainfall fields were directly input
to the hydrologic model on a500 m X 500 m grid, with
each ARPS grid cell containing exactly 16 CASC2D
model grids. Radar rainfall estimates were input to the
hydrologic model in polar coordinates using the ** near-
est neighbor’” method to assign rainfall rates from pulse
volumes to each hydrologic model grid. The radar sim-
ulator was run using a 5-min time step.

The purpose of the majority of the simulations is to
develop alarge sample of rainfall/runoff eventsinwhich
the radar rainfall errors are only caused by the effects
of range between the radar and the study watershed.
Because of the high variability of rainfall within the
mesoscale convective complex, the watershed was
placed in 500 different locations within the 128 km X
128 km storm domain as a means to obtain different
cases of the radar estimation process. Justification for
this radar—storm—watershed setting can be found in Sha-
rif et al. (2002).

Comparison error statistics were computed after each
hydrologic model simulation. The rainfall volume error
measure, ¢, isthe ratio between radar-estimated catch-
ment total rainfall (rn=) volume and the reference total
rainfall volume at the ground level (rn") computed by
ARPS model:

_rn
oo

8”1

@
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The measures of the influence of radar error on hy-
drologic model response are three of the statistics typ-
ically used to calibrate hydrologic models and evaluate
their performance (e.g., Brazil 1988). Root-mean-square
error percentage (rmse%) is computed using

100

1 N
ok \/N 21 @ — g%, (2

where g= is the simulated discharge driven by radar-
estimated rainfall and g is the corresponding discharge
ordinate resulting from the reference ARPS-modeled
rainfall, that is, the hydrograph produced using ARPS
rainfall fieldsisassumed to be the reference hydrograph.
The value N refers to the total number of hydrograph
ordinates used in the analysis, while i is the index de-
noting individual hydrograph ordinates. Here, N is usu-
aly in the order of 1500 points; pk' is the reference
peak discharge.

The error in the peak discharge, e, is expressed as
the ratio between the estimated peak discharge using
radar rainfall (pket) and the reference peak discharge

(pk):

rmse% =

_ pk=
pk pkref' (3)

The error in runoff volume, ¢, is similarly expressed
as the ratio of the estimated (ro=t) and reference total
runoff volumes (ro):

&

ros
b0 = o @

7. Results and discussion

We computed rainfall and hydrograph error measures
for all 500 rainfall/runoff events. For each radar range
we computed errors for 24 radar orientations; atotal of
12 000 values for each radar range. Asfound by Sharif
et al. (2002), errors generally increase with radar range,
and errors in runoff volume and peak discharge are typ-
ically larger than the corresponding errors in rainfall
volume. Plots of probability density function (pdf) for
the four error measures are shown in Fig. 3. We compare
pdf histograms for two radar ranges, 100 and 145 km
from the watershed center. Taking into account that all
histograms in Fig. 3 consist of 20 classes, and that small
values on the edges of the histogram may not be visible
in the plot will make it easier to compare different his-
tograms.

Rainfall volume ratio pdf histograms, Figs. 3a,b, ap-
pear approximately Gaussian and peak near the value
of 1.0 for both radar ranges. The range of storm total
accumulated rainfall error valuesisrelatively small, be-
tween 0.88 and 1.08 for the 100-km radar range, and
increases to 0.78 to 1.24 for the 145-km radar range.
For both radar ranges, there is slightly greater tendency
towards underestimation than overestimation. The 145-
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km radar range pdf curve, shown in Fig. 3b, is more
flat—indicating higher standard deviation. The standard
deviation is plotted as a function of radar range in Fig.
4a. The dependence on range is very obvious for ranges
beyond 100 km.

It is clear from Fig. 3c that rainfall errors are signif-
icantly amplified in predicted runoff although rainfall
and runoff error pdfs do not seem significantly different.
The runoff volume error pdf histogram is more flat and
has a significantly larger range than the rainfall volume
error pdf histogram, an indicator of the sizeable differ-
ence in variance of the two distributions. This can be
seen by comparing Figs. 3a and 3c. The distributions
of the rainfall, runoff, and peak discharge errors are
approximately Gaussian whereas the RM SE distribution
is nearly lognormal. Comparing the two histograms of
Figs. 3c and 3d, reveals that runoff volume error vari-
ance increases with range—the 145-km radar range his-
togram is more flat with a wider range on both cases
of underestimation and overestimation. The range de-
pendence of rainfall volume and runoff volume errors
is quantified in Figs. 4a,b.

For all radar ranges, the error in hydrograph peak
discharge is more pronounced than runoff volume error.
The peak discharge error pdf plot is similar to the runoff
volume error plot except for a slight difference in flat-
ness and awider range of values. Figures 3e,f show that
the range of peak discharge error values for the 145-
km radar range is more than twice the range of error
values for the 100-km range, and that the pdf curveis
more flat. Like the runoff error pdf, the peak discharge
pdf shows a slight tendency towards underestimation.
The increase of standard deviation with range is dem-
onstrated in Fig. 4c.

As expected, the pdf histogram of the hydrograph
RMSE percentage is skewed towards smaller values.
Thisis because RM SE percentage distribution isrelated
to the distributions of runoff volume and peak discharge
errors; both distributions peak near the value of 1.0.
Figures 3g,h show that RM SE percentage increaseswith
radar range and the tail of the 145-km radar range pdf
histogram is considerably more extended than that of
the 100-km radar range histogram. The variance of
RM SE percentage strongly depends on range for ranges
beyond 100 km and the increase of the standard devi-
ation with range is sharp and almost linear for ranges
farther than 115 km, as shown in Fig. 4d.

The standard deviations of the rainfall volume error,
Fig. 4a, runoff volume error, Fig. 4b, peak discharge
error, Fig. 4c, and RMSE error, Fig. 4d, show little de-
pendence on range for radar ranges less than 90 km.
The increase in standard deviation is very sharp for
ranges beyond 90—100 km for Figs. 4a—d. The slope of
the curves in Figs. 4a—d is aimost constant for ranges
beyond 110-120 km, indicating alinear increasein stan-
dard deviation with range.

Errors in rainfall volume are amplified in the trans-
formation to predicted runoff for all 28 radar ranges
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considered. For example, the amplification of error can
be seen in Figs. 5a,b for two radar ranges. The plot of
peak discharge error versus runoff volume error shows
increased underestimation and overestimation in peak
discharge as compared to runoff volume. This is indi-

, (d), (f), (h) The same as in left column except for radar

cated in Figs. 5¢,d. When the errors are very small, that
is, close to the value of 1 in both axes, the scatter of
points is less, and points are ailmost evenly distributed
around the 1 to 1 line. This is the case for both radar
ranges.
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To check whether the relationship between rainfall
volume, runoff volume, and peak discharge errors is
range-dependent, regression analysis was performed to
compute the relationship between these errors at dif-
ferent ranges. When runoff volume error (&,,) is plotted
against rainfall volume error (e,,), the slope of the re-
gression line will always be greater than 1, as shown
in Fig. 5. The slope of the regression line is plotted as
afunction of range in Fig. 6a. Figures 6a,b confirm that
amplification of radar rainfall error increases with radar
range as measured by the corresponding runoff volume
or peak discharge errors. The relationship between peak
discharge and runoff volume errors, () and (g,,), does
not depend on radar range or the magnitude of the rain-
fall error. This is evident from Fig. 6¢c or when com-
paring Figs. 5¢c and 5d. It can be understood that the
rainfall error increases with range both in terms of mag-
nitude and corruption of the spatial structure of therain-
fall field, which will lead to increased amplification of
errors in the predicted runoff. The watershed response
is scale-dependent (Giannoni et al. 2003) and the re-
lationship between peak discharge and runoff volume
is more complex and highly nonlinear because of de-
pendence of peak discharge on the rainfall rate at the
Goodwin Creek Experimental Watershed (Ogden and
Dawdy 2003). However, the ratio of the slope of runoff

error versus rainfall error to the slope of peak discharge
error versus runoff error, Fig. 6d, is basically constant
except for the ranges where the curve in Fig. 6¢ shows
this sudden decrease.

The fact that the predicted runoff volume error (e,,)
is larger than the rainfall volume error (e,,) and that
peak discharge error (g, ) is typically larger than runoff
volume error (g,,) is expressed in probability format in
Fig. 7. For each rainfall volume error value, the mag-
nitude of the corresponding error in runoff volume is
used to identify it as amplification or damping of the
error. This information was used to construct the prob-
ability distribution of error amplification shown in Figs.
7a,b. The same was done to construct Figs. 7c,d based
on runoff volume and peak discharge errors. For the
100-km radar range in Fig. 6a and both radar rangesin
Figs. 7c,d, it can be seen that the maximum value of
the probability is close to 0.5. This occurs when there
are very small errorsin rainfall volume, as seen in Fig.
6a, or with runoff volume, as seen in Figs. 7c,d. It has
to be stressed that it is possible that the ratio of the
radar-estimated and true total rainfall volume can be
close to 1.0 and yet the radar and actual rainfall fields
will not be identical. For the 145-km radar range, as
seen in Fig. 7b, it was found that when the error in
rainfall volume is very small, the runoff volume error
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is less than rainfall volume error in less than 25% of
the cases. A detailed discussion on the existence of sig-
nificant runoff volume errors, even when radar and ac-
tual rainfall volumes are equal, can be found in Sharif
et al. (2002). The spikes on the sides of the probability
plots occur when the concentration of points is very
sparse as seen in Fig. 5.

An important factor that influences the magnitude of
error in radar-estimated rainfall volume and, more im-
portantly, its propagation through hydrograph predic-
tions is the magnitude of the rainfall/runoff event. The
value of radar-estimated rainfall volume and actual rain-
fall volume ratio is plotted against the actual rainfall
volume in Fig. 8a, which demonstrates that rainfall vol-
ume errors are generally larger for small rainfall events.
The scale of the plot conceals some of the dependence
on the magnitude of the rainfall event, however, the
relationship is not very strong. This relationship be-
tween event and error magnitudes also holds for the
runoff volume error, Fig. 8b, peak discharge error, Fig.

8c, and RMSE error, Fig. 8d. All plotsin Fig. 8 show
the average error from all 24 orientations for the radar
range of 145 km. Plots for other radar ranges show
similar trends. The plots are similar when we plot the
maximum or minimum error value of the 24 orientations
against the event magnitude for all radar ranges.

8. Summary and conclusions

This study presents results of a large number of hy-
drologic simulations driven by physically realistic radar
rainfall estimates. We use an observing system simu-
lation framework for investigating the propagation of
radar rainfall estimation errors in runoff predictions. A
state-of-the-art atmospheric model is used to simulate
astorm that covers alarge (128 km X 128 km) domain.
The relatively small size (21.2 km?) of the study wa-
tershed in relation to the size of the atmospheric model
domain makes it possible to simulate a large number of
rainfall/runoff events with considerably different storm
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morphologies. The high degree of variability within the
storm domain allows us to treat the precipitation fields
observed at different locations as indicative of midlat-
itude mesoscale convective complexes of the type that
frequently cause flooding in urban areas. We use a two-
dimensional, physics-based hydrologic model that was
rigorously calibrated using data from a well-monitored
experimental watershed. The use of a calibrated and
verified physically based model reduces the impact of
hydrologic model formulation errors on our results. The
radar simulator used is adequate for simulating the er-
rors addressed in this study and the simulated storm
serves as an appropriate example of convective storms,
at least for the purpose of modeling studies. Although
the methodology makes it possible to incorporate many
other systematic and random errors associated with ra-
dar rainfall estimation process, this study focuses on
radar rainfall range-dependent errors. Our choice of the
simulation framework allowed us to focus on the sta-
tistical properties of the radar rainfall errors and their
propagation, rather than on the uncertainty associated
with the modeling tools. However, the findings of this
study may be dependent on the shape and size of the
watershed because we tested only one.

Our simulation study reveals that it is generally very

difficult to obtain an accurate estimate of rainfall rate
and spatial distribution using a single polarization S-
band weather radar, even if it is assumed that the radar
is error free, at ranges beyond about 80 km. At ranges
less than about 80 km, single-polarization radar rainfall
estimates can be fairly accurate. However, other simu-
lation and data-based hydrologic studies should be con-
ducted to verify this conclusion.

Frequency analysis of radar rainfall errors reveals
useful information about the statistical distributions of
these errors and their propagation through the hydro-
logic model. Theinferred statistical distributions shown
in Figs. 3, 4, and 5, are indicative only of the storm
analyzed in this experiment. Actual distributions using
real data will most certainly be significantly different.
We expect that errors will be larger when using real
radar data, and that the mean values of errors will be
significantly different than 1.0, especially at far (>100
km) radar ranges because of the litany of error sources
not considered in our study. In effect, our study results
represent a ‘‘best-case”’ scenario with a perfectly cali-
brated radar, no hail contamination, no anomalous prop-
agation of the radar beam, no extreme variations from
the assumed raindrop-size distribution, and no bright-
band effect.
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This experiment reveals that radar rainfall estimation
errors (expressed as a percentage) are typically ampli-
fied in Hortonian runoff predictions as measured by both
the predicted runoff volume or peak discharge. Gen-
erally, peak discharge errors were always larger than
runoff volume errors, and both were larger than rainfall
volume errors. Radar rainfall errors and the correspond-
ing runoff errorsincrease and show higher variance with
radar range. Rainfall volume errors and hydrograph er-
rorsare generally higher for smaller rainfall events. Am-
plification of rainfall error increases sharply with radar
range, that is, runoff volume and peak discharge errors
increase with radar range at a faster rate than rainfall
errors.

The uncertainties of hydrologic applications of weath-
er radar are quantified in the form of probability den-
sities. The statistical distribution of a radar-based hy-
drologic variablefor agiven ““‘true’” value of thevariable

can be very useful in modeling studies and has potential
for practical applications. While there are limitations of
this study, the methodology can be extended for more
rigorous radar data error studies. For example, rainfall
and runoff errors were treated at the watershed scale
when choosing a finer spatial scale might have been
more appropriate in many situations, especialy for wa-
tersheds of larger sizes. The uncertainty associated with
the modeling tools can also be integrated in the total
uncertainty, which was not included in this study. Even
quality-controlled radar-precipitation observations
might contain errorsthat are larger than those addressed
in this study. In spite of the aforementioned limitations,
the utility of the methodology of this study and its po-
tential for practical application is important to future
studies that will aid in understanding the uncertainties
associate with the hydrologic application of weather ra-
dar. As well, these features will no doubt prove useful
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in making operational decisions based on radar prod-
ucts.

It is difficult to make accurate corrections for range-
dependent errors because the vertical profile of reflec-
tivity is not constant within a storm (e.g., Vigna and
Krajewski 2001). This is also true in real-world appli-
cations, particularly given the unsteady nature of the
reflectivity—rainfall relationship. The use of ahydrologic
model to convert uncertain precipitation estimates into
runoff predictions creates additional uncertainty. A re-
alistic approach may be to compute the statistics of the
relationship between true hydrologic variables and those
predicted using radar dataand construct probability den-
sities that relate the true and estimated hydrologic var-
iables. Information from all events for which acceptable
radar estimates and actual measurements exist can be
used to build density functions. Many sources of error
are associated with radar rainfall estimation, which
makes it reasonable to express information from radar
estimates in the form of probabilistic distributions.
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