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[1] The primary advantage of radar observations of precipitation compared with
traditional rain gauge measurements is their high spatial and temporal resolution and large
areal coverage. Unfortunately, radar data require vigorous quality control before being
converted into precipitation products that can be used as input to hydrologic models. In
this study we coupled a physically based atmospheric model of convective rainfall with an
active microwave radiative transfer model to simulate radar observation of thunderstorms.
We used the atmospheric model to simulate a well-documented tornadic supercell storm
that occurred near Del City, Oklahoma, on 20 May 1977. We then generated radar
observations of that storm and used them to evaluate the propagation of radar rainfall
errors through distributed hydrologic simulations. This physically based methodology
allows us to directly examine the impact of radar rainfall estimation errors on land-surface
hydrologic predictions and to avoid the limitations imposed by the use of rain gauge data.
Results indicate that the geometry of the radar beam and coordinate transformations, due
to radar-watershed-storm orientation, have an effect on radar rainfall estimation and runoff
prediction errors. In addition to uncertainty in the radar reflectivity versus rainfall intensity
relationship, there are significant range-dependent and orientation-related radar rainfall
estimation errors that should be quantified in terms of their impact on runoff predictions.
Our methodology provides a tool for performing experiments that address some
operational issues related to the process of radar rainfall estimation and its uses in
hydrologic prediction. INDEX TERMS: 1854 Hydrology: Precipitation (3354); 1860 Hydrology:

Runoff and streamflow; 1894 Hydrology: Instruments and techniques; 3210 Mathematical Geophysics:

Modeling; KEYWORDS: modeling, watershed, simulation, radar rainfall, surface runoff, uncertainty

propagation

1. Introduction

[2] The performance of distributed, physically based
hydrologic models depends greatly on the quality of the
input data. The most important input is rainfall because such
models are very sensitive to it [Julien and Moglen, 1990],
particularly models of Hortonian [Horton, 1933] runoff.
Errors in the space-time description of rainfall are often
amplified through Hortonian runoff predictions [Ogden and
Sharif, 2000]. The shortcomings of rain gauge networks are
well documented. Rain gauges do not represent areal rain-
fall at the watershed scale well because they are merely
point samples, while watersheds are sensitive to the spatial
distribution of rainfall. The use of rain gauge data neces-
sitates spatial interpolation of the rainfall data. The accuracy

of the resultant rainfall fields is limited by the correlation
structure of rainfall and the network density.
[3] The primary advantage of radar precipitation products

is their high spatial and temporal resolution and large areal
coverage. Severe flood and flash flood forecasting [Geor-
gakakos, 1986a, 1986b] and urban storm runoff modeling
[Ogden et al., 2000] require high-resolution precipitation
data. Early assessments of the usefulness of radar rainfall
estimation errors in flow forecasts [e.g., Barge et al., 1979]
were optimistic. However, more recent studies have shown
that the impact of radar rainfall estimation errors on runoff
predictions can be very significant in certain situations.
[4] The National Weather Service (NWS) has updated its

weather radar capabilities with the deployment of over 120
WSR-88D (Weather Surveillance Radar, 1988-Doppler)
radars. The WSR-88D radar network provides the 48
contiguous United States with nearly continuous radar
coverage below 3000 m above sea level, except where
rising terrain occludes low elevation angle scans. The
WSR-88D system represents a significant advance in
the field of operational hydrology over older technology.
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The system provides a large number of diverse hydro-
meteorological products [Fulton et al., 1998].
[5] Unfortunately, there are no unique relationships

between the radar-measured reflectivity and the rainfall rate.
The relationship between radar reflectivity and surface
rainfall is highly complex [Austin, 1987]. In addition to
the difficulties in estimating the parameters of this relation-
ship, there are many other physical factors that increase the
uncertainty of radar rainfall estimation. Radar rainfall esti-
mates are always at risk of being contaminated by a host of
random and systematic error sources. Some of the other
potential sources of errors are radar hardware calibration,
the deflection of the radar beam from its path (anomalous
propagation), the attenuation of the electromagnetic wave
by rain and atmospheric gases, the presence of frozen
hydrometeors and the melting layer, and range effects. A
discussion of numerous sources of radar rainfall estimation
error is given by Wilson and Brandes [1979], Zawadzki
[1982, 1984], and Krajewski and Smith [1991].
[6] The need to improve hydrologic predictions indicates

the increased importance of research efforts in the dynamic
numerical modeling of quantitative precipitation, either
through explicit treatment or through parameterization.
The dynamic (physically based) models of rainfall are
usually based on sets of partial differential equations, which
describe conservation of mass, momentum, and energy in
the atmosphere. Subgrid-scale physics are parameterized
using grid-scale variables. These equations are integrated
numerically in time in a three-dimensional model domain to
produce predictions of rainfall, in addition to a complete set
of state variables. The past two decades have seen increased
usage of explicit cloud models in the simulation and
prediction of convective storms [e.g., Klemp et al., 1981;
Droegemeier et al., 1996; Xue et al., 1996a, 1996b].
Significant progress has been made in the use of radar
observations to initialize real storms and produce realistic
forecasts of intense precipitation systems [e.g., Lin et al.,
1993; Shapiro et al., 1996; Gao et al., 1998; Sun and
Crook, 1998; Grecu and Krajewski, 2000a, 2000b]. Numer-
ical, physically based modeling of storms facilitates our
understanding of the three-dimensional variability of hydro-
meteor characteristics. When modeled storms are coupled
with a scheme for simulating the physics of electromagnetic
wave propagation, the simulation system provides an oppor-
tunity to study some aspects of the complex relationship
between radar observables and the true (although simulated)
rainfall fields and the impacts of radar rainfall estimation
errors on runoff predictions.

2. Objectives

[7] In this paper we use a simulation methodology to
examine the propagation of radar rainfall estimation errors,
due to a variety of causes, through Hortonian runoff
predictions. We use an atmospheric model to generate
convective storms and an active microwave radiative trans-
fer model to simulate the propagation of electromagnetic
waves between the radar and the storms. This methodology
allows us to assume that the rainfall fields generated by the
atmospheric model are the ‘‘truth.’’ We use radar-estimated
rainfall from simulated storms as input to a calibrated (for a
certain actual basin), physically based, infiltration excess,
watershed model to study the propagation of radar rainfall

estimation errors. In addition to the influence of radar range
and radar orientation, we impose systematic and random
errors on the radar estimation process to study their impact
on runoff prediction. Our simulation methodology allows us
to avoid the traditional approach of assessing radar estimate
accuracy by comparisons with rain gauges, which is subject
to several fundamental limitations [Zawadzki, 1975; Ciach
and Krajewski, 1999]. Furthermore, we simulate the radar
estimation process below the freezing level to avoid the
complex ice microphysics and ‘‘bright band’’ effects. We
also analyze the effect of adjusting radar rainfall estimates
on predicted runoff.

3. The Tools

3.1. The Atmospheric Model

[8] The Advanced Regional Prediction System (ARPS) is
a general purpose, nonhydrostatic, compressible model for
storm-scale and mesoscale atmospheric simulation and real-
time numerical weather prediction [Xue et al., 1995; Xue et
al., 2000, 2001]. The model was developed at the Center for
Analysis and Prediction of Storms (CAPS) at the University
of Oklahoma, with the support of the National Science
Foundation Science and Technology Center (STC) program.
The model solves equations for momentum, temperature,
pressure, water substances, and subgrid-scale turbulent
kinetic energy and includes comprehensive physical pro-
cesses. The model serves as an effective tool both for basic
research and for operational numerical weather prediction
[e.g., Droegemeier et al., 1996; Xue et al., 1996b]. Addi-
tional examples of the model applications are given by Xue
et al. [2000, 2001].

3.2. The Radar Simulator

[9] Krajewski et al. [1993] proposed a physically based
simulation of radar observations based on a two-dimen-
sional stochastic space-time model of rainfall events and a
statistically generated drop-size distribution. Anagnostou
and Krajewski [1997] made several extensions to this
simulator. The two-dimensional fields were complemented
with a vertical structure of hydrometeors by choosing a
cloud type model, which resulted in size, shape, and phase
(mixed or single) distribution at discrete elevations. Recent-
ly, Anagnostou and Morales [2000] used the simulator in
their study of Next Generation Weather Radar (NEXRAD)
calibration based on a comparison with the Tropical Rainfall
Measuring Mission (TRMM) satellite [Kummerow et al.,
1998].
[10] We modify the radar simulator in this study to

calculate various radar observables from the three-dimen-
sional output produced by the ARPS atmospheric model.
We modify the beam geometry to capture the high varia-
bility within convective systems. The simulator extracts
three-dimensional estimates of pressure, temperature, cloud
rainwater content, and water vapor content from ARPS and
uses these outputs to calculate the mixing ratios of rainwater
and the gradients of the atmospheric refractive index. We
simulate beam propagation in a three-dimensional space.
The simulated radar measurement process includes integrat-
ing over the pulse volume using a Gaussian beam power
distribution. We use the default WSR-88D Z-R relationship
of Z = 300R1.4, where Z is the equivalent radar reflectivity
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factor, in mm6/m3, and R is the rainfall rate, in mm/hr
[Fulton et al., 1998], to convert reflectivities into rainfall
rate estimates. The radar wavelength is assumed to be 10
cm, the beam elevation angle is 0.5�, and the half-power
beam width is 1�, close to WSR-88D’s value of 0.95�. The
azimuthal resolution of radar observations is 1�.

3.3. The Hydrologic Model

[11] The hydrologic model used in this study is the
physically based, distributed parameter, Hortonian, finite
difference model CASC2D (cascade of planes, two-dimen-
sional) [Julien et al., 1995;Ogden, 1998]. The model accepts
fully spatially varied rainfall input, uses Green and Ampt
[1911] infiltration with redistribution [Ogden and Saghafian,
1997], two-dimensional diffusive-wave overland flow rout-
ing, and one-dimensional diffusive-wave channel routing.
CASC2D has the capability to model a variety of channel
cross sections [Ogden, 1994] and includes continuous soil
moisture accounting [Ogden and Senarath, 1997; Senarath
et al., 2000]. The model was also used in a flash flood
simulation study in which perennial and ephemeral lakes
were modeled [Ogden et al., 2000]. The model uses a square
grid representation of the watershed at a user-selected grid
size. Once ponding occurs, surface water is accumulated in
each model grid cell until the specified retention depth for
that cell is exceeded. Thereafter the overland flow is routed
into two orthogonal directions. When overland flow reaches
a model grid cell that contains a defined channel, the flow is
passed into the channel and routed using a one-dimensional
explicit diffusive-wave routine. The theory, development,
and applicability of CASC2D are discussed at length by
Downer et al. [2002].

4. The Study Watershed

[12] The watershed used in this study for hydrologic
simulations is the 21.2 km2 Goodwin Creek Experimental
Watershed located in north central Mississippi. The USDA-
ARS National Sedimentation Laboratory has continuously
monitored the watershed since 1981. Alonso [1996] pro-
vides a detailed description of the watershed. The elevation
of the watershed ranges from 68 to 127 m. The main
channel has an average slope of 0.004 [Bingner, 1996].
The grid size used in CASC2D to model the watershed is
125 � 125 m, to minimize computing time yet adequately
describe the spatial variability of topography, soil texture,
and land use/land cover. Hortonian runoff is dominant and
the contribution of groundwater to runoff is insignificant in
the watershed. The groundwater table is several meters
below surface; according to measurements, it varies by only
5–10 cm near channels during significant runoff events.
The base flow at the outlet of the catchment is typically
below 0.05 m3 s�1. The hydrologic model CASC2D was
rigorously calibrated on this watershed by Senarath et al.
[2000], and thus we feel the model represents the water-
shed’s runoff processes with reasonable accuracy.

5. Numerical Framework

5.1. ARPS Simulations

[13] Within the framework of this methodology, we sim-
ulate a well-documented tornadic supercell storm that

occurred near Del City, Oklahoma, on 20 May 1977 using
the ARPS. This storm has been studied extensively using
both multiple Doppler radar analysis and numerical simula-
tion. For details on storm morphology and evolution, the
readers are referred to Ray et al. [1981] and Klemp et al.
[1981].
[14] We simulate 2 hours of the storm’s total duration. The

simulation starts from a thermal bubble placed in a horizon-
tally homogeneous base state, specified from the sounding
used by Klemp et al. [1981]. Like Klemp et al. [1981], we
subtract a wind vector of U = 3 m s�1 and V = 14 m s�1 from
the wind profile of the environmental sounding to keep the
right moving storm near the center of the model domain.
Effectively, we are using a computational domain that trans-
lates in space at a velocity of (3, 14) m s�1; in other words,
we are simulating the storm in a moving reference frame.
[15] The model grid consists of 67 � 67 � 35 grid points

with a uniform grid interval of 1 km in the horizontal and
0.5 km in the vertical direction. The physical domain size is
therefore 64 � 64 � 16 km3. The initial bubble was
centered at x = 48 km, y = 16 km, and z = 1.5 km and
has a maximum perturbation temperature of 4 K. The radius
of the bubble is 10 km in both the x and y directions and
1.5 km in the vertical. We use the Kessler [1969] warm rain
microphysics option together with a 1.5-order turbulent
kinetic energy subgrid turbulence parameterization. We also
use open boundary conditions at the lateral boundaries and
an upper level Rayleigh damping layer.
[16] Between 30 and 60 min the simulated storm under-

went a splitting process (Figure 1, top panels), with the right
moving (relative to the environmental wind shear vector,
which points in the northeast direction) cell remaining near
the center of the domain, and the left moving cell propagat-
ing to the northwest corner of the domain. The precipitation
rates from the simulated storm at 30-min intervals are shown
in Figure 1 (only three quarters of the simulation domain in
terms of the length of each side is shown), corresponding to
30, 60, 90, and 120 min after initiation of the storm. The use
of a moving coordinate system (through the deduction of a
mean wind) makes the simulated storm, especially the right
moving cell, appear roughly stationary relative to the grid.
Relative to the ground, this right moving cell moves at a
speed of about 14.3 m s�1 in a north-northeast direction, as
given by the velocity vector (3,14) m s�1. The domain
translation vector is shown in Figure 1.
[17] The patterns of the surface precipitation rate usually

resemble the pattern of radar reflectivity fields. The hook-
shaped pattern associated with the right moving cell is also
associated with the so-called hook echoes that demonstrate
the strong rotation associated with tornadic supercell thun-
derstorms. In this simulation the left moving cell is actually
stronger (Figure 1, bottom left panel). The evolution of the
simulated storm is qualitatively similar to the observed
storm [Ray et al., 1981], and after 2 hours, it has attained
a structure typical of mature supercell storms.
[18] We show a sample of some randomly selected

instantaneous vertical reflectivity profiles that we compute
using the storm hydrometeor fields in Figure 2. The solid
line represents the mean reflectivity profile of all samples
measured at all ARPS grids for the entire simulated time
period. The reflectivity profiles, including the mean, are
similar to the profiles reported in the literature [e.g., Szoke
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et al., 1986a, 1986b] and the profiles from the WSR-88D
data [Vignal and Krajewski, 2001]. The spatial correlation
within the storm, and the fractional areal coverage of the
storm based on rainfall intensity, computed at a certain
snapshot during the storm evolution (Figures 2b and 2c), are
similar to some of those found in the literature [e.g.,
Calheiros, 1984]. This similarity also indicates that ARPS
output is reasonably representative of a convective storm.

5.2. Radar-Storm Watershed Orientation

[19] Since radar beams rise and widen with range, the
radar-viewing aspect of a storm may have an effect on the
radar estimates for a highly variable three-dimensional
convective cell. Different orientations result in different
coordinate geometry and volumetric averaging of radar
observables. To investigate these effects quantitatively, we
place our virtual radar at 24 equally spaced orientations
(every 15�). We also vary the range along these directions
as illustrated in Figure 3. Since the storm domain is
significantly larger than the study watershed, we vary the
watershed location within the storm. Because of the high
variability within the convective storm, we move the
watershed to 10 different locations within the storm domain

to obtain different cases of the radar estimation process.
The ten locations do not overlap and are sufficiently far
apart from each other to be considered independent storm
realizations.
[20] We assume the hydrographs simulated using

CASC2D, driven by the ‘‘true’’ ARPS rainfall fields, are
the true runoff hydrographs. We use four measures for
comparing these true-rainfall-based simulations with the
ones based on radar estimates: the watershed total rainfall
volume ratio, the root-mean-square error in the simulated
hydrograph, the total runoff volume ratio, and the peak
discharge ratio.
[21] In addition to the effects of range and orientation, we

also studied the effects of both systematic and random
errors. Random errors resulting from the uncertainty in the
relationship between the radar reflectivity and the rainwater
mixing ratio, or radar system noise, and additive calibration
drifts, were imposed to study their impact. The simulator
computes radar observables using either a constant value for
the slope of the refractive index or a value calculated from
atmospheric variables to study the impact on the hydrologic
model output. We compute the attenuation of electromag-
netic waves by rain as a function of the radar wavelength

Figure 1. Instantaneous rain fall rates (mm h�1) from the ARPS simulated 7 May 1977 Del City,
Oklahoma, supercell storm, at 30, 60, 90, and 120 min of simulation. Only a portion of the 64 � 64 km2

model domain is shown, as indicated by the axis labels. The direction of the domain translation is
indicated by an arrow in each plot, and the speeds are 3 m s�1 and 14 m s�1 in the east-west and north-
south directions, respectively.
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(10 cm), rainfall intensity, and the distance between the
radar and the hydrometeors. The attenuation from atmos-
pheric gases, which is typically larger than rain attenuation
for S band, is only a function of radar wavelength and
distance [Doviak and Zrnic, 1993]. We do not model
atmospheric gas attenuation because this effect is taken care
of in real radar data processing systems.
[22] Finally, after computing the radar-estimated total

rainfall volume over the basin, Vr, we compare it to the

true total rainfall volume, Vt, and find the ratio of the two
volumes, Vt/Vr. We then multiply all instantaneous radar
rainfall estimates by that ratio, or ‘‘storm total bias,’’ such
that the watershed total rainfall volume is equal to the true
watershed total rainfall volume, for all ranges and orienta-
tions (see a similar bias adjustment approach by Smith et al.
[1996a]). We compare the resulting outputs of the hydro-
logic model, using these adjusted radar estimates, to the
true hydrologic outputs. This is done to assess the quality of
the hydrologic outputs driven by adjusted radar rainfall
estimates.

6. Results

6.1. Simulations With No Imposed Errors

[23] In the first part of this study we assume that the
simulated radar measurement process is error-free to study
the pure effects of range and orientation between the radar
and the study watershed. The closest radar position we test
is 10 km from the center of the watershed. We then
gradually increase the range at increments of 5 km, out to
a maximum range of 145 km from the center of the water-
shed. We limit the range to 145 km in order to avoid the
influence of the freezing level on the radar-measured
reflectivity for the storm being studied. In a few instances
the simulated radar beam intersected the freezing level at far
range. However, since warm-rain processes were assumed
in the ARPS simulations, the simulated beam intersected the
freezing level very infrequently.
[24] To quantify the effects of radar orientation, we place

the radar at 24 equally spaced orientations (every 15�), and
vary the range in these directions, as illustrated in Figure 3.
The range increments start 10 km from the watershed
center, are spaced 5 km apart out to 145 km, and are the
same for all 24 radar orientations. The orientations are
coded with numbers 1 through 24, orientation 1 being

Figure 3. Configuration of the simulated radar orienta-
tions around Goodwin Creek. The radar range is varied
along these orientations. The outline of the 21.2 km2

Goodwin Creek Experimental Watershed is shown at the
origin of the figure.

Figure 2. Characteristics of the ARPS simulated storm:
(a) random samples from reflectivity profiles at different
locations and times; (b) spatial correlation of the rainfall
field; and (c) fractional coverage of different rainfall
intensities. The bold line in Figure 2a is the storm total
average reflectivity profile.
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exactly east of the watershed center. We distribute the
orientations over 360� because of the asymmetry of the
simulated storm and watershed. Radar rainfall estimates are
entered into the hydrologic model in polar coordinates.
Because the hydrologic model grids are smaller (125 m)
than the radar bins (1� � 1� � 1 km), we apply the nearest-
neighbor method to assign rainfall rates to each hydrologic
model grid. We did not perform any vertical interpolation of
rainfall below the beam in these simulations.
[25] The rainfall volume error measure is the ratio

between the radar-estimated catchment total rainfall volume
and the true total rainfall volume predicted at the ground
level by the atmospheric model. The error statistics of the
influence of radar error on hydrologic model response used
in this study are three of the statistics that are typically used
to calibrate hydrologic models and evaluate their perform-
ance [e.g., Brazil, 1988; Senarath et al., 2000]. Root-mean-
square hydrograph error (RMSE) is computed using

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

XN
i¼ 1

qesti � q ref
i

� �
2

vuut ð1Þ

where qest is the simulated discharge driven by radar-
estimated rainfall and qref is the corresponding discharge
resulting from the reference ARPS modeled rainfall (i.e., we
assume the hydrograph produced using ARPS rainfall fields

to be the reference hydrograph). N refers to the total number
of hydrograph ordinates used in the analysis, while i is the
index denoting individual hydrograph ordinates. RMSE is
expressed as a percentage of the reference peak discharge.
[26] The error in peak discharge is expressed as the ratio

between the estimated peak discharge and the true peak
discharge. The error in runoff volume is similarly expressed
as the ratio of the estimated and reference total runoff
volumes. All these error statistics are based on the total
storm volumes and maximum discharge and represent the
average trend.

6.2. Effects Of Range/Orientation

[27] We show the combined effects of range and orienta-
tion on the estimated rainfall field in Figure 4a. These are
the results from a set of simulations with the watershed at
one of the 10 locations tested within the storm domain. Each
curve in the graph represents one of the radar orientations.
The effect of range is clear on all 24 lines, and the scatter
resulting from orientation effect is significant. The scatter is
very small at the 10-km range and increases steadily with
range. The largest scatter occurs when the radar is 145 km
from the center of the watershed, the farthest range we
tested. The scatter varies from 2% to about 17% of the total
rainfall volume. In all the plots of Figure 4, curves adjacent
to each other generally represent orientations that are close

Figure 4. Measure of the effects of radar range/orientation on the estimated rainfall volume and
hydrograph, with curves corresponding to 24 different radar orientations (see Figure 3): (a) ratio of radar-
estimated rainfall volume and ‘true’ rainfall volume; (b) ratio of radar-based runoff volume and true
runoff volume; (c) ratio of radar-based peak discharge and true peak discharge; and (d) radar-based
hydrograph root-mean-square error expressed as a percentage of the true peak discharge. The graphs are
for watershed location 3 in Table 1.
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together; for example, in Figure 4a the line representing
orientation 7 is adjacent to the line representing orientation
6. Lines representing orientations 180� apart are generally
adjacent to each other for small ranges and start to diverge
with increasing range. Most of the 24 lines follow a distinct
pattern, which is a gradual decrease with increasing range to
about 100–110 km, followed by a more rapid increase with
increasing range. This is clear in Figure 5a, which shows the
mean for the 24 orientations. The maximum average rainfall
volume error is 24% at a range of about 100 km. The
standard deviation of the 24 rainfall volume ratios increases
almost linearly with range, as seen in Figure 5a. The
response to the combined effect of range and orientation
is similar for the other nine watershed locations.
[28] The error in the predicted runoff is somewhat

different. Radar rainfall estimation errors are generally
amplified through predicted runoff. The variance in pre-
dicted runoff volume is more than double that for the
rainfall volume, as shown in Figure 4b. The average value
of runoff volume error, shown in Figure 5b, whether from
underestimation or overestimation, is twice the average
rainfall volume error (Figure 5a) even though the curves in
both graphs follow a similar trend. The standard deviation
of the 24 runoff volume ratios, shown in Figure 5b, is
about twice that of rainfall volume ratios, and the increase
with range is similar to that of the rainfall volume curve.
The runoff simulations show that both range and orienta-
tion errors are amplified in the predicted runoff. The
graphs representing the error in peak discharge (Figure
4c) are similar to runoff volume error graphs. Interestingly,
for some orientations there is no significant change in the
peak discharge error after the range of 100–110 km

(Figure 4c), which suggests that rainfall volume errors
are compensated for by other errors. The graph of the
hydrograph root-mean-square error (RMSE), shown in
Figure 4d, has a linear-convex-concave shape. The linear
portion corresponds to the region where the rainfall (or
runoff) is overestimated. This part shows a small change
with range. The convex portion of the curve corresponds
to the region where overestimation decreases and under-
estimation starts. The curve becomes concave as the
underestimation continues with range, and the slope
changes sign as the underestimation begins to decrease.
The scatter due to orientation increases with range, but the
general pattern is different from other graphs, because the
RMSE does not differentiate between underestimation and
overestimation.
[29] We summarize rainfall and runoff statistics from

ARPS simulations for the 10 watershed locations in Table
1 and summarize the average values of error statistics in
Figure 6. The mean rainfall volume error curves (Figure 6a)
show a different trend because each location represents an
independent realization of the storm. The curve showing the
highest error corresponds to the watershed location with the
smallest total rainfall accumulation (location 6 in Table 1).
The watershed response depends largely on the rainfall error
and also on the magnitude of the rainfall volume and the
spatial distribution of the rainfall (Figure 6b and 6c). The
increase of RMSE with range is drastic for the location with
the smallest rainfall accumulation (Figure 6d). For two
locations, RMSE decreases with range. At these two loca-
tions, with some of the highest rainfall accumulations, the
estimated rainfall volume on the watershed is smaller than
the true rainfall volume and increases slightly with range.

Figure 5. Average (solid lines) and standard deviation (dotted lines) of the 24 curves shown in Figure 4.
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Nevertheless, the scatter due to orientation increases with
range for these two locations as well.

6.3. Effect Of Imposed Errors

[30] To study the effects of random and systematic radar
measurement errors when combined with orientation and
range effects, we impose noise on reflectivities measured by
the radar simulator. It is a well-established fact from
disdrometer studies that there is no unique relationship
between rainwater mixing ratio (M ) and radar reflectivity
(Z ). Steiner and Smith [2000] conducted an exhaustive

study of 2 years of disdrometer data at Goodwin Creek,
where they reported larger anomalies in the Z-R relation-
ship. They found that the uncertainty in the Z-R relationship
due to 1-min raindrop spectra variability was approximately
40–50% as characterized by root-mean-square error.
Increasing the time averaging from 1 to 5 min had little
effect on the raindrop spectra variability. We add a normally
distributed random error, N(0, 1) (i.e., with a mean of 0 and
a standard deviation of 1 dBZ), to the radar reflectivity
estimates, which are based on a unique relationship between
Z and M, to account for the randomness in the Z-M
relationship. The ±3 dBZ range of this error agrees with

Table 1. Rainfall and Runoff Statistics, x–y Coordinates, and Mean Storm Velocity Vectors for the 10 Watershed Locationsa

Watershed
Location

ARPS Rainfall
Volume, m3

Peak
Discharge, m3

Runoff
Volume, m3

Runoff Production
Efficiency

x, y Coordinates
of Watershed
Location, km

x, y Components of
Mean Storm Velocity

Vector, m s�1

1 1,287,741 104.8 766,884 0.60 42, 49 1, 2
2 1,230,439 103.7 688,193 0.56 52, 47 1, 2
3 803,040 56.7 363,803 0.45 44, 36 1, 1
4 828,942 59.2 390,689 0.47 46, 61 1, 4
5 689,706 45.6 316,993 0.46 53, 37 1, 2
6 450,961 13.5 124,478 0.28 58, 27 1, 1
7 475,002 19.8 130,138 0.27 51, 62 1, 4
8 789,399 38.1 290,071 0.37 48, 41 1, 1
9 1,170,596 93.3 650,385 0.56 54, 34 1, 1
10 721,109 35.0 287,471 0.40 44, 46 1, 1

aThe x and y wind speeds are oriented in the east-west and north-south directions, respectively.
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Figure 6. Average of the 24 orientations for the measures shown in Figure 4. Each curve corresponds to
a different watershed location in Table 1.
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the values reported in several studies [e.g., Steiner and
Smith, 2000]. This N(0, 1) noise can also account for
random noise in radar system measurement, such as from
a transmitter, receiver, antenna, waveguide, or signal pro-
cessing error, that corrupts the measurement process.
[31] The radar equation relates radar-measured power to

characteristics of the radar and characteristics of the precip-
itation targets. Doviak and Zrnic [1993]. Smith et al.
[1996b] argue that radar calibration, which is dependent
on the value of the constant of the radar equation, plays an
important role in site-to-site differences in WSR-88D pre-
cipitation estimates. Hunter [1996] reports that drifts in
absolute radar calibration cause differences of more than
17% at the same location from adjacent WSR-88Ds. We
evaluate the effect of radar calibration errors (drifts) in two
additional simulations: A calibration error (drift) of 2 dBZ is
added to radar reflectivity measurements in one simulation
and is subtracted in another. We select these systematic and
random errors as examples of the many errors associated
with the radar measurement process to determine their
impact on hydrologic predictions.
[32] We show the impact of the imposed errors on

estimated predicted rainfall volume error and hydrograph
RMSE in Figures 7a–7d. These results are for two different

orientations at the same location that we presented in Figure
4. Random noise from the M-Z relationship, or radar system
measurement noise, has a small impact on error statistics; it
generally decreases the smoothness of individual lines.
[33] The impact of the calibration error alone on the

estimated rainfall can be easily quantified by adding the
amount of drift (dBZ) to the measured Z value. The effect is
different when combined with range/orientation. Calibration
error effects can either amplify or reduce range/orientation
error. This is especially clear in hydrograph RMSE curves.
In some cases, estimates of rainfall volume with imposed
calibration errors are better than error-free estimates at far
ranges. This is a clear example of the difficult task of trying
to isolate separate radar error sources. Radar calibration
errors have large effects on all three simulated runoff error
statistics.

6.4. Effect Of Nonuniform Refractive Index

[34] In all simulated runs the gradient of refractive index
has a constant value of �0.0000393. In one simulation run
we calculated the gradient of the refractive index at each
grid of the atmospheric model, using the equation relating
the refractive index to atmospheric variables [e.g., Battan,

Figure 7. Effects of random and calibration noise on radar-estimated rainfall volume for two radar
orientations: (a) orientation 5 and (b) orientation 11 for watershed location 3 in Table 1. The effects on
hydrograph root-mean-square error are shown in Figures 7c and 7d for the same orientations, respectively.
Note that positive calibration drift improves rainfall and runoff estimates in Figures 7b and 7d at far ranges.
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1973]. We then calculated the effect on the path of the
propagated radar beam and hence the effect on radar rainfall
estimates. When the values of refractive index gradient,
which were computed at each atmospheric model grid cell,
were used, hydrologic predictions were not significantly
affected. In all simulations the terrain is assumed to be
perfectly flat and problems of anomalous propagation are
not addressed.

6.5. Adjustment Of Radar Estimates

[35] Radar rainfall estimation bias can be computed by
comparing total radar rainfall accumulation to total rain
gauge accumulation. Several prior studies have used com-
puted radar estimation bias to adjust radar estimates by
multiplying the radar rainfall estimates by a factor such that
total accumulations are the same [see Smith et al., 1996a].
We adjust the radar-estimated rainfall accumulations to
match the ARPS rainfall accumulations on a storm total
basis in order to examine hydrologic model performance
using the adjusted radar rainfall fields as input. We multiply
radar estimates by the bias factor such that radar-estimated
rainfall volumes are equal to the true rainfall volume. We
did this for all ranges and orientations for the radar location
analyzed in Figure 4. We find that the predicted runoff
volume is practically the same as the reference runoff
volume, with small scatter, up to a range of about 70 km.
The error in predicted runoff volume increases steadily with
an increase in the scatter, as shown in Figure 8b, for ranges
beyond 70 km. The runoff volume error when using
adjusted radar estimates can reach up to 14% at 145-km

range for some orientations. The error in peak discharge is
larger than the error in runoff volume, and the scatter
increases appreciably at ranges beyond about 90 km. The
maximum error for some simulations is close to 35%, at 125
km. The hydrograph RMSE graph is similar to the peak
discharge error graph with a maximum of about 11% of the
peak discharge.
[36] This is just an illustration of the error in predicted

hydrograph that can be expected even if radar estimates are
bias corrected on a storm total basis. The limitations of this
approach have been demonstrated in several previous stud-
ies, and we are stressing here that storm total volume
adjustments do not adequately address range and orientation
effects in hydrologic modeling. Comparing Figure 4 and
Figure 8 shows the effect of radar adjustment. Note that in
this study we assume that perfect storm total rainfall volume
adjustment is possible. In reality, this does not occur. For
example, multisensor precipitation estimates [Krajewski,
1987; Seo, 1998] are obtained by adjusting radar estimates
using rain gauge data. Consideration of other error sources
associated with real multisensor adjustments is beyond the
scope of this paper.

6.6. ARPS Model Resolution Effects

[37] The atmospheric model grid size, 1.0 km horizontal
and 0.5 km vertical, is a factor in determining the values of
the computed range/orientation errors, but it is not the main
cause of the errors. We investigate this using output from two
additional ARPS simulations of the same storm with higher-
resolution outputs: 0.5 km horizontal and 0.5 km vertical,
and 0.25 km horizontal and 0.25 km vertical. Simulations

Figure 8. The same measures in Figure 4 after the radar-estimated rainfall volume has been made to be
equal to the true rainfall volume for all ranges and orientations by multiplying by a bias factor.
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with these finer-resolution three-dimensional atmospheric
fields showed no reduction in the average radar range/
orientation errors. There are minor differences between the
results of the two higher-resolution simulations, which
demonstrate that for this storm there is no practical accuracy
gained for resolutions higher than 0.5 � 0.5 � 0.5 km.
[38] Rainwater mixing ratios have discrete values in each

ARPS grid. To further assess the impact of the discrete
nature of the ARPS output, we use simulated radar obser-
vations of continuous, hypothetical rainfall fields. The
variations between rainwater mixing ratios are assumed to
be continuous (not discrete) within the simulated domain,
which covers a rectangle of 7 � 10 km. The vertical profile
of rainwater mixing ratios follows a general extreme value
(GEV) distribution (1.0, 1.0, �0.1), f1(z), where the x axis
variation follows a Gumbel distribution G(19.0, 3.0), f2(x),
and the y axis variation follows a Gumbel distribution
G(15.0, 4.5), f3( y). At every point, p(x,y,z), the rainwater
mixing ratio M is calculated by the relationship M = f1(z) �
f2(x) � f3( y) � 0.625 kg m�3. We admit that these are not
realistic rainfall fields, since no real storm can be so smooth.
They are only meant to serve as illustrative examples of the
measurement errors under consideration. Note that the
vertical profile of reflectivity is a function of z only and
does not vary horizontally. The rainfall rate at ground level
is irrelevant in this portion of our study because our purpose
is solely to examine the effect of the interaction of radar

beam geometry and orientation on radar rainfall estimates
using continuous M fields. Radar rainfall estimates of these
simulated fields have range/orientation errors, which
increase with range. Errors are also amplified in the pre-
dicted runoff. Real storms, like the Del City storm, show
significant randomness in horizontal and vertical variability,
which also contributes to the range/orientation effects.
[39] A closer look at the geometry of the radar pulse

volume, beam propagation path, elevation, and azimuthal
angle reveals some of the aspects of the range/orientation
effects. For two radars at orientations 180� apart, the
sampling volume is almost identical when the beams are
concentric and the same distance away from the two radars at
near ranges, particularly if they are on the line that connects
the two radars. Sampling volumes that are on the straight line
between the two radars are still very similar at close ranges,
but the difference increases with increasing range. At points
not on this line and at different distances from the two radars,
there can be significant differences in the size, height, and
orientation of the sampling volumes, resulting in large
differences in radar estimates. This can be illustrated by
considering the differences between radar rainfall estimates
at orientation 1 and orientation 13, as shown in Figure 3. To
ensure that grid size does not cause these discrepancies, we
analyze the case of the hypothetical rainfall fields mentioned
above. In Figure 9 we show the locations of radar pulse
volume centers within the rectangle that encompasses the

Figure 9. Locations of radar pulse centers for orientations 1 and 13 of Figure 3: (a) orientation 1 at a
range of 10 km; (b) orientation 13 at a range of 10 km; (c) orientation 1 at a range of 145 km; and (d)
orientation 13 at a range of 145 km.
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watershed for the two radars at ranges of 10 and 145 km. We
compute the differences between the radar estimates at each
location. At the smallest practical range we are considering,
the differences are negligible at the center where the two
beams are almost concentric and at equal distance from the
two radars. On the line perpendicular to the line connecting
the two radars, where the beams are not exactly concentric
but approximately at equal distance from the two radars and
at the same height, the maximum difference in point esti-
mates of rainfall rate is about 1% on the edges of the
rectangle. On the line connecting the two radars the max-
imum difference at the edges of the rectangle is 3%. At the
corners of the rectangle it is about 4%. The difference in
estimated total rainfall volume is about 1%.
[40] The picture is quite different at the 120-km range. At

the center of the watershed the difference is 3%. This is due
to differences in the sampling volume between the two radar
beams. The differences on the edges of the perpendicular
line are 9%. On the line between the two radars the
maximum difference is 10%, and the difference in total
estimated rainfall volume on the watershed is 6%. This is an
illustration of the range/orientation effect, and the numbers
are a sample of these errors. Note that in the above analysis,
the vertical profile of the rainwater mixing ratio does not
vary horizontally.
[41] The azimuthal resolution is one of the factors that

controls the orientation effect. In a test run, where we
changed the azimuthal resolution from 1� to 0.3� by over-
sampling, the scatter at far ranges was reduced by about
30%. Reducing the radar beam width results in similar
reduction in orientation effects.
[42] The choice of the Z-R relationship in this study is

arbitrary. Our simulations show that small changes to the Z-R
relationship parameters have no significant effects on the
hydrologic outputs; for example, changing the multiplicative
coefficient from 300 to 400, and the power coefficient from
1.4 to 1.3, changes the outputs by less than 5%.

7. Discussion

[43] The propagation of the radar beam is accompanied by
an increase in the radar sampling volume and an increase of
the height of the radar beam center, with range depending on
elevation angle and Earth curvature. The gradient of the
atmospheric refraction index also affects the path of electro-
magnetic waves through the rainy atmosphere. These two
factors, i.e., increase in volume and increase in height, cause
several errors (e.g., smoothing of reflectivity gradient and
overshooting of precipitation) and also play a role in the
presence of the orientation effect, which increases with range.
[44] All the simulations in this study highlight the range/

orientation effects for convective storms and their propaga-
tion through hydrologic model predictions for a 21 km2

watershed. It is well known that other factors in the radar
rainfall measurement/estimation process can cause errors
larger than the errors we discuss here. However, pinpointing
and quantifying these errors provide incentives to study
these errors and search for means to adjust them. We do not
think that these simulations, which demonstrate examples of
the impact of high variability within convective cells,
present worst-case scenarios in small-sized watersheds.
We have chosen error statistics at the watershed scale
(e.g., we did not consider errors in instantaneous values of

variables at the pulse volume scale). For larger watersheds,
there might be similar range/orientation errors, at least at
smaller temporal or spatial scales. For example, Ogden and
Julien [1994] found that the effect of radar data resolution
depended upon ‘‘storm smearing’’ and ‘‘watershed smear-
ing.’’ Storm smearing occurs when the radar rainfall data
resolution is coarser than the rainfall spatial correlation
length. Storm smearing reduces rainfall gradients and is
independent of the watershed size. Watershed smearing
occurs when the radar rainfall data resolution exceeds
40% of the square root of the watershed area, creating
uncertainty with regard to the location of precipitation
relative to the watershed boundary. Watershed smearing is
the main source of hydrologic model error in very small
subcatchments. For the 21 km2 Goodwin Creek watershed
used in our study, storm smearing is the dominant error
source at intermediate ranges studies, while watershed and
storm smearing are both factors at far ranges.

8. Summary and Conclusions

[45] We developed a simulation framework for the study
of the hydrological impacts of radar rainfall estimation
errors. The simulation framework is physically based and
consists of an atmospheric model, a simulator of radar
observations, and a distributed hydrologic model. The storm
we used in our study is well documented and is considered a
benchmark storm for the validation of atmospheric models
(see ARPS references). The rainfall fields we simulated in
this study are adequately realistic and can serve as an
example of supercell storms that cause flash flooding in
small- and medium-sized watersheds. Although we use only
single-polarization radar reflectivity in this study, the radar
data simulator has the capability to generate multiparameter
radar observables (e.g., differential reflectivity and differ-
ential propagation phase shift). Using our approach, it is
possible to simulate several sources of radar measurement
and estimation errors, both systematic and random.
[46] The distributed physically based hydrologic model

CASC2D [Julien et al., 1995; Ogden, 1998] we use in the
study is rigorously calibrated [Senarath et al., 2000] on an
extensively monitored research watershed. This leads us to
believe that the propagated errors in predicted runoff
provide examples of what to expect in real-world hydro-
logic studies using a physically based, distributed, Horto-
nian model.
[47] Range effects are caused primarily by the vertical

profile of reflectivity and the size of the radar pulse volume.
The differences in radar predictions caused by the orienta-
tion between the radar, the storm, and the watershed (see
Figure 4a for an example) depend mainly on the size of the
pulse volume and the sampling resolution. Though it is not
practically feasible, two identical radars at two different
orientations could hypothetically give identical measure-
ments of a storm, if there were no vertical variability and the
radar pulse volume and the azimuthal resolution is were
small enough to capture the horizontal variability, and if we
were to neglect attenuation effects. The actual difference
between the two estimates depends on the radar pulse
volume, the azimuthal resolution, and the vertical and
horizontal variability within the storm, among other factors.
Decreasing the azimuthal resolution can remove a large
portion of the orientation effects. Measurements by two or

15 - 12 SHARIF ET AL.: SIMULATIONS OF RADAR RAINFALL ERROR PROPAGATION



more radars of the same storms were discussed in several
radar rainfall estimation studies [e.g., Smith et al., 1996b;
Ogden et al., 2000] and in studies of radar data assimilation
[e.g., Sun et al., 1991; Sun and Crook, 1998]. The orienta-
tion effects we investigate give rise to many interesting
questions: Do the radar estimation/measurement errors
cancel each other out? Does the mosaicking of the multiple
radar data help reduce errors? Does a miscalibrated radar
always give inferior estimates compared with a well-cali-
brated one?
[48] Hydrologic simulations demonstrate that range and

orientation errors are typically amplified through predicted
Hortonian runoff. In many cases, errors in runoff are nearly
twice the magnitude of rainfall volume errors. Amplification
of errors is larger at locations of small total rainfall volume.
[49] Computing the actual values of the gradient of the

atmospheric refractive index (as opposed to assuming a
constant value) does not affect hydrologic model predictions,
provided that anomalous propagation does not occur. Ran-
dom noises that corrupt the radar measurement process, at
least those considered in this study, have minor hydrologic
impacts compared with the systematic range effects. Calibra-
tion errors can have a significant impact on predicted runoff.
[50] At far ranges, radar measurements corrupted by cal-

ibration errors sometimes result in more accurate hydrologic
model predictions than error-free measurements (Figure 7).
This makes identifying radar measurement errors more
complicated and may lead to erroneous conclusions when
radar measurements are compared with the measurements of
other sensors.
[51] Adjustment of radar rainfall estimates by multiplying

them by a bias factor to make the total rainfall volume
match the ‘‘true’’ rainfall volume, as done in multisensor
estimates, seems to provide acceptable runoff volume and
hydrograph predictions at radar ranges below 100 km. At
farther ranges the runoff predictions have appreciable errors,
despite storm total rainfall bias correction.
[52] The simulation framework we present in this paper

provides a useful tool for studying the problems of the
hydrologic applications of weather radar data. In particular,
we focus on the issue of radar rainfall estimation uncertainty
and the propagation of the errors through rainfall runoff
models. Our study admittedly has limitations. We only
consider a single, convective storm and neglect the effect
of bright band. We do not address the issues of radar data
quality control (such as anomalous echo detection and
elimination). We only consider single-parameter S-band
radars. Still, despite these and other limitations, we demon-
strate the utility of the simulation approach and consider the
insight it provides. For example, we study the nonnegligible
effects of radar position (orientation) with respect to the
basin, and we are able to isolate the quantitative effects of
various radar-related sources of uncertainty. The significant
level of some of these effects clearly indicates the need for
more research on these issues. Such studies should include
both simulation methods, such as the one we describe
above, as well as data-based studies. We hope that through
collaboration between the relevant federal agencies and the
research community we will be able to design and conduct
appropriate field and data experiments. We believe that such
experiments will ultimately lead to improved hydrologic
predictions.
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