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ABSTRACT

The Advanced Regional Prediction System (ARPS) model is employed to perform high-resolution nu-

merical simulations of a mesoscale convective system and associated cyclonic line-end vortex (LEV) that

spawned several tornadoes in central Oklahoma on 8–9 May 2007. The simulation uses a 1000 km 3 1000 km

domain with 2-km horizontal grid spacing. The ARPS three-dimensional variational data assimilation

(3DVAR) is used to assimilate a variety of data types. All experiments assimilate routine surface and upper-

air observations as well as wind profiler and Oklahoma Mesonet data over a 1-h assimilation window. A subset

of experiments assimilates radar data. Cloud and hydrometeor fields as well as in-cloud temperature are

adjusted based on radar reflectivity data through the ARPS complex cloud analysis procedure. Radar data are

assimilated from the Weather Surveillance Radar-1988 Doppler (WSR-88D) network as well as from the

Engineering Research Center for Collaborative and Adaptive Sensing of the Atmosphere (CASA) network

of four X-band Doppler radars. Three-hour forecasts are launched at the end of the assimilation window. The

structure and evolution of the forecast MCS and LEV are markedly better throughout the forecast period

in experiments in which radar data are assimilated. The assimilation of CASA radar data in addition to

WSR-88D data increases the structural detail of the modeled squall line and MCS at the end of the assimi-

lation window, which appears to yield a slightly better forecast track of the LEV.

1. Introduction

With increases in computing power, the explicit pre-

diction of convective storms is becoming a reality. As

computing power continues to increase, it will likely be

possible to produce these explicit convective storm fore-

casts in real time. Examples of these real-time forecasts

have already been produced as part of the Hazardous

Weather Test bed spring experiments (Kong et al. 2009;

Xue et al. 2009). These forecasts are the first efforts in

fulfilling the National Weather Service’s ‘‘warn on fore-

cast’’ vision (Stensrud et al. 2009).

One of the major challenges with storm-resolving nu-

merical weather prediction (NWP) is the ability to pro-

duce an accurate initial model condition. Because NWP is

a highly nonlinear initial value problem, the accuracy of

the prediction is fundamentally limited by the accuracy

of the initial analyzed state. The goal of this study is to

produce (in a way that is practical for real-time imple-

mentation) an accurate analysis and forecast of a tornadic

mesoscale convective system (MCS) that occurred in

southwest and central Oklahoma on 8–9 May 2007.

Toward that end, we examine the utility of the Advanced

Regional Prediction System (ARPS; Xue et al. 2000,

2001, 2003) three-dimensional variational data assimi-

lation (3DVAR; e.g., Gao et al. 2004) package for as-

similating data from a variety of sources, including radar

reflectivity and radial velocity data from the operational

Weather Surveillance Radar-1988 Doppler (WSR-88D)
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radar network and the National Science Foundation

(NSF) Engineering Research Center for Collaborative

Adaptive Sensing of the Atmosphere (CASA) Integrated

Project One (IP1) X-band radar network.

The assimilation of reflectivity and velocity data from

Doppler radars is vital to predicting ongoing convection

because radar is the only observation platform with the

temporal and spatial resolution sufficient to resolve con-

vective storms. Numerous studies (e.g., Sun and Crook

1998; Weygandt et al. 2002a, b; Xue et al. 2003; Xiao et al.

2005; Dawson and Xue 2006; Hu et al. 2006a, b) have

shown reasonable success in simulating and forecasting

convective storms when radar data are assimilated.

A number of methods exist for the assimilation of

radar data. Sun et al. (1991) and Sun and Crook (1997,

1998) have shown that four-dimensional variational anal-

ysis (4DVAR), a procedure in which a numerical model

is fit to observations over a time window, is an effective

way to assimilate radar data because it takes advantage

of the high temporal resolution of Doppler radar as

well as prognostic (and dynamical) constraints. The

goal of 4DVAR data assimilation is to determine an

initial model state that will produce output parameters

that match observations as closely as possible over a

data assimilation window. 4DVAR assimilation of ra-

dar data, however, has so far been limited to relatively

simple model configurations, usually only with warm-

rain microphysics (Sun 2005). Strong nonlinearity

with model physics, including ice microphysics, often

causes difficulties with the minimization convergence

in 4DVAR.

Ensemble Kalman filter (EnKF) is another advanced

method for assimilating radar data (Snyder and Zhang

2003; Zhang et al. 2004; Tong and Xue 2005; Xue et al.

2006). By using a Monte Carlo sampling technique with

ensembles of numerical model forecasts, EnKF deter-

mines flow-dependent error correlation statistics (Evensen

1994) so that unobserved state variables of the atmo-

sphere can be ‘‘retrieved’’ from limited radar observations

(Tong and Xue 2005). Caya et al. (2005) showed through

simulated-data experiments that EnKF and 4DVAR

produce analyses of generally similar quality, with a

model containing warm-rain microphysics. Unfortunately,

both methods are rather expensive computationally, es-

pecially when used at the convection-resolving scale,

and/or for real-time applications.

A computationally cheaper alternative to 4DVAR

and EnKF is to analyze radar data via a 3DVAR analysis

procedure. The ARPS 3DVAR system (Xue et al. 2003;

Gao et al. 2004; Hu et al. 2006b) is capable of analyzing

radar radial velocity data along with conventional ob-

servations. The 3DVAR formulation is less theoretically

optimal than 4DVAR because it lacks a time dimension

and thus cannot incorporate prognostic constraints. How-

ever, a time dimension can be brought in by running ex-

periments with high-frequency intermittent analysis cycles

to make better use of data distributed in time (Hu et al.

2006a,b). Hu and Xue (2007) showed that the assimilation

window length and assimilation frequency must be care-

fully considered. The ARPS 3DVAR is described in

greater detail in section 2.

Our study focuses on an MCS and an associated line

end vortex (LEV; e.g., Weisman 1993) that passed through

southwest and central Oklahoma on 8–9 May 2007. The

MCS and LEV were observed by the NSF Engineering

Research Center for CASA’s (McLaughlin et al. 2009)

Integrated Project One (IP1) radar network.

The CASA IP1 network consists of four X-band dual-

polarization radars located in southwest Oklahoma. One

of the goals of the CASA project is to develop and test

small-wavelength, short range (maximum range of 30 km),

low-cost, and low-powered radars in high-density net-

works. These networks are designed to sample the lower

atmosphere more effectively than long-range less-dense

networks, such as the operational WSR-88D radars.

The CASA-IP1 network was installed between two

WSR-88Ds radars in Oklahoma: KTLX at Oklahoma

City and KFDR in Frederick. This location was chosen

because it is climatologically upstream of the Oklahoma

City metropolitan area, and neither WSR-88D covers

the lowest kilometer of the atmosphere in this region

(Xue et al. 2006). Thus, CASA radars can serve to fill the

low-level data gap left by the WSR-88D radars. Even

though the CASA radars have a relatively broad beam-

width (1.88 vs the 0.898 of WSR-88D), their range gate

spacing of 100 m (vs 250 m for WSR-88D), adaptive

sampling capabilities, and the short baseline of the

CASA radars allow for much higher spatial and temporal

resolution than typically available with WSR-88D radars.

Such finescale resolution is paramount for observing

small-scale features such as tornadoes (Brotzge et al.

2010).

In this study, we perform a set of experiments aimed

at producing a quality forecast of the 9 May 2007 LEV

and MCS, using an efficient 3DVAR analysis procedure

that is practical for real-time implementations. At the

same time, we examine, for the first time, the impact of

assimilating data from the new experimental X-band

radars from the CASA IP-1 network described above.

This paper is organized as follows. In section 2, the 9 May

2007 LEV case is described. Section 3 summarizes the

ARPS assimilation and prediction systems. Section 4

describes the numerical experiments and verification

method. In section 5, we discuss the analysis and fore-

cast results. A summary and conclusions are given in

section 6.
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2. 8–9 May 2007 LEV

The LEV of 8–9 May 2007 produced several weak

tornadoes that struck parts of southwest and central

Oklahoma on 9 May 2007. The LEV formed out of a large

convective system that developed around 1200 UTC

8 May 2007 in far eastern New Mexico in an area of

upslope flow and moisture advection. The thunderstorm

complex grew in areal coverage and extended from

southwest Oklahoma south to near Del Rio, Texas, at

0000 UTC 9 May 2007. The Texas portion of the com-

plex began to dissipate shortly after 0100 UTC while

new supercell-like development in southwest Oklahoma

allowed the line to persist until about 0730 UTC.

At approximately 2200 UTC 8 May 2007 a cyclonic

LEV developed in the northern portion of the MCS in

the vicinity of Wichita Falls, Texas. The development of

the LEV occurred as the MCS merged with a supercell

to its northeast. This evolution is similar to vortex for-

mation mechanism shown in the strong shear simula-

tions of Weisman and Davis (1998) as well as to an

observational study of the evolution of a supercell–bow

echo interaction presented in Wolf (1998).

The LEV strengthened and contracted while moving

north-northeast into southwest Oklahoma. A second

supercell in Comanche County, Oklahoma (Fig. 1a), was

absorbed by the MCS at about 0245 UTC (Figs. 1b,c).

Once again, the interaction with a supercell led to the

intensification of the LEV. This intensification was evi-

dent in both the radar reflectivity pattern and 10-m wind

observations (Fig. 1d) from the Oklahoma Mesonet.

The LEV reached its maximum intensity between 0400

and 0500 UTC (Figs. 1e,f). At 0510 UTC radar and

Oklahoma Mesonet data indicate the LEV passed within

1 km of the El Reno Mesonet site. Wind observations

from the El Reno Mesonet site indicate a wind shift

from the east at 10 m s21 at 0500 UTC to the southwest

at 15 m s21 by 0520 UTC (Fig. 2). This suggests a

well-defined surface circulation with about 25 m s21

of shear across the LEV. The LEV began to weaken

after 0530 UTC and a circulation was no longer evident

in radar imagery by 0700 UTC. The overall evolution of

the MCS and LEV closely resembles the conceptual

model presented in Fujita (1978). Throughout much of

its life cycle the MCS also conforms well to the concep-

tual model of the asymmetric convective system shown in

Houze et al. (1989).

3. ARPS model parameters and 3DVAR

a. ARPS model and grid configuration

The ARPS is used as the prediction model in this

study. ARPS is a general-purpose three-dimensional,

nonhydrostatic, compressible atmospheric model (Xue

et al. 2000, 2001, 2003). The common configurations for

all experiments include fourth-order advection in both

the horizontal and vertical; a rigid top boundary condi-

tion combined with a wave absorbing layer, fourth-order

computational mixing, 1.5-order TKE-based subgrid-

scale turbulent mixing scheme, and PBL parameteri-

zation; and Lin et al. (1983) three-ice microphysics with

the rain intercept parameter set to 8.0 3 105 m24 ac-

cording to Snook and Xue (2008). Surface fluxes are cal-

culated using surface temperature and moisture content

predicted by the soil model, and radiative processes are

calculated from the National Aeronautics and Space

Administration (NASA) Goddard Space Flight Center

(GSFC) long- and shortwave radiation package. More

details on the physics package can be found in Xue et al.

(2001).

The data assimilation and forecast experiments are

conducted on a 2-km horizontal-resolution grid that is

1000 km 3 1000 km in size and is centered at 34.808N,

98.008W. It covers all of Oklahoma, the northern half of

Texas, southern Kansas, and far southeastern Colorado

(Fig. 3a, the quantitative verification domain considered

in section 4 is also highlighted). A Lambert conformal

map projection is used. The grid is stretched in the ver-

tical, with 43 levels and a minimum vertical grid spacing

of 100 m near the surface. Grid stretching is calculated

according to a cubic function of height. Figure 3b shows

the location of several counties in Oklahoma that are

referenced in this study.

Fields from the 0000 UTC NCEP 12-km resolution

North American model (NAM) analysis were inter-

polated to the 2-km ARPS grid to provide the initial

analysis background. Lateral boundary conditions were

updated at 3-h intervals from the 0000 UTC NAM

forecast.

Terrain data were derived from the U.S. Geographical

Survey 3-s dataset. A multilayer soil model in the ARPS

that is similar to the Oregon State University Noah land

surface model (Chen and Dudhia 2001) is used, with five

vertical soil levels.

b. ARPS 3DVAR and data sources

The ARPS 3DVAR minimizes a cost function that

includes the background, observation, and mass conser-

vation constraint terms. Following Gao et al. (2004), this

cost function may be written as

J(x) 5
1

2
(x� x

b
)TB�1(x� x

b
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o
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FIG. 1. Mosaic of observed composite radar reflectivity (in dBZ, shaded) with 10-m Oklahoma Mesonet wind

observations (m s21) overlaid at (a) 0115, (b) 0200, (c) 0245, (d) 0330, (e) 0415, and (f) 0500 UTC 9 May 2007. The

‘‘L’’ corresponds to the location of the LEV center as deduced from KTLX and KFDR radial velocity observations.

The arrow in (a) points to the supercell referenced in the text.
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where the first term measures the departure of the anal-

ysis vector x from the background vector xb, weighted

by the inverse of the background error covariance matrix

B, and the second term measures the departure of x,

projected into observation space by H, from the obser-

vation vector yo. The third term in (1), Jc, is a penalty term

consisting of a weak mass divergence constraint imposed

on the analyzed wind field to help constrain wind com-

ponents that are perpendicular to the radar beam [see

Gao et al. (2004) and Hu et al. (2006b) for more details].

The analysis vector x includes the three wind compo-

nents (u, y, and w), potential temperature u, pressure

p, and water vapor mixing ratio qy. Hydrometeors are not

analyzed variationally. Because no appropriate balance

condition between analysis variables exists at the con-

vective scales modeled in this study, the cross correlations

between variables are not included in B. In addition, flow-

dependent spatial covariance structures are generally not

available in a 3DVAR framework. In the ARPS

3DVAR, the spatial covariance of background error is

assumed Gaussian, spatially homogeneous, and isotropic.

It is modeled using a one-dimensional recursive filter

applied successively in each of the three directions. The

interested reader is referred to Gao et al. (2004) for more

details on the use of recursive filters and the practical

implementation of the cost function minimization (e.g.,

the transformation of x to a preconditioned control var-

iable and the minimization algorithm).

As is common practice, observation errors are as-

sumed to be uncorrelated, hence the observation error

covariance matrix R is diagonal. The observation error

variances are specified according to estimated errors for

the various observational platforms (Table 1). Given the

lack of reliable statistics on the scales of the background

error correlation, and the practical issues of analyzing

observations with very different network density (e.g.,

mesonet versus radar), multiple analysis passes are used

to analyze different data types with different (recursive)

FIG. 2. Five-minute 10-m wind direction and speed (m s21)

observations from 0400 through 0600 UTC 9 May 2007, from the

El Reno Mesonet site.

FIG. 3. (a) Map of the 1000 km 3 1000 km computational do-

main. The interior black rectangle denotes the domain over which

quantitative verification statistics are calculated. The small squares

represent locations of assimilated Oklahoma Mesonet sites. The

filled triangles are locations of assimilated ASOS sites, and the

diamonds are locations of assimilated profilers. The dotted circles

represent the 60-km-range rings of the assimilated WSR-88D,

while the solid large circles are the 180-km-range rings. (b) Selected

county names in southwest and central Oklahoma. In both (a) and

(b), the small solid circles represent the maximum range (30 km) of

the CASA IP1 radars.
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filter decorrelation scales in order to account for the

variations in the observation spacing among different

data sources. Here we define the filter decorrelation scale

as the radius at which the weight given to the observation

in the recursive filter is e-folded. The choice of the filter

decorrelation scales is guided by the density of obser-

vational networks whose data are analyzed within each

pass. Such a procedure was used in earlier studies based

on the ARPS 3DVAR (e.g., Hu et al. 2006a,b), and a

similar procedure using multiple passes with variable

spatial correlation scales is used in the ARPS Data

Analysis System (ADAS; Brewster 1996) based on a

successive correction method (e.g., Xue and Martin 2006).

In this study, we use three analysis passes with de-

creasing filter decorrelation scale on each pass. Upper-

air data from raobs and wind profilers are analyzed in

the first analysis pass because these data have the coarsest

horizontal resolutions and the data tend to represent the

synoptic scales. The horizontal filter decorrelation scale

for these data is set to 200 km. Surface observations from

ASOS and the Oklahoma Mesonet (Brock et al. 1995) as

well as Meteorological Data Collection and Reporting

System (MDCRS) aircraft observations are analyzed in

the second pass. The horizontal decorrelation scale for

these data is set to 75 km. The vertical decorrelation

scale is set to four grid intervals in both the first and

second passes.

Radar radial velocity data are used in the third analysis

pass. Level-II data are used from six WSR-88D radars:

Twin Lakes (KTLX), Vance (KVNX), Dyess (KDYX),

Amarillo (KAMA), Dallas-Fort Worth (KDFW), and

Lubbock (KLBB), Texas. Level-III reflectivity data are

used from KFDR because level-II data from that radar

were not available from the National Climatic Data

Center (NCDC). In experiments using CASA data,

data from all four CASA radars are used. For the high-

resolution radar data, the horizontal decorrelation scale is

reduced to 4 km. The vertical scale is set to two grid in-

tervals. Table 2 summarizes the analysis parameters for

the various data sources.

c. Radar data processing and quality control

Automated quality control is performed to unfold and

remove noise from the radar data. Anomalous propaga-

tion is removed by rejecting radial velocity and reflectivity

data where the spectrum width is greater than two-thirds

of the Nyquist velocity, as well as where large vertical

gradients of reflectivity are present. Radial velocity is

also rejected if reflectivity is less than 25 dBZ. A lower

threshold of 15 dBZ is imposed on reflectivity, reflectivity

below this threshold (and not equal to a specified missing

value) is set to 0. The quality-controlled radar data are

then mapped from radar coordinates onto model grid

points using a local least squares fit. Additional details

of the radar remapping and quality-control algorithms

can be found in Brewster et al. (2005).

Because data from both the CASA and WSR-88D

radars are mapped to the model grid resolution and

a 4-km horizontal decorrelation radius is used in the

3DVAR assimilation, the differences in radar resolution

TABLE 1. Specified observation error covariance values for all assimilated data types. If a range of values is given, it refers to the specified

error variance from near surface to the highest-altitude observation.

Data source u (m s21) y (m s21) Pressure (hPa) Temperature (K) Relative humidity (%)

Raobs 2.0–3.5 2.0–3.5 0.6–0.4 1.0–2.0 5–15

Profiler 2.0–3.5 2.0–3.5 0.6–0.4 1.0–2.0 13–20

MDCRS 1.5 1.5 1.22 1.11 10

ASOS 1.0 1.0 2.00 0.60 5.0

Oklahoma Mesonet 1.5 1.5 2.00 1.11 5.0

Radial velocity (m s21)

WSR-88D 2.0

CASA IP-1 2.5

TABLE 2. List of assimilated data types and 3DVAR analysis properties.

Data source Analysis pass

Horizontal decorrelation

radius (km)

Vertical decorrelation radius

(No. of grid points) Assimilation frequency

Raobs 1 200 4 0000 UTC only

Profiler 1 200 4 Hourly

ASOS 2 75 4 Hourly

Oklahoma Mesonet 2 75 4 Hourly

MDCRS 2 75 4 Hourly

WSR-88D Vr 3 4 2 5 min

CASA IP-1 Vr 3 4 2 5 min
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between the two platforms are likely smoothed out. To

take advantage of the higher-resolution sampling capa-

bilities of the CASA radars (mentioned in the introduc-

tion) we would need to use a very high-resolution model

grid (;100 m); however, this is not computationally

feasible in a quasi-operational setting at this time. Even

though the potential resolution benefits are degraded

by radar preprocessing and the 3DVAR analysis, the

assimilation of CASA data still should impact the anal-

yses via CASA’s ability to observe regions beneath the

lowest sweep of the nearest WSR-88D radars.

The original ARPS radar data preprocessor, 88d2arps,

was designed for the standard WSR-88D 3608 volume-

scanning coverage patterns. CASA radars collect data

dynamically and adaptively, typically as a combination

of full 3608 scans and smaller sector scans. The scan

strategy is described in more detail in McLaughlin et al.

(2009). To apply 88d2arps to the CASA radar data, we

build a pseudovolume out of a number of sector scans

collected over 1 min (the shortest time interval at which

the scanning strategy can be changed). This data pro-

cessing procedure was described in Brewster et al. (2007).

d. Cloud analysis

Variational analysis of reflectivity in 3DVAR is diffi-

cult because of the lack of physical constraints to properly

attribute to the contributions of multiple hydrometeor

species to the reflectivity. A direct link between reflec-

tivity and temperature (or moisture) does not exist and

therefore reflectivity cannot directly update these vari-

ables within a 3DVAR framework without reliable flow-

dependent cross covariance. For these reasons, we employ

a complex cloud analysis procedure to assimilate reflec-

tivity data that has proven effective in past studies (Xue

et al. 2003; Hu et al. 2006a; Zhao and Xue 2009). The cloud

analysis is performed as an additional step after the

3DVAR analysis, and utilizes the 3DVAR analysis to

provide background information, including that of vertical

velocity to determine if convection is present in a partic-

ular column.

Within the cloud analysis, the remapped reflectivity

data are used to estimate hydrometeor fields via the

Kessler (1969) reflectivity equation for rainwater and

Rogers and Yau (1989) equations for hail and snow.

The in-cloud temperature and moisture fields are esti-

mated by assuming a modified moist-adiabatic ascent

that accounts for entrainment as presented by Hu et al.

(2006a). Because radar-observed reflectivity is gener-

ally much more reliable than the model prediction, the

hydrometeor fields estimated from observations replace

the background field everywhere observations are avail-

able. This helps to remove spurious precipitation in the

forecast background. Where reflectivity observations are

not available, the background field is retained. More in-

formation on the cloud analysis can be found in Zhang

et al. (1998), Zhang (1999), Brewster (2002), and Hu et al.

(2006a).

The cloud analysis was originally developed to alle-

viate the spinup problem for forecasts beginning from a

coarse-resolution analysis. Repeated application of the

original cloud analysis in the high-frequency assimila-

tion cycles of our study, however, led to unrealistic

warming in the middle troposphere. To mitigate this

problem, the cloud analysis was modified so that the

cloud water and water vapor mixing ratios were only

adjusted during the first application of the analysis. In

subsequent analyses, only the hydrometeor mixing ra-

tios (rain, snow, and hail) and in-cloud temperatures

were adjusted.

4. Experiment design and verification method

a. Experiments

For our assimilation-forecast experiments, a 1-h

‘‘spinup’’ forecast is first performed. This spinup fore-

cast starts from a 3DVAR analysis at 0000 UTC 9 May

2007 using all conventional observations (i.e., all obser-

vations types other than radar observations in Table 1)

and the NAM analysis as the background. Fields at the

end of this 1-h forecast serve as the background for

the first analysis of the high-frequency, 5-min interval,

intermittent analysis cycles, which run from 0100 to

0200 UTC 9 May. All experiments assimilate conven-

tional observations at the start (0100 UTC) and end

(0200 UTC) times of this high-frequency assimilation

window. Forecasts are then launched from the final

analysis at 0200 UTC and run up to 0500 UTC 9 May.

The experiments differ based upon what (if any) radar

data are assimilated during the 5-min intermittent anal-

ysis cycles. The combinations of radar data used in the

experiments are summarized in Table 3. With the ex-

ception of one experiment, which assimilates no radar

data (NORAD), all experiments assimilate both radial

velocity Vr and reflectivity Z from the WSR-88D radars

listed in section 2b. To examine the impact of CASA

TABLE 3. List of experiments and the radar datasets they

assimilate.

Expt name

WSR-88D

Z data

WSR-88D

Vr data

CASA

Z data

CASA

Vr data

NORAD No No No No

88DONLY Yes Yes No No

CASAZ Yes Yes Yes No

CASAVr Yes Yes No Yes

CASAVrZ Yes Yes Yes Yes
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data, additional experiments assimilate WSR-88D data

plus CASA Vr data only (CASAVr), CASA Z data only

(CASAZ), and both CASA Vr and Z data (CASAVrZ).

Experiment 88DONLY uses radar data from the WSR-

88D network only.

b. Verification

Experiment results are analyzed via qualitative com-

parison with one another as well as quantitative verifi-

cation against observations. The latter is performed by

calculating the reflectivity correlation coefficient rc and

number of reflectivity NR as defined in Aksoy et al.

(2010, hereafter ADS10). Our calculations differ from

ADS10 in that we calculate rc and NR against a mosaic

of observed radar reflectivity in model space rather than

in observation space. The mosaic of observed reflectivity

uses data from KTLX, KVNX, KFWS, and KFDR.

Given these differences, reflectivity correlation coefficient

(adapted from ADS10) is defined as

r
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where Zm is model reflectivity, Zo is observed reflectivity

interpolated into model space, brackets denote the mean

over the verification domain, and the summation is over

all points in the verification domain with observed re-

flectivity of greater than or equal to 15 dBZ. The 15-dBZ

threshold was also used in ADS10 and is used to limit

verification to the main areas of convective and stratiform

precipitation. To further focus verification on the LEV

and related convection we limit our verification domain

to a 330 km 3 320 km area highlighted in Fig. 3a. This

area was chosen because it encompasses the LEV and

most of the associated convection throughout the forecast

period. In addition, in order to minimize contamination

of statistics from nonmeteorological scatterers and the

melting layer (bright band), we calculate rc and NR at grid

level 7 (about 1100 m AGL) which is high enough to re-

duce the nonmeteorological (e.g., biological scatterers)

and low enough to avoid brightband contamination. This

differs from ADS10 in which all levels are included in the

calculations.

Reflectivity correlation coefficient was chosen for ver-

ification because it is less sensitive to location errors

than the Gilbert skill score (Schaefer 1990), a statistic more

commonly known as the equitable threat score (ETS). The

statistic NR is a measure of the total number of grid points

within the verification domain with a reflectivity value

exceeding the 40-dBZ threshold. Because reflectivity

of 40 dBZ is generally only present in strong convection

(ADS10), the evolution of NR, combined with qualitative

verification, is a reasonable measure of the evolution of

the amount/intensity of active convection within the

verification domain.

We also note here that verification via reflectivity is

used in the absence of direct observations of the kine-

matic field with sufficient density and coverage to verify

forecast positions of gust fronts and other storm fea-

tures. In particular, multi-Doppler wind synthesis from

the CASA network did not cover enough of the storm

for verification purposes, while single-Doppler radial

velocity measurements were sensitive to spatial errors in

the forecast, which made verification using these data

difficult (see the discussion at the end of section 5).

5. Results

In this section, we present results from the experiments

described in section 3a. Particular attention is given to

contrasting the forecasts from the various experiments as

well as comparing with the observed evolution of the

LEV. Before discussing the forecast results, we first

describe in detail the final analysis (0200 UTC) from

each experiment. This allows us to isolate the direct im-

pact of the different data types assimilated on the ana-

lyzed fields. Our discussion of the forecast period will

show how these differences in the analyses impact the

resulting forecast evolution of the LEV and associated

convection between the various experiments.

a. Assimilation results

The 0200 UTC analyses from all experiments as well

as the observed reflectivity are shown in Fig. 4. Observed

radar reflectivity shows a large MCS over much of

Oklahoma and north Texas at this time (Fig. 4a). The

analysis from NORAD (Fig. 4b) is unable to capture the

MCS and instead features an elongated north-northeast–

south-southeast band of light precipitation over much of

far southwestern Oklahoma. To the east of this precip-

itation band, an area of convective cells is present. In

contrast, the reflectivity field associated with the MCS is

accurately represented in the 0200 UTC analysis from the

radar-assimilating (RA) experiments (Figs. 4c–f). This

result is expected, as these experiments assimilate the

observed reflectivity through the cloud analysis.

Near the surface, the NORAD analysis indicates

a large cold pool with a gradual wind shift at the leading

edge (Fig. 5a). A weak cyclonic vortex is present on the

leading edge of the cold pool. The cold pool and vortex

are only present in the lowest few grid levels. This in-

dicates that they are likely the result of assimilating
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FIG. 4. (a) Observed reflectivity factor (shaded, dBZ) from the radar mosaic at 0200 UTC 9 May 2007. Analyzed

reflectivity field (shaded, dBZ) and horizontal wind vectors (m s21) at 0200 UTC from (b) NORAD, (c) 88DONLY,

(d) CASAVrZ, (e) CASAVr, and (f) CASAZ. Black circles are as in Fig. 3. All fields are plotted at grid level 7

(about 1100 m AGL).
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FIG. 5. The 0200 UTC 9 May 2007 near-surface analyses from (a) NORAD, (b) 88DONLY, (c) CASAVrZ,

(d) CASAVr, and (e) CASAZ. Equivalent potential temperature is shaded in 5-K intervals, and vectors are hor-

izontal winds (m s21). Thick black vectors are Oklahoma Mesonet observations. The thick black line marks the

approximate location of the gust front.
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surface wind and temperature observations from the

Oklahoma Mesonet as these surface observations would

mainly influence the analysis near the ground because of

the specified short vertical decorrelation scale (see sec-

tion 3).

The large impact of assimilating radar data is imme-

diately apparent when comparing the 0200 UTC tem-

perature and wind field analysis from 88DONLY to that

of NORAD. In 88DONLY, the low-level cold pool as-

sociated with the MCS is well defined with a sharp gust

front apparent along the leading edge of convection

(Fig. 5b). This gust front structure is likely more accu-

rate than that of NORAD, because radars can sample

the gust front wind field with much higher resolution than

the mesonet. We do note, however, that with the excep-

tion of the area close to the gust front the winds within,

and to the east of, the cold pool are substantially weaker

in 88DONLY than they are in NORAD. Comparison

with Oklahoma Mesonet observations (see Figs. 5a,b)

shows that the stronger winds in NORAD are more ac-

curate than the weak winds in 88DONLY. The area of

weak winds in 88DONLY is coincident with the zero

isodop from the base scan KTLX being directly above

the region (not shown). This suggests the 3DVAR anal-

ysis was unable to accurately estimate the cross-beam

wind component in the vicinity of the zero isodop. Thus,

while both NORAD and 88DONLY assimilate Mesonet

data, the high-density zero-Vr measurements from KTLX

cause the analyzed surface winds to be weak in this region

of the domain in 88DONLY.

Farther aloft, we see significantly more structure in the

wind field in 88DONLY than was present in NORAD

(Figs. 4c vs 4b). For example, at grid level 7 (about 1.1 km

AGL, denoted hereafter as k 5 7), there is strong

southwesterly rear inflow behind the southern portion

of the MCS, with easterly and northeasterly winds in

the northern portion of the MCS indicating the pres-

ence of a broad LEV within the MCS. Radial velocity

observations from KTLX and KFDR at 0200 UTC (see

Fig. 1b) suggest that a cyclonic LEV was present within

the convective line in the lower and midlevels of the at-

mosphere. The structure of this LEV is much better

represented in 88DONLY than in NORAD. This is ex-

pected as WSR-88D data provides high-resolution Vr

observations that are capable of resolving such features

over a substantial vertical depth. In absence of radar data,

the only wind observations with a significant vertical

extent come from the wind profiler and raob networks,

which have inadequate spatial resolutions to capture

a LEV.

The differences between 88DONLY and CASAVrZ

are present mainly near the surface and are less sub-

stantial than those between 88DONLY and NORAD.

FIG. 6. Near-surface analyses of equivalent potential temperature

(shaded in 3-K intervals) and horizontal winds (vectors, m s21) at

0125 UTC 9 May 2007 from (a) CASAVrZ and (b) 88DONLY. The

black square highlights an area of special interest where the two

experiments are substantially different. The thick black line marks

the approximate position of the gust front.

234 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



FIG. 7. Radar reflectivity factor (shaded, dBZ) at (top) grid level 7 observed by a mosaic of WSR-88D radars and

forecast from (middle) CASAVrZ and (bottom) NORAD at (left) 0205 and (right) 0220 UTC 9 May 2007.
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The area of weak winds that was present in 88DONLY

behind, and in advance of, the gust front is not present in

CASAVrZ (Fig. 5c). This occurs because low-level wind

observations from the CASA radars, which indicate

stronger northwest flow in this area, are closer to the

surface and thus weighted more heavily in the assimi-

lation procedure than base-level WSR-88D data whose

influence comes from farther above the ground. More

importantly, the gust front in CASAVrZ has more fi-

nescale structure than that of 88DONLY. In CASAVrZ,

the gust front is wavy, with a surge of the cold pool in

northern Comanche County. To the south of this surge,

the gust front is about 15 km farther to the west. Im-

mediately south of this buckle in the gust front there

is another gust front surge into far western Stephens

and Jefferson counties. In contrast, the gust front in

88DONLY is nearly linear, extending from southern

Caddo County south-southeast into Jefferson County.

The gust front structure in CASAZ (Fig. 5e) is similar

to that of 88DONLY suggesting the wavy gust front

structure in CASAVrZ is due to assimilating CASA Vr

data. This is supported by the fact that the gust front

orientation in CASAVr (Fig. 5d) is nearly identical to

that of CASAVrZ. An examination of earlier times

within the assimilation window of experiment CASAVr

shows that assimilating CASA Vr data leads to variable

wind speed and direction behind the gust front (Fig. 6a).

This results in different portions of the gust front to move

east at varying speeds during the assimilation window,

thus leading to the wavy structure at 0200 UTC. This is

likely due to the IP-1 network’s ability to sample the low-

level flow structure. 88DONLY and CASAZ have more

uniform winds behind the gust front (Fig. 6b), leading

to a more constant propagation speed for the entire gust

front.

Overall, these results suggest that the assimilation

of the CASA Z data has little impact on the analysis

whereas assimilating CASA Vr data leads to substantial

differences in the analysis of the gust front position and

orientation. Although this result seemingly contradicts

previous studies that found a significant impact of re-

flectivity data assimilation (e.g., Hu et al. 2006a,b), the

results can be reconciled. Hu et al. (2006a,b) showed

 
FIG. 8. Observed reflectivity field (shaded, dBZ) from (a) the

radar mosaic and forecast reflectivity (shaded, dBZ), horizontal

wind vectors (m s21), and vertical vorticity (contours at intervals of

100 3 1025 s21 starting at 300 3 1025 s21) from (b) CASAVrZ and

(c) NORAD. All fields plotted at grid level 7 at 0300 UTC 9 May

2007. The ‘‘L’’ in (a) marks the approximate observed LEV location.

236 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



that assimilation of reflectivity has a large impact

when compared to experiments that only assimilated

conventional observations (i.e., from all platforms

except radars). Our study finds a similar result when

comparing NORAD and 88DONLY. However, we

also find that assimilating CASA reflectivity data in ad-

dition to WSR-88D data has little impact because the

influence of the WSR-88D reflectivity data through the

cloud analysis can be felt at the low levels through the fall

of hydrometeors and their impact on evaporation and

subsequent cold pool development. Conversely, mid-

level winds may differ significantly compared to low-

level winds, thus the low-level wind generally cannot be

inferred from midlevel wind observations. WSR-88Ds

cannot observe the lowest 1 km of the atmosphere at

the given distance (see Fig. 3a), whereas, the CASA IP-1

network observes the low levels of the current system.

Thus, the assimilation of CASA Vr data has a substantial

impact on the low-level wind analysis. It should be noted,

however, that there is no independent observational

platform with adequate spatial resolution to verify

whether the linear gust front of 88DONLY (and CASAZ)

or the wavy gust front of CASAVrZ (and CASAVr) is

more accurate. Additionally, the impact of CASA Vr data

is found only near the surface over a relatively small area

(the CASA domain). Outside of this area, the RA ex-

periments, not surprisingly, have few differences dur-

ing the assimilation period.

b. Forecast results

We now examine the forecast period (0200–0500 UTC)

from the experiments described in section 3a. Our focus

is on the accuracy of LEV forecast, as well as whether the

differences in the 0200 UTC analyses described above

lead to substantial differences in the forecast period. As

during the assimilation period, many features during the

forecast period are very similar among the RA experi-

ments. Accordingly, we describe the general evolution

of the forecast period from all RA experiments while

highlighting differences between them and NORAD as

well as differences among the RA experiments.

 
FIG. 9. Forecast near-surface equivalent potential temperature

(shaded, K) and horizontal wind vectors (m s21) from CASAVrZ

at (a) 0245, (b) 0315, and (c) 0345 UTC 9 May 2007; S corresponds

to the secondary outflow surge, CP corresponds to the squall line

generated cold pool, L represents the location of the center of the

original LEV, while L9 corresponds to the new LEV center. In (a)

and (b), the dashed and solid lines mark the approximate location

of the secondary outflow surge and main convective cold pool gust

fronts, respectively.
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Between 0200 and 0300 UTC, the large MCS present

in the RA experiments across much of western Oklahoma

and north Texas moves to the northeast. Figure 7 shows

the observed reflectivity from the four WSR-88D mosaic

(see section 4b) and forecast reflectivity from CASAVrZ

and NORAD at 0200 and 0220 UTC. Most of the strati-

form precipitation region associated with the MCS van-

ishes during this 20-min period of the RA experiments

(Figs. 7c,d). Hu et al. (2006a,b) noted a similar adjustment

period in the simulations presented in their work. They

explain that the adjustment occurs in the model as the

cloud variables adjust to better fit the model dynamics

and physics.

This adjustment period is not necessary in NORAD

because it does not use the cloud analysis procedure to

adjust the cloud variables. As a result, the forecast from

NORAD evolves with more continuity than that of the

RA experiments (Figs. 7e,f). Nevertheless, the lack of

assimilated radar data precludes a MCS in NORAD.

Figure 8 shows the observed reflectivity from the

radar mosaic and forecast reflectivity from CASAVrZ

and NORAD at 0300 UTC. By 0300 UTC, most of the

convection in the RA experiments within Texas has

dissipated while the LEV in the northern portions of

the convection in southwest Oklahoma has intensified

(Fig. 8b). A strong but narrow northwesterly secondary

outflow surge is moving southeast into eastern Caddo

County. A broad area of rotation exists between the

secondary outflow surge and southeast flow within and

in advance of the squall line. This rotation is most

pronounced in CASAVrZ and CASAVr.

The evolution of the MCS in the RA experiments is

similar to the behavior of the observed MCS, as reflec-

tivity observations show that much of the precipitation

in Texas dissipated by 0245 UTC (See Fig. 1c). This

dissipation trend was already underway during the as-

similation window, which shows the assimilation scheme

correctly analyzed this trend and the model continued

it in forecast period. Additionally, the vertical vorticity

field is well forecast as radial velocity observations from

KTLX indicate a broad LEV centered over Caddo County

at 0300 UTC (see Fig. 8a). Convection becomes slightly

more organized in NORAD by 0300 UTC (Fig. 8c), but

its development is still significantly underforecast when

compared to observations and the RA experiments.

The general evolution of the LEV in the RA experi-

ments remains similar through the remainder of the

forecast period. In all RA experiments, the LEV in-

tensifies (i.e., it becomes more organized with higher

maximum vorticity values) as it becomes collocated with

a northwesterly secondary outflow surge (Fig. 9a). At the

same time, stronger southeast flow and enhanced surface

convergence develops to the northeast of the intensifying

LEV (Fig. 9b). As this occurs, a strong convective cell

forms to the northeast of the initial LEV center. The

initial LEV center then decays as a new stronger center of

rotation rapidly develops in the strong convection about

10 km northeast of the original LEV center (Fig. 9c).

Low-level thermodynamic and wind observations of the

9 May LEV are too coarse to ascertain whether this re-

development process actually occurred. However, as we

noted in section 2, WSR-88D and Oklahoma Mesonet

observations showed the LEV did rapidly intensify

between 0245 and 0345 UTC. Additionally, like the

observed LEV, the modeled LEV extends to the sur-

face (Fig. 10). The evolution of the surface features in

NORAD is less complex than that of the RA experi-

ments and consists of the cold pool moving to the east

at about 5 m s21. Additionally, there is no indication of

the LEV at the surface in NORAD.

Figures 11–13 compare the evolution of the observed

MCS and LEV with the forecasted MCS and LEV in

NORAD, 88DONLY, and CASAVrZ between 0350

and 0450 UTC. The evolution of CASAZ and CASAVr

is not shown because they are nearly identical to

88DONLY and CASAVrZ, respectively. During this

period, the LEV in the RA experiments moves north-

northeast and continues to strengthen. As this occurs,

the MCS develops into a comma-shaped echo that

closely resembles both the observed reflectivity and

the comma echo stage of the schematic presented in

Fujita (1978). The LEV is embedded in the center of

the convection composing the comma head.

FIG. 10. An X–Z cross section through the forecasted LEV in

CASAVrZ at 0350 UTC 9 May 2007. Vertical vorticity is con-

toured in black at an interval of 100 3 1025 s21 starting at 200 3

1025 s21.
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Comparison of NORAD with the RA experiments

shows the RA experiments are much more accurate than

NORAD. Like the RA experiments, NORAD develops

a broad vortex that tracks through southwest and central

Oklahoma. However, unlike the RA experiments that

have a strong LEV and reflectivity pattern that closely

resembles observations, the vortex in NORAD is weak

and the reflectivity pattern is dissimilar to observations

(Figs. 11b, 12b, and 13b).

While the general features of the RA experiments

are similar, some differences do exist between them in

the forecast development and location of the LEV. In

88DONLY and CASAZ, the LEV intensification and

subsequent redevelopment occurs about 10 km farther

south and east than that in CASAVrZ or CASAVr.

Because of this displacement, the LEV in 88DONLY

(Figs. 11c, 12c, and 13c) and CASAZ tracks about 10 km

farther southeast than the LEV in CASAVrZ (Figs. 11d,

12d, and 13d) and CASAVr. KTLX Vr observations

can be used to subjectively determine the LEV location.

These observations show that the observed LEV tracked

to the west of all of the RA experiments (see Figs. 11–13).

FIG. 11. The 0350 UTC 9 May 2007 (a) observed reflectivity (shaded, dBZ) and forecast reflectivity (shaded,

dBZ), horizontal wind vectors (m s21), and vertical vorticity (contoured as in Fig. 8) from experiment (b) NORAD,

(c) 88DONLY, and (d) CASAVrZ. The ‘‘L’’ in (a), (c), and (d) marks the approximate observed LEV location.
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Thus, the position of the LEV in CASAVrZ and CASAVr

is closer to the observed position than in the 88DONLY or

CASAZ experiments.

To get a better qualitative sense of the accuracy of

the forecast wind field, we can compare Vr observa-

tions from KTLX with simulated KTLX Vr data from

CASAVrZ and NORAD (Fig. 14). This comparison

shows that the LEV from CASAVrZ closely resembles

the observed LEV with a large vortex signature present

to the west-northwest of KTLX in both observed and

simulated Vr. A broad area of low Vr values to the

northeast and southeast of the forecast LEV indicate

a larger cross-beam component to the flow than was ob-

served, which suggests the forecast LEV has too large of

a spatial extent in CASAVrZ. A similar pattern is seen in

the simulated Vr signature of the LEV from all other RA

experiments. In contrast, simulated Vr from NORAD

indicates a very weak LEV that only vaguely resembles

the observed Vr pattern.

The main reason for the differences in vortex intensity

and location among the RA experiments appears to be

related to the proximity of the squall line associated with

the MCS to the northwesterly secondary outflow surge.

Figures 15a–c shows the evolution of the secondary

outflow surge and LEV redevelopment in 88DONLY,

which can be compared to that in CASAVrZ (originally

presented in Fig. 9 and reproduced in Figs. 15d–f). At

0315 UTC in CASAVrZ and CASAVr, the gust front

FIG. 12. As in Fig. 11, but at 0420 UTC 9 May 2007.
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associated with the squall line is positioned 20–30 km

farther west and north than it is in 88DONLY and

CASAZ. Thus, as the secondary outflow surge moves

southeast, it merges with the cold pool associated the

squall line earlier in CASAVrZ and CASAVr than it

does in 88DONLY and CASAZ. As the cold pools merge,

the LEV intensifies. Thus, because the cold pools merge

earlier and farther west in CASAVrZ and CASAVr, the

LEV in these experiments develops and tracks farther

west than it does in 88DONLY and CASAZ.

The underlying cause of the differences in the squall-

line structure and position is complex, but appears to be

related to assimilating radial velocity data from CASA

radars. In the assimilation period, we noted that main

gust front in CASAVrZ and CASAVr had a structure

that was substantially different than that of 88DONLY

and CASAZ. While it is difficult to show concretely (due

to the highly nonlinear nature of the problem), we

speculate that the differences in the gust front location

and structure in the during the assimilation period led to

differences in the LEV and squall-line evolution. Thus,

it seems likely that the capability of the CASA network

to resolve low-level inflow during the assimilation yielded

a more detailed squall-line structure, which resulted in

FIG. 13. As in Fig. 11, but at 0450 UTC 9 May 2007. The black star in (a) marks the location of the

WSR-88D KTLX.
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a forecasted LEV development location and track that

more closely resemble observations in experiments that

assimilated CASA Vr data.

We can objectively quantify the differences in reflec-

tivity pattern using rc and NR as described in section 4.

Calculations of rc for the forecast period are presented in

Fig. 16a. The rapid decline in rc from 0.75 to 0.32 for the

RA experiments between 0200 and 0235 UTC is the re-

sult of the dissipation of stratiform precipitation due to

the model adjustment explained earlier. Thereafter, the rc

increases sharply for the RA experiments and is around

0.55 from 0300 UTC onward. The rc for NORAD is

substantially lower remaining around 0.45 for the same

period. The rc for CASAVrZ and CASAVr are equal

to or higher than those of 88DONLY and CASAZ

throughout the entire forecast period. This is likely a

reflection of the more accurate forecast of the LEV in

CASAVrZ and CASAVr.

The evolution of forecast and observed NR is pre-

sented in Fig. 16b. After a brief adjustment period for

the RA experiments from 0200 to 0220 UTC, we note

remarkable correspondence between the RA-forecasted

NR and the observed NR until 0400 UTC. All RA ex-

periments indicate that NR gradually rises until it peaks

around 0310 UTC, it then drops rapidly until 0400 UTC

and levels off thereafter. This is very similar to the

evolution of observed NR indicating that the RA exper-

iments are fairly accurate with their forecast convective

evolution. CASAVrZ and CASAVr capture the timing

of the observed peak of NR at 0310 UTC and begin to

level off closer to the observed time than 88DONLY and

CASAZ. In contrast to the RA experiments, NORAD

drastically underestimates NR until 0400 UTC and does

not forecast the observed evolution; it instead indicates

a gradual increase in NR throughout the forecast period.

After 0400 UTC, the NR of NORAD is closer to the

observed value because those of the RA experiments

are too high due to spurious convection to the south

and west of the LEV (see Figs. 12c,d and 13c,d).

Additional quantitative verification against Vr obser-

vations from KTLX was attempted. However, verifica-

tion against KTLX Vr observations showed large errors

FIG. 14. Radial velocity (shaded in m s21) at 0450 UTC 9 May 2007 (a) observed from KTLX and (b) simulated

from experiment CASAVrZ and (c) NORAD. Black data points in (a) are locations where data are missing.

The radar is located at the center of plotted circles. The center of the observed LEV in (a) is located about 70 km

west-northwest of KTLX.
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FIG. 15. (a)–(c) As in Fig. 9, but for 88DONLY and (d)–(f) reproduction of Fig. 9 for comparison purposes.
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associated with error in the strength, size, and exact lo-

cation of the forecast LEV. Because of these fore-

cast errors, in particular those in size and position, the

Vr difference field between forecast and observations

for the RA experiments did not show smaller errors

than that of NORAD, leading to comparable levels of

pointwise root-mean-square errors for all experiments.

However, we stress that qualitatively the forecast LEV

Vr signature in the RA experiments more closely re-

sembled the observed signature than in NORAD. This

issue of disagreement between measures-based quan-

titative verification and subjective verification has been

discussed and addressed in several recent studies (e.g.,

Davis et al. 2006a,b; Marzban and Sandgathe 2006; Ebert

2009). Verification was also attempted against CASA-IP1

Vr observations, but was ineffective because the LEV

and MCS moved out of the CASA domain around

0330 UTC.

Overall, our quantitative verification using reflectivity

agrees well with our qualitative comparison of the fore-

cast fields. Both verification methods indicate that a

substantially better forecast was produced by the RA

experiments than that of NORAD. Additionally, like

the qualitative evaluation, quantitative verification against

reflectivity indicates a slight improvement from the as-

similation of CASA Vr data.

6. Discussion and conclusions

In this study, we describe results from a set of 2-km

resolution experiments of a cyclonic LEV that developed

within an MCS on 9 May 2007 in southwest and central

Oklahoma. Intermittent data assimilation cycles are

performed using the ARPS 3DVAR. Experiments are

designed to examine the impact of assimilating radar

data from WSR-88D as well as determine if any addi-

tional benefit is obtained from assimilating CASA data.

Results show that the experiments that assimilate ra-

dar data produce forecasts of the 9 May 2007 LEV that

qualitatively evolve in a way closely resembling the ob-

served evolution of the LEV. Qualitative and quantita-

tive comparison between observed and model forecast

reflectivity fields reveals good correspondence between

observed and modeled features.

In addition to revealing good accuracy, examination

of the analyses and forecasts from the experiments shows

a small but important impact from assimilating CASA

data (in addition to the assimilation of WSR-88D data).

In particular, assimilating CASA Vr data led to differ-

ences in the analysis of the gust front structure and lo-

cation. These differences led to a more accurate forecast

evolution of the MCS and LEV in experiments that used

CASA Vr data.

The size of the CASA domain relative to the compu-

tational domain in the present study was small and thus

the impacts from CASA were only realized over a small

fraction of the grid. This problem is expected to be alle-

viated with the planned expansion of the IP-1 network to

have at least twice as many radars (McLaughlin et al.

2009). Furthermore, the 2-km grid spacing is fairly coarse

compared to the 100-m gate spacing of CASA radars. In

a future study, we plan on increasing the model resolution

by several times. In doing so we hope to more fully ex-

plore the potential of high-resolution CASA data to im-

pact the analysis and prediction of the substorm-scale

rotational and convective structures, including observed

mesovortices, in this case.
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