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Abstract

During the 2007 NOAA Hazardous Weather Testbed Spring Experiment, the 

Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma 

produced a daily 10-member 4 km horizontal resolution ensemble forecast covering 

approximately three-fourths of the continental United States.  Each member used the 

WRF-ARW core, was initialized at 2100 UTC, ran for 33 hours, and resolved convection 

explicitly.  Different initial condition (IC), lateral boundary condition (LBC), and physics 

perturbations were introduced in four of the ten ensemble members, while the remaining 

six members used identical ICs and LBCs, differing only in terms of microphysics (MP) 

and planetary boundary layer (PBL) schemes.  This study focuses on precipitation 

forecasts from the ensemble.  

The ensemble forecasts revealed WRF-ARW sensitivity to MP and PBL schemes.  

For example, over the 7-week Experiment, the Mellor-Yamada-Janjic PBL and Ferrier 

MP parameterizations were associated with relatively high precipitation totals, while 

members configured with the Thompson MP or Yonsei University PBL scheme produced

comparatively less precipitation.  Additionally, different approaches for generating 

probabilistic ensemble guidance were explored.  Specifically, a “neighborhood” approach 

is described and shown to considerably enhance probabilistic forecasts for precipitation 

when combined with traditional techniques of producing ensemble probability fields.

These results have important implications for convection-allowing guidance in 

both deterministic and ensemble frameworks and are relevant to both operational 

forecasters and modelers.
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1. Introduction

Throughout the history of numerical weather prediction (NWP), computer 

resources have advanced to enable NWP models to run at progressively higher 

resolutions over increasingly large domains.  Several modeling studies (e.g., Done et al. 

2004; Kain et al. 2006; Weisman et al. 2008; Kain et al. 2008a; Schwartz et al. 2008) 

using convection-allowing [no convective parameterization (CP)] configurations of the 

Weather Research and Forecasting (WRF) model with horizontal grid spacings of ~ 4 km 

have demonstrated the added value of these high-resolution models as weather forecast 

guidance tools.  Additionally, these experiments have revealed that running the WRF 

model at 4 km without CP does not result in grossly unrealistic forecasts, even though a 4 

km grid is too coarse to fully capture convective scale circulations.  Given the success of 

these convection-allowing WRF forecasts, ~ 4 km convection-allowing models have 

become operational at the United States National Centers for Environmental Prediction 

(NCEP) in the form of “high-resolution window” deterministic forecasts produced by the 

Environmental Modeling Center (EMC) of NCEP, and future plans call for an expansion 

of the suite of convection-allowing forecasts (G. DiMego, NCEP/EMC, personal 

communication, 2008).  

Thus far, convection-allowing WRF studies (e.g., Done et al. 2004; Kain et al. 

2006; Weisman et al. 2008; Kain et al. 2008a; Schwartz et al. 2008) have all focused on 

deterministic model solutions.  But when convection-allowing models are used to predict 

intense localized features such as thunderstorms, even small displacement errors can 

produce large errors in amplitude at individual grid points.  In recognition of this 

problem, post-processing and verification methods have been developed that relax the 
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requirement that deterministic model output and corresponding observations match 

exactly in order for a forecast to be considered correct (Theis et al. 2005; Roberts 2005; 

Roberts and Lean 2008). These “neighborhood” approaches have also been used to 

generate probabilistic information from deterministic grids. Theis et al. (2005) suggested 

that a neighborhood approach could be combined with traditional methods of producing 

probabilistic forecasts, a strategy that is explored herein.  

Probabilistic predictions are, by nature, superior to deterministic forecasts at

providing guidance for rare events, such as severe thunderstorms or heavy precipitation 

(Murphy 1991).  The probabilistic format allows forecasters to quantify uncertainty such 

that their forecasts can reflect their best judgments and, perhaps more importantly, allows

users to make better decisions as compared to those made with yes-no forecasts (Murphy 

1993).  Numerical guidance for probabilistic forecasts is commonly derived from an 

ensemble forecasting system, where an ensemble is comprised of a suite of individual 

forecasts, each generated from a unique combination of initial conditions (IC), lateral 

boundary conditions (LBC), physical parameterizations, and/or dynamics formulations.  

IC and LBC diversity acknowledges the uncertainty of meteorological observations and 

the data assimilation systems that incorporate observations into the model grids, while 

differing model physics recognizes the uncertainties inherent in the parameterizations of 

small-scale, poorly-understood processes, such as cloud microphysics (MP) and 

turbulence.  

Ideally, all ensemble members are assumed to be equally likely of representing

the “true” condition of the atmosphere at initialization, and thus, have an equal chance of 

producing the best forecast at a later time.  Usually, initial fields differ only slightly, and 
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forecasts from the members are quite similar at early time steps.  However, owing to the 

chaotic nature of the atmosphere, these differences may amplify with time, such that by 

the end of the model integration, different ensemble members can arrive at wildly 

different solutions.  The spread of the ensemble members (in terms of standard deviation)

is typically associated with perceived forecast uncertainty, and point probabilities are 

commonly obtained by considering the total number of members predicting an event at a 

given grid box.  Alternatively, information from all the members can be averaged into a 

mean deterministic field.  As errors of different members tend to cancel in the averaging 

process, this ensemble mean consistently performs better than any of the individual 

members.  Furthermore, numerous studies (e.g., Stensrud et al. 1999; Wandishin et al. 

2001; Hou et al. 2001; Bright and Mullen 2002) have shown that an ensemble system, in 

terms of its ensemble mean, performs comparably to or better than a similarly configured, 

higher-resolution deterministic forecast, as measured by objective metrics.

Medium-range (3-15 days) ensemble forecasts have been produced operationally 

at NCEP since the early 1990s, but the development of short-range (0-3 day) ensemble 

forecasts (SREF) lagged somewhat.  Following the recommendation of participants at a 

workshop designed to explore future SREF implementation (Brooks et al. 1995), 

experimental SREF runs were initiated at NCEP in 1995 (Du and Tracton 2001).  Given 

the success of the experimental forecasts, the use of SREFs continued, and they became 

operational at NCEP in 2001.  The current NCEP SREF employs 21 members at 32-45

km grid spacing (Du et al. 2006) and is run four times daily, starting at 0300, 0900, 1500, 

and 2100 UTC.  Variations in physical parameterizations, dynamic cores, ICs, and LBCs

are used to create forecast diversity (Du et al. 2006). 
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Given the benefits of ensemble forecasting and previous successes of convection-

allowing 4 km WRF deterministic forecasts, the Center for Analysis and Prediction of 

Storms (CAPS) at the University of Oklahoma, supported by a pilot three-year NOAA 

(National Oceanic and Atmospheric Administration) Collaborative Science, Technology, 

and Applied Research (CSTAR) project, contributed large domain, realtime, 10-member,

4 km convection-allowing ensemble forecasts to the 2007 NOAA Hazardous Weather 

Testbed Spring Experiment1 (hereafter SE2007). Variations in ICs, LBCs, and physical 

parameterizations were used to achieve diversity within the ensemble.  On its own, these 

ensemble forecasts represented a groundbreaking computational achievement (see Xue et 

al. 2007) and to our knowledge is the first time a high-resolution, convection-allowing 

ensemble has been run in a realtime setting.  

The goal of this study is to examine the output from the CAPS ensemble for two 

main purposes.  First, it examines forecasts from the different ensemble members and 

identifies Advanced Research WRF (WRF-ARW; Skamarock et al. 2005) model 

sensitivities to MP and planetary boundary layer (PBL) parameterizations.  Second, a 

new method of extracting probabilistic ensemble guidance is presented.  This technique, 

suggested by Theis et al. (2005), combines a “neighborhood” approach with more 

traditional methods of processing ensemble output.  The ensemble configuration and 

experimental design are discussed next, followed by a discussion of WRF-ARW 

sensitivity to physical parameterizations.  Traditional and new methods of generating 

  
1 This experiment, formerly called the SPC/NSSL (Storm Prediction Center/National Severe Storms 
Laboratory) Spring Program, has been conducted from mid-April through early June annually since 2000.  
Details about the experiments can be found at URL http://www.nssl.noaa.gov/hwt.
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probabilistic forecasts are presented in section 4 and these forecasts are verified in section 

5 prior to concluding.

2. Experimental design

a. Model configurations

On each of the ~ 35 days of SE2007, CAPS produced a 10-member ensemble forecast

with 4 km grid spacing (Xue et al. 2007; Kong et al. 2007).  The ensemble forecasts were 

generated remotely at the Pittsburgh Supercomputing Center (PSC).  All ensemble 

members used version 2.2 of the WRF-ARW dynamic core (Skamarock et al. 2005), 

represented convection explicitly (no CP), resolved 51 vertical levels, were initialized 

with a “cold-start” (no data assimilation) at 2100 UTC, and ran for 33 hours over a 

domain encompassing approximately three-fourths of the continental United States (Fig. 

1).  

The configurations of the ensemble members are summarized in Table 1.  ICs were 

interpolated to the 4 km grids from a 2100 UTC analysis of the 12 km North American

Mesoscale model (NAM; Black 1994) (J. Du, NCEP/EMC, 2007, personal 

communication).  Different IC, LBC, and physics perturbations were introduced in four 

of the ten ensemble members (n1, n2, p1, p2; hereafter collectively referred to as the 

“LBC/IC” members).  LBCs for the LBC/IC members were provided by the four WRF 

perturbed members [two WRF-ARW (Skamarock et al. 2005) and two WRF-NMM

(Nonhydrostatic Mesoscale Model; Janjic et al. 2001; Janjic 2003)] of the 2100 UTC 

NCEP SREF, and the IC perturbations were extracted from these same four WRF 

members of the 2100 UTC NCEP SREF.  LBCs for the remaining six members (cn, ph1, 
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ph2, ph3, ph4, ph5; hereafter collectively referred to as the “physics-only” members) 

were provided by 1800 UTC 12 km NAM forecasts.  These six members used identical 

ICs and LBCs and differed solely in terms of MP and PBL parameterizations. Therefore, 

comparison of their output allows a robust assessment of WRF-ARW sensitivity to PBL 

and MP parameterizations in a variety of weather regimes.  Additional details on the 

ensemble configurations can be found in Xue et al. (2007) and Kong et al. (2007).

b. Verification parameters

At the conclusion of SE2007, average ensemble performance characteristics were 

assessed using several statistical measures applied primarily to hourly precipitation fields.  

Hourly model precipitation forecasts were compared to Stage II precipitation grids 

produced hourly at NCEP (Lin and Mitchell 2005). Stage II precipitation fields are 

generated from radar and rain gage data (Seo 1998), and they were regarded as “truth.”

Objective verification of the model climatology was performed over a fixed 

domain comprising most of the central United States (Fig. 2).  This domain covered a 

large area over which Stage II data were robust and springtime weather was active.  

Attention was focused on the 1800-0600 UTC (f21-f33) period to examine the utility of 

the ensemble as next-day forecast guidance.  

When possible, statistics were computed on native grids.  However, in order to 

calculate certain performance metrics (discussed below), it was often necessary that all 

data be on a common grid.  Therefore, for certain objective verification procedures, 

model output was interpolated onto the Stage II grid (grid spacing of ~ 4.7 km), which 

will be referred to as the “verification grid.”
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3. Precipitation sensitivity to physical parameterizations

The individual ensemble members produced varying amounts of precipitation.  

By consulting the model physics configurations (Table 1), it appears that these 

differences can be attributed to the different PBL and MP schemes.  Aggregate statistics 

over all days of SE2007 are first presented, followed by a brief case study.

a. Domain total precipitation

Total accumulated precipitation throughout the verification domain, calculated on 

native grids and aggregated over all days of SE2007, is depicted in Fig. 3.  All the 

members captured the diurnal cycle quite well, with afternoon precipitation maxima 

within an hour of the observed peak. 

All members overpredicted the mean precipitation, especially during the 

afternoon maximum.  The specific cause of this high bias has not been identified.  

However, more detailed examinations of selected events, conducted by CAPS scientists 

after SE2007, suggested that the bias was significantly reduced when the ensemble was 

initialized with 0000 UTC ICs and LBCs.  Thus, it appears that some aspect of the 2100 

UTC initialization led to the very high bias (Kong et al. 2008).  Nonetheless, as all 

members were subjected to the same constraints and impacted equally, differences 

between the members should still yield a robust assessment of sensitivity to model 

physics.

Case in point, despite this ubiquitous high bias, there was nonetheless 

considerable spread between the physics-only members regarding the amplitude of the 
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peak (Fig. 3).  This separation suggests that the combination of PBL and MP

parameterizations exerts a strong influence on the rainfall fields. This impact is further 

revealed by examining the amplitudes of the LBC/IC members.  In general, members 

with the same PBL and MP parameterizations produced similar amounts of precipitation, 

regardless of any LBC and IC perturbations.  For example, the n1 and ph2 members 

produced the highest afternoon precipitation totals, and both were configured with the 

Ferrier MP and MYJ PBL parameterizations.  On the other hand, the n2 and ph4 

members produced the least amount of precipitation during the afternoon maximum, and 

each was configured with the YSU PBL and Thompson MP schemes.  However, the p2 

and ph3 members produced the least precipitation during the last three hours of 

integration and also during the diurnal minimum.  Both members shared the YSU PBL 

and WSM6 MP parameterizations.  

b. Areal coverages

Figure 4 depicts fractional coverages of precipitation exceeding various 

accumulation thresholds (q) (e.g., 1.0 mm hr-1), aggregated hourly over all days of

SE2007.  These statistics were generated from data on each member’s native grid.  

Again, on average, the individual members captured the diurnal cycle fairly well, with the 

time of peak coverage corresponding well to the observations. 

When q = 0.2 mm hr-1 (Fig. 4a), all but the n1 and ph2 (Ferrier and MYJ) 

members generated either a similar or lower fractional coverage than the observations, on 

average.  But, as q increased, overprediction dramatically worsened, such that by the 5.0 

mm hr-1 threshold (Fig. 4c), all members produced a grossly higher areal coverage than 
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that observed.  Again, the areal coverages of members with the same physics schemes 

were quite similar.  During the afternoon hours, the n1 and ph2 members (Ferrier and 

MYJ) yielded the greatest fractional coverages, while the n2 and ph4 (Thompson and 

YSU) and p2 and ph3 pairs (WSM6 and YSU) produced the least grid coverage. 

 

c. Precipitation percentiles

A climatology of precipitation accumulations was constructed by compiling the 

hourly precipitation forecasts in each grid box within the verification domain on the 

native grids over all days of SE2007 between 1800-0600 UTC (f21-f33).  The values 

were ranked, and accumulation percentiles (y) (e.g., 95th percentile) were chosen to 

determine absolute hourly precipitation values (qy) corresponding to the yth percentile

(Fig. 5).  For example, (100-y) percent of all grid points contained accumulations above 

the value of qy, which was determined by the yth percentile.  This procedure was 

performed separately for each ensemble member.

Systematic differences between the members were again evident, as was the 

tendency for members with common physical parameterizations to behave similarly.  For 

example, hourly accumulations of ~ 8.0 mm or higher comprised the top 1% of all 

accumulations in the n1 and ph2 (Ferrier and MYJ) hourly precipitation fields, while the 

99th percentile in the n2, ph4, p2, and ph3 fields was considerably lower (~ 5.5 mm hr-1).  

d. Precipitation bias

To quantitatively determine the biases of individual members, the standard 2 x 2 

contingency table for dichotomous (yes-no) events was used (Table 2).  The frequency 

bias (B) is simply the ratio of the areal coverage of forecasts of the event to the coverage 
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of observed events and can be easily computed from the contingency table [B = 

(a+b)/(a+c)].  For a given value of q, B > 1 indicates overprediction and B < 1 indicates 

underprediction at that threshold.  Metrics computed from Table 2 require that the models 

and observations be on the same grid, so the model output was interpolated onto the 

verification grid.  

Bias aggregated over all days of SE2007 between 1800-0600 UTC (f21-f33) are 

plotted as a function of precipitation threshold in Fig. 6.  A large bias spread is evident, 

with the n1 and ph2 (Ferrier and MYJ) members overpredicting the most for q ≤ 10.0 mm 

hr-1.  At thresholds > 10.0 mm hr-1, the n1 and ph2 biases interestingly plummet, leaving 

the ph1 and p1 members with the highest biases (both configured with Thompson MP

and MYJ PBL schemes). 

e. Case Study

Figure 7 shows hourly precipitation output from the physics-only members on 

their native grids over the verification domain.  The ensemble was initialized at 2100 

UTC 04 June, and the forecast was valid 0000 UTC 06 June—a 27 hour forecast. This 

case illustrates many of the characteristics seen on average throughout SE2007, as 

previously discussed.

All members produced scattered precipitation from eastern Colorado 

southeastward into central Arkansas.  However, there were differences regarding areal 

coverage and intensity. The cn (WSM6 and MYJ) and ph2 (Ferrier and MYJ) members 

were relatively bullish, developing comparatively more and larger areas of precipitation, 

especially over southern Kansas, northern Oklahoma, and the northern half of Arkansas.  
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On the other hand, the ph4 (Thompson and YSU) and ph5 (Ferrier and YSU) members 

produced fewer and smaller elements over these same regions.  The areal coverages of 

the ph1 (Thompson and MYJ) and ph3 (WSM6 and YSU) members lied between those of 

the other two pairs.

Farther east, all the members generated widespread rainfall in southern Alabama 

and Georgia.  While there were some slight differences between the members over this 

area, they all were in fairly good agreement.  However, there were disagreements 

regarding precipitation intensity over Kentucky and Tennessee, with the ph2 and ph5 

members producing the heaviest rainfall.

The perceived visual differences are substantiated by a quantitative assessment of 

the hourly precipitation (Fig. 8).  The ph2 member produced the most precipitation, while 

the ph4 and ph3 generated the least.  Although the ph5 member produced less 

precipitation over the Great Plains, its heavier precipitation over the Ohio Valley and 

Gulf Coast brought its total precipitation above that of the ph3 member.  Note that all the 

members overpredicted the observed hourly precipitation that occurred over the 

verification domain at that time.  

f. Summary

On average, all the ensemble members produced more precipitation than the 

observations indicated.  However, the bias was not uniform.  This spread can be 

attributed to the different configurations of PBL and MP parameterizations used within 

the ensemble system.  Members configured with the same physics schemes behaved 

similarly, on average, regardless of whether LBC and IC perturbations were introduced.  
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The MYJ PBL and Ferrier MP parameterizations were associated with relatively high 

precipitation totals.  In contrast, the YSU PBL scheme was associated with comparatively 

lesser amounts, either in combination with the WSM6 MP scheme (p2 and ph3 members) 

or the Thompson scheme (n2 and ph4 members).  These findings indicate that spread in 

precipitation can be achieved by varying the physical parameterizations within an 

ensemble system that uses a single dynamic core.  Moreover, documentation of these 

systematic biases should be valuable to WRF-ARW developers and users. 

4. Extracting forecast probabilities: Traditional and new approaches

A widely used approach for computing forecast probabilities (FPs) from an 

ensemble is summarized, followed by discussion of a lesser known post-processing 

method for extracting FPs from single deterministic predictions.  Then, a simple strategy 

for combining these two approaches is presented.  Though these methods can be applied 

to any meteorological field, they are discussed here within the context of precipitation 

forecasting.

a. Traditional method

In an uncalibrated ensemble system, all members are assumed to have equal skill, 

when averaged over many forecasts.  Under this assumption, members are weighted 

equally and the ensemble-based probability can be thought of as the average of the binary 

probabilities (BPs) for individual members, where the BPs are simply 1 or 0 at a given 

grid point, depending on the occurrence (1) or non-occurrence (0) of an event; an “event” 

typically means exceedance of a specified threshold.  For example, in the context of 
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precipitation forecasting, an accumulation threshold (q) is chosen to define an event, and 

the individual grid-point BPs are given by 

0
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where n is the number of members in the ensemble.

b. A “neighborhood” approach

The above method for computing EPi utilizes raw model output at individual grid 

points. However, in general, models have little skill at placing features that are 

comparable in scale to their grid spacing.  Thus, as horizontal grid length has decreased 

in recent years to the sizes of convective-scale features, a variety of methods that 

incorporate a “neighborhood” around each grid point have been developed to allow for 

spatial and/or temporal error or uncertainty [reviewed in Ebert (2008)].  As model grid 

length continues to decrease, these newer methods seem destined to be used more 

regularly.  Although neighborhood methods are used most often for verification purposes 
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[e.g., Roberts and Lean (2008)], here they are employed to create non-binary FPs from 

individual deterministic forecasts [e.g., Theis et al. (2005)].  

Application of the neighborhood approach to generate FPs begins with a binary 

grid, created in accordance with Eq. (1), from a deterministic forecast (e.g., one of the 

ensemble members).  Next, following Roberts and Lean (2008), a radius of influence (r) 

is specified (e.g., r = 25, 50 km) to construct a “neighborhood” around each grid box in 

the binary field2.  All grid points surrounding a given point that fall within the radius are 

included in the neighborhood.  Whereas Roberts and Lean (2008) constructed a square 

neighborhood around each grid box, a circular neighborhood is used in this study.  

Essentially, choosing a radius of influence defines a scale over which the model is 

expected to be accurate, and this scale is applied uniformly in all directions from each 

grid point.  

To generate a non-binary FP value at each point, the number of grid boxes with 

accumulated precipitation ≥ q (i.e., the number of 1s in the binary field) within the 

neighborhood is divided by the total number of boxes within the neighborhood.  This 

“neighborhood probability” (NP) at the ith grid point on the kth ensemble member’s grid

can be expressed as  

∑
=

=
bN

m
km

b
ki BP

N
NP

1

1 , (3)

where Nb is the number of grid points within the neighborhood of grid point i.  Although 

for a given value of r the number of points within the neighborhood (Nb) is the same for 

  
2 At this point, the optimal value of r is unknown, and this optimum may vary from model 
to model.  In fact, Roberts (2008) suggests that the optimal radius of influence varies 
within a single model configuration and is a function of lead time.
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each of the N grid boxes, “hidden” in Eq. (3) is the fact that the ith grid box specifies a 

unique set of Nb points on the BP grid that comprise the neighborhood.  That is, the 

specific grid boxes on the BP grid that are used to compute NPi are different for each of 

the N grid boxes.

Figure 9 illustrates the determination of a neighborhood and computation of NPi

for a hypothetical model forecast using a radius of influence of 2.5 times the grid spacing.  

Grid boxes within the radius of influence of the central grid square are included in the 

neighborhood.  Note that by using circular geometry, the corner grid points are excluded, 

such that the neighborhood consists of 21 boxes. Grid boxes with accumulated 

precipitation ≥ q are shaded, and these are assigned a value of 1.  In this example, the 

event occurs in 8 out of 21 grid boxes, so NPi = 0.38, or 38%, at the central grid box.  

Figure 10 illustrates the impact of this procedure using a forecast from the control 

member of the ensemble (cn).  The forecast was valid at 0600 UTC 23 May—a lead time 

of 33 hours—and the model output is displayed on the verification grid.  The raw

precipitation forecast is shown in Fig. 10a and the binary field (the BPi field) 

corresponding to q = 5.0 mm hr-1 is plotted in Fig. 10b.  Note that the binary field can 

also be considered the NP field generated using r = 0 km.  As r is increased to 25 km 

(Fig. 10c) and then 75 km (Fig. 10d), the character of the NP field changes substantially.  

Specifically, as r increases from 25 to 75 km, maximum probabilities decrease from over 

90% to 70% (and even lower) over north-central Kansas and extreme southeast South 

Dakota.  Evidently, in this case, as the radius of influence expands to include more points 

in the neighborhood, few of these newly-included points contain precipitation 

accumulations ≥ q.  In general, whether NPi values increase or decrease as the radius of 
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influence changes is highly dependent on the meteorological situation.  However, for 

most situations, increasing r reduces the sharpness (Roberts and Lean 2008) and acts as a 

smoother that reduces gradients and magnitudes in the NP field. 

c. Combining traditional and neighborhood approaches

When the neighborhood method is applied to each ensemble member 

individually, a set of n NPi grids are generated. These grids are directly analogous to the 

BPi grids, but instead of being limited to values of 0 or 1, the point values comprise a 

continuum from 0 to 1.  Just as the BPi values are averaged over all members to produce 

traditional ensemble probabilities (EPi), the NPi values can be combined to produce a 

new neighborhood ensemble probability (NEP) according to 

∑
=

=
n

k
kii NP

n
NEP

1

1 .                                                                (4)

To demonstrate the characters of the traditional and neighborhood probabilistic 

products, an example is given for the ensemble forecast valid 2100 UTC 15 May, 

focusing on the 1.0 mm hr-1 accumulation threshold (Fig. 11).  The traditional probability 

field (i.e., the EP) is very detailed and rather noisy (Fig. 11a).  On the other hand, the 

NEPs become increasingly smooth as r increases from 25 to 125 km (Fig. 11b-e).  

In general, the NEP field highlights the same areas as the EP.  However, the 

smoother NEP field is more aesthetically pleasing and inherently focuses on spatial scales 

where there is likely to be at least some accuracy.  Additionally, it smoothes out any 

discontinuities in the EP field.  The NEP fields are now objectively verified and 

compared with corresponding EP fields.  
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5. Verification of probabilistic fields

The fractions skill score (FSS) (Roberts 2005; Roberts and Lean 2008) and 

relative operating characteristic (ROC) (Mason 1982) were adopted to verify the 

probabilistic guidance considered in this study.  To use both of these metrics, it was

necessary to project the model forecasts onto the verification grid to directly compare the 

probability fields with the observations.  This interpolation was done before the fractional 

grids were generated from the individual ensemble members.  That is, the direct model 

output, rather than the fractions, was interpolated to the verification domain.

a. The fractions skill score

Probabilistic forecasts are commonly evaluated with the Brier Score or Brier Skill 

Score (Brier 1950) by comparing probabilistic forecasts to a dichotomous observational 

field.  However, one can apply the neighborhood approach to the observations in the 

same way it is applied to model forecasts, changing the dichotomous observational field 

into an analogous field of observation-based fractions (or probabilities). The two sets of 

fraction fields (forecasts and observations) then can be compared directly.  Whereas Fig. 

9 depicts the creation of a fraction grid for just a model forecast, Fig. 12 shows the 

creation of a fraction grid for this same hypothetical forecast and the corresponding 

observations.  Notice that although the model does not forecast precipitation ≥ q at the 

central grid box (quadrant c of Table 2, a “miss” using conventional point-by-point 

verification), when the surrounding neighborhood is considered, the same probability as 

the observations is achieved (8/21 = 0.38).  Therefore, in the context of a radius r, this 

model forecast is considered correct.
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After the raw model forecast and observational fields have both been transformed 

into fraction grids, the fraction values of the observations and models can be directly 

compared.  A variation on the Brier Score is the Fractions Brier Score (FBS) (Roberts 

2005), given by 
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FBS ,                      (5)

where NPF(i) and NPO(i) are the neighborhood probabilities at the ith grid box in the model 

forecast and observed fraction fields, respectively.  Here, as objective verification only 

took place over the verification domain (Fig. 2), i ranges from 1 to Nv, the number of 

points within the verification domain on the verification grid.  Note that the FBS 

compares fractions with fractions and differs from the traditional Brier Score only in that 

the observational values are allowed to vary between 0 and 1.

Like the Brier Score, the FBS is negatively oriented—a score of 0 indicates 

perfect performance.  A larger FBS indicates poor correspondence between the model 

forecasts and observations.  The worst possible (largest) FBS is achieved when there is 

no overlap of non-zero fractions and is given by
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On its own, the FBS does not yield much information since it is strongly dependent on 

the frequency of the event (i.e., grid points with zero precipitation in either the 

observations or model forecast can dominate the score).  However, a skill score (after 

Murphy and Epstein 1989) can be constructed that compares the FBS to a low-skill 

reference forecast—FBSworst—and is defined by Roberts (2005) as the fractions skill 

score (FSS):
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worstFBS
FBSFSS −= 1 .                                                             (7)

The FSS ranges from 0 to 1.  A score of 1 is attained for a perfect forecast and a 

score of 0 indicates no skill.  As r expands and the number of grid boxes in the 

neighborhood increases, the FSS improves as the observed and model probability fields 

are smoothed and overlap increases, asymptoting to a value of 2B/(B2 + 1), where B is the 

frequency bias (Roberts and Lean 2008).

b. Verification results

FSS aggregated over all days of SE2007 during the 1800-0600 UTC (f21-f33) 

period is shown in Fig. 13 for various hourly absolute precipitation thresholds.  As q

increased, the FSS worsened at all scales, indicating the models had less skill at 

predicting heavier precipitation.  

The FSS indicates that at all accumulation thresholds, the NEP produced the most 

skillful forecasts for r > 25 km.  Moreover, the advantage of the NEP increased with

increasing q.  This finding indicates that the NEP [Eq. (3)] improves upon the traditional 

ensemble probability [Eq. (2)], especially for extreme event prediction. Of the individual 

members, the n2 and p2 members consistently ranked the lowest, while the physics-only 

members were tightly bunched.  FSS as a function of time for q = 5.0 mm hr-1 (Fig. 14) 

indicated NEPs performed the best at nearly all times for all values of r. 

In a sense, the EP was handicapped in the computation of the FSS because this 

field did not change as a function of r, while the verifying field (and all the other FPs) 

did.  However, the advantage for the NEP is also evident with other performance 

measures, such as the relative operating characteristic (ROC; Mason 1982). For the 
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ROC, a family of contingency tables (Table 2) is constructed for the probabilistic 

forecasts by selecting different probabilities as yes-no thresholds (i.e., for the 30% 

threshold, all model grid points with probabilities equal to or greater than 30% are 

considered to forecast the event) in conjunction with a binary observation field.  Using 

the elements of Table 2, the probability of detection [POD = a/(a+c)] and probability of 

false detection [POFD = b/(b+d)] can be computed for each probability threshold, and 

the ROC is formed by plotting POFD against POD over the range of probabilistic 

thresholds (Fig. 15).  The area under this curve is the ROC area, and forecasting systems 

with a ROC area greater than ~ 0.70 are considered useful (Stensrud and Yussouf 2007).  

In this study, a trapezoidal approximation was used to find the area under the ROC curve.

Using a ROC area of 0.70 as a threshold to determine forecast utility, the EP field 

was unable to produce useful forecasts when q = 5.0 mm hr-1 (Fig. 16).  However, the 

NEP field using r ≥ 25 km provided useful information at all thresholds.  Additionally, 

ROC areas improved as the NEP was computed using progressively larger values of r.   

This finding further indicates that the NEP improves upon the EP and that the 

improvement increases as the event becomes more extreme.

6. Summary and conclusion

During SE2007, CAPS produced convection-allowing 10-member ensemble 

forecasts.  All members used 4 km horizontal grid spacing, ran over the same 

computational domain, and produced 33 hour forecasts.  LBC, IC, and physics 

perturbations were introduced into 4 of the members while the remaining 6 differed 

solely in terms of PBL and MP parameterizations. 
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WRF-ARW sensitivity to MP and PBL schemes was demonstrated using hourly 

precipitation forecasts.  The MYJ PBL and Ferrier MP parameterizations were associated 

with relatively high precipitation totals, while the YSU PBL scheme, in combination with 

the Thompson and WSM6 MP parameterizations, produced lesser amounts.  

Documentation of these biases should be useful to users and developers of the WRF-

ARW model.  However, users of other NWP systems should be cautious in interpreting 

these results since the parameterizations examined here were subjected to varying levels 

of calibration in the WRF-ARW.  

In addition to the determination of physics sensitivities, a new method of 

extracting probabilistic guidance from an ensemble was presented. This method applied

a “neighborhood” concept to an ensemble and was found to produce more skillful 

probabilistic guidance, as measured by the FSS and ROC area, than traditional ensemble-

derived probabilistic guidance.  Moreover, the neighborhood ensemble probability

resulted in smoother, more aesthetically pleasing fields that focused on the spatial scales 

over which the models were more likely to be accurate. These findings indicate that 

simple post-processing can be used to improve high-resolution ensemble forecasts of 

heavy precipitation and severe weather and provide forecasters with an effective and 

easy-to-use product.  Indeed, it seems that post-processing applied to high-resolution 

model output offers much promise [see Kain et al. (2008b) and references therein]. 

As high-resolution NWP continues to progress, a central question is whether 

computer resources should be devoted to single high-resolution deterministic forecasts or 

comparatively coarse-resolution ensemble forecasts.  Although there remains debate 

regarding the current necessity of decreasing grid spacing below 4 km in deterministic 
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models, Kain et al. (2008a) and Schwartz et al. (2008) suggest 4 km WRF-ARW 

deterministic forecasts provide nearly identical value as 2 km output as next-day 

guidance for severe storm and heavy precipitation forecasting.  Given these conclusions, 

it seems reasonable that convection-allowing ensembles and post-processing options 

should continue to be tested, refined, and explored to optimize probabilistic ensemble 

guidance. 
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Table Captions

Table 1. Ensemble member configurations.  The WRF Single-Moment 6-class (WSM6)
(Hong et al. 2004), Ferrier (Ferrier 1994); Thompson (Thompson et al. 2004); 
Mellor-Yamada-Janjic (MYJ) (Mellor and Yamada 1982, Janjic 2002) and Yonsei 
University (YSU) (Noh et al. 2003) schemes were used. NAMa and NAMf refer 
to NAM analyses and forecasts, respectively.

Table 2. Standard 2 x 2 contingency table for dichotomous events.
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Figure Captions

Fig. 1. Model domain of the CAPS ensemble forecasts.

Fig. 2. Verification domain used for model climatology.

Fig. 3. Total precipitation over the domain aggregated over all days of SE2007, 

normalized by number of grid boxes, calculated for each ensemble member on its 

native grid.

Fig. 4. Fractional grid coverage of hourly precipitation exceeding (a) 0.2 mm hr-1, (b) 1.0 

mm hr-1, (c) 5.0 mm hr-1, and (d) 10.0 mm hr-1 as a function of time, averaged 

over all days of SE2007, calculated on each member’s native grid.

Fig. 5. Precipitation climatology: Percentiles calculated on each member’s native grid 

aggregated between 1800-0600 UTC (f21-f33) over all days of SE2007 (see text).

Fig. 6. Bias as a function of accumulation threshold, aggregated during 1800-0600 UTC 

(f21-f33) over all days of SE2007.

Fig. 7. One-hour (a) cn, (b) ph1, (c) ph2, (d) ph3, (e) ph4, and (f) ph5 forecast 

accumulated precipitation valid 0000 UTC 06 June (27-hr forecast, initialized at 

2100 UTC 04 June).  The domain is the same as the verification domain (Fig. 2).

Fig. 8. Total hourly domain-wide precipitation accumulations valid at the same time and 

calculated over the same domain as Fig. 7.

Fig. 9. Schematic example of neighborhood determination and fractional creation for a 

model forecast.  Precipitation exceeds the accumulation threshold in the shaded 

boxes, and a radius of 2.5 times the grid length is specified.

Fig. 10. (a) Control member (cn) 1-hr accumulated precipitation forecast (mm hr-1), (b) 

binary image (i.e., a BP grid) of precipitation accumulations exceeding 5.0 mm 
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hr-1, and NP grids computed from (b) using radii of influence of (c) 25 km and (d) 

75 km.  All panels are valid 0600 UTC 23 May and the control member has been 

projected onto the verification grid.

Fig. 11. Hourly probability forecasts of precipitation meeting or exceeding 1.0 mm using 

the (a) EP and NEP (see text) with radii of influence of (b) 25 km, (c) 50 km, (d) 

75 km, and (e) 125 km. The observed precipitation is shown in (f).  Both the 

model fields and observations are valid 2100 UTC 15 May.  The domain is the 

same as the verification domain (Fig. 2).

Fig. 12. Schematic example of neighborhood determination and fractional creation for 

(a) a model forecast and (b) the corresponding observations. Precipitation 

exceeds the accumulation threshold in the shaded boxes, and a radius of 2.5 times 

the grid length is specified.

Fig. 13. Fractions skill score (FSS) as a function of radius of influence (r), aggregated 

during 1800-0600 UTC (f21-f33) over all days of SE2007 using accumulation 

thresholds of (a) 0.2 mm hr-1, (b) 0.5 mm hr-1, (c) 1.0 mm hr-1, (d) 2.0 mm hr-1, (e) 

5.0 mm hr-1, and (f) 10.0 mm hr-1.  The traditional ensemble probability is denoted 

as EP and the neighborhood probability as NEP.  Probabilities for the individual 

members of the ensemble were computed as NPs.  Note that the EP field does not 

change as a function of r, while the others do.

Fig. 14. Fractions skill score (FSS) plotted as a function of forecast hour for a fixed 

accumulation-rate threshold of 5.0 mm hr-1 and radii of influence of (a) 25 km, (b) 

50 km, (c) 75 km, (d) 100 km, (e) 125 km, (f) 150 km, (g) 175 km, and (h) 200 

km, averaged over all days of SE2007.
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Fig. 15. Relative operating characteristic (ROC) diagrams using data 

aggregated during 1800-0600 UTC (f21-f33) over all days of SE2007 

using accumulation thresholds of (a) 0.5 mm hr-1, (b) 1.0 mm hr-1, (c) 2.0 

mm hr-1, and (d) 5.0 mm hr-1.  

Fig. 16. ROC areas computed from Fig. 15 using a trapezoidal approximation.



Fig. 1. Model domain of the CAPS ensemble forecasts.



Fig. 2. Verification domain used for model climatology.



Fig. 3. Total precipitation over the domain aggregated over all days of SE2007, 
normalized by number of grid boxes, calculated for each ensemble member on its 
native grid.



Fig. 4. Fractional grid coverage of hourly precipitation exceeding (a) 0.2 mm hr-1, (b) 1.0 
mm hr-1, (c) 5.0 mm hr-1, and (d) 10.0 mm hr-1 as a function of time, averaged 
over all days of SE2007, calculated on each member’s native grid.



Fig. 5. Precipitation climatology: Percentiles calculated on each member’s native grid 
aggregated between 1800-0600 UTC (f21-f33) over all days of SE2007 (see text).



Fig. 6. Bias as a function of accumulation threshold, aggregated during 1800-0600 UTC 
(f21-f33) over all days of SE2007.
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Fig. 7. One-hour (a) cn, (b) ph1, (c) ph2, (d) ph3, (e) ph4, and (f) ph5 forecast 
accumulated precipitation valid 0000 UTC 06 June (27-hr forecast, initialized at 
2100 UTC 04 June).  The domain is the same as the verification domain (Fig. 2).



Fig. 8. Total hourly domain-wide precipitation accumulations valid at the same time and 
calculated over the same domain as Fig. 7.



Fig. 9. Schematic example of neighborhood determination and fractional creation for a 
model forecast.  Precipitation exceeds the accumulation threshold in the shaded 
boxes, and a radius of 2.5 times the grid length is specified.
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Fig. 10. (a) Control member (cn) 1-hr accumulated precipitation forecast (mm hr-1), (b) 
binary image (i.e., a BP grid) of precipitation accumulations exceeding 5.0 mm 
hr-1, and NP grids computed from (b) using radii of influence of (c) 25 km and (d) 
75 km.  All panels are valid 0600 UTC 23 May and the control member has been 
projected onto the verification grid.
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Fig. 11. Hourly probability forecasts of precipitation meeting or exceeding 1.0 mm using

the (a) EP and NEP (see text) with radii of influence of (b) 25 km, (c) 50 km, (d) 
75 km, and (e) 125 km.  The observed precipitation is shown in (f).  Both the 
model fields and observations are valid 2100 UTC 15 May.  The domain is the 
same as the verification domain (Fig. 2).



Fig. 12. Schematic example of neighborhood determination and fractional creation for (a) 
a model forecast and (b) the corresponding observations.  Precipitation exceeds 
the accumulation threshold in the shaded boxes, and a radius of 2.5 times the grid 
length is specified.
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Fig. 13. Fractions skill score (FSS) as a function of radius of influence (r), aggregated 
during 1800-0600 UTC (f21-f33) over all days of SE2007 using accumulation 
thresholds of (a) 0.2 mm hr-1, (b) 0.5 mm hr-1, (c) 1.0 mm hr-1, (d) 2.0 mm hr-1, (e) 
5.0 mm hr-1, and (f) 10.0 mm hr-1.  The traditional ensemble probability is denoted 
as EP and the neighborhood probability as NEP. Probabilities for the individual 
members of the ensemble were computed as NPs.  Note that the EP field does not 
change as a function of r, while the others do.



Fig. 14. Fractions skill score (FSS) plotted as a function of forecast hour for a fixed 
accumulation-rate threshold of 5.0 mm hr-1 and radii of influence of (a) 25 km, (b) 
50 km, (c) 75 km, (d) 100 km, (e) 125 km, (f) 150 km, (g) 175 km, and (h) 200 
km, averaged over all days of SE2007.



Fig. 15. Relative operating characteristic (ROC) diagrams using data 
aggregated during 1800-0600 UTC (f21-f33) over all days of SE2007 
using accumulation thresholds of (a) 0.5 mm hr-1, (b) 1.0 mm hr-1, (c) 2.0 
mm hr-1, and (d) 5.0 mm hr-1.  



Fig. 16. ROC areas computed from Fig. 15 using a trapezoidal approximation.



Table 1. Ensemble member configurations.  The WRF Single-Moment 6-class (WSM6)
(Hong et al. 2004), Ferrier (Ferrier 1994); Thompson (Thompson et al. 2004); Mellor-
Yamada-Janjic (MYJ) (Mellor and Yamada 1982, Janjic 2002) and Yonsei University 
(YSU) (Noh et al. 2003) schemes were used.  NAMa and NAMf refer to NAM analyses 
and forecasts, respectively.

Member IC LBC Microphysics PBL physics
cn 2100 UTC NAMa 1800 UTC NAMf WSM 6-class MYJ
n1 cn – arw_pert 2100 UTC SREF arw_n1 Ferrier MYJ
p1 cn + arw_pert 2100 UTC SREF arw_p1 Thompson MYJ
n2 cn – nmm_pert 2100 UTC SREF nmm_n1 Thompson YSU
p2 cn + nmm_pert 2100 UTC SREF nmm_p1 WSM 6-class YSU
ph1 2100 UTC NAMa 1800 UTC NAMf Thompson MYJ
ph2 2100 UTC NAMa 1800 UTC NAMf Ferrier MYJ
ph3 2100 UTC NAMa 1800 UTC NAMf WSM 6-class YSU
ph4 2100 UTC NAMa 1800 UTC NAMf Thompson YSU
ph5 2100 UTC NAMa 1800 UTC NAMf Ferrier YSU

 Table 2. Standard 2 x 2 contingency table for dichotomous events.

Observed
Yes No

Yes a b a+bForecast No c d c+d
a+c b+d


