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ABSTRACT

Doppler radar data are assimilated with an ensemble Kalman Filter (EnKF) in combination with a double-

moment (DM)microphysics scheme in order to improve the analysis and forecast of microphysical states and

precipitation structures within a mesoscale convective system (MCS) that passed over western Oklahoma on

8–9 May 2007. Reflectivity and radial velocity data from five operational Weather Surveillance Radar-1988

Doppler (WSR-88D) S-band radars as well as four experimental Collaborative and Adaptive Sensing of the

Atmosphere (CASA) X-band radars are assimilated over a 1-h period using either single-moment (SM) or

DM microphysics schemes within the forecast ensemble. Three-hour deterministic forecasts are initialized

from the final ensemble mean analyses using a SM or DM scheme, respectively. Polarimetric radar variables

are simulated from the analyses and compared with polarimetric WSR-88D observations for verification.

EnKF assimilation of radar data using a multimoment microphysics scheme for an MCS case has not pre-

viously been documented in the literature. The use of DM microphysics during data assimilation improves

simulated polarimetric variables through differentiation of particle size distributions (PSDs) within the

stratiform and convective regions. The DM forecast initiated from the DM analysis shows significant quali-

tative improvement over the assimilation and forecast using SM microphysics in terms of the location and

structure of the MCS precipitation. Quantitative precipitation forecasting skills are also improved in the DM

forecast. Better handling of the PSDs by the DM scheme is believed to be responsible for the improved

prediction of the surface cold pool, a stronger leading convective line, and improved areal extent of stratiform

precipitation.

1. Introduction

Successful convective-scale numerical weather predi-

ction (NWP) requires both accurate initial conditions

and a prediction model capable of accurately simulating

deep, moist convection. One of the more difficult as-

pects of simulating convection is the parameterization of

the microphysical (MP) processes, including accurate

representation of the particle size distribution (PSD) of

the hydrometeors. TheMP processes, such as collision and

coalescence, drop breakup, freezing–melting, evaporation–

sublimation, and precipitation sedimentation, are highly

nonlinear and can vary substantially over small spatial
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and temporal scales (Larson et al. 2005; Wang et al.

2012). Nonlinearity can greatly increase the sensitivity

of the forecast to the initial conditions due to the com-

plex nonlinear interactions, regime changes, and pos-

sible bifurcations (Lorenz 1969). Additionally, model

error, such as that associated with uncertainty in the

model MP parameterization, can quickly become the

dominant factor in error growth even for NWP forecasts

with relatively accurate initial conditions (Houtekamer

et al. 2005).

In reality, hydrometeors compromise a continuous

spectrum of varied sizes and frequency of occurrence.

Such continuous PSDs are sometimes approximated

using a bin model where hydrometeors are distributed

explicitly in groups based on diameter or mass (Khain

et al. 2004). While preferable, this approach is compu-

tationally very expensive and thus not commonly used in

NWP models. Instead, MP processes are typically pa-

rameterized using a bulk MP (BMP) approach that as-

sumes PSDs with a specified functional form. One such

form is the generalized gamma distribution:

Nx(D)5N0xD
a
x e2l

x
D , (1)

where N(D) is the number of hydrometeors of a par-

ticular species (denoted by subscript x) of a certain

diameter in a given volume, and D (mm) is the hydro-

meteor diameter (Ulbrich 1983). Three independent

parameters control the shape of the distribution: the

intercept N0 (mm21m23), shape a, and slope l (mm21)

parameters. Currently, most NWP models use a single-

moment (SM) MP scheme where N0 and a are given

fixed values (a is often set to zero) while mass content,

which is proportional to the third moment of the PSD,

is predicted in the model, allowing l to vary inde-

pendently during the forecast. As available computa-

tional resources increase, MP schemes that predict more

than one moment have become practical; such schemes

are referred to as multimoment (MM) MP schemes.

Double-moment (DM) schemes typically predict mass

content and total number concentration (zeroth mo-

ment) so that l and N0 can effectively vary indepen-

dently (a can be either set to a fixed value or diagnosed),

while triple-moment (TM) MP schemes predicts three

PSD moments, allowing all three parameters to vary

independently.

Several recent studies have shown that MM schemes

produce more realistic convective storm structure and

evolution. Specifically, using a DM scheme instead of

a SM scheme has been shown to significantly improve

the representation of thermodynamic and MP processes

in supercells. For example, Dawson et al. (2010) found

that a DM scheme better represents the amount of

evaporation in the rear-flank downdraft of a supercell

because the variable intercept parameter allows the

smallest drops in the PSD to be removed first. This re-

sults in more realistic cold pool size and intensity due to

reduced evaporation cooling. More recently, Jung et al.

(2012, hereafter JXT12) demonstrated that a DM MP

scheme used within an ensemble Kalman filter (EnKF)

data assimilation (DA) system produces more realistic

polarimetric signatures in supercell storms compared to

a SM scheme, because the DM scheme allows for size

sorting of precipitating particles. For instance, the Zdr

arc signature commonly seen at the southern edge of

forward-flank radar echo is evident when using a DM

scheme, but absent when using a SM scheme. Both of

these prior studies focused on a supercell storm.

Weather radar currently provides the most complete

temporal and spatial sampling of hydrometeors over the

entire volume of a storm. Advanced DA methods seek

to optimally combine such observations with the back-

ground model state to best represent the current state

of the atmosphere (Kalnay 2002). The EnKF (Evensen

1994, 2003) method has been successfully used to as-

similate radar observations in various convective-scale

observed system simulation experiments (OSSEs; Snyder

and Zhang 2003; Zhang et al. 2004; Tong and Xue 2005;

Xue et al. 2006) as well as in experiments using real data

(Dowell et al. 2004; Lei et al. 2009; Dowell et al. 2011;

Snook et al. 2011, hereafter SXJ11; JXT12). Tong and

Xue (2005) and Dowell et al. (2011) used an SM ice MP

scheme; JXT12 included a DM scheme but only during

assimilation.

EnKF has advantages when coupled with a MM MP

scheme. While the four-dimensional variational data

assimilation (4DVAR) method has been shown to work

very well for large-scale NWP, its application at the

convective scale has been limited to experiments using

warm-rainMP or very simple iceMP schemes; thus far it

has not been successfully coupled with either a SM or

MM MP scheme containing complex ice processes. The

EnKF appears to be much better suited for handling the

complex nonlinear ice processes required for accurate

convective-scale NWP. Xue et al. (2010) showed for the

first time that MP state variables, including the hydro-

meteor mixing ratios and total number concentrations,

associated with a DM scheme using four ice categories

could be estimated accurately from simulated radar data

for a supercell. JXT12 further obtained realistic analyses

of MP state and polarimetric radar variables within

a supercell using real data from a Weather Surveillance

Radar-1988 Doppler (WSR-88D) and EnKF coupled

with a DM scheme. Neither Xue et al. (2010) nor JXT12

examined subsequent forecasts starting from the esti-

mated states.
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In this study, observations from multiple radar

networks of a mesoscale convective system (MCS)

that occurred over Oklahoma and Texas on 8–9 May

2007 are assimilated using an EnKF with either a SM

or DM MP scheme. Simulated polarimetric variables

from the estimated MP states are verified against in-

dependent polarimetric radar observations to assess

the ability of EnKF DA to retrieve information on

MP processes occurring within the MCS as well as

the performance and impacts of the MP schemes.

Deterministic forecasts initialized from the final en-

semble mean analyses for various experiments are

assessed based on the predicted structure of the MCS,

including the accuracy of simulated polarimetric

fields.

Earlier related studies have focused almost exclu-

sively on supercells; the MCS investigated in this study

presents different challenges. Supercells are char-

acterized by strong rotating updrafts and associated

forward- and rear-flank downdrafts. These features lead

to documented polarimetric signatures such as the

Zdr arc, Zdr and Kdp columns, and midlevel Zdr ring

(Kumjian and Ryzhkov 2008). On the other hand, the

updrafts associated with an MCS are usually not rota-

tional and the convective system is often divided into

convective and stratiform precipitation regions (Fritsch

and Forbes 2001). The convective updrafts on the

leading edge of the system lead to size sorting of

drops, which is often characterized by an increase in

Zdr (Park et al. 2009). Additionally, the PSD char-

acteristics of the leading convective precipitation and

trailing stratiform precipitation differ. Zhang et al.

(2008) found that convective rainfall generally has

a broad PSD while stratiform rain is dominated by

moderately sized drops. The investigation of an MCS

sets this study apart from a very limited number of

earlier studies that explore advanced DA, the use of

MM MP schemes, and the estimation of multiple MP

and polarimetric variables and in particular their

combinations. At the completion of our study, JXT12

was the only published real data study assimilating

radar data using EnKF with a multimoment micro-

physics scheme. A recent paper by Yussouf et al. (2013)

addresses similar issues with a different modeling sys-

tem, but both studies deal with supercell storms whose

behaviors and dynamics can be quite different from

MCSs.

The remainder of this paper is organized as follows:

section 2 presents an overview of the 8–9May 2007MCS

event; section 3 describes the model, radar data, EnKF

DA system and experimental setups; section 4 presents

the results; and section 5 provides a summary of the

significant conclusions.

2. Overview of the 8–9 May 2007 MCS

AnMCS and associated line end vortex (LEV)moved

through portions of Oklahoma and Texas on 8–9 May

2007. At 1200UTC 8May, a positively tilted upper-level

trough extended from the Dakotas southwest to New

Mexico. An area of low pressure was in place over ex-

treme southwest Texas near the Rio Grande resulting in

moist, southeasterly low-level flow from the Gulf over

the southern high plains. Ample moisture, lift aloft, and

upslope flow led to the steady development of convec-

tion throughout the morning in extreme eastern New

Mexico and west Texas (Fig. 1). The outflow from the

storms reinforced an already present baroclinic zone,

helping to maintain the convection and increase its

coverage, thus leading to the development of the MCS.

Destabilization from daytime surface heating ahead of

the convective line helped to maintain the system as it

moved eastward through western Texas [Storm Predic-

tion Center (SPC) 2012b].

The unstable air mass ahead of the MCS resulted in

widespread storm development, including some super-

cells. Schenkman et al. (2011) propose that the ingestion

of one of these supercell storms by the MCS led to the

development of an LEV on the northern side of the

MCS near Wichita Falls, Texas, around 2200 UTC.

Steered by southwesterly upper-level flow during the

late afternoon and evening (see Fig. 1), the northern

portion of the MCS and its associated LEV moved

northeastward into western Oklahoma by 0000 UTC

9 May. The period of particular interest for this case is

from 0000 to 0500 UTC as the LEV moved along and

just northwest of a Lawton to Oklahoma City line.

Throughout this period, the MCS was within the asym-

metric stage of MCS development (Fritsch and Forbes

2001) and consisted of an area of leading stratiform

precipitation ahead of the LEV, a leading line of intense

convection to the east and southeast of the LEV, and

a secondary line of trailing stratiform precipitation left

over from the portion of the leading convective line that

had extended farther south into Texas earlier in the af-

ternoon (Fig. 2).

Another supercell was ingested around 0200 UTC

that strengthened the vortex in the vicinity of Lawton,

Oklahoma (Schenkman et al. 2011). Shortly thereafter,

four enhanced Fujita scale (EF-1) tornadoes occurred

west of Oklahoma City, Oklahoma, near the center of

the LEV. Additionally, an area of widespread heavy

rain (in excess of 50mm in a 3-h period) was observed

between Lawton and Oklahoma City, leading to multi-

ple flash flood reports and requiring at least one water

rescue [National Weather Service (NWS) 2012]. After

0500, the LEVmoved into north-central Oklahomawhere
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it gradually dissipated as it entered cooler, more stable

air resulting from earlier thunderstorms in Arkansas

(SPC 2012a).

3. Data and methods

Two experiments are conducted that include a 1-h

assimilation period and 3-h forecasts initialized from the

final ensemble mean analyses (EXP_S_M_3_5/EXP_S

and EXP_D_M_3_5/EXP_D). These two experiments

differ by the MP scheme used during the DA and fore-

cast period. Additional tests were conducted during the

assimilation period by varying the covariance inflation

options and the assumed observation error in order to

determine the optimal DA configurations. All experi-

ments are summarized in Table 1. The experiment names

use one letter to identify the type of microphysical

scheme used (S for the SM MP scheme and D for the

DM MP scheme), followed by one letter to indicate the

type of spread maintenance used during the data assim-

ilation period (M for multiplicative covariance inflation,

A for additive perturbation, or R for covariance relaxa-

tion) and two numbers to indicate the magnitude of as-

sumed observation errors of radial velocity (Vr) error

(in m s21) and reflectivity (Z) error (in dBZ). Details of

the experiments are given in the following section.

FIG. 1. (a) The 300-mb wind barbs and geopotential height contours (60-dam interval) from

the Plymouth State Weather Center and the (b) 850-mb wind barbs, height contours (60-dam

interval), temperature (red dashed lines at 28C interval), and dewpoint (color fill, 8C) analysis
from the Storm Prediction Center (SPC) at 1200 UTC 8 May 2007.
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a. Model and general experiment setup

The Advanced Regional Prediction System model

(ARPS; Xue et al. 2000; Xue et al. 2001; Xue et al. 2003)

is used as the prediction model in this study. Briefly,

ARPS is a fully compressible, nonhydrostatic, three-

dimensional atmospheric model suitable for NWP from

regional to convective scale. ARPS predicts the three

wind components (u, y, and w) as well as potential tem-

perature (u), pressure (p), water vapor mixing ratio (qy),

and severalMP state variables that vary depending on the

MP option used. For SM MP schemes, only cloud water

(qc), rainwater (qr), ice (qi), snow (qs), graupel (qg), and/or

hail (qh) mixing ratios are predicted. When a DM MP

scheme is used, the total number concentrations of cloud

water (Ntc), rainwater (Ntr), ice (Nti), snow (Nts), grau-

pel (Ntg), and hail (Nth) are predicted in addition to the

mixing ratios.

The model configurations used are largely inherited

from SXJ11. The model domain has 2593 2593 43 grid

FIG. 2. Radar reflectivity (dBZ) observation mosaic from KAMA, KDYX, KFWS, KLBB,

KTLX, and KVNX at 0200 UTC approximately at 2 km AGL covering the full experimental

domain. Note the locations of the leading convective line, LEV, leading stratiform region,

and trailing stratiform regions. The locations of all radars used in this study are also

included.

TABLE 1. List of experiments. Information on the base experiments (DA experiments), forecast experiments, and sensitivity test

configurations is included. The table lists the MP scheme used during the assimilation period (DA) and the forecast period (F);

whether multiplicative inflation (M), additive perturbation (A), or covariance relaxation (R) is used; and what the observation

errors are.

Expt SM vs DM scheme

Inflation method Observation error

M A R Vr error Z error

EXP_S_M_3_5/EXP_S SM 1.25 — — 3 5

EXP_D_M_3_5/EXP_D DM 1.25 — — 3 5

EXP_D_M_1_2 DM 1.25 — — 1 2

EXP_D_MA_2_3 DM 1.25 60.5 u,y,u — 2 3

EXP_D_R_3_5 DM N.A. — 0.5 3 5
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points with a horizontal grid spacing of 2 km and

stretched vertical grid spacing with a minimum vertical

spacing of 100m at the surface and an average vertical

spacing of 500m. The model top is located 20 km

above the surface. The domain covers much of the Texas

Panhandle, northwest and north-central Texas, and west-

ern and central Oklahoma (see Fig. 2). Full model physics

are used (Xue et al. 2001), including the National

Aeronautics and SpaceAdministration (NASA)Goddard

Space Flight Center long- and shortwave radiation pa-

rameterization, a two-layer soil model, surface fluxes

parameterized using predicted surface temperature and

water content, and a 1.5-order turbulent kinetic energy

(TKE)-based subgrid-scale turbulence parameteriza-

tion, along with high-resolution terrain. As in SXJ11,

an initial 1-h-long deterministic ‘‘spinup’’ forecast is run

from the National Centers for Environmental Predic-

tion (NCEP)NorthAmericanMesoscaleModel (NAM)

analysis at 0000–0100 UTC 9 May 2007. Radar data are

then assimilated between 0100 and 0200 UTC at 5-min

intervals. Finally, a 3-h deterministic forecast is initial-

ized from the final ensemblemean analysis at 0200UTC.

Figure 3 contains a diagram of the experiment period.

For the entire period, lateral boundary conditions are

provided by the NCEP NAM 6-hourly analyses and in-

tervening 3-h forecasts. The key difference of this study

from that of SXJ11 is the use of different MP schemes,

including a DM scheme, within the EnKF DA and the

subsequent prediction; details on the EnKF DA will be

provided later in section 3d. Additionally, the inclusion

of forecasts expands further on previous work by JXT12

that considered MM MP schemes and the estimation of

polarimetric variables for a real supercell case but did

not include any forecasts.

b. Radar data

Data are assimilated from 5 WSR-88D S-band ra-

dars: KTLX (Oklahoma City/Twin Lakes, Oklahoma),

KVNX (Vance Air Force Base, Oklahoma), KAMA

(Amarillo, Texas), KLBB (Lubbock, Texas), and KDYX

(Abilene, Texas).Unfortunately, level-II data fromKFDR

(Fredrick,Oklahoma) within the region are not available

for this case. Data are also assimilated from the four

radars of the X-band network run by the Engineering

Research Center for Collaborative and Adaptive Sens-

ing of the Atmosphere (CASA; McLaughlin et al. 2009)

network: KCYR (Cyril, Oklahoma), KSAO (Chickasha,

Oklahoma), KLWE (Lawton, Oklahoma), and KRSP

(Rush Springs, Oklahoma), giving a total of nine radars

(Fig. 2). Observations are interpolated horizontally onto

the model grid but left at the same vertical location

(Xue et al. 2006) and interpolated from the times of scan

elevations to the assimilation times (SXJ11). OnlyZ and

Vr observations are used for data assimilation. In addi-

tion to those radars used for assimilation, polarimetric

observations from the National Severe Storms Labo-

ratory’s dual-polarimetric S-band research radar, KOUN

(Norman, Oklahoma), are used for the independent

verification of the simulated polarimetric variables.

More detailed information on the radars is summarized

in Table 2.

Quality control procedures are included in the ARPS

package and are performedon theWSR-88DandKOUN

observations before use. These include despeckling and

the removal of ground clutter for Z and velocity deal-

iasing (unfolding; Brewster et al. 2005). Additionally, for

the KOUN polarimetric data used for verification, dif-

ferential reflectivity (Zdr) and specific differential phase

(Kdp) values are not considered when cross-correlation

coefficient (rhv) is less than 0.8 since themodel results do

not simulate effects from nonmeteorological scatterers.

These data are interpolated to the time of verification at

each elevation from the previous and following volumes.

CASA data are subject to quality control during signal

processing, including the removal of ground clutter and

velocity dealiasing as well as range overlay suppression

(removal of range-ambiguous data; Bharadwaj et al.

2010). Attenuation correction is also performed on the

CASA radar data.

FIG. 3. Diagram of initial spinup forecast, the EnKF data assimilation cycles, and subsequent

forecast for the experiments.

TABLE 2. Summary of the characteristics of radars used for

assimilation.

WSR-88D CASA

Wavelength (cm) 10.0 (S band) 3.19 (X band)

Max range (km) 459 40

Peak power (kW) 750 25

Pulse repetition

frequency (KHZ)

0.3–1.3 #3.33

3-dB beamwidth (8) 0.95 2

Rotation rate (8 s21) 36 Variable up to 120

Antenna gain (dB) 45 38

Antenna diameter (m) 8.5 1.5

146 MONTHLY WEATHER REV IEW VOLUME 142



c. Base experiments using single- and double-moment
microphysics schemes

As previously introduced, experiments are conducted

using SM or DM MP schemes during the assimilation

and forecast periods (Table 1). EXP_S_M_3_5 and

EXP_D_M_3_5 are two base DA experiments, using

SM andDMMP schemes during the assimilation period,

respectively.

EXP_S_M_3_5 is the same as CNTL of SXJ11 in

which a combination ofmultiple SMMP schemes is used

in the EnKF ensemble to increase ensemble spread. The

40-member ensemble includes 16 Lin et al. (1983) (LIN)

members, 16 Weather Research and Forecasting Model

(WRF) single-moment 6-class microphysics scheme

(WSM6; Hong and Lim 2006) members, and 8 simplified

NWP explicit MP (NEM)members (Schultz 1995). Fewer

NEM members are included because the scheme was

shown to have a higher root-mean-square innovation

(RMSI) during assimilation in comparison to the more

complex LIN andWSM6 schemes in Snook et al. (2012).

The use of the LIN and WSM6 schemes, which include

hail and graupel categories, respectively, helps enhance

the physics diversification within the ensemble. The dif-

ferences between these species including particle den-

sity andN0 are considered in theZ observation operator

during assimilation. The LIN scheme, shown to perform

the best in Snook et al. (2012), is used for the free

forecast starting from the final ensemble mean analysis

at 0200 UTC. The values of the fixed intercept param-

eters used in the SM schemes are the same as in SXJ11:

8 3 105m24 for rain (N0r), 3 3 106m24 for snow (N0s),

and 4 3 104m24 for hail (N0h). Additionally, hydrome-

teor densities are fixed at 917 kgm23 for ice, 100 kgm23

for snow, and 913 kgm23 for hail. The N0r used is re-

duced by a factor of 10 compared to the default value of

the LIN scheme following Snook and Xue (2008), who

found that the original value forN0r led to unrealistically

intense surface cold pools resulting from excessive evap-

orative cooling.

The DM scheme used is that of Milbrandt and Yau

(2005a,b, i.e., the MY scheme). During the EnKF as-

similation period, the shape parameters for hail and rain

are varied between 0 and 2 among the ensemble mem-

bers. Among the 40 members, the rain shape parameter

is increased from 0.05 to 2.0 in increments of 0.05, while

the hail shape parameter is decreased from 1.95 to 0.0 in

increments of 0.05. Varying the shape parameter within

the EnKF members has been shown to help increase the

ensemble spread and improve performance when un-

certainties exist with the parameter values (Xue et al.

2010; JXT12). The shape parameter is set to 0 during the

free forecast period. In all DM experiments, the graupel

hydrometeor category is turned off as in JXT12; it was

found in previous idealized supercell simulations that

removing graupel did not significantly impact storm evo-

lution using the MY DM scheme.

d. Sensitivity experiments

The EnKF algorithm used is the ensemble square root

filter (EnSRF) originally developed by Whitaker and

Hamill (2002). Following SXJ11, the initial 40-member

ensemble is created by adding random, smoothed,

Gaussian perturbations to the initial spinup forecast at

0100 UTC. The smoothing method used is that of Tong

and Xue (2008) with a correlation length scale of 8 km in

the horizontal and 5 km in the vertical. The perturba-

tions are added over the entire domain to u, y, and w

with a standard deviation of 2m s21, and to u with a

standard deviation of 2K. This differs from SXJ11,

where these perturbations were confined to the areas of

existing precipitation. Perturbations are also added to

the mixing ratios of water vapor and all hydrometeor

species with a standard deviation of 0.001 kg kg21, but

are confined to grid points within 1 km of observed

radar echoes exceeding 5 dBZ. The latter helps pre-

vent introducing spurious precipitation into the initial

ensemble.

Level-II Z and Vr data are assimilated from all nine

WSR-88D and CASA radars every 5min within the 1-h

assimilation window. The first EnKF analysis occurs at

0105 UTC when the 5-min ensemble forecasts from the

initial perturbed ensemble are used within the EnKF.

The covariance localization radius is 6 km for bothZ and

Vr observations in the horizontal and vertical and the

localization is based on the correlation function of

Gaspari and Cohn (1999). For the base or control con-

figurations, the observation error standard deviations

are assumed to be 3m s21 for Vr and 5 dBZ for Z, which

are larger than the 1m s21 and 2 dBZ used in SXJ11. The

larger values are believed to better reflect the true errors

of the observations used, and are also found to produce

ensemble spreads that are more consistent with the er-

rors of the analyzed fields, as shown by sensitivity ex-

periments to be discussed later.

Following SXJ11, to maintain ensemble spread, mul-

tiplicative covariance inflation (Anderson 2001) with

a factor of 1.25 is applied to the prior ensemble of the

base experiments wherever Zob . 20 dBZ (Xue et al.

2006). Tong and Xue (2005) showed that assimilating

clear air Z can help suppress spurious convection.

Therefore, all values of Z are assimilated for the WSR-

88Ds used. For CASA radars, even though attenua-

tion correction was used, only Z values above a

threshold of 20dBZ are assimilated because of our in-

ability to distinguish between areas of clear air return
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and completely attenuated regions (SXJ11). For all ra-

dars, values of Vr are assimilated only in regions where

Zob . 20 dBZ.

Sensitivity experiments were performed to determine

the best covariance inflation configurations and the ob-

servation error specifications (Table 1). The covariance

inflation includes different combinations of multiplica-

tive covariance inflation, additive perturbation, and co-

variance relaxation (Zhang et al. 2004). These are indicated

by characters M, A, and R (denoting the three inflation

methods), respectively, in experiment names, such as

EXP_D_M_1_2, EXP_D_MA_2_3, andEXP_D_R_3_5

in Table 1. The multiplicative inflation factor is 1.25

when used, guided by the earlier study of SXJ11. The

additive perturbations used were the smoothed, ran-

dom, Gaussian perturbations created in the same way as

the initial random perturbations described at the be-

ginning of this subsection and added to the ensemble

analyses during each EnKF cycle. The standard devi-

ations of the perturbations for u and y wind components

and potential temperature u were 0.5m s21 and 0.5K,

respectively. Other variables were not perturbed. When

covariance relaxation (Zhang et al. 2004) was employed

in EXP_D_R_3_5, a relaxation factor of 0.5 was used.

All sensitivity experiments used a DM MP scheme.

Sensitivity experiments EXP_D_M_1_2 and EXP_D_

MA_2_3 assumed 1 and 2m s21 error for Vr, and 2- and

3-dBZ error forZ, respectively, as indicated by numbers

in their names. Additional sensitivity experiments ex-

amining other combinations of values were also tried,

but are not described here. The purpose of these ex-

periments is to determine the optimal EnKF configura-

tion (i.e., producing innovation-based ensemble spreads

that are consistent with the analysis and forecast errors,

given the observation error estimates).

The innovation consistency ratio (Dowell et al. 2004)

is used to assess the ensemble consistency. The ratio is

defined as the ratio between the sum of observation

error variance and ensemble forecast variance in the

observation space, to the RMSI of the ensemble mean

forecast. For a well-behaved ensemble system, this ratio

should be close to 1 (e.g., Dee 1995).

Figure 4 shows the consistency ratios for the forecasts

during the assimilation period for the sensitivity exper-

iments as well as base experiment EXP_D_M_3_5 when

calculated against KTLX and KVNX data; these two

radars are chosen because they cover a majority of the

storm system. EXP_D_M_1_2, which uses the lowest

observation error values, is severely underdispersive

through most of the assimilation period. The additional

FIG. 4. Consistency ratios during the assimilation period (0105–0200 UTC) of experiments

EXP_D_M_3_5, EXP_D_M_1_2, EXP_D_MA_2_3, and EXP_D_R _3_5 for (top) KTLX and (bottom)

KVNX (a),(c) Z and (b),(d) Vr. The time is in seconds starting at 0000 UTC. The optimal value of 1 is

indicated by the black dotted line.

148 MONTHLY WEATHER REV IEW VOLUME 142



additive inflation in EXP_D_MA_2_3 together with

somewhat larger observation errors, and the use of the

relaxationmethodwith a factor of 0.5 combined with the

larger observation errors in EXP_D_R_3_5 lead to sig-

nificant (values over 2) overdispersion at times in terms

of Z and/or Vr. Qualitative analyses of their results

showed no overall improvement in comparison to the

configurations of experiment EXP_D_M_3_5; there-

fore, the settings of EXP_D_M_3_5 are used in the base

experiments. For the remainder of this paper we will

focus on the results of the base experiments EXP_S_M_

3_5 and EXP_D_M_3_5 and their respective forecasts.

The symbols in the experiment names indicating the

inflation methods and observation error magnitudes will

be omitted for convenience and the experiments will

simply be referred to as EXP_S and EXP_D (Table 1).

4. Results of control experiments

In this section, the results from the base DA experi-

ments, EXP_S and EXP_D, as well as the deterministic

forecasts initialized from the corresponding ensemble-

mean analyses (Table 1) are discussed. The results of the

DA and the final analyses will be examined first, fol-

lowed by the forecast results.

a. Results of EnKF analyses

Figure 5 shows a radar mosaic of Z observations from

WSR-88D radars KAMA, KDYX, KFWS, KLBB,

KTLX, and KVNX at 0200 UTC (Fig. 5a), as well as the

0200 UTC ensemble mean analyses of Z from EXP_S

and EXP_D (Figs. 5b,c) at approximately 2 km above

ground level (AGL). Both analyses have a reasonably

good fit to observed Z and capture the three main features

of the system: the leading convective line, the leading

stratiform region, and the trailing stratiform region (as

defined in Fig. 2). The precipitation structure and in-

tensity in both analyses is generally similar; Z values fall

within 10 dBZ of the observations throughout the MCS.

More specifically, the analyzedZ is weaker (stronger) in

EXP_S (EXP_D) than in the observations in the strat-

iform regions. Analyzed Z was also noted to be slightly

overestimated in some cases when using the MY DM

scheme in JXT12. On the other hand, EXP_D shows

some improvement, including better retrieval of the

intensity of the leading convective line, especially the

southern end, as well as its east–west extent. Some spu-

rious convection develops in the southeast corner of the

domain; however, it should not affect the main MCS

much.

The performance of the EnKF experiments is evalu-

ated by examining the ensemble spread and the fit of the

ensemble mean analyses to the observations in terms of

the RMSIs. Figure 6 shows the RMSIs and ensemble

spread for Z and Vr for EXP_S and EXP_D; the RMSIs

are calculated against KTLX, KVNX, and KDYX ra-

dars, which have the best coverage of the MCS late

in the assimilation period. EXP_D has slightly lower

RMSIs for KTLX and KVNX compared to EXP_S,

while the forecast error growth (in terms of RMSI) is

faster in EXP_S than in EXP_D for all three radars.

Error growth is faster for both experiments for KDYX;

this is not surprising considering that KDYX mostly

covers the trailing stratiform region, which appears to be

the most poorly analyzed area in both experiments (see

Fig. 5). The prior spread in EXP_S forecasts is higher

andmore consistent with theRMSI values due to the use

of multiple MP schemes within the ensemble. However,

FIG. 5. (a) Reflectivity (dBZ) observationmosaic (a) fromKAMA,KDYX,KFWS,KLBB,KTLX, andKVNXat approximately 2kmAGL.

Analyzed reflectivity and horizontal wind vectors (m s21) at 0200 UTC plotted at grid level 10 (about 2 km AGL) for (b) EXP_S and

(c) EXP_D. The horizontal wind vectors are plotted every 15 grid points (30 km).

JANUARY 2014 PUTNAM ET AL . 149



the spread in EXP_D is still significant despite the use of

a single MP scheme; this may be because of the higher

number of degrees of freedom (more variables) in-

volved in a DM scheme and the use of varying shape

parameters within the DM scheme of different mem-

bers. Such differences between SM andDM schemes are

similar to those found in JXT12 for a supercell case. The

Vr RMSIs are consistently larger than the ensemble

spread but both statistics are very similar between the

two experiments for all three radars. The difference in

MP scheme does not appear to have any significant

implication on the filter’s handling of the wind fields.

Such underdispersion has been noted in real data cases

without leading to filter divergence (Dowell andWicker

2009; Aksoy et al. 2009; JXT12).

Verification of the model MP state against observa-

tions poses additional challenges. The Z measurements

alone do not provide adequate information on the true

MP state of the atmosphere; the same observed value of

Z can correspond to many different hydrometeor PSDs.

For example, within a given radar volume, the same

value of Z can result from a large number of moderately

sized raindrops or a smaller number of larger raindrops.

Additionally,Z alone does not give a full indication as to

the types of hydrometeors present. For instance, while

the presence of hail can often be inferred because of its

intense Z values (values greater than 50 dBZ), the pro-

portions of rain and hail in a rain–hail mixture cannot be

directly inferred from observations of Z. For the above

reasons, comparing the analyzed Z fields from the two

experiments in Fig. 5 is not sufficient to judge the quality

of the MP state estimation. Quantities that offer in-

dependent information from the directly assimilated

variables will be needed to provide more reliable infor-

mation on the estimated states.

For the MP state variables, polarimetric radar vari-

ables can provide valuable independent information.

Jung et al. (2008, 2010) developed a polarimetric radar

simulator that can be used as the observation operators

in DA and for model verifications. The simulator

FIG. 6. Average rms innovation and ensemble spread during the assimilation period for EXP_S and EXP_D for reflectivity (dBZ)

calculated against (a) KTLX, (b) KVNX, and (c) KDYX observations as well as for (d)–(f) radial velocity. Time of assimilation is given in

seconds based on the start of the experiment at 0000 UTC (0105–0200 UTC).
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estimates Z at horizontal and vertical polarizations (Zh,

Zy), differential reflectivity (Zdr), specific differential

phase (Kdp), and the polarimetric cross-correlation co-

efficient (rhv) from the MP state variables in the model.

When combined with polarimetric measurements, this

simulator enables indirect verification of the model MP

state. For example, Zdr is proportional to the median

diameter of PSDs and, therefore, can be used to

evaluate the estimates of model PSDs. In this paper, we

employ the above polarimetric radar simulator to help

evaluate the model analyses and forecasts.

Figure 7 shows the Z, Zdr, Kdp, and Vr observations

from the 0.58 tilt of KOUN together with the corre-

sponding simulated variables from the 0200 UTC en-

semble mean analyses from EXP_S and EXP_D. This

lowest tilt of the radar is chosen for evaluation because

FIG. 7. (a) Reflectivity (dBZ), (b) differential reflectivity (dB), (c) specific differential phase (8 km21), and

(d) radial velocity (m s21) at a 0.58 tilt from KOUN as well as the ensemble mean final analysis at 0200 UTC for

(e)–(h) EXP_S and (i)–(l) EXP_D. The black circle in (d) indicates the location of the LEV in the observations with

additional features of interest in (h) and (l) indicated by arrows.
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the polarimetric signatures sought, such as Zdr patterns

associated with particle size sorting, are most evident

near the surface. Additionally, the current version of the

polarimetric simulator used is less robust for ice species

with the use of the Rayleigh approximation, so only the

rain species is considered. As in themosaics, the location

and intensity of Z in the leading convective line com-

pares reasonably well with observations in both ex-

periments. However, the presence of relatively large

raindrops in the leading convective line, implied by high

Zdr, is better simulated in EXP_D than in EXP_S. In

EXP_S, the Zdr values are too high everywhere mainly

because of the reduced N0r value used (Fig. 7f); there-

fore, the leading convective line is less distinguished

from the stratiform regions by containing comparatively

large drops. As noted in JXT12, when a SMMP scheme

is used,Z andZdr aremonotonically related to qr and the

mean size of the rain DSDs so that a decrease in simu-

lated Z is always accompanied by a decrease in simu-

lated Zdr. Thus, in EXP_S there is a general one-to-one

correspondence between Z and Zdr for pure rain so that

Zdr is not truly independent of Z. In contrast, high Zdr

cores are found to be confined in the convective line

in EXP_D, although their values are somewhat over-

estimated (Fig. 7j). Excessive size sorting associated

with the fixed shape parameter within a two-moment

scheme (Milbrandt and Yau 2005a) is thought to be

responsible for the overly high Zdr values. The low Zdr

observations in this case and in previous studies suggest

that stratiform precipitation contains at most moder-

ately sized drops, while high Zdr observations indicate

the leading convective line contains the largest drops

in the system (Zhang et al. 2008). Thus, it is expected

that the Zdr values in the leading convective line should

be noticeably higher compared to the stratiform region

due to the overall larger drop sizes there.

The qr and N0r fields, displayed in Fig. 8, further

demonstrate how the DM scheme used in EXP_D rep-

resents the DSDs in different regions. ForN0r, a scale of

10 log10 is used to reduce the dynamic range. Contours of

Z are overlaid on 10 log10 (N0r) at 20-dBZ intervals to

identify changes in precipitation intensity. The constant

N0r of the SM scheme used in EXP_S corresponds to 59

on the 10 log10 scale. The results are plotted at the sur-

face where the difference between two analyses is

greatest as a result of the differences in the sedimenta-

tion and size sorting processes in the schemes. There are

several qrmaxima in Fig. 8a that match well with regions

of high Z (.40 dBZ), as indicated by the letters A, B,

and C in Fig. 8b. Despite the higher qr in the leading

convective line, the N0r values are lower in this area

compared to those in the leading stratiform region,

suggesting larger rain drops in the former than in the

latter. The N0r values in both the leading and trailing

stratiform precipitation regions in EXP_D are similar

to the fixed value of EXP_S, but are lower in regions

of convective precipitation. Variation of N0r in EXP_D

allows for the growth of large drops in more intense

FIG. 8. Surface (a) rainwater mixing ratio (g kg21) and (b) intercept parameter values (m23mm21, 10 log10 scale) from the EXP_D final

ensemblemean analysis. Reflectivity contours for 20 and 40 dBZ are overlaid on (b). The lettersA, B, and C in (b) indicate the locations of

high rainwater mixing ratio from (a). The fixed intercept parameter value in EXP_S corresponds to 59 on the 10 log10 scale.
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convective precipitation as smaller drops are removed,

replicating the process of collision–coalescence droplet

growth. Similarly, the DM scheme allows for an increase

in the number of smaller drops in the stratiform region

without an increase in larger drops; this would not be

possible using a fixed intercept parameter.

Figure 7 also contains Kdp. The locations of the

greatest Kdp values are similar to the observations in

both EXP_S and EXP_D, being in the vicinity of the

heavier precipitation in the leading convective line

where the liquid water content is highest. The values in

EXP_Dare slightly higher than in EXP_S, which follows

the proceeding discussion of the PSDs; the lower N0r

given the same qr indicates a greater number of larger

drops within the PSD regime to which Kdp is more

sensitive. The Kdp values are lower than the observa-

tions in both cases, however, which indicates that the

amount of rain precipitation is underestimated in both

analyses. Though the amount and intensity of precip-

itation appears similar between the model and obser-

vations due to similar Z values, hail is overestimated

during the forecast and thus a portion of the total pre-

cipitation in both model results contains a hail contri-

bution. The Z is sensitive to both rain and hail and

different combinations may produce similar Z values, as

in this case between the model and observation results,

butKdp is not sensitive to hail and thus demonstrates the

difference in contribution from both species to the

model results and the observations. JXT12 noted a sim-

ilar high bias in hail with the MY DM scheme. The hy-

drometeor categories present in the observations were

investigated using the fuzzy logic hydrometeor classifi-

cation scheme of Park et al. (2009) (not shown). The

results indicated that there was little hail observed.

The Vr values for both experiments are similar and

differ from the observations in the same areas. Both fail

to fully resolve the coupling of inbound and outbound

velocities that define the circulation at the center of the

vortex (indicated by the circle in Fig. 7d) and also con-

tain a notably stronger area of outflow winds along the

eastern edge of the northern portion of the leading

convective line (indicated by arrows in Figs. 7h,l). The

outflow in the observations along the leading convective

line south of the vortex center is more consistent while

both experiments contain a series of bands of outflow

winds westward of the noted initial strong outflow along

the eastern edge. Nevertheless, the overall wind field is

captured relatively well by the filter.

Since KOUN is not used during the assimilation pe-

riod, its observations provide independent information

for observation-space diagnostics of Z, Vr, and the po-

larimetric variables used for qualitative microphysics

verification above. Table 3 contains the correlation

coefficients for Z, Zdr, Kdp, and Vr calculated against

KOUN at the time of the final ensemble mean analysis

(0200UTC). Values forZ andZdr are higher for EXP_D,

consistent with the improvement noted in the qualitative

analysis above. Correlation coefficient values for Kdp are

somewhat higher in EXP_S but aremore similar between

the two experiments compared to Zdr, where EXP_D

shows notable improvement. Correlation coefficient values

for Vr are similarly high in the two experiments, as ex-

pected from the qualitative similarity in Figs. 7d,h,l.

b. Results of forecasts

As described in section 3c, two 3-h-long deterministic

forecasts are made from the 0200 UTC final ensemble

mean analyses of EXP_S and EXP_D: a forecast

starting from the final analysis of EXP_S using the LIN

SMMP scheme and a forecast from the final analysis of

EXP_D using the same MY DM MP scheme as during

assimilation.

1) VERIFICATION OF REFLECTIVITY FORECASTS

The convective system initially loses its linear char-

acteristics and becomes predominantly cellular in the

EXP_S forecast. Figure 9 shows the observedWSR-88D

Zmosaic and the forecast results of EXP_S and EXP_D

valid at 0230 (30-min forecast) and 0400 UTC (2-h

forecast). At 0230 UTC, there are many smaller, more

isolated convective cores in EXP_S instead of more

continuous regions of stratiform precipitation around

the LEV and in the trailing line. This also occurs with the

convection in the leading convective line. Such a be-

havior persists through the first hour before a more or-

ganized system redevelops. A similar disorganization in

the initial forecast was noted in Hu et al. (2006), where it

was suggested to be a result of the model microphysics

adjusting to the model dynamics. Additionally, Luo

et al. (2010) found that the strength of convective up-

drafts was overestimated in model simulations when

using a SM MP scheme. In comparison, the EXP_D

forecast maintains a better resemblance to the obser-

vations throughout the first hour of the forecast, specif-

ically in the leading stratiform region. The areal coverage

of moderate stratiform precipitation on the western and

TABLE 3. Correlation coefficient statistics for the ensemblemean

final analyses of EXP_S and EXP_D calculated against KOUN

observations.

Variable EXP_S EXP_D

Z 0.5638 0.6218

Vr 0.8626 0.8531

Zdr 0.4295 0.4853

Kdp 0.5765 0.5378
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northeastern sides of the leading stratiform region is

larger compared to the SM forecasts. Both forecasts

handle the trailing stratiform region poorly despite

capturing the coverage and intensity of the precipita-

tion relatively well at the end of the assimilation period

(0200 UTC).

The MCS is well developed by the second hour of the

forecast in both experiments (Figs. 9d,f). The 2-h fore-

cast ofZ in EXP_D shows an improvement over EXP_S

in terms of the precipitation coverage in the leading

stratiform region. While the general location of the

convective system is a good match with observations in

these cases, the precipitation coverage is considerably

underpredicted by EXP_S on both the east and west

sides of the LEV. There is also notable spurious pre-

cipitation on the west side of the LEV. Underprediction

of the geographic extent of the stratiform regions in

EXP_S can be largely attributed to the breakdown of

convection organization in the early forecast period

(Fig. 9c). This includes isolated regions of intense Z that

represent convective cores rather than stratiform pre-

cipitation in the trailing stratiform region. Although the

precipitation intensity is overpredicted in EXP_D, the

system is well organized along the entire extent of the

line including the consistent and smooth comma-head-

shaped shield of stratiform precipitation on the north

side of the system and a lack of spurious convective

precipitation in the trailing stratiform region. Neither of

the two cases forecasted the development of new con-

vection southeast and southwest of the main line; this

convection may have been better captured if it occurred

during the radar data assimilation period, or with amore

accurate analysis and prediction of the mesoscale envi-

ronment, which depends more on nonradar observations.

EXP_D also has an improved leading convective line

in comparison to EXP_S. EXP_S has limited leading

precipitation that is farther west and less intense than

observed; it is in the same location as and difficult to

differentiate from the trailing stratiform region. Although

all forecasts overestimate the intensity of the precipitation

on the east side of the LEV, it is most significant in EXP_S

with some values over 65 dBZ (Fig. 9d), continuing the

trend seen in the early period of the forecast. In EXP_D,

Fig. 9f, the location of the northern half of the line

matches the observations very well while the southern

half arcs more southward compared to observations.

FIG. 9. As in Fig. 5, but at (a) 0230 and (b) 0400 UTC. (c),(d) The 30-min and 2-h forecast reflectivity, respectively, and horizontal wind

field (m s21) for EXP_S and (e),(f) EXP_D. The sub-domain in (b) is referenced in Fig. 14 and the line segments A——B in (d),(f) are

discussed in Fig. 11.
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Additionally, the distinction between the leading con-

vective line and the beginning of the trailing stratiform

region observed is captured better in EXP_D (noted by

the arrow in Fig. 9f). There is also a small transition zone

(Biggerstaff and Houze 1991) of light (less than 35 dBZ)

precipitation between the intense convective precip-

itation and more moderate stratiform precipitation be-

hind the northern extent of the line.

To see how well the model is predicting the distribu-

tion and intensity of precipitation within the convective

system, histograms of the Z values from every model

grid point over the full experiment domain are con-

structed for the observedZmosaic and for each forecast

(Fig. 10); the mosaic is on the samemodel grid. The data

plotted are separated into 1-dBZ bins for values greater

than 15 dBZ.

Both experiments contain values that extend higher in

intensity than the observations. However, there is a no-

table difference in the frequency of values in the 30–

35-dBZ range; EXP_S has a higher occurrence of that

range than eitherEXP_Dor the observations. ForEXP_S,

an analysis of the vertical distribution Z revealed that

the noted convective cores throughout the stratiform

regions increased the amount of moderate precipitation

falling (not shown). In contrast, EXP_D has higher

frequencies for values in the 15–25-dBZ range and rel-

atively lower frequencies for values between 30 and

35 dBZ, giving an overall distribution that is closer to

that of the observations. The increase in weak Z values

in EXP_D is due to the increased coverage of lighter

stratiform precipitation on the east and west sides of the

LEV. On the other hand, EXP_S consistently over-

estimates (underestimate) Z greater (lower) than about

30 dBZ. It should be noted that overestimation of these

values in EXP_S was not as significant in this case as in

SXJ11. The introduction of mesoscale perturbations in

the ensemble creation is the sole difference between

EXP_S and the control experiment of SXJ11, and ap-

pears to have been beneficial. The significantly lower

frequency of the low Z values in all three cases is likely

connected to both overestimation of intensity of the

observed light precipitation and underestimation of the

geographical extent of the trailing stratiform precip-

itation; the absence of newly developed weaker precip-

itation in the domain should have also contributed.

The improvedmaintenance of the stratiform region in

EXP_D (Figs. 9e,f) is similar to the findings of Luo et al.

(2010) and Morrison et al. (2009), where the develop-

ment of trailing stratiform precipitation in quasi-linear

MCSs was studied using DM MP schemes. Luo et al.

(2010) found that the improved development of strati-

form precipitation was related to the increase in the

detrainment of ice hydrometeors from the convective

towers. Figure 11 shows vertical cross sections of qs and

qi through the leading convective line and trailing

stratiform precipitation of EXP_S and EXP_D, with

FIG. 10. Reflectivity frequency histograms plotted for 1-dBZ bins for (a) theKAMA,KDYX,

KFWS, KLBB, KTLX, and KVNX radar reflectivity observation mosaic (on the same model

grid) and for 2-h forecast reflectivity from (b) EXP_S and (c) EXP_D.
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the cross-section locations indicated in Fig. 9d for EXP_S

and Fig. 9f for EXP_D. The vertical distributions of qs
and qi show that there is a dramatic increase in the

transport of frozen precipitation over the stratiform

region from the leading convective towers in EXP_D

compared to EXP_S.

The distributions of the surface qr, u, and wind fields in

EXP_S and EXP_D help explain the improved pre-

cipitation structure of the convective system when using

a DMMP scheme (Fig. 12). High qr values, indicative of

more intense convective precipitation, are distributed

around the LEV inEXP_S rather than forming a leading

line ahead and to the southeast of the LEV as in EXP_D

(Figs. 10a,b). Figures 10c,d contain the surface u and

wind fields as well as an overlay of the 0.5 g kg21 qr
contours to identify the location of more intense pre-

cipitation. A local temperature minimum can be seen

behind (on the west side of) the leading convective line

in EXP_D, while in EXP_S the temperatures are higher

and less consistent in coverage. The distribution of the

temperature minimum in EXP_D matches the typical

conceptual model of a convective line in an asymmetric

system (Fritsch and Forbes 2001) where the use of the

DM scheme allows for the size sorting of smaller drops

on the backside of the convective line. The higher

number of small drops leads to increased evaporative

cooling forming a stronger cold pool on the northwest

side of the line. The outflow from this cool, sinking air is

seen in the wind field as it spreads out east and westward

resulting in convergence on the eastern side of the line.

In turn, the convergence helps maintain more intense

precipitation at the leading edge of the system. The con-

vective cores remain sporadically distributed in EXP_S

without a focused area for new convective development.

Additionally, high qr convective cores are seen within

both the leading and trailing stratiform regions in EXP_S

FIG. 11. Vertical cross sections of (a) snow mixing ratio (g kg21) and (b) cloud ice mixing ratio (g kg21) for EXP_S

and (c),(d) EXP_D. The locations of the cross sections are noted in Fig. 9d for EXP_S and Fig. 9f for EXP_D and

extend from point A to point B.
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in contrast to the consistently lower values seen in

EXP_D that help highlight the distinction in the precip-

itation development in the leading convective line and

the stratiform regions as seen in the Z mosaics.

Surface temperature values are evaluated compared

to OklahomaMesonet observations in Fig. 13. Two time

series plots are created for the period 20min before and

after 0400 UTC (time of Fig. 12) to capture the passage

of the system. The Washington station (A in Fig. 12) is

chosen because of its location along the leading line

while the Ft. Cobb station (B in Fig. 12) is chosen be-

cause of its location under the stratiform precipitation

on the back side of the system, well within the cold pool.

Even though the values are not an exact match, EXP_D

follows the trends seen in the Mesonet observations

better in both cases. The surface temperature in EXP_D

decreases along with the observations as the convective

line passes the station while the surface temperature in

EXP_S remains relatively unchanged. The lack of cooler

air at the surface limits the amount of lift to maintain the

leading convective line in EXP_S. Additionally, the

temperature within the cold pool at the Ft. Cobb station

remains unchanged in both EXP_D and the observa-

tions while the temperature rapidly increases in EXP_S.

It was noted in Fig. 12b that the surface temperature

pattern was less consistent compared to EXP_D and

FIG. 12. Two hour forecast surface (a) rainwater mixing ratio (g kg21) and (b) potential temperature (K) and horizontal wind field

(m s21) for EXP_S and (c),(d) EXP_D. The 0.5 g kg21 rainwater mixing ratio contour is overlaid on the potential temperature plots.

Horizontal wind vectors are plotted every 5 grid points (10 km).
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associated with the relatively poor system structure seen

in EXP_S.

2) QUANTITATIVE VERIFICATION OF

REFLECTIVITY AND POLARIMETRIC

VARIABLE FORECASTS

Forecast error statistics, such as the equitable threat

score (ETS) and reflectivity correlation coefficient

(RCC), are often used to quantitatively assess quanti-

tative precipitation forecast (QPF) performance. The

ETS, as applied to Z, calculates the number of hits and

misses of model forecast Z compared to observed Z

at each model grid point given a certain Z threshold

while taking into account incidents of random chance

over a given verification domain (Wilks 2006). ETS is

given by

ETS5
H2HR

H1M1FA2HR

(2a)

and

HR 5
(H1M)(H1FA)

T
, (2b)

where H, the number of hits, is the total number of

model grid points where both forecast and observed Z

are equal to or exceed a threshold Z; M, the number of

misses, is the total number of model grid points where

forecast Z is less than the threshold when there is ob-

served Z above the threshold; FA, ‘‘false alarms,’’ is the

total number of model grid points where the forecast Z

is greater than the threshold but there is no observed Z

above that threshold;HR is the number of hits expected

due to random chance; and T is the total number of hits,

misses, false alarms, and model grid points where the

forecast Z and observed Z are both below the threshold

(a correct ‘‘no’’). The observed Z threshold used in this

case is 25 dBZ as was used in SXJ11. The RCC is in-

cluded in addition to ETS because it is less sensitive to

location errors and systematic biases; it takes into ac-

count the normalized deviation of a value of a given

forecast or observed Z at each grid point compared to

the their respective average values over the entire do-

main rather than strictly a yes or no answer (Aksoy et al.

2010). The RCC is defined as

rc 5

�
n
o

i51

(Zf 2 hZf i)(Zo2 hZoi)"
�
n
o

i51

(Zf2hZf i)2 �
n
o

i51

(Zo2hZoi)2
#1/2 , (3)

whereZf is the forecastZ;Zo is observedZ in the model

space; Zf and Zo are the ensemble averages of all fore-

cast and observed Z in the verification domain, respec-

tively; and no is the number of observed Z grid points

above a certain threshold that are included in the cal-

culation. This calculation is implemented differently

than in Aksoy et al. (2010) by using the observed Z in

the model space rather than the observation space; the

former was also done in Schenkman et al. (2011). The

threshold Z for this score is 15 dBZ, lower than that for

ETS, since RCC is related to deviations from the mean

value compared to the more restrictive ETS. The ETS

may be saturated with hits if the threshold is too low so

correctly capturing the locations of features of interest

like the leading convective line, stratiform regions, etc.,

defined by higher intensity Z will not be emphasized in

the score.

Figure 14 shows the ETS and RCC scores at forecast

hours 1, 2, and 3 for all three experiments over the entire

forecast domain as well as for a subdomain (indicated by

FIG. 13. Observed as well as interpolated surface temperature (8F) time series plots from EXP_S and EXP_D

(UTC) at the location of Oklahoma Mesonet stations (a) Washington and (b) Ft. Cobb. The station locations are

indicated by an A for Washington and B for Ft. Cobb in Figs. 12c,d.
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the black box in Fig. 9b) covering the LEV and leading

convective line. EXP_D outperforms EXP_S in terms

of both scores over the full domain, indicating that

the precipitation coverage is improved and the general

precipitation intensity across the system is closer to ob-

servations in EXP_D. The improvement seen in EXP_D

is increased for both statistics when the calculation is

made over the subdomain focusing on the LEV and

leading convective line; the DM scheme used in EXP_D

was shown to improve the development of these fea-

tures significantly. Specifically, ETS decreases at a

much slower rate while RCC remains almost constant

throughout the 3-h forecast, indicating that the faster

decrease in the scores with time when calculated over

the entire domain is related mostly to the trailing strat-

iform region; Fig. 9f showed that the forecast Z in this

region was both less intense and smaller in geographi-

cal extent than in the observations. This region was also

themost poorly analyzed based on Fig. 5c; this may have

led to the poorer forecast. However, the full-domain

scores still indicate that EXP_D is better than EXP_S

overall.

The improvement in EXP_D throughout the forecast

period is also seen in terms of the simulated polarimetric

variables. Figure 15 shows the root-mean-square dif-

ferences (RMSDs) calculated at each hour from 0200 to

0500 UTC between the simulated polarimetric variables

of EXP_S and EXP_D forecasts at the same 0.58 tilt that
was presented in Fig. 7 and the corresponding observa-

tions. The calculations were limited to areas where ob-

served rhv was 0.9 or greater to avoid interference from

nonmeteorological scatterers. EXP_D has lower dif-

ference for each variable at every hour except for Z at

0200 UTC. The differences also grow more rapidly over

time in EXP_S. The larger differences in EXP_S are

because of extreme values of Zdr (over 4.5 dB) and Kdp

(well over 58 km21) associated with high qr. The one-to-

one relationship between Z and Zdr seen in the EXP_S

analysis is again apparent in the EXP_S forecast; sig-

nificant increases in Zdr accompany areas of higher Z.

The difference may also be due to the intense convec-

tion around the LEV in EXP_S, as discussed earlier.

Though the Zdr values in some areas are higher than

observed, the Zdr RMSD values are smaller in EXP_D

due to consistently lowerZdr values across the stratiform

precipitation north of the LEV because of the afore-

mentioned better representation of the stratiform PSD

by the DM scheme. The difference in simulated Kdp be-

tween the two experiments is not as large as that of Zdr,

apparently because the intensity of the leading convective

line in EXP_D is also overestimated, although not as

much as in EXP_S.

FIG. 14. (a) Forecast reflectivity ETS and (b) RCC scores for EXP_S and EXP_D at forecast

hours 1, 2, and 3 for the entire experiment domain as well as over the (c),(d) subdomain defined

in Fig. 9b.
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5. Summary and conclusions

In this study, an EnKF DA method is used in combi-

nation with an advanced double-moment (DM) micro-

physics (MP) parameterization scheme to improve the

representation of the MP state and short-term forecast

of an MCS that occurred over Oklahoma and Texas on

8–9 May 2007. Reflectivity (Z) and radial velocity (Vr)

data are assimilated from five WSR-88D S-band and

four CASA X-band radars over a 1-h period. There are

two base experiments that use single-moment (SM) MP

schemes (EXP_S) and a DM MP scheme (EXP_D)

during the assimilation period followed by 3-h deter-

ministic forecasts initialized from the final ensemble

mean analyses using a SM and DM MP scheme, re-

spectively. Simulated polarimetric variables from the

analyses and forecasts are compared with polarimetric

radar observations from polarimetric WSR-88DKOUN

for independent verification of the model microphys-

ical states in addition to qualitative and quantitative

comparisons of the MCS structure and precipitation

fields.

The comparisons of simulated polarimetric variables

from the final analyses with observations indicate that

the use of a DM scheme within the EnKF DA cycles

significantly improves the representations of the PSDs

of the convective and stratiform precipitation regions

of the MCS. For example, differential reflectivity

(Zdr) values, which give an indication of the axis ratio of

raindrops, are significantly higher in the stratiform re-

gion of EXP_S compared to both EXP_D and the ob-

servations even though all have similarZ fields. The rain

PSD of this light-to-moderate precipitation typically

contains small to moderate-sized drops with low aspect

ratios. In contrast to the fixed rain intercept parameter

(N0r) used in EXP_S, the varying N0r of EXP_D allows

for an increase in the number of small to medium sized

drops without also increasing the number of large rain-

drops in regions of lighter precipitation.

Similarly, for the forecast period, use of the DM

scheme initialized with the DM analysis leads to im-

proved results over the SM forecast initialized from the

SM analysis. Specifically, theMCS structure is improved

in terms of both the coverage of precipitation in the

stratiform region as well as the intensity and extent of

the leading convective line. The MCS in EXP_S breaks

down into multiple intense convective cells early in the

forecast period and never fully recovers the structure

seen in the observations. Analysis of rain mixing ratio

fields shows that the heavy convective precipitation re-

mains concentrated linearly in the leading convective

line of EXP_D. The size sorting of smaller drops with

the DM scheme increases the amount of evaporative

cooling on the backside of the line. The resulting cold

pool distribution better matches the conceptual model

of an MCS, which leads to better maintenance of both

the leading convective line and stratiform regions. The

forecast location and intensity of the forecast reflectivity

fields is also shown to be improved quantitatively in

terms of both the equitable threat score (ETS) and reflec-

tivity correlation coefficient (RCC).

The improvements noted above in the treatment of

PSDs in different precipitation regions as well as a sig-

nificantly improved structural forecast confirm and pro-

vide new insight into the importance of using advanced

MM MP schemes for convective-scale DA and short-

term forecasts. The polarimetric radar simulator proves

FIG. 15. The RMSDs between simulated polarimetric vari-

ables of EXP_S and EXP_D and KOUN observations at a 0.58
tilt for (a) reflectivity (dBZ), (b) differential reflectivity (dB),

and (c) specific differential phase (8km21) throughout the forecast

period.
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to be a valuable tool for assessing the quality of analyzed

and forecast microphysical states. However, multiple

challenges remain to better represent cloud micro-

physics in convective-scale forecasts. Simulated Kdp

values show that hail was overestimated in the model

results compared to the observations. The graupel cat-

egory was not included in these experiments in addition

to hail, but the lack of this additional natural state

for frozen precipitation may have resulted in too many

overly large hailstones. Such biases within the micro-

physical schemes suggest areas for future study. Fur-

thermore, size sorting is often overestimated when the

shape parameter a of the gamma size distribution is

fixed at 0, as is done in this study (Kumjian and Ryzhkov

2012). A nonzero value of a with a DM scheme or the

use of a triple-moment scheme that effectively predicts

a, may produce better forecasts and dual-polarized

signatures.

Finally, with the availability of an ensemble of anal-

yses from the EnKF, ensemble forecasts can be pro-

duced, which can also include perturbations to N0 when

using SM MP and to a when using DM MP. The impact

of the microphysics scheme on the probabilistic fore-

casting of polarimetric variables has not be examined in

the literature and will be examined in a future study,

which can be also be considered an extension to Snook

et al. (2012).
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