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Abstract 

Doppler radar data are assimilated with an ensemble Kalman Filter (EnKF) in combination 

with a double-moment (DM) microphysics scheme in order to improve the analysis and forecast of 

microphysical states and precipitation structures within a mesoscale convective system (MCS) that 

passed over western Oklahoma on 8-9 May 2007. Reflectivity and radial velocity data from 5 

operational WSR-88D S-band radars as well as 4 experimental CASA X-band radars are assimilated 

over a one hour period using either single-moment (SM) or DM microphysics schemes within the 

forecast ensemble. Three-hour deterministic forecasts are initialized from the final ensemble mean 

analyses using a SM or DM scheme, respectively. Polarimetric radar variables are simulated from 

the analyses and compared with polarimetric WSR-88D radar observations for verification. EnKF 

assimilation of radar data using a multi-moment microphysics scheme for an MCS case has not 

previously been documented in the literature.  

The use of DM microphysics during data assimilation improves simulated polarimetric 

variables through differentiation of particle size distributions (PSDs) within the stratiform and 

convective regions. The DM forecast initiated from the DM analysis shows significant qualitative 

improvement over the assimilation and forecast using SM microphysics in terms of the location and 

structure of the MCS precipitation. Quantitative precipitation forecasting skills are also improved in 

the DM forecast. Better handling of the PSDs by the DM scheme is believed to be responsible for 

the improved prediction of the surface cold pool, a stronger leading convective line, and improved 

areal extent of stratiform precipitation.  

 



1 

 

551. Introduction 1 

Successful convective-scale numerical weather prediction (NWP) requires both accurate 2 

initial conditions and a prediction model capable of accurately simulating deep, moist convection. 3 

One of the more difficult aspects of simulating convection is the parameterization of the 4 

microphysical (MP) processes, including accurate representation of the particle size distribution 5 

(PSD) of the hydrometeors. MP processes, such as collision and coalescence, drop breakup, 6 

freezing/melting, evaporation/sublimation, and precipitation sedimentation, are highly non-linear 7 

and can vary substantially over small spatial and temporal scales (Larson et al. 2005; Wang et al. 8 

2012). Non-linearity can greatly increase the sensitivity of the forecast to the initial conditions due 9 

to the complex nonlinear interactions, regime changes, and possible bifurcations (Lorenz 1969). 10 

Additionally, model error, such as that associated with uncertainty in the model MP 11 

parameterization, can quickly become the dominant factor in error growth even for NWP forecasts 12 

with relatively accurate initial conditions (Houtekamer et al. 2005).  13 

In reality, hydrometeors compromise a continuous spectrum of varied sizes and frequency of 14 

occurrence. Such continuous PSDs are sometimes approximated using a bin model where 15 

hydrometeors are distributed explicitly in groups based on diameter or mass (Khain et al. 2004). 16 

While preferable, this approach is computationally very expensive and thus not commonly used in 17 

NWP models. Instead, MP processes are typically parameterized using a bulk MP (BMP) approach 18 

that assumes PSDs with a specified functional form. One such form is the generalized gamma 19 

distribution,  20 

                                                                    
      ,                                                        (1) 21 

where N(D) is the number of hydrometeors of a particular species (denoted by subscript x) of a 22 

certain diameter in a given volume, and D (mm) is the hydrometeor diameter (Ulbrich 1983). Three 23 

independent parameters control the shape of the distribution: the intercept N0 (mm
-1

m
-3

), shape α, 24 
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and slope Λ (mm
-1

) parameters. Currently, most NWP models use a single-moment (SM) MP 25 

scheme where N0 and α are given fixed values (α is often set to zero) while mass content, which is 26 

proportional to the third moment of the PSD, is predicted in the model, allowing Λ to vary 27 

independently during the forecast. As available computational resources increase, MP schemes that 28 

predict more than one moment have become practical; such schemes are referred to as multi-29 

moment (MM) MP schemes. Double-moment (DM) schemes typically predict mass content and 30 

total number concentration (zero
th

 moment) so that Λ and N0 can effectively vary independently (α 31 

can be either set to a fixed value or diagnosed), while triple-moment (TM) MP schemes predicts 32 

three PSD moments, allowing all three parameters to vary independently.    33 

 Several recent studies have shown that MM schemes produce more realistic convective 34 

storm structure and evolution. Specifically, using a DM scheme instead of a SM scheme has been 35 

shown to significantly improve the representation of thermodynamic and MP processes in 36 

supercells. For example, Dawson et al. (2010) found that a DM scheme better represents the amount 37 

of evaporation in the rear flank downdraft of a supercell because the variable intercept parameter 38 

allows the smallest drops in the PSD to be removed first. This results in more realistic cold pool size 39 

and intensity due to reduced evaporation cooling. More recently, Jung et al. (2012, hereafter JXT12) 40 

demonstrated that a DM MP scheme used within an ensemble Kalman filter (EnKF) data 41 

assimilation (DA) system produces more realistic polarimeteric signatures in supercell storms 42 

compared to a SM scheme, because the DM scheme allows for size sorting of precipitating 43 

particles. For instance, the ZDR arc signature commonly seen at the southern edge of forward flank 44 

radar echo is evident when using a DM scheme, but absent when using a SM scheme. Both of these 45 

prior studies focused on a supercell storm. 46 

Weather radar currently provides the most complete temporal and spatial sampling of 47 

hydrometeors over the entire volume of a storm. Advanced DA methods seek to optimally combine 48 
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such observations with the background model state to best represent the current state of the 49 

atmosphere (Kalnay 2002). The EnKF (Evensen 1994; Evensen 2003) method has been successfully 50 

used to assimilate radar observations in various convective-scale observed system simulation 51 

experiments (OSSEs) (Snyder and Zhang 2003; Zhang et al. 2004; Tong and Xue 2005; Xue et al. 52 

2006) as well as in experiments using real data (Dowell et al. 2004; Lei et al. 2009; Dowell et al. 53 

2011; Snook et al. 2011, hereafter SXJ11; JXT12). Tong and Xue (2005) and Dowell et al. (2011) 54 

used a SM ice MP scheme; JXT12 included a DM scheme but only during assimilation.  55 

 EnKF has advantages when coupled with a MM MP scheme. While the four-dimensional 56 

variational (4DVAR) method has been shown to work very well for large-scale NWP, its 57 

application at the convective scale has been limited to experiments using warm-rain MP or very 58 

simple ice MP schemes; thus far it has not been successfully coupled with either a SM or MM MP 59 

scheme containing complex ice processes. The EnKF appears to be much better suited for handling 60 

the complex nonlinear ice processes required for accurate convective-scale NWP. Xue et al. (2010) 61 

showed for the first time that MP state variables, including the hydrometeor mixing ratios and total 62 

number concentrations, associated with a DM scheme using 4 ice categories could be estimated 63 

accurately from simulated radar data for a supercell. JXT12 further obtained realistic analyses of 64 

MP state and polarimetic radar variables within a supercell using real data from a WSR-88D radar 65 

and EnKF coupled with a DM scheme. Neither Xue et al. (2010) nor JXT12 examined subsequent 66 

forecasts starting from the estimated states.  67 

In this study, observations from multiple radar networks of a mesoscale convective system 68 

(MCS) that occurred over Oklahoma and Texas on May 8-9, 2007 are assimilated using an EnKF 69 

with either a SM or DM MP scheme. Simulated polarimetric variables from the estimated MP states 70 

are verified against independent polarimeteric radar observations to assess the ability of EnKF DA 71 

to retrieve information on MP processes occurring within the MCS as well as the performance and 72 
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impacts of the MP schemes. Deterministic forecasts initialized from the final ensemble mean 73 

analyses for various experiments are assessed based on the predicted structure of the MCS, 74 

including the accuracy of simulated polarimetric fields.  75 

Earlier related studies have focused almost exclusively on supercells; the MCS investigated 76 

in this study presents different challenges. Supercells are characterized by strong rotating updrafts 77 

and associated forward and rear flank downdrafts. These features lead to documented polarimetric 78 

signatures such as the Zdr arc, Zdr and Kdp columns, and mid-level Zdr ring (Kumjian and Ryzhkov 79 

2008). On the other hand, the updrafts associated with an MCS are usually not rotational and the 80 

convective system is often divided into convective and stratiform precipitation regions (Fritsch and 81 

Forbes 2001). The convective updrafts on the leading edge of the system lead to size sorting of 82 

drops which is often characterized by an increase in Zdr (Park et al. 2009). Additionally, the PSD 83 

characteristics of the leading convective precipitation and trailing stratiform precipitation differ. 84 

Zhang et al. (2008) found that convective rainfall generally has a broad PSD while stratiform rain is 85 

dominated by moderately-sized drops. The investigation of an MCS sets this study apart from a 86 

very limited number of earlier studies that explore advanced DA, the use of MM MP schemes, and 87 

the estimation of multiple MP and polarimetric variables and in particular their combinations. At the 88 

completion of our study, JXT12 was the only published real data study assimilating radar data using 89 

EnKF with a multi-moment microphysics scheme. A recent paper by Yussouf et al. (2013) 90 

addresses similar issues with a different modeling system but both studies deal with supercell 91 

storms whose behaviors and dynamics can be quite different from MCSs.  92 

The remainder of this paper is organized as follows: section 2 presents an overview of the 93 

May 8-9, 2007 MCS event; section 3 describes the model, radar data, EnKF DA system and 94 

experimental setups; section 4 presents the results; and section 5 provides a summary of the 95 

significant conclusions.  96 
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2. Overview of the May 8-9 2007 MCS  97 

A mesoscale convective system (MCS) and associated line end vortex (LEV) moved 98 

through portions of Oklahoma and Texas on 8-9 May 2007. At 1200 UTC on the 8
th

, a positively 99 

tilted upper level trough extended from the Dakotas southwest to New Mexico. An area of low 100 

pressure was in place over extreme southwest Texas near the Rio Grande resulting in moist, 101 

southeasterly low-level flow from the Gulf over the southern High Plains. Ample moisture, lift 102 

aloft, and upslope flow led to the steady development of convection throughout the morning in 103 

extreme eastern New Mexico and west Texas (Fig. 1). The outflow from the storms reinforced an 104 

already present baroclinic zone, helping to maintain the convection and increase its coverage, thus 105 

leading to the development of the MCS. Destabilization from daytime surface heating ahead of the 106 

convective line helped to maintain the system as it moved eastward through western Texas [Storm 107 

Prediction Center (SPC) 2012b].  108 

The unstable air mass ahead of the MCS resulted in widespread storm development, 109 

including some supercells. Schenkman et al. (2011) propose that the ingestion of one of these 110 

supercell storms by the MCS led to the development of an LEV on the northern side of the MCS 111 

near Wichita Falls, TX around 2200 UTC. Steered by southwesterly upper-level flow during the late 112 

afternoon and evening (see Fig. 1), the northern portion of the MCS and its associated LEV moved 113 

northeastward into western Oklahoma by 0000 UTC 9 May. The period of particular interest for this 114 

case is from 0000 to 0500 UTC as the LEV moved along and just northwest of a Lawton to 115 

Oklahoma City line. Throughout this period, the MCS was within the asymmetric stage of MCS 116 

development (Fritsch and Forbes 2001) and consisted of an area of leading stratiform precipitation 117 

ahead of the LEV, a leading line of intense convection to the east and southeast of the LEV, and a 118 

secondary line of trailing stratiform precipitation left over from the portion of the leading 119 

convective line that had extended further south into Texas earlier in the afternoon (Fig. 2)  120 
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Another supercell was ingested around 0200 UTC that strengthened the vortex in the 121 

vicinity of Lawton (Schenkman et al. 2011). Shortly thereafter, four EF-1 tornadoes occurred west 122 

of Oklahoma City near the center of the LEV. Additionally, an area of widespread heavy rain (in 123 

excess of 50 mm in a three hour period) was observed between Lawton and Oklahoma City, leading 124 

to multiple flash flood reports and requiring at least one water rescue [National Weather Service 125 

(NWS) 2012]. After 0500, the LEV moved into north central Oklahoma where it gradually 126 

dissipated as it entered cooler, more stable air resulting from earlier thunderstorms in Arkansas 127 

(SPC 2012a).  128 

3. Data and methods 129 

Two experiments are conducted that include a one-hour assimilation period and three-hour 130 

forecasts initialized from the final ensemble mean analyses (EXP_S_M_3_5/EXP_S and 131 

EXP_D_M_3_5/EXP_D). These two experiments differ by the MP scheme used during the DA and 132 

forecast period. Additional tests were conducted during the assimilation period by varying the 133 

covariance inflation options and the assumed observation error in order to determine the optimal 134 

DA configurations. All experiments are summarized in Table 1. The experiment names use one 135 

letter to identify the type of microphysical scheme used (‘S’ for the SM MP scheme and ‘D’ for the 136 

DM MP scheme), followed by one letter to indicate the type of spread maintenance used during the 137 

data assimilation period (‘M’ for multiplicative covariance inflation, ‘A’ for additive perturbation, 138 

or ‘R’ for covariance relaxation) and two numbers to indicate the magnitude of assumed 139 

observation errors of radial velocity (Vr) error in m s
-1 

and reflectivity (Z) error in dBZ. Details of 140 

the experiments are given in the following section.  141 

a) Model and general experiment setup  142 

The Advanced Regional Prediction System model (ARPS) (Xue et al. 2000; Xue et al. 2001; 143 
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Xue et al. 2003) is used as the prediction model in this study. Briefly, ARPS is a fully compressible, 144 

non-hydrostatic, three dimensional atmospheric model suitable for NWP from regional to 145 

convective scale. ARPS predicts the three wind components (u, v, and w) as well as potential 146 

temperature (θ), pressure (p), water vapor mixing ratio (qv), and several MP state variables that vary 147 

depending on the MP option used. For SM MP schemes, only cloud water (qc), rainwater (qr), ice 148 

(qi), snow (qs), graupel (qg), and/or hail (qh) mixing ratios are predicted. When a DM MP scheme is 149 

used, the total number concentrations of cloud water (Ntc), rainwater (Ntr), ice (Nti), snow (Nts), 150 

graupel (Ntg), and hail (Nth) are predicted in addition to the mixing ratios.  151 

The model configurations used are largely inherited from SXJ11. The model domain has 152 

259 × 259 × 43 grid points with a horizontal grid spacing of 2 km and stretched vertical grid 153 

spacing with a minimum vertical spacing of 100 m at the surface and an average vertical spacing of 154 

500 m.  The model top is located 20 km above the surface. The domain covers much of the Texas 155 

panhandle, northwest and north central Texas, and western and central Oklahoma (see Fig. 2). Full 156 

model physics are used (Xue et al. 2001), including the National Aeronautics and Space 157 

Administration (NASA) Goddard Space Flight Center long- and shortwave radiation 158 

parameterization, a two-layer soil model, surface fluxes parameterized using predicted surface 159 

temperature and water content, and a 1.5-order turbulent kinetic energy (TKE) based subgrid-scale 160 

turbulence parameterization, along with high-resolution terrain. As in SXJ11, an initial 1-hour-long 161 

deterministic “spin-up” forecast is run from the National Centers for Environmental Prediction 162 

(NCEP) North American Mesoscale Model (NAM) analysis at 0000 UTC to 0100 UTC, 9 May 163 

2007. Radar data are then assimilated between 0100 and 0200 UTC at 5 minute intervals. Finally, a 164 

3 hour deterministic forecast is initialized from the final ensemble mean analysis at 0200 UTC. Fig. 165 

3 contains a diagram of the experiment period. For the entire period, lateral boundary conditions are 166 

provided by the NCEP NAM 6-hourly analyses and intervening 3-h forecasts.  The key difference 167 
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of this study from that of SXJ11 is the use of different MP schemes, including a DM scheme, within 168 

the EnKF DA and the subsequent prediction; details on the EnKF DA will be provided later in 169 

section d. Additionally, the inclusion of forecasts expands further on previous work by JXT12  that 170 

considered MM MP schemes and the estimation of polarimetric variables for a real supercell case 171 

but did not include any forecasts.  172 

b) Radar data 173 

 Data are assimilated from 5 WSR-88D S-band radars: KTLX (Oklahoma City/Twin Lakes, 174 

OK), KVNX (Vance Air Force Base, OK), KAMA (Amarillo, TX), KLBB (Lubbock, TX), and 175 

KDYX (Abilene, TX). Unfortunately, level II data from KFDR (Fredrick, OK) within the region are 176 

not available for this case. Data are also assimilated from the 4 radars of the X-band network run by 177 

the Engineering Research Center for Collaborative and Adaptive sensing of the Atmosphere 178 

(CASA, McLaughlin et al. 2009) network: KCYR (Cyril, OK), KSAO (Chickasha, OK), KLWE 179 

(Lawton, OK), and KRSP (Rush Springs, OK), giving a total of 9 radars (Fig. 2). Observations are 180 

interpolated horizontally onto the model grid but left at the same vertical location (Xue et al. 2006) 181 

and interpolated from the times of scan elevations to the assimilation times (SXJ11). Only Z and Vr 182 

observations are used for data assimilation. In addition to those radars used for assimilation, 183 

polarimetric observations from the National Severe Storms Laboratory’s dual-polarimetric S-band 184 

research radar, KOUN (Norman, OK), are used for the independent verification of the simulated 185 

polarimetric variables. More detailed information on the radars is summarized in Table 2. 186 

Quality control procedures are included in the ARPS package and are performed on the 187 

WSR-88D and KOUN observations before use. These include despeckling and the removal of 188 

ground clutter for Z and velocity de-aliasing (unfolding) (Brewster et al. 2005). Additionally, for the 189 

KOUN polarimetric data used for verification, differential reflectivity (ZDR) and specific differential 190 

phase (KDP) values are not considered when cross-correlation coefficient (ρhv) is less than 0.8 since 191 
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the model results do not simulate effects from non-meteorological scatterers. These data are 192 

interpolated to the time of verification at each elevation from the previous and following volumes. 193 

CASA data are subject to quality control during signal processing, including the removal of ground 194 

clutter and velocity de-aliasing as well as range overlay suppression (removal of range-ambiguous 195 

data) (Bharadwaj et al. 2010). Attenuation correction is also performed on the CASA radar data.  196 

c) Base experiments using single- and double-moment microphysics schemes 197 

 As previously introduced, experiments are conducted using SM or DM MP schemes during 198 

the assimilation and forecast periods (Table 1). EXP_S_M_3_5 and EXP_D_M_3_5 are two base 199 

DA experiments, using SM and DM MP schemes during the assimilation period, respectively.  200 

EXP_S_M_3_5 is the same as CNTL of SXJ11 in which a combination of multiple SM MP 201 

schemes is used in the EnKF ensemble to increase ensemble spread. The 40 member ensemble 202 

includes 16 Lin et al. (1983) (LIN) members, 16 Weather Research and Forecasting (WRF) SM 6-203 

class MP scheme (WSM6, Hong and Lim 2006) members, and 8 simplified NWP explicit MP 204 

(NEM) members (Schultz 1995). Fewer NEM members are included because the scheme was 205 

shown to have a higher root mean square innovation (RMSI) during assimilation in comparison to 206 

the more complex LIN and WSM6 schemes in Snook et al. (2012). The use of the LIN and WSM6 207 

schemes, which include hail and graupel categories, respectively, helps enhance the physics 208 

diversification within the ensemble. The differences between these species including particle 209 

density and N0 are considered in the Z observation operator during assimilation. The LIN scheme, 210 

shown to perform the best in Snook et al. (2012), is used for the free forecast starting from the final 211 

ensemble mean analysis at 0200 UTC. The values of the fixed intercept parameters used in the SM 212 

schemes are the same as in SXJ11: 8×10
5
 m

-4
 for rain (N0r), 3×10

6
 m

-4
 for snow (N0s), and 4×10

4
 m

-4
 213 

for hail (N0h). Additionally, hydrometeor densities are fixed at 917 kg m
-3

 for ice, 100 kg m
-3

 for 214 

snow, and 913 kg m
-3

 for hail. The N0r  used is reduced by a factor of 10 compared to the default 215 
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value of the LIN scheme following Snook and Xue (2008), who found that the original value for N0r 216 

led to unrealistically intense surface cold pools resulting from excessive evaporative cooling. 217 

The DM scheme used is that of Milbrandt and Yau (2005a, b) (MY). During the EnKF 218 

assimilation period, the shape parameters for hail and rain are varied between 0 and 2 among the 219 

ensemble members. Among the 40 members, the rain shape parameter is increased from 0.05 to 2.0 220 

in increments of 0.05, while the hail shape parameter is decreased from 1.95 to 0.0 in increments of 221 

0.05. Varying the shape parameter within the EnKF members has been shown to help increase the 222 

ensemble spread and improve performance when uncertainties exist with the parameter values (Xue 223 

et al. 2010; JXT12). The shape parameter is set to 0 during the free forecast period. In all DM 224 

experiments, the graupel hydrometeor category is turned off as in JXT12; it was found in previous 225 

idealized supercell simulations that removing graupel did not significantly impact storm evolution 226 

using the MY DM scheme.  227 

d) Sensitivity experiments 228 

 The EnKF algorithm used is the ensemble square-root filter (EnSRF) originally developed 229 

by Whitaker and Hamill (2002). Following SXJ11, the initial 40-member ensemble is created by 230 

adding random, smoothed, Gaussian perturbations to the initial spin-up forecast at 0100 UTC. The 231 

smoothing method used is that of Tong and Xue (2008b) with a correlation length scale of 8 km in 232 

the horizontal and 5 km in the vertical. The perturbations are added over the entire domain to u, v, 233 

and w with a standard deviation of 2 m s
-1

, and to θ with a standard deviation of 2 K. This differs 234 

from SXJ11, where these perturbations were confined to the areas of existing precipitation. 555555 235 

Perturbations are also added to the mixing ratios of water vapor and all hydrometeor species with a 236 

standard deviation of 0.001 kg kg
-1

 but are confined to grid points within 1 km of observed radar 237 

echoes exceeding 5 dBZ. The latter helps prevent introducing spurious precipitation into the initial 238 

ensemble.  239 
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Level II Z and Vr data are assimilated from all 9 WSR-88D and CASA radars every 5 240 

minutes within the 1 hour assimilation window. The first EnKF analysis occurs at 0105 UTC when 241 

the 5 minute ensemble forecasts from the initial perturbed ensemble are used within the EnKF. The 242 

covariance localization radius is 6 km for both Z and Vr observations in the horizontal and vertical 243 

and the localization is based on the correlation function of Gaspari and Cohn (1999).  For the base 244 

or control configurations, the observation error standard deviations are assumed to be 3 m s
-1

 for Vr 245 

and 5 dBZ for Z, which are larger than the 1 m s
-1

 and 2 dBZ used in SXJ11.  The larger values are 246 

believed to better reflect the true errors of the observations used, and are also found to produce 247 

ensemble spreads that are more consistent with the errors of the analyzed fields, as shown by 248 

sensitivity experiments to be discussed later. 249 

Following SXJ11, to maintain ensemble spread, multiplicative covariance inflation 250 

(Anderson 2001) with a factor of 1.25 is applied to the prior ensemble of the base experiments 251 

wherever Zob > 20 dBZ (Xue et al. 2006). Tong and Xue (2005) showed that assimilating clear air Z 252 

can help suppress spurious convection. Therefore, all values of Z are assimilated for the WSR-88D 253 

radars used. For CASA radars, even though attenuation correction was used, only Z values above a 254 

threshold of 20 dBZ are assimilated because of our inability to distinguish between areas of clear air 255 

return and completely attenuated regions (SXJ11). For all radars, values of Vr are assimilated only 256 

in regions where Zob > 20 dBZ.   257 

Sensitivity experiments were performed to determine the best covariance inflation 258 

configurations and the observation error specifications (Table 1). The covariance inflation includes 259 

different combinations of multiplicative covariance inflation, additive perturbation, and covariance 260 

relaxation (Zhang et al. 2004). These are indicated by characters M, A and R (denoting the three 261 

inflation methods) in experiment names, such as EXP_D_M_1_2, EXP_D_MA_2_3 and 262 

EXP_D_R_3_5 in Table 1. The multiplicative inflation factor is 1.25 when used, guided by the 263 
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earlier study of SXJ11. The additive perturbations used were the smoothed, random, Gaussian 264 

perturbations created in the same way as the initial random perturbations described at the beginning 265 

of this subsection and added to the ensemble analyses during each EnKF cycle. The standard 266 

deviations of the perturbations for u and v wind components and potential temperature θ were 0.5 m 267 

s
-1

 and 0.5 K, respectively. Other variables were not perturbed. When covariance relaxation (Zhang 268 

et al. 2004) was employed in EXP_D_R_3_5, a relaxation factor of 0.5 was used. All sensitivity 269 

experiments used a DM MP scheme. 270 

Sensitivity experiments EXP_D_M_1_2 and EXP_D_MA_2_3 assumed 1 and 2 m s
-1

 error 271 

for Vr, and 2 and 3 dBZ error for Z, respectively, as indicated by numbers in their names. Additional 272 

sensitivity experiments examining other combinations of values were also tried, but are not 273 

described here. The purpose of these experiments is to determine the optimal EnKF configuration 274 

(i.e. producing innovation-based ensemble spreads that are consistent with the analysis and forecast 275 

errors, given the observation error estimates). 276 

The innovation consistency ratio (Dowell et al. 2004) is used to assess the ensemble 277 

consistency. The ratio is defined as the ratio between the sum of observation error variance and 278 

ensemble forecast variance in the observation space, to the root-mean-square innovation (RMSI) of 279 

the ensemble mean forecast. For a well behaved ensemble system, this ratio should be close to 1 280 

(e.g., Dee 1995). 281 

Fig. 4 shows the consistency ratios for the forecasts during the assimilation period for the 282 

sensitivity experiments as well as base experiment EXP_D_M_3_5 when calculated against KTLX 283 

and KVNX data; these two radars are chosen because they cover a majority of the storm system.  284 

EXP_D_M_1_2, which uses the lowest observation error values, is severely under-dispersive 285 

through most of the assimilation period.  The additional additive inflation in EXP_D_MA_2_3 286 

together with somewhat larger observation errors, and the use of the relaxation method with a factor 287 
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of 0.5 combined with the larger observation errors in EXP_D_R_3_5 lead to significant (values 288 

over 2) over-dispersion at times in terms of Z and/or Vr. Qualitative analyses of their results showed 289 

no overall improvement in comparison to the configurations of experiment EXP_D_M_3_5; 290 

therefore, the settings of EXP_D_M_3_5 are used in the base experiments. For the remainder of this 291 

paper we will focus on the results of the base experiments EXP_S_M_3_5 and EXP_D_M_3_5 and 292 

their respective forecasts. The symbols in the experiment names indicating the inflation methods 293 

and observation error magnitudes will be omitted for convenience and the experiments will simply 294 

be referred to as EXP_S and EXP_D (Table 1). 295 

4. Results of control experiments 296 

In this section, the results from the base DA experiments, EXP_S and EXP_D, as well as the 297 

deterministic forecasts initialized from the corresponding ensemble-mean analyses (Table 1) are 298 

discussed. The results of the DA and the final analyses will be examined first, followed by the 299 

forecast results. 300 

a) Results of EnKF analyses 301 

 Fig. 5 shows a radar mosaic of Z observations from WSR-88D radars KAMA, KDYX, 302 

KFWS, KLBB, KTLX, and KVNX at 0200 UTC (Fig. 5a), as well as the 0200 UTC ensemble mean 303 

analyses of Z from EXP_S and EXP_D (Fig. 5b, c) at approximately 2 km above ground level 304 

(AGL). Both analyses have a reasonably good fit to observed Z and capture the three main features 305 

of the system: the leading convective line, the leading stratiform region, and the trailing straitiform 306 

region (as defined in Fig. 2). The precipitation structure and intensity in both analyses is generally 307 

similar; Z values fall within 10 dBZ of the observations throughout the MCS. More specifically, the 308 

analyzed Z is weaker (stronger) in EXP_S (EXP_D) than in the observations in the stratiform 309 

regions. Analyzed Z was also noted to be slightly overestimated in some cases when using the MY 310 
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DM scheme in JXT12. On the other hand, EXP_D shows some improvement, including better 311 

retrieval of the intensity of the leading convective line, especially the southern end, as well as its 312 

east/west extent.  Some spurious convection develops in the southeast corner of the domain, it 313 

should not affect the main MCS much, however.  314 

 The performance of the EnKF experiments is evaluated by examining the ensemble spread 315 

and the fit of the ensemble mean analyses to the observations in terms of the root mean square 316 

innovations (RMSIs). Fig. 6 shows the RMSIs and ensemble spread for Z and Vr for EXP_S and 317 

EXP_D; the RMSIs are calculated against KTLX, KVNX, and KDYX radars which have the best 318 

coverage of the MCS late in the assimilation period. EXP_D has slightly lower RMSIs for KTLX 319 

and KVNX compared to EXP_S, while the forecast error growth (in terms of RMSI) is faster in 320 

EXP_S than in EXP_D for all three radars. Error growth is faster for both experiments for KDYX; 321 

this is not surprising considering that KDYX mostly covers the trailing stratiform region, which 322 

appears to be the most poorly analyzed area in both experiments (see Fig. 5). The prior spread in 323 

EXP_S forecasts is higher and more consistent with the RMSI values due to the use of multiple MP 324 

schemes within the ensemble. However, the spread in EXP_D is still significant despite the use of a 325 

single MP scheme; this may be because of the higher number of degrees of freedom (more 326 

variables) involved in a DM scheme and the use of varying shape parameters within the DM 327 

scheme of different members. Such differences between SM and DM schemes are similar to those 328 

found in JXT12 for a supercell case. The Vr RMSIs are consistently larger than the ensemble spread 329 

but both statistics are very similar between the two experiments for all three radars. The difference 330 

in MP scheme does not appear to have any significant implication on the filter’s handling of the 331 

wind fields. Such under-dispersion has been noted in real data cases without leading to filter 332 

divergence (Dowell and Wicker 2009; Aksoy et al. 2009; JXT12).  333 

Verification of the model MP state against observations poses additional challenges. Z 334 
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measurements alone do not provide adequate information on the true MP state of the atmosphere; 335 

the same observed value of Z can correspond to many different hydrometeor PSDs.  For example, 336 

within a given radar volume, the same value of Z can result from a large number of moderately-337 

sized raindrops or a smaller number of larger raindrops. Additionally, Z alone does not give a full 338 

indication as to the types of hydrometeors present. For instance, while the presence of hail can often 339 

be inferred due to its intense Z values (values greater than 50 dBZ), the proportions of rain and hail 340 

in a rain/hail mixture cannot be directly inferred from observations of Z. For the above reasons, 341 

comparing the analyzed Z fields from the two experiments in Fig. 5 is not sufficient to judge the 342 

quality of the MP state estimation. Quantities that offer independent information from the directly 343 

assimilated variables will be needed to provide more reliable information on the estimated states.  344 

 For the MP state variables, polarimetric radar variables can provide valuable independent 345 

information.  Jung et al. (2008; 2010) developed a polarimetric radar simulator that can be used as 346 

the observation operators in DA and for model verifications. The simulator estimates Z at horizontal 347 

and vertical polarizations (Zh, Zv), differential reflectivity (ZDR), specific differential phase (KDP), 348 

and the polarimetric cross-correlation coefficient (ρhv) from the MP state variables in the model. 349 

When combined with polarimetric measurements, this simulator enables indirect verification of the 350 

model MP state. For example, ZDR is proportional to the median diameter of PSDs and, therefore, 351 

can be used to evaluate the estimates of model PSDs. In this paper, we employ the above 352 

polarmetric radar simulator to help evaluate the model analyses and forecasts. 353 

   Fig. 7 shows the Z, ZDR, KDP and Vr observations from the 0.5° tilt of KOUN together with 354 

the corresponding simulated variables from the 0200 UTC ensemble mean analyses from EXP_S 355 

and EXP_D. This lowest tilt of the radar is chosen for evaluation because the polarimetric 356 

signatures sought, such as ZDR patterns associated with particle size sorting, are most evident near 357 

the surface. Additionally, the current version of the polarimetric simulator used is less robust for ice 358 
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species with the use of the Rayleigh approximation, so only the rain species is considered. As in the 359 

mosaics, the location and intensity of Z in the leading convective line compares reasonably well 360 

with observations in both experiments. However, the presence of relatively large raindrops in the 361 

leading convective line, implied by high ZDR, is better simulated in EXP_D than in EXP_S. In 362 

EXP_S, the ZDR values are too high everywhere mainly because of the reduced N0r value used (Fig. 363 

7f); therefore, the leading convective line is less distinguished from the stratiform regions by 364 

containing comparatively large drops. As noted in JXT12, when a SM MP scheme is used,  Z and 365 

ZDR are monotonically related to qr and the mean size of the rain DSDs so that a decrease in 366 

simulated Z is always accompanied by a decrease in simulated ZDR. Thus, in EXP_S there is a 367 

general one-to-one correspondence between Z and ZDR for pure rain so that ZDR is not truly 368 

independent of Z. In contrast, high ZDR cores are found to be confined in the convective line in 369 

EXP_D, although their values are somewhat over-estimated (Fig. 7j). Excessive size sorting 370 

associated with the fixed shape parameter within a two-moment scheme (Milbrandt and Yau 2005a) 371 

is thought to be responsible for the overly high ZDR values. The low ZDR observations in this case 372 

and in previous studies suggest that stratiform precipitation contains at most moderately sized drops 373 

while high ZDR observations indicate the leading convective line contains the largest drops in the 374 

system (Zhang et al. 2008).  Thus, it is expected that the ZDR values in the leading convective line 375 

should be noticeably higher compared to the stratiform region due to the overall larger drop sizes 376 

there.  377 

The qr and N0r fields, displayed in Fig. 8, further demonstrate how the DM scheme used in 378 

EXP_D represents the DSDs in different regions. For N0r, a scale of 10log10 is used to reduce the 379 

dynamic range. Contours of Z are overlaid on 10log10 (N0r) at 20 dBZ intervals to identify changes 380 

in precipitation intensity. The constant N0r of the SM scheme used in EXP_S corresponds to 59 on 381 

the 10log10 scale. The results are plotted at the surface where the difference between two analyses is 382 
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greatest due to the differences in the sedimentation and size sorting processes in the schemes. There 383 

are several qr maxima in Fig. 8a that match well with regions of high Z (> 40 dBZ), as indicated by 384 

the letters A, B, and C in Fig. 8b. Despite the higher qr in the leading convective line, the N0r values 385 

are lower in this area compared to those in the leading stratiform region, suggesting larger rain 386 

drops in the former than in the latter. The N0r values in both the leading and trailing stratiform 387 

precipitation regions in EXP_D are similar to the fixed value of EXP_S, but are lower in regions of 388 

convective precipitation. Variation of N0r in EXP_D allows for the growth of large drops in more 389 

intense convective precipitation as smaller drops are removed, replicating the process of collision-390 

coalescence droplet growth. Similarly, the DM scheme allows for an increase in the number of 391 

smaller drops in the stratiform region without an increase in larger drops; this would not be possible 392 

using a fixed intercept parameter.  393 

Fig. 7 also contains KDP. The locations of the greatest KDP values are similar to the 394 

observations in both EXP_S and EXP_D, being in the vicinity of the heavier precipitation in the 395 

leading convective line where the liquid water content is highest. The values in EXP_D are slightly 396 

higher than in EXP_S, which follows the proceeding discussion of the PSDs; the lower N0r given 397 

the same qr indicates a greater number of larger drops within the PSD regime to which KDP is more 398 

sensitive. KDP values are lower than the observations in both cases, however, which indicates that 399 

the amount of rain precipitation is underestimated in both analyses. Though the amount and 400 

intensity of precipitation appears similar between the model and observations due to similar Z 401 

values, hail is overestimated during the forecast and thus a portion of the total precipitation in both 402 

model results contains a hail contribution. Z is sensitive to both rain and hail and different 403 

combinations may produce similar Z values, as in this case between the model and observation 404 

results, but KDP is not sensitive to hail and thus demonstrates the difference in contribution from 405 

both species to the model results and the observations.  JXT12 noted a similar high bias in hail with 406 
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the MY DM scheme. The hydrometeor categories present in the observations were investigated 407 

using the fuzzy logic hydrometeor classification scheme of Park et al. (2009) (not shown). The 408 

results indicated that there was little hail observed.  409 

The Vr values for both experiments are similar and differ from the observations in the same 410 

areas. Both fail to fully resolve the coupling of inbound and outbound velocities that define the 411 

circulation at the center of the vortex (indicated by the circle in Fig. 7d) and also contain a notably 412 

stronger area of outflow winds along the eastern edge of the northern portion of the leading 413 

convective line (indicated by arrows in Fig. 7h and 7l). The outflow in the observations along the 414 

leading convective line south of the vortex center is more consistent while both experiments contain 415 

a series of bands of outflow winds westward of the noted initial strong outflow along the eastern 416 

edge. Nevertheless, the overall wind field is captured relatively well by the filter.   417 

 Since KOUN is not used during the assimilation period, its observations provide 418 

independent information for observation-space diagnostics of Z, Vr, and the polarimetric variables 419 

used for qualitative microphysics verification above. Table 3 contains the correlation coefficients 420 

for Z, ZDR, KDP, and Vr calculated against KOUN at the time of the final ensemble mean analysis 421 

(0200 UTC). Values for Z and ZDR are higher for EXP_D, consistent with the improvement noted in 422 

the qualitative analysis above. Correlation coefficient values for KDP are somewhat higher in 423 

EXP_S but are more similar between the two experiments compared to ZDR, where EXP_D shows 424 

notable improvement. Correlation coefficient values for Vr are similarly high in the two 425 

experiments, as expected from the qualitative similarity in Fig. 7d, 7h, and 7l.  426 

b) Results of forecasts 427 

As described in section 3c, two 3-hour-long deterministic forecasts are made from the 0200 428 

UTC final ensemble mean analyses of EXP_S and EXP_D: a forecast starting from the final 429 

analysis of EXP_S using the LIN SM MP scheme and a forecast from the final analysis of EXP_D 430 
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using the same MY DM MP scheme as during assimilation. 431 

1) VERIFICATION OF REFLECTIVITY FORECASTS 432 

 The convective system initially loses its linear characteristics and becomes predominantly 433 

cellular in the EXP_S forecast. Fig. 9 shows the observed WSR-88D radar Z mosaic and the 434 

forecast results of EXP_S and EXP_D valid at 0230 UTC (30 minute forecast) and 0400 UTC (2 435 

hour forecast). At 0230 UTC, there are many smaller, more isolated convective cores in EXP_S 436 

instead of more continuous regions of stratiform precipitation around the LEV and in the trailing 437 

line. This also occurs with the convection in the leading convective line. Such a behavior persists 438 

through the first hour before a more organized system redevelops. A similar disorganization in the 439 

initial forecast was noted in Hu et al. (2006), where it was suggested to be a result of the model 440 

microphysics adjusting to the model dynamics. Additionally, Luo et al. (2010) found that the 441 

strength of convective updrafts were overestimated in model simulations when using a SM MP 442 

scheme. In comparison, the EXP_D forecast maintains a better resemblance to the observations 443 

throughout the first hour of the forecast, specifically in the leading stratiform region. The areal 444 

coverage of moderate stratiform precipitation on the western and northeastern sides of the leading 445 

stratiform region is larger compared to the SM forecasts. Both forecasts handle the trailing 446 

stratiform region poorly despite capturing the coverage and intensity of the precipitation relatively 447 

well at the end of the assimilation period (0200 UTC).  448 

The MCS is well-developed by the second hour of the forecast in both experiments (Fig. 9d, 449 

f). The two-hour forecast of Z in EXP_D shows an improvement over EXP_S in terms of the 450 

precipitation coverage in the leading stratiform region. While the general location of the convective 451 

system is a good match with observations in these cases, the precipitation coverage is considerably 452 

under-predicted by EXP_S on both the east and west sides of the LEV. There is also notable 453 

spurious precipitation on the west side of the LEV. Under-prediction of the geographic extent of the 454 
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stratiform regions in EXP_S can be largely attributed to the breakdown of convection organization 455 

in the early forecast period (Fig. 9c).  This includes isolated regions of intense Z that represent 456 

convective cores rather than stratiform precipitation in the trailing stratiform region. Although the 457 

precipitation intensity is over-predicted in EXP_D, the system is well organized along the entire 458 

extent of the line including the consistent and smooth comma-head shaped shield of stratiform 459 

precipitation on the north side of the system and a lack of spurious convective precipitation in the 460 

trailing stratiform region. Neither of the two cases forecasted the development of new convection 461 

southeast and southwest of the main line; this convection may have been better captured if it 462 

occurred during the radar data assimilation period, or with a more accurate analysis and prediction 463 

of the mesoscale environment, which depends more on non-radar observations. 464 

EXP_D also has an improved leading convective line in comparison to EXP_S. EXP_S has 465 

limited leading precipitation that is further west and less intense than observed; it is in the same 466 

location as and difficult to differentiate from the trailing stratiform region. Although all forecasts 467 

overestimate the intensity of the precipitation on the east side of the LEV, it is most significant in 468 

EXP_S with some values over 65 dBZ (Fig. 9d), continuing the trend seen in the early period of the 469 

forecast. In EXP_D, Fig. 9f, the location of the northern half of the line matches the observations 470 

very well while the southern half arcs more southward compared to observations. Additionally, the 471 

distinction between the leading convective line and the beginning of the trailing stratiform region 472 

observed is captured better in EXP_D (noted by the arrow in Fig. 9f). There is also a small 473 

transition zone (Biggerstaff and Houze 1991) of light (less than 35 dBZ) precipitation between the 474 

intense convective precipitation and more moderate stratiform precipitation behind the northern 475 

extent of the line. 476 

To see how well the model is predicting the distribution and intensity of precipitation within 477 

the convective system, histograms of the Z values from every model grid point over the full 478 



21 

 

experiment domain are constructed for the observed Z mosaic and for each forecast (Fig. 10); the 479 

mosaic is on the same model grid. The data plotted are separated into 1 dBZ bins for values greater 480 

than 15 dBZ.  481 

 Both experiments contain values that extend higher in intensity than the observations. 482 

However, there is a notable difference in the frequency of values in the 30 to 35 dBZ range; EXP_S 483 

has a higher occurrence of that range than either EXP_D or the observations. For EXP_S, an 484 

analysis of the vertical distribution Z revealed that the noted convective cores throughout the 485 

stratiform regions increased the amount of moderate precipitation falling (not shown). In contrast, 486 

EXP_D has higher frequencies for values in the 15 to 25 dBZ range and relatively lower 487 

frequencies for values between 30 and 35 dBZ, giving an overall distribution that is closer to that of 488 

the observations. The increase in weak Z values in EXP_D is due to the increased coverage of 489 

lighter stratiform precipitation on the east and west sides of the LEV. On the other hand, EXP_S 490 

consistently overestimates (underestimate) Z greater (lower) than about 30 dBZ. It should be noted 491 

that overestimation of these values in EXP_S was not as significant in this case as in SXJ11. The 492 

introduction of mesoscale perturbations in the ensemble creation is the sole difference between 493 

EXP_S and the control experiment of SXJ11, and appears to have been beneficial. The significantly 494 

lower frequency of the low Z values in all three cases is likely connected to both overestimation of 495 

intensity of the observed light precipitation and underestimation of the geographical extent of the 496 

trailing stratiform precipitation; the absence of newly developed weaker precipitation in the domain 497 

should have also contributed.  498 

The improved maintenance of the stratiform region in EXP_D (Fig. 9f) is similar to the 499 

findings of Luo et al. (2010) and Morrison et al. (2009), where the development of trailing 500 

stratiform precipitation in quasi-linear MCSs was studied using DM MP schemes. Luo et al. (2010) 501 

found that the improved development of stratiform precipitation was related to the increase in the 502 
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detrainment of ice hydrometeors from the convective towers. Fig. 11 shows vertical cross sections 503 

of qs and qi  through the leading convective line and trailing stratiform precipitation of EXP_S and 504 

EXP_D, with the cross section locations indicated in Fig. 9d for EXP_S and Fig. 9f for EXP_D. The 505 

vertical distributions of qs and qi show that there is a dramatic increase in the transport of frozen 506 

precipitation over the stratiform region from the leading convective towers in EXP_D compared to 507 

EXP_S.   508 

The distributions of the surface qr, θ, and wind fields in EXP_S and EXP_D help explain the 509 

improved precipitation structure of the convective system when using a DM MP scheme (Fig. 12). 510 

High qr values, indicative of more intense convective precipitation, are distributed around the LEV 511 

in EXP_S rather than forming a leading line ahead and to the southeast of the LEV as in EXP_D 512 

(Figs. 10a and 10b). Figs. 10c and 10d contain the surface θ and wind fields as well as an overlay of 513 

the 0.5 g kg
-1

 qr contours to identify the location of more intense precipitation. A local temperature 514 

minimum can be seen behind (on the west side of) the leading convective line in EXP_D, while in 515 

EXP_S the temperatures are higher and less consistent in coverage. The distribution of the 516 

temperature minimum in EXP_D matches the typical conceptual model of a convective line in an 517 

asymmetric system (Fritsch and Forbes 2001) where the use of the DM scheme allows for the size-518 

sorting of smaller drops on the backside of the convective line. The higher number of small drops 519 

leads to increased evaporative cooling forming a stronger cold pool on the northwest side of the 520 

line.  The outflow from this cool, sinking air is seen in the wind field as it spreads out east and 521 

westward resulting in convergence on the eastern side of the line. In turn, the convergence helps 522 

maintain more intense precipitation at the leading edge of the system. The convective cores remain 523 

sporadically distributed in EXP_S without a focused area for new convective development. 524 

Additionally, high qr convective cores are seen within both the leading and trailing stratiform 525 

regions in EXP_S in contrast to the consistently lower values seen in EXP_D that help highlight the 526 
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distinction in the precipitation development in the leading convective line and the stratiform regions 527 

as seen in the Z mosaics. 528 

Surface temperature values are evaluated compared to Oklahoma Mesonet observations in 529 

Fig. 13. Two time series plots are created for the period 20 minutes before and after 0400 UTC 530 

(time of Fig. 12) to capture the passage of the system. The Washington station (“A” in Fig. 12) is 531 

chosen due to its location along the leading line while the Ft. Cobb station (“B” in Fig. 12) is chosen 532 

due to its location under the stratiform precipitation on the back side of the system, well within the 533 

cold pool. Even though the values are not an exact match, EXP_D follows the trends seen in the 534 

Mesonet observations better in both cases. The surface temperature in EXP_D decreases along with 535 

the observations as the convective line passes the station while the surface temperature in EXP_S 536 

remains relatively unchanged. The lack of cooler air at the surface limits the amount of lift to 537 

maintain the leading convective line in EXP_S. Additionally, the temperature within the cold pool 538 

at the Ft. Cobb station remains unchanged in both EXP_D and the observations while the 539 

temperature rapidly increases in EXP_S. It was noted in Fig. 12b that the surface temperature 540 

pattern was less consistent compared to EXP_D and associated with the relatively poor system 541 

structure seen in EXP_S.   542 

2) QUANTITATIVE VERIFICATION OF REFLECTIVITY AND POLARIMETRIC VARIABLE FORECASTS 543 

Forecast error statistics, such as the equitable threat score (ETS) and reflectivity correlation 544 

coefficient (RCC), are often used to quantitatively assess quantitative precipitation forecast (QPF) 545 

performance. The ETS, as applied to Z, calculates the number of ‘hits’ and ‘misses’ of model 546 

forecast Z compared to observed Z at each model grid point given a certain Z threshold while taking 547 

into account incidents of random chance over a given verification domain (Wilks 2006). ETS is 548 

given by: 549 
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where  , the number of hits, is the total number of model grid points where both forecast and 553 

observed Z are equal to or exceed a threshold Z; M , the number of misses, is the total number of 554 

model grid points where forecast Z is less than the threshold when there is observed Z above the 555 

threshold;   , ‘false alarms’, is the total number of model grid points where the forecast Z is greater 556 

than the threshold but there is no observed Z above that threshold;    is the number of hits expected 557 

due to random chance; and   is the total number of hits, misses, false alarms, and model grid points 558 

where the forecast Z and observed Z are both below the threshold (a correct ‘no’). The observed Z 559 

threshold used in this case is 25 dBZ as was used in SXJ11. The RCC is included in addition to ETS 560 

because it is less sensitive to location errors and systematic biases; it takes into account the 561 

normalized deviation of a value of a given forecast or observed Z at each grid point compared to the 562 

their respective average values over the entire domain rather than strictly a yes or no answer (Aksoy 563 

et al. 2010). The RCC is defined as  564 
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where    is the forecast  ,    is observed   in the model space, 〈  〉 and 〈  〉 are the ensemble 566 

averages of all forecast and observed   in the verification domain, and    is the number of observed 567 

  grid points above a certain threshold that are included in the calculation. This calculation is 568 

implemented differently than in Aksoy et al. (2010) by using the observed Z in the model space 569 

rather than the observation space; the former was also done in Schenkman et al. (2011). The 570 

threshold Z for this score is 15 dBZ, lower than that for ETS, since RCC is related to deviations 571 
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from the mean value compared to the more restrictive ETS. The ETS may be saturated with hits if 572 

the threshold is too low so correctly capturing the locations of features of interest like the leading 573 

convective line, stratiform regions, etc., defined by higher intensity Z will not be emphasized in the 574 

score.  575 

Fig. 14 shows the ETS and RCC scores at forecast hours 1, 2, and 3 for all three experiments 576 

over the entire forecast domain as well as for a sub-domain (indicated by the black box in Fig. 9b) 577 

covering the LEV and leading convective line.  EXP_D outperforms EXP_S in terms of both scores 578 

over the full domain, indicating that the precipitation coverage is improved and the general 579 

precipitation intensity across the system is closer to observations in EXP_D. The improvement seen 580 

in EXP_D is increased for both statistics when the calculation is made over the sub-domain 581 

focusing on the LEV and leading convective line; the DM scheme used in EXP_D was shown to 582 

improve the development of these features significantly. Specifically, ETS decreases at a much 583 

slower rate while RCC remains almost constant throughout the 3-hour forecast, indicating that the 584 

faster decrease in the scores with time when calculated over the entire domain is related mostly to 585 

the trailing stratiform region; Fig. 9f showed that the forecast Z in this region was both less intense 586 

and smaller in geographical extent than in the observations. This region was also the most poorly 587 

analyzed based on Fig. 5c which may have led to the poorer forecast. However, the full domain 588 

scores still indicate that EXP_D is better than EXP_S overall.  589 

The improvement in EXP_D throughout the forecast period is also seen in terms of the 590 

simulated polarimetric variables. Fig. 15 shows the root-mean-square differences (RMSDs) 591 

calculated at each hour from 0200 to 0500 UTC between the simulated polarimetric variables of 592 

EXP_S and EXP_D forecasts at the same 0.5° tilt that was presented in Fig. 7 and the corresponding 593 

observations. The calculations were limited to areas where observed ρhv was 0.9 or greater to avoid 594 

interference from non-meteorological scatterers. EXP_D has lower difference for each variable at 595 
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every hour except for Z at 0200 UTC. The differences also grow more rapidly over time in EXP_S. 596 

The larger differences in EXP_S are because of extreme values of ZDR (over 4.5 dB) and KDP (well 597 

over 5 deg km
-1

) associated with high qr. The one-to-one relationship between Z and ZDR seen in the 598 

EXP_S analysis is again apparent in the EXP_S forecast; significant increases in ZDR accompany 599 

areas of higher Z. The difference may also be due to the intense convection around the LEV in 600 

EXP_S, as discussed earlier. Though the ZDR values in some areas are higher than observed, the ZDR 601 

RMSD values are smaller in EXP_D due to consistently lower ZDR values across the stratiform 602 

precipitation north of the LEV because of the aforementioned better representation of the stratiform 603 

PSD by the DM scheme.  The difference in simulated KDP between the two experiments is not as 604 

large as that of ZDR, apparently because the intensity of the leading convective line in EXP_D is also 605 

overestimated, although not as much as in EXP_S. 606 

5. Summary and conclusions 607 

 In this study, an EnKF DA method is used in combination with an advanced double-moment 608 

(DM) microphysics (MP) parameterization scheme to improve the representation of the MP state 609 

and short-term forecast of an MCS that occurred over Oklahoma and Texas on 8-9 May 2007. 610 

Reflectivity (Z) and radial velocity (Vr) data are assimilated from 5 WSR-88D S-band radars and 4 611 

CASA X-band radars over a one hour period. There are two base experiments that use single-612 

moment (SM) MP schemes (EXP_S) and a DM MP scheme (EXP_D) during the assimilation 613 

period followed by three-hour deterministic forecasts initialized from the final ensemble mean 614 

analyses using a SM and DM MP scheme, respectively. Simulated polarimetric variables from the 615 

analyses and forecasts are compared with polarimetric radar observations from polarimetric WSR-616 

88D radar KOUN for independent verification of the model microphysical states in addition to 617 

qualitative and quantitative comparisons of the MCS structure and precipitation fields.  618 

The comparisons of simulated polarimetric variables from the final analyses with 619 
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observations indicate that the use of a DM scheme within the EnKF DA cycles significantly 620 

improves the representations of the PSDs of the convective and stratiform precipitation regions of 621 

the MCS. For example, differential reflectivity (ZDR) values, which give an indication of the axis 622 

ratio of raindrops, are significantly higher in the stratiform region of EXP_S compared to both 623 

EXP_D and the observations even though all have similar Z fields. The rain PSD of this light to 624 

moderate precipitation typically contains small to moderate sized drops with low aspect ratios. In 625 

contrast to the fixed rain intercept parameter (N0r) used in EXP_S, the varying N0r of EXP_D allows 626 

for an increase in the number of small to medium sized drops without also increasing the number of 627 

large raindrops in regions of lighter precipitation.  628 

Similarly, for the forecast period, use of the DM scheme initialized with the DM analysis 629 

leads to improved results over the SM forecast initialized from the SM analysis. Specifically, the 630 

MCS structure is improved in terms of both the coverage of precipitation in the stratiform region as 631 

well as the intensity and extent of the leading convective line. The MCS in EXP_S breaks down 632 

into multiple intense convective cells early in the forecast period and never fully recovers the 633 

structure seen in the observations. Analysis of rain mixing ratio fields shows that the heavy 634 

convective precipitation remains concentrated linearly in the leading convective line of EXP_D. 635 

The size sorting of smaller drops with the DM scheme increases the amount of evaporative cooling 636 

on the backside of the line. The resulting cold pool distribution better matches the conceptual model 637 

of an MCS which leads to better maintenance of both the leading convective line and stratiform 638 

regions. The forecast location and intensity of the forecast reflectivity fields is also shown to be 639 

improved quantitatively in terms of both the equitable threat score (ETS) and reflectivity correlation 640 

coefficient (RCC).  641 

The improvements noted above in the treatment of PSDs in different precipitation regions as 642 

well as a significantly improved structural forecast confirm and provide new insight into the 643 
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importance of using advanced MM MP schemes for convective scale DA and short-term forecasts. 644 

The polarimetric radar simulator proves to be a valuable tool for assessing the quality of analyzed 645 

and forecast microphysical states. However, multiple challenges remain to better represent cloud 646 

microphysics in convective-scale forecasts. Simulated KDP values show that hail was overestimated 647 

in the model results compared to the observations. The graupel category was not included in these 648 

experiments in addition to hail, but the lack of this additional natural state for frozen precipitation 649 

may have resulted in too many overly-large hailstones. Such biases within the microphysical 650 

schemes suggest areas for future study. Furthermore, size sorting is often overestimated when the 651 

shape parameter, α, of the gamma size distribution is fixed at 0, as is done in this study (Kumjian 652 

and Ryzhkov 2012). A non-zero value of α with a DM scheme or the use of a triple-moment scheme 653 

that effective predicts α, may produce better forecasts and dual-pol signatures. 654 

Finally, with the availability of an ensemble of analyses from the EnKF, ensemble forecasts 655 

can be produced, which can also include perturbations to N0 when using SM MP and to α when 656 

using DM MP. The impact of the microphysics scheme on the probabilistic forecasting of 657 

polarimetric variables has not be examined in the literature and will be examined in a  future study, 658 

which can be also be considered an extension to Snook et al. (2012).  659 
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List of figures  826 

Fig. 1. (a) 300mb wind barbs and geopotential height contours (60 dam interval) from the Plymouth 827 

State Weather Center as well as (b) 850mb wind barbs, height contours (60 dam interval), 828 

temperature (red dashed lines at 2° C interval), and dewpoint (color fill) analysis from the 829 

Storm Prediction Center (SPC) at 1200 UTC 8 May 2007.  830 

Fig. 2. Radar reflectivity (dBZ) observation mosaic from KAMA, KDYX, KFWS, KLBB, KTLX, 831 

and KVNX at 0200 UTC approximately 2km AGL covering the full experiment domain. 832 

Note the locations of the leading convective line, LEV, leading stratiform region, and 833 

trailing stratiform regions. The locations of all radars used in this study are also included. 834 

Fig. 3. Diagram of initial spin-up forecast, the EnKF data assimilation cycles, and subsequent 835 

forecast for the experiments.  836 

Fig. 4. Consistency ratios during the assimilation period (0105 UTC – 0200 UTC) of experiments 837 

EXP_D_M_3_5, EXP_D_M_1_2, EXP_D_MA_2_3, and EXP_D_R _3_5 for KTLX (a) Z 838 

and (b) Vr and KVNX (c) Z and (d) Vr data. The time is in seconds starting at 0000 UTC. 839 

The optimal value of 1 is indicated by the black dotted line. 840 

Fig. 5. (a) Reflectivity (dBZ) observation mosaic (a) from KAMA, KDYX, KFWS, KLBB, KTLX, 841 

and KVNX approximately 2 km AGL and analyzed reflectivity and horizontal wind vectors 842 

(m s
-1

) at 0200 UTC plotted at grid level 10 (about 2 km AGL) for (b) EXP_S and (c) 843 

EXP_D. The horizontal wind vectors are plotted every 15 grid points (30 km). 844 

Fig. 6. Average root-mean-square innovation and ensemble spread during the assimilation period 845 

for EXP_S and EXP_D for Z (dBZ) calculated against (a) KTLX, (b) KVNX, and (c) 846 

KDYX observations as well as (d-f) radial velocity. Time of assimilation is given in seconds 847 

based on the start of the experiment at 0000 UTC (0105 UTC – 0200 UTC). 848 

Fig. 7. (a) Reflectivity (dBZ), (b) differential reflectivity (dB), (c) specific differential phase (deg 849 
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km
-1

) , and (d) radial velocity (ms
-1

) at a .5° tilt from KOUN as well as the ensemble mean 850 

final analysis at 0200 UTC for (e-h) EXP_S and (i-l) EXP_D. 851 

Fig. 8. Surface (a) rain water mixing ratio (g kg
-1

) and (b) intercept parameter values (m
-3

 mm
-1

, 852 

10log10 scale)
 
from the EXP_D final ensemble mean analysis. Reflectivity contours at 20 853 

dBZ intervals are overlaid on (b). The fixed intercept parameter value in EXP_S 854 

corresponds to 59 on the 10log10 scale. 855 

Fig. 9. Reflectivity (dBZ) observation mosaic from KAMA, KDYX, KFWS, KLBB, KTLX, and 856 

KVNX approximately 2 km AGL at (a) 0230 UTC and (b) 0400 UTC as well as (c) 30 857 

minute and (d) 2 hour forecast reflectivity and horizontal wind field (m s
-1

) at grid level 10 858 

(about 2 km AGL) for EXP_S and (e, f) EXP_D. The horizontal wind vectors are plotted 859 

every 15 grid points (30 km). 860 

Fig. 10. Reflectivity frequency histograms plotted for 1 dBZ bins for (a) the KAMA, KDYX, 861 

KFWS, KLBB, KTLX, and KVNX radar reflectivity observation mosaic (one the same 862 

model grid) and for 2 hour forecast reflectivity from (b) EXP_S and (c) EXP_D. 863 

Fig. 11. Vertical cross sections of (a) snow mixing ratio (g kg
-1

) and (b) cloud ice mixing ratio (g 864 

kg
-1

) for EXP_S and (c-d) EXP_D. The locations of the cross sections are noted in Fig. 9d 865 

for EXP_S and Fig. 9f for EXP_D and extend from point A (left) to point B (right). 866 

Fig. 12. Two hour forecast surface (a) rain water mixing ratio (g kg
-1

) and (b) potential temperature 867 

(K) and horizontal wind field (ms
-1

) for EXP_S and (c-d) EXP_D. The 0.5 g kg
-1

 rain water 868 

mixing ratio contour is overlaid on the potential temperature plots. Horizontal wind vectors 869 

are plotted every 5 grid points (10 km). 870 

Fig. 13. Observed as well as interpolated surface temperature (°F) time series plots from EXP_S and 871 

EXP_D (UTC) at the location of Oklahoma Mesonet stations (a) Washington and (B) Ft. 872 
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Cobb. The station locations are indicated by an ‘A’ for Washington and ‘B’ for Ft. Cobb in 873 

Fig. 11c and d. 874 

Fig. 14. (a) Forecast reflectivity ETS and (b) RCC scores for EXP_S and EXP_D at forecast hours 875 

1, 2, and 3 for the entire experiment domain as well as over the (c-d) sub-domain defined in 876 

Fig. 9b.  877 

Fig. 15. The RMSDs between simulated polarimetric variables of EXP_S and EXP_D and KOUN 878 

observations at a 0.5° tilt for (a) reflectivity of horizontal polarization (dBZ), (b) differential 879 

reflectivity (dB), and (c) specific differential phase (deg km
-1

) throughout the forecast 880 

period. 881 

  882 
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Table 1: List of experiments. Information on the base experiments (DA Experiments), forecast 883 

experiments (Forecast EXP), and sensitivity test configurations (Sensitivity Tests) is included. The 884 

table lists the MP scheme used during the assimilation period (DA) and the forecast period (F); 885 

whether multiplicative inflation (M), additive perturbation (A), or covariance relaxation (R) is used; 886 

and what the observation errors are.   887 

 888 

 Experiments 
 
 

SM 
versus 

DM 
scheme 

Inflation  
Method 

Observation 
Error 

M A R 
Vr 

error 
Z 

error 

EXP_S_M_3_5/EXP_S SM 1.25 N.A. N.A. 3 5 

EXP_D_M_3_5/EXP_D DM 1.25 N.A. N.A. 3 5 

EXP_D_M_1_2 DM 1.25 N.A. N.A. 1 2 

EXP_D_MA_2_3 DM 1.25 
+/- .5 
u,v,θ N.A. 2 3 

EXP_D_R_3_5 DM N.A. N.A. 0.5 3 5 
 889 

 890 

 891 

 892 

 893 

 894 

  895 
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Table 2: Summary of the characteristics of radars used for assimilation. 896 

  WSR-88D CASA 

Wavelength (cm) 10.0  (S-band) 3.19  (X-band) 

Maximum Range (km) 459 40 

Peak Power (kW) 750 25 

Pulse Repetition Frequency 
(KHZ) .3-1.3   <= 3.33  

3 dB Beamwidth (°) 0.95 2 

Rotation Rate (° s-1) 36 
Variable up to 

120 

Antenna Gain (dB) 45 38 

Antenna Diameter (m) 8.5 1.5 
 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

  909 
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Table 3: Correlation coefficient statistics for the ensemble mean final analyses of EXP_S and 910 

EXP_D calculated against KOUN observations. 911 

 Variable EXP_S EXP_D 

Z .5638 .6218 

Vr .8626 .8531 

ZDR .4295 .4853 

KDP .5765 .5378 
   912 
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 913 

Fig. 1. (a) 300mb wind barbs and geopotential height contours (60 dam interval) from the Plymouth 914 

State Weather Center as well as (b) 850mb wind barbs, height contours (60 dam interval), 915 

temperature (red dashed lines at 2° C interval), and dewpoint (color fill) analysis from the Storm 916 

Prediction Center (SPC) at 1200 UTC 8 May 2007. 917 



45 

 

 918 

Fig. 2. Radar reflectivity (dBZ) observation mosaic from KAMA, KDYX, KFWS, KLBB, KTLX, 919 

and KVNX at 0200 UTC approximately 2km AGL covering the full experiment domain. Note the 920 

locations of the leading convective line, LEV, leading stratiform region, and trailing stratiform 921 

regions. The locations of all radars used in this study are also included. 922 

 923 

  924 
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 925 

 926 

 927 

 928 

 929 

Fig. 3. Diagram of initial spin-up forecast, EnKF data assimilation cycles, and subsequent forecast 930 

for the experiments.  931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

 940 

 941 

 942 
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 943 

Fig. 4. Consistency ratios during the assimilation period (0105 UTC – 0200 UTC) of experiments 944 

EXP_D_M_3_5, EXP_D_M_1_2, EXP_D_MA_2_3, and EXP_D_R _3_5 for KTLX (a) Z and (b) 945 

Vr and KVNX (c) Z and (d) Vr data. The time is in seconds starting at 0000 UTC. The optimal 946 

value of 1 is indicated by the black dotted line. 947 

 948 

 949 

 950 

 951 

 952 

  953 



48 

 

 

Fig. 5. (a) Reflectivity (dBZ) observation mosaic (a) from KAMA, KDYX, KFWS, KLBB, KTLX, and KVNX approximately 2 km AGL 

and analyzed reflectivity and horizontal wind vectors (m s
-1

) at 0200 UTC plotted at grid level 10 (about 2 km AGL) for (b) EXP_S and 

(c) EXP_D. The horizontal wind vectors are plotted every 15 grid points (30 km). 
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Fig. 6. Average root-mean-square innovation and ensemble spread during the assimilation period 

for EXP_S and EXP_D for reflectivity (dBZ) calculated against (a) KTLX, (b) KVNX, and (c) 

KDYX observations as well as (d-f) radial velocity (ms
-1

). Time of assimilation is given in seconds 

based on the start of the experiment at 0000 UTC (0105 UTC – 0200 UTC). 
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Fig. 7. (a) Reflectivity (dBZ), (b) differential reflectivity (dB), (c) specific differential phase (deg 

km
-1

) , and (d) radial velocity (ms
-1

) at a .5° tilt from KOUN as well as the ensemble mean final 

analysis at 0200 UTC for (e-h) EXP_S and (i-l) EXP_D. 
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Fig. 8. Surface (a) rain water mixing ratio (g kg
-1

) and (b) intercept parameter values (m
-3

 mm
-1

, 

10log10 scale)
 
from the EXP_D final ensemble mean analysis. Reflectivity contours at 20 dBZ 

intervals are overlaid on (b). The fixed intercept parameter value in EXP_S corresponds to 59 on the 

10log10 scale.
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Fig. 9. Reflectivity (dBZ) observation mosaic from KAMA, KDYX, KFWS, KLBB, KTLX, and KVNX approximately 2 km AGL at (a) 

0230 UTC and (b) 0400 UTC as well as (c) 30 minute and (d) 2 hour forecast reflectivity and horizontal wind field (m s
-1

) at grid level 10 

(about 2 km AGL) for EXP_S and (e, f) EXP_D. The horizontal wind vectors are plotted every 15 grid points (30 km). 
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Fig. 10. Reflectivity frequency histograms plotted for 1 dBZ bins for (a) the KAMA, KDYX, 

KFWS, KLBB, KTLX, and KVNX radar reflectivity observation mosaic (one the same model grid) 

and for 2 hour forecast reflectivity from (b) EXP_S and (c) EXP_D. 
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Fig. 11. Vertical cross sections of (a) snow mixing ratio (g kg
-1

) and (b) cloud ice mixing ratio (g 

kg
-1

) for EXP_S and (c-d) EXP_D. The locations of the cross sections are noted in Fig. 9d for 

EXP_S and Fig. 9f for EXP_D and extend from point A (left) to point B (right).  
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Fig. 12. Two hour forecast surface (a) rain water mixing ratio (g kg
-1

) and (b) potential temperature 

(K) and horizontal wind field (ms
-1

) for EXP_S and (c-d) EXP_D. The 0.5 g kg
-1

 rain water mixing 

ratio contour is overlaid on the potential temperature plots. Horizontal wind vectors are plotted 

every 5 grid points (10 km). 
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Fig. 13. Observed as well as interpolated surface temperature (°F) time series plots from EXP_S and 

EXP_D (UTC) at the location of Oklahoma Mesonet stations (a) Washington and (B) Ft. Cobb. The 

station locations are indicated by an ‘A’ for Washington and ‘B’ for Ft. Cobb in Fig. 11c and d.   
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Fig. 14. (a) Forecast reflectivity ETS and (b) RCC scores for EXP_S and EXP_D at forecast hours 

1, 2, and 3 for the entire experiment domain as well as over the (c-d) sub-domain defined in Fig. 9b. 
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Fig. 15. The RMSDs between simulated polarimetric variables of EXP_S and EXP_D and KOUN 

observations at a 0.5° tilt for (a) reflectivity of horizontal polarization (dBZ), (b) differential 

reflectivity (dB), and (c) specific differential phase (deg km
-1

) throughout the forecast period. 




