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ABSTRACT

Ensemble-based probabilistic forecasts are performed for a mesoscale convective system (MCS) that oc-

curred over Oklahoma on 8–9 May 2007, initialized from ensemble Kalman filter analyses using multinetwork

radar data and different microphysics schemes. Two experiments are conducted, using either a single-moment

or double-moment microphysics scheme during the 1-h-long assimilation period and in subsequent 3-h en-

semble forecasts. Qualitative and quantitative verifications are performed on the ensemble forecasts, including

probabilistic skill scores. The predicted dual-polarization (dual-pol) radar variables and their probabilistic

forecasts are also evaluated against available dual-pol radar observations, and discussed in relation to predicted

microphysical states and structures.

Evaluation of predicted reflectivity (Z) fields shows that the double-moment ensemble predicts the pre-

cipitation coverage of the leading convective line and stratiform precipitation regions of theMCS with higher

probabilities throughout the forecast period compared to the single-moment ensemble. In terms of the

simulated differential reflectivity (ZDR) and specific differential phase (KDP) fields, the double-moment

ensemble compares more realistically to the observations and better distinguishes the stratiform and con-

vective precipitation regions. The ZDR from individual ensemble members indicates better raindrop size

sorting along the leading convective line in the double-moment ensemble. Various commonly used ensemble

forecast verification methods are examined for the prediction of dual-pol variables. The results demonstrate

the challenges associated with verifying predicted dual-pol fields that can vary significantly in value over small

distances. Several microphysics biases are noted with the help of simulated dual-pol variables, such as sub-

stantial overprediction of KDP values in the single-moment ensemble.

1. Introduction

A major focus in recent convective-scale numerical

weather prediction (NWP) research has been improving

both the forecast initial conditions and the microphysics

parameterizations that are important for convective-scale

predictions; both areas address major challenges identi-

fied for theWarn-on-Forecast paradigmbyStensrud et al.

(2013). Data assimilation (DA), which is an indispens-

able part of convective-scale NWP, aims to improve the

forecast initial condition by optimally combining avail-

able observations and a background model state to pro-

duce the best possible estimate of the atmospheric state.

One popular DA method for convective-scale NWP isCorresponding author: Ming Xue, mxue@ou.edu
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the ensemble Kalman filter (EnKF; Evensen 1994, 2003),

which uses an ensemble of forecasts to estimate the

background error covariance. The application of EnKF

methods for the assimilation of radar observations has

produced successful results for a variety of real storm

cases (e.g., Dowell et al. 2004; Dowell and Wicker 2009;

Lei et al. 2009; Aksoy et al. 2009, 2010; Dowell et al. 2011;

Snook et al. 2011; Dawson et al. 2012; Jung et al. 2012;

Snook et al. 2012; Yussouf et al. 2013; Tanamachi et al.

2013; Putnam et al. 2014, hereafter P14; Wheatley et al.

2014; Snook et al. 2015; Yussouf et al. 2015).

Additionally, microphysics parameterization (MP)

schemes are used in convective-scale NWP models for

the explicit prediction of fields describing the type and

amount of hydrometeors present within the simulated

storms. Because of computational expense, most MP

schemes treat the hydrometeor particle size distribu-

tions (PSDs) in a bulk form, as opposed to representing

the PSDs using a spectral bin model (e.g., Khain et al.

2004), and the three-parameter gamma distribution is

often assumed:

N(D)
x
5N

0x
D

ax
x e(2LxD) , (1)

where N(D)x is the number of particles of hydrome-

teor species x with diameter D in a unit volume; and

Lx, N0x, and ax are the slope, intercept, and shape pa-

rameters, respectively (Ulbrich 1983; Milbrandt and

Yau 2005a). MP schemes are often characterized by

the number of PSD moments that are explicitly pre-

dicted and used to derive the same number of PSD pa-

rameters. Single-moment (SM) schemes usually predict

the third moment of the distribution, the hydrometeor

mixing ratio qx, while specifying the intercept and shape

parameters; double-moment (DM) schemes also predict

the zeroth moment, the total number concentration Ntx,

so that both the slope and intercept parameters can be

updated; triple-moment (TM) schemes predict the addi-

tional sixthmoment of the distribution, often called radar

reflectivity factor z, and effectively allow the slope, in-

tercept, and shape parameters of the gamma distribution

to vary independently. The shape parameter is specified

as a constant or diagnosed value in DM schemes.

The use of DM schemes for EnKF-based convective-

scale NWP has been shown to improve storm structure

and evolution during the analysis cycles as well as

forecasts for both supercell and mesoscale convective

system (MCS) cases. Dawson et al. (2015) showed that

DM and TM schemes produced better predictions of a

supercell storm than an SM scheme. Xue et al. (2010)

first successfully appliedEnKF to the estimation ofmodel

states associated with a DM scheme using simulated ra-

dar observations of a supercell, while Jung et al. (2012)

first successfully used a DM scheme for EnKF radar DA

for a real supercell storm. For the 8 May 2003 Moore,

Oklahoma, supercell, Yussouf et al. (2013) found that

both a fully DM scheme (which predicts the total number

concentration for graupel, Ntg) as well as a semi-DM

scheme (which diagnoses the intercept parameter for

graupel, N0g) produced more small graupel than an SM

scheme; this graupel was advected farther downwind,

forming a broader forward flank downdraft (FFD), in

agreement with observations. For MCS cases, P14, and

subsequently Wheatley et al. (2014), found that DM MP

schemes improved the development of trailing stratiform

precipitation compared to an SM scheme. A dramatic

increase in the formation and detrainment of snow and

ice from the leading convective towers rearward over the

stratiform region resulted in much broader stratiform

coverage.

Recently, simulated dual-polarization (dual-pol) ra-

dar variables have been used to evaluate microphysical

states estimated through data assimilation and predicted

by convective-scale models for real cases, by comparing

these variables to observations (Jung et al. 2012; Li and

Mecikalski 2012; Dawson et al. 2014; P14; Posselt et al.

2015; Putnam et al. 2017). The dual-pol variables contain

additional information on PSDs over reflectivity Z, spe-

cifically information about the size, content, and diversity

of hydrometeors present in the radar volume. For exam-

ple, differential reflectivity (ZDR) values are dependent

on the horizontal-to-vertical axis ratio of hydrometeors;

values are higher for large, oblate raindrops and low

for dry, tumbling hail (Bringi and Chandrasekar 2001).

Additionally, specific differential phase (KDP) is sensitive

to the amount of liquid water with which the radar pulse

interacts.

Dynamical and microphysical processes can lead to

significant variation in hydrometeor PSDs over small

spatial scales. For example, the size sorting of hydrome-

teors associated with storm-relative wind shear in the

forward flank of supercells leads to a significant increase

in the number of large raindrops in low-level rain PSDs

that can be identified by an increase inZDR values known

as the ZDR arc (Kumjian and Ryzhkov 2008, 2012;

Dawson et al. 2014). This signature is indistinguishable in

the observed Z pattern. Jung et al. (2012), in an EnKF

data assimilation study of a supercell storm that occurred

on 29May 2004 in central Oklahoma, showed that using a

DMMP scheme (Milbrandt and Yau 2005b) allowed the

model to replicate observed dual-pol signatures such as

the ZDR arc. P14 found that simulated ZDR patterns in

the final EnKF analysis of anMCS produced using a DM

scheme better represented the distribution of large, ob-

late raindrops in the leading convective line and small- to

medium-sized raindrops in the trailing stratiform region
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compared to an analysis produced using an SM scheme.

The SM analysis failed to capture this distinction, over-

estimating raindrop size in the stratiform region.

P14, which considered DM schemes and simulated

dual-pol variables, focused on the final EnKF analyses of

the experiments and on deterministic forecasts of simu-

latedZ. P14 paid particular attention to the improvement

in the microphysical and dynamical aspects of the MCS

when using the DM scheme, such as the hydrometeor

distributions and cold pool, and did not consider forecasts

of dual-pol variables in depth. The current study expands

upon P14 by performing and examining ensemble fore-

casts of the 8–9 May 2007 MCS case in terms of both Z

and dual-pol radar variables.

Ensemble forecasts offer additional benefits com-

pared to deterministic forecasts, including the ability to

produce probabilistic forecasts that account for uncer-

tainties in the initial condition and prediction model (in-

cluding microphysics). Ensemble forecasts are integral to

the Warn-on-Forecast vision outlined in Stensrud et al.

(2009), providing the basis for operational probabilistic

prediction of hazards associated with severe convection.

EnKF methods inherently provide an ensemble of ana-

lyses suitable for initializing ensemble forecasts (Kalnay

2002). Analyses from well-tuned EnKF systems represent

the flow-dependent background error that properly char-

acterizes the analysis uncertainty (Kalnay et al. 2006).

EnKF-initialized ensemble forecasts have been used to

produce convective-scale probabilistic forecasts in several

recent studies. For tornadic storms, probabilistic forecasts

have focused on low-level vorticity; Dawson et al. (2012)

and Yussouf et al. (2013, 2015, 2016) showed that the en-

semble probability of vorticity exceeding certain thresh-

olds predicted the observed damage paths of tornadoes

well in supercell cases, while Snook et al. (2012, 2015)

obtained similarly successful results for an MCS case.

Snook et al. (2012, 2015) also demonstrated the benefits of

using multiple MP schemes in EnKF ensembles for prob-

abilistic forecasts of Z, while Yussouf et al. (2016) showed

assimilating radar data using EnKF produced significantly

improved probabilistic quantitative precipitation forecasts.

In previous convective-scale EnKF studies using DM

MP schemes, little attention has been given to probabi-

listic prediction of simulated radar variables or quantita-

tive probabilistic forecast skill scores of simulated radar

variables. In particular, probabilistic forecasting of simu-

lated dual-pol variables has never been reported in the

formal literature as far as we know. Although Snook et al.

(2012, 2015) examined probabilistic prediction of Z, the

studies were limited to the use of SMMP schemes, and

they did not examine any of the dual-pol variables ei-

ther. Dawson et al. (2012), Yussouf et al. (2013), and

Wheatley et al. (2014) conducted ensemble forecasts using

DM MP schemes, but they only examined individual

member or ensemble mean forecasts, not probabilistic

forecasts of Z. The more recent studies of Yussouf et al.

(2015, 2016) showed that probabilistic forecasts of Z ex-

ceeding 40dBZ based on the semi-DM Thompson

(Thompson et al. 2004; 2008) scheme for two tornadic

supercell cases matched the locations of observed super-

cells well. However, no quantitative probabilistic forecast

skill scores for Z were presented. Additionally, these

preceding studies did not directly compare simulated ra-

dar variables on the elevation levels where observed data

were taken, but such comparisons are more intuitive for

operational forecasting purposes and therefore should be

performed first. Putnam et al. (2017) simulated dual-pol

variables from the Center for Analysis and Prediction of

Storms (CAPS) storm-scale ensemble forecasts as part of

the Hazardous Weather Testbed Spring Experiment

(Kong 2013) for several members that differed only in the

use ofMP schemes. The study emphasized the differences

among the different MP schemes in their ability to simu-

late dual-pol radar signatures, but ensemble proba-

bilistic forecasting of dual-pol radar variables was

not investigated.

In this study, we examine two ensemble forecasts of an

MCS produced using either mixed SM MP schemes or a

DM MP scheme during both the EnKF DA and sub-

sequent forecasts. We evaluate the simulated dual-pol

variables both qualitatively and quantitatively. Neighbor-

hood probabilities are calculated for both Z and the dual-

pol variables from ensemble forecasts with both perturbed

initial conditions and microphysics perturbations, and the

probabilistic forecasting performance of the two ensem-

bles is compared. Probabilistic forecasts of the dual-pol

variables include additional physicalmeaning beyondwhat

Z can show, including the connection between KDP and

rainfall rate, and the uncertainty such forecasts may con-

tain. As pointed out earlier, probabilistic forecasts of dual-

pol radar variables have never been examined before.

The remainder of this paper is organized as follows:

section 2 reviews the 8–9 May 2007 MCS case and the

experiment design, and briefly summarizes the methods

used in the SM andDM ensemble forecasts. In section 3,

we assess the skills of the ensemble probabilistic fore-

casts obtained with the SM and DM schemes. Finally,

section 4 summarizes the findings. The challenges asso-

ciated with probabilistic forecasting and evaluation of

highly localized dual-pol signatures are also discussed

and some suggestions for future research are given.

2. Experimental case and method

The model, EnKF settings, and data sources used in

this study are all inherited from P14. Two experiments
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are conducted using an SM and DM MP scheme, re-

spectively, in which ensemble forecasts are initialized

from the final EnKF analyses for the 8–9May 2008MCS.

The SM ensemble (EXP_S) and the DM ensemble

(EXP_D) use the same configuration during the EnKF

analysis period as the corresponding control experi-

ments EXP_S_M_3_5/EXP_S and EXP_D_M_3_5/

EXP_D from P14. A summary of the case and experi-

ment settings is provided below.

a. System overview

On 8 May 2007, an MCS developed in western Texas

and moved to the northeast into southwestern and central

Oklahoma during the evening hours (approximately

0000–0500 UTC 9 May). During the day on 8 May, a

positively tilted upper-level trough and seasonably warm,

moist air at the surface led to the development of wide-

spread convection over western Texas. The cool outflow

from these storms helped to initiate additional convection

and contributed to upscale growth over time as the storms

became organized into a convective line. Ahead of the

line, isolated supercell storms developed in northwest

Texas and southwest Oklahoma. The developing MCS

interacted with two of these storms, leading to the de-

velopment andmaintenance of a line end vortex (LEV)

near the northern end of the MCS (P14; Schenkman

et al. 2011). During the 0100–0500 UTC 9 May time-

frame the system remained in the asymmetric stage of

MCS development, with a broad area of leading strat-

iform precipitation, an intense leading convective line,

and a trailing region of stratiform precipitation [Fig. 1,

with term definitions based on Fritsch and Forbes

(2001)]. Widespread heavy rain was observed with this

MCS, and four tornadoes were reported near the LEV

(NWS 2012). For a more detailed discussion of the

development, structure, and impacts of this MCS, we

refer the reader to P14, Schenkman et al. (2011), and

Snook et al. (2011).

b. Forecast model settings

The forecast model used is the Advanced Regional

Prediction System (ARPS; Xue et al. 2000, 2001, 2003).

ARPS is a fully compressible, nonhydrostatic, three-

dimensional atmospheric model suitable for convective-

scale simulation and prediction. ARPS predicts the

three-dimensional wind components (u, y, w), pressure p,

potential temperature u, water vapor mixing ratio qy, as

well as themixing ratios for cloudwaterqc, rain qr, snow qs,

cloud ice qi, and graupel-like rimed ice qg and/or hail-like

rimed ice qh, depending on the SMMP scheme used. For a

DMMP scheme, the model also predicts the hydrometeor

number concentrations (Ntx, where x refers to individual

hydrometeor species). Additional parameterizations

used include NASA Goddard Space Flight Center long-

wave and shortwave radiation, 1.5-order turbulent kinetic

energy (TKE)-based subgrid-scale turbulence closure and

convective boundary layer parameterization schemes,

and a two-layer land surface/soil-vegetation model. More

details on the model physics can be found in Xue et al.

(2001). The model domain used consists of 259 3 259

grid points in the horizontal with a 2-km horizontal grid

spacing and a stretched vertical grid using 53 vertical grid

points with a minimum grid spacing of 100m and average

grid spacing of 500m. Themodel terrain is interpolated to

the 2-km grid from a 30-arcsecond high-resolution USGS

dataset.

The full experiment consists of a 1-h spinup period, 1-h

data assimilation period, and a 3-h ensemble forecast.

During the spinup period, a 1-h deterministic forecast on

the 2-km model grid is initialized from the NCEP North

American Mesoscale Forecast System (NAM) analysis at

0000 UTC. The 3-h NAM forecast from 0000 UTC valid

at 0300 UTC and the NAM analysis at 0600 UTC pro-

vide lateral boundary conditions during the forecast. At

0100 UTC, smoothed, random perturbations are added to

the 1-h spinup forecast (Tong and Xue 2008; Snook et al.

2011) to initialize a 40-member ensemble for performing

the EnKF data assimilation cycles. The first assimilation

is performed at 0105 UTC and the last at 0200 UTC, with

an assimilation cycle length of 5min. Only radar data are

assimilated. Further details on the data assimilation are

given below. Following the assimilation period, the final

FIG. 1. Mosaic of observed reflectivity (dBZ) from KAMA,

KDYX, KFWS, KLBB, KTLX, and KVNX at 0200 UTC at about

2 km above ground level (AGL). The locations of all radars assim-

ilated aremarked.Also, notableMCS features including the line end

vortex (LEV), leading convective line, leading stratiform region, and

trailing stratiform region are given. [Reproduced from Putnam et al.

(2014).]
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ensemble analyses are used to initialize 3-h ensemble

forecasts from 0200 to 0500 UTC.

c. Data sources

As in Snook et al. (2011) and P14, Level-IIZ and radial

velocity (Vr) data from five WSR-88D S-band radars in

Oklahoma and Texas are assimilated. These include

KTLX (Twin Lakes, Oklahoma City, Oklahoma),

KVNX (Vance Air Force Base, Oklahoma), KAMA

(Amarillo, Texas), KLBB (Lubbock, Texas), and

KDYX (Abilene, Texas). Together, these five radar

sites provide full coverage of the MCS during the DA

period. KFDR (Fredrick, Oklahoma) is also located

near the MCS, but level-II data from KFDR are un-

available during the assimilation window. BothZ andVr

data are also assimilated from four experimental X-band

radars maintained by the Engineering Research Center

(ERC) for Collaborative and Adaptive Sensing of the

Atmosphere (CASA; McLaughlin et al. 2009) in south-

western Oklahoma. These radars, KCYR (Cyril, Okla-

homa), KSAO (Chickasha, Oklahoma), KLWE (Lawton,

Oklahoma), and KRSP (Rush Springs, Oklahoma), pro-

vide additional low-level radar coverage over a portion of

the MCS near the LEV. The National Severe Storms

Laboratory’s dual-pol S-band radar KOUN (Norman,

Oklahoma) is used for verification. The locations of radars

used in this study are marked in Fig. 1.

Radar observations are interpolated to the model grid

horizontally, but are left at the height of the radar ele-

vation scan in the vertical, following Xue et al. (2006).

The observations are interpolated to the time of each

assimilation cycle using the previous and subsequent

volume scan. Quality control procedures, include des-

peckling, ground clutter removal, and velocity dealiasing,

are applied to the radar data prior to assimilation. For the

CASA X-band Z observations, attenuation correction is

performedbefore the data are assimilated (Chandrasekar

et al. 2004). The data quality control procedure used

follows P14. Specifically, for KOUN, dual-pol variables

are removed when rHV , 0.8, which corresponds to

nonmeteorological echoes.HereKDP is calculated by first

unfolding and then smoothing the differential phase

(FDP) data using an averaging window with 9 gates when

Z . 40dBZ and 25 gates when Z , 40dBZ. The least

squares fit method of Ryzhkov and Zrnic (1996) is then

used to calculate KDP using the same threshold to de-

termine the number of gates.

d. Ensemble Kalman filter settings

The EnKF algorithm used is an implementation of the

ensemble square root filter (EnSRF) of Whitaker and

Hamill (2002). As mentioned earlier, the ensemble is first

initialized at 0100 UTC by adding random, smoothed,

Gaussian perturbations to the 1-h spinup forecast. Per-

turbations with a standard deviation of 2ms21 are added

to u, y, andw and a standard deviation of 2K are added to

u (using positive values only) across the entire model

domain. Additional perturbations with a standard de-

viation of 0.001kgkg21 are added to the hydrometeor

mixing ratios and water vapor but they are confined to

regions of precipitation where Z is greater than 5dBZ.

The perturbations are smoothed following Tong andXue

(2008) and we use a horizontal correlation length scale of

8km and vertical scale of 5km.

Processed Z and Vr data from the nine radars are as-

similated every 5min between 0105 and 0200 UTC. This

includes clear-air Z data from the WSR-88Ds, which

Tong and Xue (2005) have shown helps to suppress de-

velopment of spurious convection. Clear-air data from

the CASA network are not used because of uncertainties

associated with the X-band attenuation (Z values similar

to those associated with clear air may be due to a com-

pletely attenuated signal). Assimilation ofVr is limited to

regions where Z . 20dBZ. The radar observation op-

erator used is that of Jung et al. (2008), which is different

from that used in Snook et al. (2011) and the same as that

in P14. A horizontal and vertical covariance localization

radius of 6km is used for both Z and Vr based on the

correlation function of Gaspari and Cohn (1999).

The observation error and covariance inflation

methods used are the same as in P14. They were chosen

based on preliminary experiments using various con-

figurations. Radar observation error values of 5 dBZ for

Z and 3ms21 for Vr are used. Multiplicative inflation

(Anderson 2001) with a factor of 1.25 is applied to the

prior ensemble for grid points where Z . 20 dBZ in

order to maintain ensemble spread and produce a

closer to optimal consistency ratio value (Dowell et al.

2004) throughout the assimilation period than could be

achieved using lower values of observation error and

other covariance inflation methods such as additive

noise (Dowell andWicker 2009) and relaxation to prior

ensemble (Zhang et al. 2004).

e. Microphysics schemes used and their
configurations

The two control experiments differ solely in terms of

the microphysics scheme used. EXP_S uses a combina-

tion of three different SM MP schemes during both the

assimilation period and the forecast. Using multiple MP

schemes within the ensemble was shown to increase en-

semble spread and improve root-mean-square innovation

(RMSI) during the assimilation period by Snook et al.

(2011). Of the 40 ensemble members, 16 use the Lin

scheme (Lin et al. 1983), 16 use the WRF single-moment

6-class microphysics scheme (WSM6; Hong and Lim 2006),
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and 8 use the simplified NWP scheme (NEM) of

Schultz (1995). Fewer NEM members are included

because NEM member forecasts did not tend to per-

form as well as members using the other SM schemes.

The intercept parameter used for rain (N0r) is reduced

by a factor of 10 from the typical value of 8 3 106m24

to 8 3 105m24, following Snook and Xue (2008), who

found that the reduced N0r value led to a lower and

more realistic evaporation rate and associated surface

cold pool intensity.

The DM experiment, EXP_D, uses theMilbrandt and

Yau (MY2; Milbrandt and Yau 2005b) scheme. During

the assimilation period, the shape parameters a for rain

and hail vary inversely between 0.0 and 2.0 in 0.05

increments for each member to increase ensemble

spread. All other hydrometeor categories use a 5 0.0;

furthermore, a is set to 0.0 for all categories in the

forecasts after 0200 UTC. As in Snook et al. (2011) and

P14, the graupel, or low density rimed ice, category of

the MY scheme is turned off to more closely resemble

the majority of members in EXP_S which exclusively

predict a high density, or hail-like, rimed ice category.

3. Results of experiments

In this section, ensemble forecast results from EXP_S

and EXP_D are presented. The results are divided into

two parts: 1) an evaluation of the overall forecast quality

of the completeMCS usingZmosaics and 2) verification

of simulated dual-pol variables against KOUN obser-

vations. Evaluations include qualitative discussion of

system structure and feature placement, evaluation of

probabilistic forecasts, and quantitative verification. We

also discuss methods and challenges as they relate to

dual-pol variables.

a. Ensemble forecasts of radar reflectivity

1) QUALITATIVE EVALUATION OF REFLECTIVITY

MOSAICS

Ensemble forecasts of the MCS are evaluated at 1-, 2-,

and 3-h forecast times by verifying the probability

matched ensemble mean (PMEM; Ebert 2001) forecasts

of Z from EXP_S and EXP_D against mosaics of ob-

served Z plotted at model level 10, which is approxi-

mately 2km above ground level (AGL) (Fig. 2). Model

level 10 is the lowest level where complete radar coverage

of theMCS is available without gaps between radars. The

mosaics of observed Z are created by combining obser-

vations from the five WSR-88Ds used during assimila-

tion, with observations interpolated to the model grid as

discussed above in section 2c. Where multiple radars

observe a specific grid point, the maximum value of Z is

used in the mosaics. The larger values are used because

they are less likely to have been subject to resolution

smearing and attenuation effects, although the latter is

usually rather small. The PMEM is used instead of a

regular ensemble mean because Z can vary greatly over

small distances, leading to underprediction of intensity

and overprediction of areal coverage when ensemble

members with even slightly displaced convective features

are averaged. The PMEMranks allZ values in the domain

fromhighest to lowest for both the ensemblemean and the

full ensemble, then reassigns values from the full ensemble

probability density function of Z to the grid location with

the same rank in the ensemble mean; this process helps

mitigate the aforementioned biases introduced by taking

the ensemble mean (Ebert 2001; Clark et al. 2009).

Unlike in P14, the simulated radar variables in the re-

sults in this manuscript use a different, more complex

observation operator than was used for EnKF DA. This

operator, outlined in Jung et al. (2010), uses a lookup table

of scattering amplitudes for all hydrometeors calculated

using the T-matrix method (Vivekanandan et al. 1991;

Bringi and Chandrasekar 2001). This operator enables us

to take into account Mie scattering for large ice particles,

such as hail or graupel, and to use a new axis ratio for rain

revised based on observations. The simpler operator used

during EnKFDA, based on Jung et al. (2008), uses a fitted

approximation to the T-matrix values for rain, and uses

the Rayleigh approximation for ice species. The simpler

operator is used during DA to reduce computational ex-

pense, while the more advanced operator is used for

forecast verification because it allows for a more realistic

comparison to observations. Specifically, this has a no-

ticeable effect on ZDR, reducing maximum values by

more than 0.5dB, which is beyond the estimated un-

certainty of observed ZDR of approximately 0.1–0.3dB

(Ryzhkov et al. 2005; Doviak and Zrnic 1993). The new

operator also,more correctly, simulates lowerZ values for

both dry and wet hail beyond the typical uncertainty forZ

observations, which is approximately 1–2dBZ.

The PMEM of Z in EXP_S contains a region of

anomalously high Z (.55 dB) centered near the LEV

(see Fig. 1), and there is little distinction between

regions of stratiform and convective precipitation

(Figs. 2d–f). The intensity of the trailing stratiform

precipitation is also overforecast. On the other hand, the

PMEM of Z in EXP_D (Figs. 2g–i) contains broader

precipitation coverage in the leading stratiform region

and a convective line with greater southern extent,

though it does overforecast Z intensity in the leading

stratiform region. The ensemble spread of Z is lower in

EXP_D than in EXP_S (not shown); only one MP

scheme is used in EXP_D, leading to closer agreement

among members and higher ensemble mean values
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(Snook et al. 2012). These results are similar to those

obtained in deterministic forecasts of this case in P14,

where the authors found the size sorting of smaller

raindrops rearward in the leading convective line when

using a DM scheme (absent in EXP_S) led to greater

evaporative cooling and a stronger cold pool that helped

maintain a more realistic MCS structure. They also

found that the cold pool in EXP_S is disorganized,

contributing to the development of spurious convection

near the LEV. It should be noted that neither EXP_S

nor EXP_D predict the small clusters of storms that

develop in the southeast and southwest portion of the

domain in the observations, likely in part because this

convection developed mostly after the DA period.

2) PROBABILISTIC FORECASTS OF REFLECTIVITY

Uncertainty within the ensemble forecast due to, for

example, initial condition and model errors, can be

considered by producing probabilistic forecasts of Z

from the forecast ensemble. High-resolution, convection-

permitting NWP forecasts are particularly sensitive to

timing and location errors as forecast lead time increases

due to the small spatial and temporal scales of convective

storms (Lorenz 1969; Roberts 2008). To account for this

sensitivity, we use the neighborhood ensemble probabil-

ity (NEP) method (Ebert 2008; Roberts and Lean 2008;

Schwartz et al. 2009), which, at each model grid point,

produces a probabilistic forecast using a collection of

nearby points in all ensemblemembers rather than relying

solely on data from that single grid point in each member.

In this way, NEP accounts for spatial uncertainty as well

as uncertainty conferred by the ensemble. Appropriate

specification of the neighborhood is important; in this

study we use a circular neighborhood with a radius of

5km, which is appropriate for the grid spacing used and

convective features predicted (Snook et al. 2012, 2015).

FIG. 2. Mosaics of observed reflectivity (dBZ) as in Fig. 1 from (a)–(c) 0300–0500 UTC as well as probability

matched ensemblemean reflectivity for (d) EXP_S and (g) EXP_D at 0300UTC/1-h forecast; (e),(h) 0400UTC/2-h

forecast; and (f),(i) 0500 UTC/3-h forecast.
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NEP is calculated for P(Z . 20 dBZ) (Fig. 3) and

P(Z . 40 dBZ) (Fig. 4) at the same vertical level 10 as

in Fig. 2. The 20-dBZ threshold is used to consider

overall precipitation coverage in the MCS, including

the stratiform regions, while the 40-dBZ threshold is

chosen to focus on areas of heavy, convective pre-

cipitation. In Figs. 3 and 4, the observed Z contours for

the corresponding threshold are also plotted.

FIG. 3. Neighborhood ensemble probability of reflectivity exceeding 20 dBZ using a 5-km radius at about 2 km

above ground level (AGL) for EXP_S at (a) 1-, (b) 2-, and (c) 3-h forecast times and (d)–(f) EXP_D. The thick

black line outlines observed reflectivity exceeding 20 dBZ.

FIG. 4. Neighborhood ensemble probability of reflectivity exceeding 40 dBZ using a 5-km radius at about 2 km

above ground level (AGL) for EXP_S at (a) 1-, (b) 2-, and (c) 3-h forecast times and (d)–(f) EXP_D. The thick

black line outlines observed reflectivity exceeding 40 dBZ.
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As was noted in the PMEM forecasts, the NEP fore-

casts of Z for EXP_D exhibit improved precipitation

structure and feature placement compared to EXP_S. At

the 20-dBZ threshold, the region of high P(Z. 20dBZ)

in EXP_D (Figs. 3d–f) closely matches the observed re-

gion of120-dBZ Z, particularly in the leading stratiform

region and leading convective line. In particular, EXP_D

predicts a broad area of very high probability (.0.9) that

closely matches the observed leading stratiform region in

terms of position, shape, and motion throughout the

forecast period. In contrast, EXP_S (Figs. 3a–c) exhibits

high probability (.0.8) for only about half of the ob-

served region of 120-dBZ Z during the first 2h of the

forecast, and even less in the 3-h forecast. EXP_S also

has a substantial region of moderately high probabilities

(up to 0.8) to the west of theMCS where no precipitation

is observed. Considering the individual SM microphysics

schemes within EXP_S, the LIN members exhibit the

best agreement with observations in terms of forecast

coverage and intensity of Z; WSM6 members generally

overforecast the extent of the trailing stratiform region,

while NEM members underforecast the extent of both

the trailing and leading stratiform regions (not shown).

These results are consistent with those of Snook et al.

(2012), which, using a similar ensemblewith the sameMP

schemes, found that the RMS innovation of Linmembers

during the forecast period was lower than that of WSM6

and NEM members. In both EXP_D and EXP_S, low

probabilities are predicted for the trailing stratiform

precipitation region; overall, this region is the worst

forecast portion of the MCS.

Although overall precipitation coverage (Z. 20dBZ)

is generally good for both cases, the P(Z . 40 dBZ)

associated with heavier, convective precipitation ex-

hibits greater error. For the leading convective line,

EXP_S has only a small overlap of low probabilities

(0.05–0.2) with the observed 40-dBZ region in the 1-h

forecast (Fig. 4a); EXP_Dhas greater overlap throughout

the forecast period (Figs. 4d–f), but the predicted prob-

abilities remain low. The convective line has a width of a

few kilometers and will be more susceptible to spatial

error as forecast lead time increases compared to the

stratiform regions, even with the consideration of a 5-km

neighborhood. EXP_D also has higher probabilities for

the convection near the LEV on the north end of the

MCS. However, there are areas of high probability in the

stratiform region as well, where EXP_D overforecasts Z

intensity. The overforecast in intensity is in part due to

the fields plotted in Figs. 2–4 being near the bottom of the

model melting layer where Z increases due to the pres-

ence of large and oblate water-coated ice hydrometeors.

Certain MP schemes have shown a tendency to under-

estimate melting over a deep layer below the 08 isotherm

in the model, compared to observations, due to over-

estimated evaporative cooling, which occurs in this

case (not shown); this behavior has also been noted in

previous studies (Jung et al. 2008, 2010; Johnson et al.

2016). This issue is difficult to avoid because radar

coverage below this level is incomplete and we want to

evaluate the model results without any gaps in the

observations. A modified melting model in the radar

simulator that includes temperature information to

help account for the delay in the model MP scheme is

considered for future work. Previous studies have also

shown that DMMP schemes can overestimateZ values

compared to observations due to excessive size sorting

(Kumjian and Ryzhkov 2012).

3) QUANTITATIVE EVALUATION OF

REFLECTIVITY FORECASTS

Qualitative evaluations based on the PMEM (Fig. 2)

show quite skillful forecasts in terms of Z but there are

still apparent spatial errors that would adversely affect

quantitative skill scores. TheNEP ofZ. 40dBZ used to

identify the leading convective line indicated how small

spatial error can lead to lower Z probabilities. When

considering features with small spatial scales, scores

such as the equitable threat score, which consider hits,

misses, and false alarms in a deterministic point-by-

point framework, are susceptible to a ‘‘double penalty’’;

a forecast with even a modest spatial displacement of a

feature not only misses the observed feature but also

produces a false alarm because the forecast feature is

not coincident with any observed feature (Ebert and

McBride 2000; Rossa et al. 2008; Mittermaier et al.

2013). Therefore, quantitative measures that consider

the probability of an event within a neighborhood are

considered.

The first metric considered is the area under the

relative operating characteristic (ROC) curve (AUC;

Mason 1982; Mason and Graham 1999) used to verify

neighborhood forecast probability. The AUC is a sum-

mary score that compares the probability of detection

and the probability of false detection for a given event

over a range of probability thresholds; in this case the

event is that Z exceeds a given threshold and the NEP is

calculated as a fraction of grid points within a 5-km ra-

dius neighborhood where the event occurs among all

ensemble members. Possible AUC values range from

0.0 to 1.0, with 1.0 indicating a perfect forecast (no false

alarms or misses). AUC values of 0.5 or below indicate

that the forecast has no useful skill. AUC is calculated

for EXP_S and EXP_D usingZ thresholds ranging from

10 to 50dBZ for 1-, 2-, and 3-h forecast times (Fig. 5),

and a bootstrap procedure is used to resample the en-

semble 1000 times to determine the 5th–95th percentile
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range, which is shaded. Background shading is included

to indicate the areas of useful forecast skill (green;

AUC. 0.7), low skill (yellow; 0.5,AUC, 0.7), and no

skill (red; AUC, 0.5). Calculations are performed over

the full experiment domain (Figs. 5a–c) as well as an

Oklahoma subdomain positioned to cover the leading

stratiform region and leading convective line, where

both forecasts performed better compared to the trailing

line (Figs. 5d–f).

Both experiments generally produce highAUC values,

except for the very highest Z thresholds, associated with

intense convective precipitation; confidence in AUC at

these thresholds is low, however, because the sample size

of Z exceeding these thresholds is quite small, and the

regions in question are very small in spatial extent. AUC

also, as expected, decreases with increasing forecast time.

In general, EXP_D shows improvement over EXP_S in

skill, especially for moderate Z thresholds representing

the stratiform region in the later hours.

The AUC increases overall for both experiments when

calculations are limited to the Oklahoma subdomain

(Figs. 5d–f). In the 1-h forecast, AUC is similar in EXP_S

and EXP_D, but in the 2- and 3-h forecasts, EXP_D

outperforms EXP_S in terms of AUC at nearly all

thresholds. In particular, EXP_D has an AUC value over

0.9 for thresholds of 20–25dBZ throughout the forecast

period over the Oklahoma subdomain (Figs. 5d–f),

indicating a highly skillful forecast of general precipitation

coverage of the leading stratiform region. EXP_D also

exhibits useful skill (AUC . 0.7) for higher Z thresholds

representing convective precipitation throughout the

forecast period over theOklahoma subdomain, suggesting

that the poorer scores over the full domain are partially

due to the overly quick dissipation of the trailing convec-

tive line and the newly developed convection in the

southern portion of the domain, while the leading con-

vective line is generally well forecast.

Reliability and sharpness diagrams are examined

next. A probabilistic forecast is considered reliable

when the probability of an event forecast to occur

closely corresponds to the rate at which the event ac-

tually occurs (Brown 2001). Reliability diagrams are

calculated for P(Z . 20dBZ) using a 5-km radius

neighborhood at 1-, 2-, and 3-h forecast times (Fig. 6). In

these reliability diagrams, perfect reliability is indicated

by the one-to-one diagonal line, and the shaded region

indicates a skillful forecast (i.e., where the reliability

contributes positively to the Brier skill score). Areas

where the calculated reliability lies above the diagonal

indicate that Z is underforecast (forecast probability is

FIG. 5. Area under the relative operating characteristic curve (AUC) for reflectivity for EXP_S (red line and

shading) and EXP_D (blue line and shading) at (a) 1-, (b) 2-, and (c) 3-h forecast times at about 2 km above ground

level (AGL) for the full experiment domain and also (d)–(f) a subdomain covering Oklahoma. The green shading

indicates useful forecast skill, the yellow shading indicates low skill, and the red shading indicates no skill.
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lower than the observed frequency); conversely, areas

below the diagonal indicate that Z is overforecast

(forecast probability is higher than the observed fre-

quency). Sharpness diagrams, which are histograms of

the calculated probability values, are shown in Fig. 7. An

ideal forecast will have many values near 1.0 or 0.0,

distinguishing sharply between events and nonevents.

Calculations are again performed over both the full

domain and Oklahoma subdomain.

Overall, there is not much difference in the reliability

of EXP_S and EXP_D either for the full domain or

the Oklahoma subdomain. For the 1-h forecast time

(Figs. 6a,d), both forecasts show good reliability, with

the region of Z . 20dBZ slightly underforecast in

EXP_S and slightly overforecast in EXP_D. For the

2- and 3-h forecast times (Figs. 6b,c,e,f), precipitation

coverage is generally overforecast in both experiments.

EXP_D does show greater sharpness than EXP_S, par-

ticularly over the Oklahoma subdomain (Figs. 7j–l). Both

experiments have a large number of probabilities of 0.0

that represent the large areas where precipitation is not

observed, but EXP_D has a much higher number of

points with probabilities close to 1.0 where the ensemble

predicts precipitation with very high confidence. As indi-

cated by the AUC (Fig. 5) and the qualitative evalua-

tion of NEP forecasts (Fig. 3), this region of very high

confidence agrees well with observations in EXP_D,

outperforming EXP_S. We would like to point out that

the mixed MP scheme setup of EXP_S may lead to a

decrease in sharpness compared to EXP_D because of

higher spread in the ensemble. However, Snook et al.

(2012) showed that the use of multiple SM MP schemes

within the EnKF DA cycles as well as subsequent fore-

casts actually increased the sharpness of the forecast of

mesovortices compared to an ensemble using only the

SM LIN MP scheme; this is believed to be due to im-

proved ensemble mean analyses and forecasts.

b. Ensemble forecasts of polarimetric variables

1) QUALITATIVE EVALUATION OF PREDICTED

POLARIMETRIC VARIABLES

The PMEM is calculated as in Fig. 2 for simulated Z,

ZDR, andKDP as though the ensemble forecasts of EXP_S

and EXP_D were observed by KOUN at 1-h (Fig. 8), 2-h

(Fig. 9), and 3-h (Fig. 10) forecast times; KOUN ob-

servations at the corresponding times are provided for

comparison. The simulated fields are shown at the 0.58
elevation; this choice of the lowest elevation is because

dual-pol radar signatures tend to be the strongest at

the low levels where size sorting effects (Dawson et al.

2014) and rainwater species dominate. Also, the lower

FIG. 6. Reliability diagrams calculated for reflectivity exceeding 20 dBZ for EXP_S (red line) and EXP_D (blue

line) at (a) 1-, (b) 2-, and (c) 3-h forecast times at about 2 km above ground level (AGL) for the full experiment

domain and also (d)–(f) a subdomain covering Oklahoma. The blue shading indicates whether the forecasts

have skill.
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elevation is less affected by the melting layer. The dif-

ference in Z between the forecasts over the KOUN ob-

serving region is similar to the PMEMmosaics considered

earlier (Fig. 2); EXP_D exhibits improved representation

of the leading convective line and better coverage of the

stratiform region compared to EXP_S, though it some-

what overestimates intensity due to the lowmodelmelting

layer compared to the 08 isotherm and the excessive size

sorting seen in DM MP schemes.

There are two notable differences between EXP_D

andEXP_S in terms of their forecast dual-pol fields. First,

the areal coverage of high ZDR values (ZDR . 2.3 dB), a

threshold that distinguishes the convective region from

the stratiform region in the observations, is overforecast

in EXP_S. The highest ZDR values predicted by EXP_S

are coincident with the poorly organized region of intense

convection within the system due to the monotonic re-

lationship between theZ andZDR (e.g., Fig. 8e). TheZDR

values in EXP_D (Fig. 8f), while slightly higher than the

observations (Fig. 8d), still show a similar general distri-

bution of high and low ZDR regions compared to the

observations, indicating a distinct difference inmaximum

raindrop size between the convective and stratiform re-

gions that is maintained throughout the entire forecast

FIG. 7. Sharpness diagrams calculated for reflectivity exceeding 20 dBZ for EXP_S (red) at (a) 1-, (b) 2-, and

(c) 3-h forecast times and (d)–(f) EXP_D (blue) at about 2 km above ground level (AGL) for the full experiment

domain and also (g)–(l) a subdomain covering Oklahoma.
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period (Figs. 9f and 10f). P14 found that these MCS

features were maintained by an improved cold pool due

to increased evaporative cooling from the advection of

small raindrops rearward by the DM scheme.

The second notable difference in the forecast dual-

pol fields of EXP_S and EXP_D is that the KDP values

in EXP_S are unrealistically high compared to the

observations, with values peaking at nearly 108km21

(Figs. 8h–10h). This suggests that EXP_S greatly over-

forecasts the liquid water content of the convective pre-

cipitation. By comparison,KDP in EXP_D is much closer

to the observations throughout the forecast (Figs. 8i–10i).

In fact, the qr values near the surface inEXP_S associated

with the maximum values of simulated KDP are, on av-

erage, twice as high as those in EXP_D (not shown). Rain

development in the stratiform region of the MCS is

heavily dependent on the transport of frozen hydrome-

teors in the mid and upper levels of the MCS from the

convective to the stratiform region. There is very little

hydrometeor transport from the convective line to strat-

iform region in the SM case (P14), and therefore there is a

higher precipitation rate in the convective line. The im-

proved development and maintenance of the MCS when

using the DM scheme leads to an improved representa-

tion of the KDP fields in EXP_D relative to the obser-

vations compared to EXP_S.

The patterns in the dual-pol variables that reflect

microphysical processes can be subtle; one such pattern

is increasedZDR along the leading convective line due to

size sorting. Though the PMEM helps to alleviate some

of the biases introduced by taking an ensemble mean, it

can smear such high-detail patterns. For this reason, the

FIG. 8. (a) Observed reflectivity (dBZ) and ensemble probability matchedmean reflectivity from (b) EXP_S and

(c) EXP_D at 0300 UTC/1-h forecast at a 0.58 tilt from KOUN, as well as (d)–(f) differential reflectivity (dB) and

(g)–(i) specific differential phase (8 km21).
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best individual ensemble member from each experi-

ment is examined in order to bring to light distinct

pattern differences within the predicted dual-pol fields

(Fig. 11). The 2-h forecast of EXP_S member 14 and

EXP_D member 39 are chosen based upon a qualita-

tive examination of the ensemble members that con-

siders placement of system features, ZDR patterns, and

overall ZDR value range. The best EXP_S member

contains precipitation extending southeastward where

the observations have the leading convective line, but

the intensity and extent is rather limited compared

to the best EXP_Dmember. As expected, areas of high

ZDR coincide with areas of high Z in the EXP_S

member. In the EXP_D member, however, high ZDR

values are located along the eastern/leading edge of the

leading convective line. This ZDR pattern is indicative

of the size sorting of raindrops within the convective

line, with smaller raindrops being advected rearward in

the line while larger raindrops remain.

2) PROBABILISTIC FORECASTS OF POLARIMETRIC

VARIABLES

In section 3a(2), probabilistic forecasts were used to

evaluate the ensemble forecast precipitation coverage of

stratiform and convective precipitation, based on 20- and

40-dBZ Z thresholds, respectively. A distinct variation in

the ZDR values also occurs, with ZDR increasing where

larger raindrops are present along the leading edge of the

convective line. To evaluate how well the two experi-

ments forecast the high ZDR signatures, the probability

of ZDR . 2.3 dB at the 1-, 2-, and 3-h forecast time is

calculated (Fig. 12). The threshold of ZDR 5 2.3 dB is

chosen based on the observed values that distinguish

between the convective and stratiform precipitation

FIG. 9. As in Fig. 8, but at 0400 UTC with 2-h forecast results.
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regions in this case (Figs. 8d, 9d, and 10d), and the ob-

served ZDR 5 2.3dB contour is shown as a thick black

line. EXP_S has a broad expanse of relatively high

probability of ZDR . 2.3dB over the stratiform region, a

result consistent with the overall pattern of ZDR in

Figs. 8e, 9e, and 10e. This region of highP(ZDR. 2.3dB)

is significantly displaced from the observed leading

convective line. In EXP_D, there is some overlap of low-

to-moderate probabilities of ZDR . 2.3dB with the ob-

served 2.3dB contour in the 1-h forecast, and some

overlap of low probabilities at the 2- and 3-h forecasts.

Though the regions of moderate P(ZDR . 2.3dB) in

EXP_D do not exactly match the observed region of high

ZDR, the geographic distribution of higher probability

follows a north-northwest to south-southeast orientation,

similar to that of the observed leading convective line.

The areal coverage of the probabilities is improved in

EXP_D compared to the more circular pattern found in

EXP_S. Moderate probability of an arc of larger rain-

drops relatively near the observed leading convective line

and the existence of the leading convective updrafts in the

MCS within the ensemble forecast are better depicted by

EXP_D and suggest potential for further improvement.

3) QUANTITATIVE VERIFICATION OF

POLARIMETRIC VARIABLES

The same concerns for how small spatial errors can af-

fect quantitative skill scores ofZ discussed in section 3a(3)

are even greater when considering skill scores for pre-

dicted dual-pol variables. Dual-pol signatures follow pat-

terns associated withmicrophysical processes that occur at

very small scales, such as the size sorting of raindrops

along the leading convective line. With this potential lim-

itation inmind, theAUC is calculated forZDR (0.0–2.7dB)

FIG. 10. As in Fig. 8, but at 0500 UTC with 3-h forecast results.
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and KDP (0.08–1.58km21) for the 1-, 2-, and 3-h forecasts

(Fig. 13) using a 5-km neighborhood radius as was done in

Fig. 5 for Z. Both experiments have similar, skillful AUC

values for predicting ZDR at thresholds of 0.0–1.0dB

(Figs. 13a–c). For higher thresholds, the AUC for EXP_S

indicates very poor skill, while EXP_D still produces a

skillful forecast. AUC for ZDR is better in EXP_D due to

the lower ZDR values throughout the leading stratiform

region, which agree much more closely with observations

than the forecast of EXP_S. The ZDR associated with the

leading convective line also has a good overlap with ob-

served values in EXP_D. EXP_S outperforms EXP_D

for the considered thresholds of KDP due to erroneous

broader coverage in EXP_S that overlaps the observa-

tions and the displacement error in EXP_D. Addition-

ally, the significant high bias in KDP in EXP_S is not

accounted for at these thresholds chosen based on ob-

served values; the AUC threshold limit is set to 1.58km21

because few observations exceed this value. The KDP is

poorer qualitatively in comparison to EXP_D, but limi-

tations in the quantitative scores used lead to poor and

misleading results.

Because of the large impact of spatial error on the

quantitative skill scores for the dual-pol variables, other

quantitative methods of evaluation not reliant on location

are useful. Domain-wide histograms of the simulated

dual-pol variables can be used to identify significant biases

in the forecast. Histograms of the simulated values from

all members of EXP_S and EXP_D as well as the ob-

served values are plotted in Fig. 14. The values from

EXP_S and EXP_D are normalized by the size of the

ensemble for comparison to the observations. For ob-

servedZ, values associatedwith thewidespread stratiform

precipitation lead to a peak between about 30 and 35dBZ

throughout the experiment period (Figs. 14a–c). The

EXP_D ensemble forecast Z values match the observed

distribution in this range better than EXP_S during the

first two forecast hours. Both experiments overforecast

the geographic extent of the convective precipitation, and

overforecast the intensity of Z in part due to the model

melting layer being displaced to lower heights as ice par-

ticles survive for several kilometers in depth below the

freezing level and excessive size sorting in EXP_D, lead-

ing to a higher number ofZ. 50dBZ values compared to

the observations, though this high bias is slightly greater in

EXP_S than in EXP_D in the 1- and 2-h forecasts.

Differences between EXP_S and EXP_D are readily

apparent in histograms of the predicted dual-pol values

(Figs. 14d–i). Observed ZDR values (Figs. 14d–f) peak at

about 1.0–1.5dB due to the broad coverage of moderate-

sized raindrops in the leading stratiform region. EXP_D

overforecasts the coverage of the leading stratiform

FIG. 11. (a) Observed reflectivity (dBZ) and simulated reflectivity from (b) EXP_S member 14 and (c) EXP_D

member 39 at 0400 UTC/2-h forecast at a 0.58 tilt from KOUN, as well as (d) observed and (e),(f) simulated dif-

ferential reflectivity (dB).

2272 MONTHLY WEATHER REV IEW VOLUME 145



precipitation, leading to an overall high bias in the ZDR

histogram, and slightly overforecasts the location of the

histogram peak in ZDR values, but the overall histo-

gram pattern is similar to that of the observations.

EXP_S, on the other hand, has a uniform distribution

of ZDR values throughout the forecast period, with no

evidence of the peak seen in the observations and in

EXP_D, due to the lack of broad coverage of stratiform

precipitation in EXP_S. EXP_S also has a larger

number of very high values (ZDR . 3.0 dB) resulting

from the unorganized region of intense convection in

the center of the system. Relatively little bias is noted

in theKDP histogram for EXP_D, with values similar to

the observations (Figs. 14g–i). EXP_S overforecasts

the total coverage of nonzero KDP values, again

suggesting a high bias in liquid water content overall

compared to the observations. This substantial high

bias in liquid water content in convective precipitation

skews EXP_S toward high values, with grid volumes

exhibiting KDP . 3.08km21, particularly in the 1-h

forecast (Fig. 14g).

4. Summary and conclusions

Ensemble forecasts initialized from cycled EnKF en-

semble analyses are produced for a mesoscale convective

system (MCS) that occurred over Oklahoma and north-

ern Texas on 8–9 May 2007 using single-moment (SM;

Lin et al. 1983) and double-moment (DM) microphysics

(Milbrandt and Yau 2005b) schemes. Qualitative and

quantitative probabilistic methods are used to examine

the MCS structure and precipitation distribution for the

SM (EXP_S) and DM (EXP_D) experiments. Addi-

tionally, predicted dual-polarization (dual-pol) radar

variables and their probabilistic forecasts are also evalu-

ated against available dual-pol radar observations, and

discussed in connection with model-predicted micro-

physical states and structures. The current study expands

on the work of Putnam et al. (2014), which focused on the

EnKF data assimilation and the deterministic forecasting

aspects of the same two experiments that used SM and

DM microphysics schemes, respectively. This paper fo-

cuses on ensemble probabilistic forecasting of reflectivity

(Z) and the simulated dual-pol radar variables associated

with the 8–9 May 2007 MCS.

Both qualitative and quantitative evaluations of the

probabilistic forecasts show that EXP_D predicts the

MCS with high confidence. EXP_D predicts the overall

precipitation coverage of the system (considering a

threshold region of Z . 20 dBZ) with very high prob-

abilities throughout the forecast period, particularly

for the stratiform precipitation region. EXP_S predicts

FIG. 12. Neighborhood ensemble probability of differential reflectivity exceeding 2.3 dB using a 5-km radius at

a 0.58 tilt fromKOUN for EXP_S at (a) 1-, (b) 2-, and (c) 3-h forecast times and for (d)–(f) EXP_D. The thick black

line outlines observed differential reflectivity exceeding 2.3 dB.
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similarly high probabilities for approximately half of this

region and includes a large area of moderate probability

of Z . 20dBZ outside of the observed region. EXP_D

has higher forecast skill, measured in terms of the area

under the relative operating characteristic curve (AUC),

for 2- and 3-h forecasts of the stratiform precipitation and

leading convective line comprising the northern portion

of the MCS. EXP_D also provides ensemble forecasts

with greater sharpness, where the highest precipitation

probabilities match regions of observed precipitation at a

higher frequency.

EXP_D better represents the microphysics-related

features in the MCS throughout the forecast period.

This is notable in terms of ZDR values, where EXP_D

shows a clear distinction between the convective and

stratiform precipitation regions, similar to that seen in

the final EnKF analysis in Putnam et al. (2014), which

continues throughout the forecast period. Additionally,

EXP_D implies more realistic liquid water content in

the convective region than EXP_S, where unrealistically

high KDP values suggest the liquid water content has

been overforecast, associated with the unorganized

system structure and precipitation development in the

forecasts.

Producing meaningful probabilistic forecasts of dual-

pol variables proves challenging. Dual-pol signatures

are often produced by physical processes within con-

vective systems with very small spatial scales; often less

than a few kilometers. These small-scale structures are

smeared when probabilistic forecasts are generated us-

ing neighborhood methods or a probability-matched

ensemble mean. When individual ensemble members

are examined, though, EXP_D maintains a better

quality in the predicted dual-pol fields compared to

EXP_S, similar to the final EnKF analysis noted in

Putnam et al. (2014). There is a notable arc of high ZDR

along the leading convective line in the MCS, resulting

from size-sorting processes that are not represented in

EXP_S, where ZDR shows a monotonic relationship

with Z. Probabilistic forecasts of ZDR for EXP_D, while

not particularly accurate in matching the location of the

observations, still indicate the presence of an arc of large

raindrops along the leading convective line and the po-

tential for more improvement in the future. The EXP_D

ZDR forecasts also show higher skill based on AUC

calculations compared to EXP_S. For KDP, the EXP_S

forecasts show higher skill. However, this is due to

spatial displacement in EXP_D and significant errone-

ous coverage of KDP in EXP_S. The low probabilities

and spatial displacement errors associated with both of

these variables indicate how uncertain the forecast of

intense, convective updrafts and excessive rainfall can be.

FIG. 13. Area under the relative operating characteristic curve (AUC) for differential reflectivity (dB) for EXP_S

(red line and shading) and EXP_D (blue line and shading) at (a) 1-, (b) 2-, and (c) 3-h forecast times at a 0.58 tilt as
well as for (d)–(f) specific differential phase (8 km21). The green shading indicates useful forecast skill, the yellow

shading indicates low skill, and the red shading indicates no skill.
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Understanding and increasing the skill in predicting in-

tense rainfall rates has the greatest broader impact on

forecasting potential flash flood events.

When evaluating a DM ensemble, the increased

computational expense cost of a DM over a SM scheme

should also be considered. Previous studies have shown

that DM schemes can increase computation time by

10%–30% depending on the scheme used (Morrison

et al. 2005; Milbrandt and McTaggart-Cowan 2008;

Morrison and Gettelman 2008; Lim and Hong 2010).

However, future increases in available computing re-

sources will make the operational use of DM schemes

increasingly feasible, and current operationally oriented

research projects, such as the 2016 Storm Scale En-

semble Forecasts (SSEF) produced by the Center for

Analysis and Prediction of Storms (CAPS; Kong 2016)

as part of the NOAA Hazardous Weather Testbed

Spring Experiment, are already using DM MP schemes

successfully in real time.

This is the first study to consider explicit ensemble-

based probabilistic forecasting of simulated dual-pol

radar variables, and it highlights several challenges for

future work. Even on high-resolution grids capable of

resolving microphysical patterns that occur on small

spatial scales, quantitative verification scores for dual-

pol signatures that usually have very small spatial scales

(even compared to convective storms) suffer from a

double penalty: forecasts of precipitation variables not

onlymiss the location of the observations (a ‘‘miss’’), but

also occur in a nearby location where the event was not

observed (a ‘‘false alarm’’). This was also noted in a

recent study evaluating storm-scale forecasts using dif-

ferent DM MP schemes (Putnam et al. 2017). Some

probabilistic neighborhood-based metrics are used in this

case to help account for spatial errors, but the distance

and orientation of patterns in the simulated variables still

presents a challenge when using such methods. AUC

scores used to verify neighborhood forecast probability

for dual-pol variables are poorer as the threshold con-

sidered increases, specifically for KDP, despite the neigh-

borhood radius of 5km used, due to both the small spatial

scale of the patterns being considered and discrepancy in

the range of forecast values versus observed values. Al-

though using a larger neighborhood may alleviate to a

FIG. 14. Histograms of observed KOUN (black) and simulated reflectivity (dBZ) values from EXP_S (red) and

EXP_D (blue) at (a) 0300, (b) 0400, and (c) 0500 UTC at a 0.58 tilt as well as (d)–(f) observed and simulated

differential reflectivity (dB) values and (g)–(i) observed and simulated specific differential phase (8 km21) values.

The values in EXP_S and EXP_D are normalized by the size of each ensemble.
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larger extent the effect of spatial error, the probabilistic

forecasts produced using progressively larger neighbor-

hood radii will be more and more smoothed, losing the

resolution necessary to capture small-scale features and

negating their intended purpose. Additional methods of

quantitatively evaluating dual-pol variables include his-

tograms, which can provide information on general biases

without considering spatial error. In such histograms

produced for this case, high biases in the number of large

drops and overall liquid water content, as suggested by

high biases in predicted KDP values, are identified in

EXP_S, likely due to the representation of convective

precipitation within EXP_S.

Possible future quantitative verification methods for

dual-pol fields include object-basedmethods (e.g., Davis

et al. 2006; Johnson et al. 2013; Zhu et al. 2015) that

match similar storm features in observations to those in

the forecasts to compare dual-pol variable patterns

better. Additionally, the probabilities in the ensemble

forecasts could be defined in terms of whether an event

occurred within a radius of a given location, rather than

defining the probabilities in terms of a fixed radius

neighborhood, as was used in Sobash et al. (2011) for

updraft helicity or Snook et al. (2016) for tornado

prediction. This method may produce higher proba-

bilities for dual-pol fields, which are rare events and

subject to significant displacement error that cannot be

accounted for with only a 5-km radius neighborhood.

These, and other forecast evaluation methods for dual-

pol fields remain a promising area for future research.

Themethods used in this paper can be applied to storm-

scale ensemble forecasts, such as the Storm Scale En-

semble Forecasts (SSEF) run as part of the NOAA

Hazardous Weather Testbed Spring Experiment (e.g.,

Kong 2016), to evaluate similar issues over multiple

cases. Putnam et al. (2017) represents the first effort in

that direction. More studies evaluating and improving

microphysics parameterizations and the dual-pol radar

simulators are also needed (e.g., Johnson et al. 2016;

Putnam et al. 2017).
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